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In this paper we study the  effects of negative Poisson’s ratios  on  elastic problems containing singularities.

Materials with  a negative Poisson’s ratio are termed auxetic. We  present  a  brief review of such materials.

The  elasticity  problem of a  bimateral wedge is  presented, then  two particular cases of this problem are

investigated: the free-edge problem and  the interface crack problem. We  study the effect on the stress

singularity due to one portion of the bimaterial becoming auxetic. We  find that  the auxetic material has

a significant effect on  the singularity order, even causing  the  singularity to  vanish for certain values  of

the  elastic constants.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Poisson observed that a material stretched under axial tensile

forces not only elongates longitudinally, but it also contracts lat-

erally. Most common materials undergo a transverse contraction

when stretched in one direction and a transