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Methods for solving two-dimensional scattering problems using conformal mappings are investigated.

It is shown that their convergence relies on a mapped form of the Rayleigh hypothesis. It is concluded

that methods based on conformal mappings offer no advantages over established methods in which

the scattered field is expanded as a series of circular-cylindrical outgoing wavefunctions.
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I. INTRODUCTION

There are several effective rigorous methods for solving

the exterior boundary-value problems of acoustics in two

dimensions. For simple geometries (circles and ellipses), we

can use separation of variables. More generally, we can use

a boundary integral equation or a T-matrix method.

Our purpose here is to discuss certain methods in which

conformal mappings are used. The basic problem is to solve

the Helmholtz equation, (r2þ k2)/¼ 0, exterior to a simple

closed curve C, with boundary and radiation conditions.

Application of a conformal mapping can simplify the geom-

etry (C can be mapped to a circle) but at the cost of a more

complicated differential equation: the constant k2 is replaced

by a function of the independent variables; see Eq. (24)

below. This basic approach has a long history, going back to

Garabedian.1 More recent papers include Refs. 2–4.

At the heart of our discussion are singularities of the

analytic continuation of the (physical) exterior field inside C.
The relevance of these singularities to scattering problems is

well known, especially in the context of the Rayleigh hy-

pothesis. This concerns the use of circular-cylindrical wave

functions when the scatterer is not a circle; see Sec. III. In

Sec. II C, we give methods for calculating singularity loca-

tions inside C, with emphasis on the role of the Schwarz

function.5 This function has been used in other applied areas,

such as vortex dynamics (see, for example, Ref. 6 or Sec. 9.2

of Ref. 7). It can be constructed by conformal mapping

(Chap. 8 of Ref. 5) and by several other methods.

In Sec. IVA, we introduce transformations (changes of

independent variables), with conformal mappings as a spe-

cial case. It is observed that solutions of the transformed

Helmholtz equation can be obtained simply by introducing

the same transformation into known solutions of the Helm-

holtz equation. Then, in Sec. IVB, we consider published

methods in which a conformal mapping is used to map C
onto a unit circle. It is demonstrated that doing this offers no

advantages (and has the additional disadvantage of having to

find the appropriate conformal mapping). The new methods

are tantamount to trying to solve the problem of scattering

by C using circular-cylindrical wave functions (for which

several numerical strategies are available), which means they

are subject to (a mapped form of) the Rayleigh hypothesis.

II. SCATTERING PROBLEMS AND SINGULARITIES

We consider acoustic scattering in two dimensions.

Thus, we want to solve the Helmholtz equation,

@2/

@x2
þ @2/

@y2
þ k2/ ¼ r2/þ k2/ ¼ 0; (1)

in the unbounded region, B, exterior to the smooth closed

curve, C. Here, k¼x/c, c is the speed of sound and x is the

frequency: the suppressed time dependence is e�ixt. We use

Cartesian coordinates x, y, with the origin, O, inside C. The
total field is /þ/inc, where /inc is the given incident field.

For simplicity, we assume that C is sound-soft, which means

/þ /inc ¼ 0 on C (2)

In addition, / must satisfy the Sommerfeld radiation condi-

tion at infinity. It is well known that the boundary-value

problem for / has exactly one solution.

A. Circular scatterer

When C is a circle, centered at O, we can solve for / by

separation of variables in polar coordinates. Thus, as is well

known, radiating solutions of Eq. (1) are

wnðx; yÞ ¼ HnðkrÞeinh; n ¼ integer; (3)

where xþ iy¼ reih and Hn � Hð1Þ
n is a Hankel function.

Then, we write

/ðx; yÞ ¼
X

1

n¼�1
cnwnðx; yÞ; (4)

where the coefficients cn are to be found. If convergent, this

representation for / ensures that Eq. (1) and the radiation

condition are satisfied. For the boundary condition, suppose

C has radius a and put f(h)¼�/inc evaluated on r¼ a. Then,

Eqs. (2) and (4) give
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f ðhÞ ¼
X

1

n¼�1
cnHnðkaÞeinh; �p < h � p: (5)

As this is a Fourier expansion, we obtain

cn ¼
1

2pHnðkaÞ

ðp

�p

f ðhÞe�inhdh:

Let un¼max{jcnj, jc-nj} for n¼ 0, 1, 2,…. As

HnðjÞ � �ði=pÞð2=jÞnðn� 1Þ!; n ! 1; fixed j;

(6)

the series in Eq. (4) will be absolutely convergent for

r > lim
n!1

2nunþ1

kun
: (7)

For a simple example, consider an incident plane wave

/inc ¼ eikx ¼
X

1

n¼�1
inJnðkrÞeinh; (8)

where Jn is a Bessel function. Then

cn ¼ � inJnðkaÞ
HnðkaÞ

and
unþ1

un
� ðkaÞ2

4n2
as n ! 1;

using Eq. (6) and a similar estimate for Bessel functions,

Jn(j) � (j/2)n/n! for large n and fixed j. Hence, from

Eq. (7), the series in Eq. (4) converges absolutely for r> 0,

for an incident plane wave, Eq. (8). In other words, / can be

analytically continued inside the circle C, using Eq. (4), all

the way to r¼ 0, where there is a singularity.

Indeed, there must be at least one singularity inside C,
assumed now to be a simple, smooth closed curve, because

the only radiating solution of the Helmholtz equation in the

whole of space is identically zero. These singularities can be

induced by the incident field or by the shape of C.
The singularity locations are intrinsic to the boundary-

value problem: they do not depend on k (it is enough to con-

sider k¼ 0), the choice of coordinate origin, or the method

used for solving the boundary-value problem. They do

depend on the shape of C and on the incident field (or the

boundary condition on C).

B. Two more examples

Suppose that the circular scatterer of Sec. II A is dis-

placed so that its equation is

ðx� x0Þ2 þ y2 ¼ a2: (9)

The analytic continuation of / will still have a singular-

ity at the circle’s center, (x, y)¼ (x0, 0). If we use Eq. (4) for

/, with wave functions centered at O, the series will con-

verge for r> jx0j; this region will include all of the exterior,

B, provided that jx0j < ð1=2Þa.
For another example, consider an ellipse,

ðx=aÞ2 þ ðy=bÞ2 � 1 ¼ 0; 0 < b � a: (10)

The analytic continuation of / will have singularities at

the foci, (x, y)¼ (6c, 0) with c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

(see Sec. II C).

If we use Eq. (4) for /, with wave functions centered at O,

the series will converge for r> c; this region will include all

of B provided that a=b <
ffiffiffi

2
p

.

C. Methods for finding singularities

One way to find the singularity locations proceeds as

follows, adapting a method used by Keller8 for grating prob-

lems. Thus, suppose that the boundary curve C is given by

F(x, y)¼ 0 for some function F. Write C as

�z ¼ SðzÞ; z 2 C; (11)

where z¼ xþ iy and �z ¼ x� iy. Hence, x ¼ ð1=2Þðzþ �zÞ
¼ ð1=2Þðzþ SðzÞÞ and y¼ð1=2ÞiðSðzÞ� zÞ, so that S is given

implicitly by

Fðx; yÞ ¼ 0; with x ¼ 1

2
ðzþ SðzÞÞ; y ¼ 1

2
iðSðzÞ � zÞ:

(12)

Assuming that C is an analytic curve, S(z) will be an ana-

lytic function of z in a region that includes C. We are inter-

ested in locating the singularities of S(z) inside C. The reason
is that a separate argument (given by Keller8) shows that,

generically, these locations are where the analytic continua-

tion of / inside C will have singularities; see also Ref. 9. (In

general, there may be singularities outside C too, but these are

not relevant when our goal is to solve scattering problems.)

The function S(z) is known as the Schwarz function of C.
Much is known about properties of Schwarz functions.5,10

Let us give some explicit examples.

(1) Displaced circle, Eq. (9): S(z)¼ x0þ a2/(z� x0). Note that

S has a simple pole at the center of the circle. It is known

that if the Schwarz function of a closed curve C is a rational

function, then C must be a circle (p. 104 of Ref. 5).

(2) Ellipse, Eq. (10). With F(x, y) defined by the left-hand

side of Eq. (10), Eq. (12) gives

ða2 � b2Þðz2 þ S2Þ � 2ða2 þ b2ÞzSþ 4a2b2 ¼ 0; (13)

with solution [see Eq. (5.13) of Ref. 5]

SðzÞ ¼ 1

c2

�

ða2 þ b2Þz� 2ab
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � c2
p �

; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

:

Note that S has branch points at the foci of the ellipse,

z¼6c.

(3) Carl Neumann’s oval (p. 20 of Ref. 10). Barnett and

Betcke11 define an “inverted ellipse” parametrically by

xðsÞ þ iyðsÞ ¼ eisð1þ ae2isÞ�1; 0 � s � 2p;

where a is a constant, 0< a< 1. Eliminating the parame-

ter s gives

ðx2 þ y2Þ2 � ½x=ð1þ aÞ�2 � ½y=ð1� aÞ�2 ¼ 0 (14)

from which
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SðzÞ ¼ z

2

ð1þ a2Þ þ ð1� a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4az2
p

ð1� a2Þ2z2 þ a

" #

: (15)

We note that S has branch points at z ¼ 6ð2 ffiffiffi

a
p Þ�1

(out-

side C) and simple poles at z ¼ 6i
ffiffiffi

a
p

=ð1� a2Þ (inside C).
For Eq. (14), see Eq. (3.8) in Ref. 10. In plane polar coordi-

nates, Eq. (14) can be written in the form r2¼AþB cos2

h, called “the rose R2” by Davis; he gives Eq. (15) [Eq.

(5.16) in Ref. 5] and some generalizations.

Keller8 did not identify S(z) as the Schwarz function of

C but he did suggest a way of finding the singularities of S

without having an explicit formula for S. We have

Fðx; yÞ ¼ F
1

2
ðzþ �zÞ; 1

2
ið�z � zÞ

� �

¼ gðz; �zÞ:

On C, F¼ 0 and �z ¼ SðzÞ whence g(z, S(z))¼ 0, z � C.
But g is analytic in z and �z so that g(z, S(z))¼ 0 for z near C.
Then, differentiating with respect to z gives

0 ¼ @g

@z
þ @g

@�z
S0ðzÞ;

see p. 114 of Ref. 5. Thus, S0 is infinite when

@g

@�z
¼ @F

@x
þ i

@F

@y
¼ 0 with x ¼ zþ SðzÞ

2
; y ¼ z� SðzÞ

2i
:

(16)

Combining Eqs. (12) and (16) determines the singularity loca-

tions, z. This combination of conditions on F [but not the use

of �z ¼ SðzÞ] was also found by Maystre and Cadilhac.12

For an example, consider the ellipse, Eq. (10). Equation

(16) gives (a2þ b2)z¼ (a2� b2)S. Using this to eliminate

S from Eq. (13) then gives z ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

, as expected.

The methods described above assume that C is given in

the form F(x, y)¼ 0. However, there are situations where C
is defined parametrically by

x ¼ xðsÞ; y ¼ yðsÞ; 0 � s � 2p; (17)

or, in polar coordinates (when C is “star-shaped”), by

r ¼ qðhÞ; 0 � h � 2p: (18)

From Eqs. (11) and (17), we have x(s)� iy(s)¼ S(x(s)

þ iy(s)). Differentiation then shows that S0 will be infinite when

x0ðsÞ þ iy0ðsÞ ¼ 0; (19)

solving this equation for s¼ s0, say, the singularity of S(z) is

at z¼ x(s0)þ iy(s0).

Similarly, Eqs. (11) and (18) give

qðhÞe�ih ¼ SðqðhÞeihÞ;

so that differentiation gives

q0ðhÞ þ iqðhÞ ¼ 0 (20)

as the requirement for a singularity; solving Eq. (20) for

h¼ h0, say, the singularity is at z ¼ qðh0Þeih0 . The condition

Eq. (20) is also obtained from Eq. (16) using F(x, y)¼ x2

þ y2� q2(h) and h(x, y)¼ arctan (y/x). We note that Eq. (20)

is similar to a condition found by van den Berg and Fok-

kema;13 see their Eq. (14).

For the ellipse, Eq. (10), we can take x¼ a cos s and

y¼ b sin s. Then Eq. (19) gives tan s0¼ ib/a. We also have

q(h)¼ ab(a2 sin2 hþ b2 cos2 h)�1/2; Eq. (20) gives

e2ih0 ¼ a2 � b2

a2 þ b2
and qðh0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

:

Either way, we obtain the expected singularity locations.

For another example, suppose that C is the “rounded tri-

angle” of Barnett and Betcke,11 defined by

xðsÞ þ iyðsÞ ¼ eis þ ae�2is; 0 � s � 2p; 0 < a <
1

2
:

Equation (19) reduces to e3is¼ 2a, with three distinct

solutions. The corresponding singularities are at

z ¼ zn ¼
3

2
ð2aÞ1=3e2npi=3; n ¼ 0; 1; 2:

These are all inside C; see Fig. (7a) in Ref. 11 for a

sketch when a¼ 0.2.

In summary, the methods we have described determine

the singularity locations based solely on the shape of C.
Again, we note that there may be other singularities caused

by the incident field: these will not occur for incident plane

waves, for example.

III. RAYLEIGH HYPOTHESIS

The discussion in Sec. II is helpful in understanding the

Rayleigh hypothesis. Thus, suppose we write the solution of

our scattering problem as in Eq. (4). This infinite series con-

verges outside a circle, C0, of some radius, r0, centered at O.

The circle C0 is at least as small as the circumscribed circle

(the smallest circle, centered at O and containing C), but it
may be smaller. Thus, it is possible that C contains C0, so

that the series in Eq. (4) converges everywhere outside and

on C: this is an assumption known as the Rayleigh hypothe-

sis. It is known that the validity of the Rayleigh hypothesis

depends on the shape of C and the location of O. Specifically,

C0 must contain all the singularities of the analytic continua-

tion of / inside C, as discussed in Sec. II C.

A clear overview of this well-known material is given

by Millar.14

We emphasize that the Rayleigh hypothesis is con-

cerned with the convergence of infinite series. It says nothing

about numerical methods which, inevitably, deal with finite

series and approximations. For example, we may truncate

the series in Eq. (4) and write

/ðx; yÞ ’ /N �
X

N

n¼�N

cNnwnðx; yÞ: (21)

Evidently, /N satisfies Eq. (1) and the radiation condi-

tion, so it remains to find the coefficients cNn in order that the
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boundary condition, Eq. (2), be satisfied. One way to do this

is to apply Eq. (2) at discrete points on C; see, for example,

Ref. 15. Another popular way is to impose Eq. (2) in a least-

squares sense, minimizing
Ð

S
j/N þ /incj2 ds; see, for exam-

ple, Refs. 14 and 16. For comparisons and connections, see

Ref. 17.

It is interesting to note that singularity locations have

been found to play a role in the behavior of the method of

fundamental solutions (MFS). In the MFS, sources are

placed outside the physical domain along a fictitious “charge

curve” C and then their strengths are determined by fitting

the boundary condition on C. For interior problems, Barnett

and Betcke11 show numerically “that the success (numerical

stability and hence high accuracy) of the MFS relies on a

choice of charge curve which does not enclose any singular-

ities of the analytic continuation of the solution,” meaning

that there should be no singularities between C and C.

IV. CONFORMAL MAPPING

As noted in Sec. I, there has been interest in the litera-

ture, dating back many years, in using conformal mapping in

the context of two-dimensional scattering. We shall discuss

some of this work in Sec. IVB.

A. Mappings and their effects

Let us start by introducing an arbitrary, smooth inverti-

ble change of variables, defined by

x ¼ xðu; vÞ; y ¼ yðu; vÞ: (22)

When this is used in Eq. (1), together with the chain rule,

a new equation is obtained for /(x(u, v), y(u, v))¼U(u, v),

say (see the Appendix in Ref. 18):

jruj2 @
2
U

@u2
þ 2ðru � rvÞ @

2
U

@u@v
þ jrvj2 @

2
U

@v2

þ @U

@u
r2uþ @U

@v
r2

vþ k2U ¼ 0: (23)

The mapping in Eq. (22) can be chosen in many ways.

For example, we may choose it so that the boundary curve, C,
in the xy-plane is mapped into a simpler curve in the uv-plane.

One option is to choose a conformal mapping. For such

mappings, Eq. (23) simplifies substantially. The result is

@2
U

@u2
þ @2

U

@v2
þ k2JU ¼ 0; (24)

where J(u, v) is the Jacobian of the transformation, defined

by

Jðu; vÞ ¼ @x

@u

@y

@v
� @x

@v

@y

@u
: (25)

(The Cauchy-Riemann equations can be used to write J in

other ways.) Equation (24) is Eq. (20) in Ref. 3, for example.

Separated solutions of Eq. (24) are investigated in Ref. 18.

Return to the general equation, Eq. (23). Evidently, if

/(x, y) is any solution of the Helmholtz equation, Eq. (1),

then U(u, v)¼/(x(u, v), y(u, v)) is a solution of Eq. (23).

This result follows by substitution, nothing more: the change

of variables does not have to come from a conformal

mapping.

One application of this result is that

wnðx; yÞ ¼ wn

�

xðu; vÞ; yðu; vÞ
�

¼ Wnðu; vÞ; (26)

say, solves Eq. (23), where wn is the outgoing cylindrical

wave function, Eq. (3). We see solutions of this form as

Eq. (4.2) in Ref. 2, Eq. (27) in Ref. 3, and Eq. (24) in Ref. 4,

obtained there by much more complicated procedures.

B. Comparisons

In order to compare with previous work, we consider

using a conformal mapping. The simplest example concerns

the displaced circle, Eq. (9). In the physical z-plane, we have

z¼ xþ iy¼ reih. In the mapped f-plane, we have f¼ u

þ iv¼ reiu. The mapping z¼x(f)¼ afþ x0 takes the unit

circle jfj ¼ 1 to the displaced circle jz� x0j ¼ a. It also takes

f¼ 0 to the center of the displaced circle, z¼ x0, and

f¼�x0/a to z¼ 0. From Eq. (25), J¼ a2.

Let us assume that x0> 0. In the physical domain, we

know that the infinite series of wave functions, Eq. (4), con-

verges for r> x0, and this includes the whole of the exterior

region if x0 < ð1=2Þa.
In the mapped domain, we follow Eq. (24) in Ref. 4 and

write

Uðu; vÞ ¼
X

1

n¼�1
BnWnðu; vÞ (27)

with

Wnðu; vÞ ¼ Hð1Þ
n

�

kjwðfÞj
� wðfÞ

jwðfÞj

� �n

¼ Hð1Þ
n ðkjafþ x0jÞeinhðr;uÞ:

Each term in Eq. (27) is singular where jafþ x0j ¼ 0,

that is, at f¼�x0/a. However, the analytic continuation of /

inside the mapped circle, jfj ¼ 1, will be singular at the cen-

ter, f¼ 0. The convergence of the series in Eq. (27) depends

on the size of jfþ x0/aj, the distance from f to the expansion

center, �x0/a. This distance must be greater than the distance

to the farthest singularity which, in our case, is the (only)

singularity at the origin, f¼ 0. Thus (assuming no other sin-

gularities have been introduced by the boundary condition),

the condition for convergence of Eq. (27) is jfþ x0/aj> x0/a.

This is exactly the same as we found in the physical domain,

r¼ jafþ x0j> x0.

C. Discussion

The simple example just described is typical. Its study

leads to the following conclusions. First, the Rayleigh hy-

pothesis is still present in the mapped problem, even though

the mapped geometry is a circle. Conformal mapping has

merely disguised this fact.
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Second, as the functions Wn are not orthogonal on

jfj ¼ 1, some kind of numerical scheme will be needed to

find the coefficients, Bn, in Eq. (27). Exactly the same obser-

vation can be made of the series expansion in the physical

domain, Eq. (4). Consequently, one may as well work

directly with a truncated form of Eq. (4), which is Eq. (21):

nothing is gained by introducing a conformal mapping

(which would also have to be found).

Third, if C has a more complicated shape, one would

have to examine the curves jx(f)j ¼ constant in the f-plane

in order to understand the convergence of Eq. (27). These

curves may or may not enclose singularities of the analytic

continuation of U inside jfj ¼ 1. Making this determination

is not worthwhile: it is better to remain in the physical

domain.
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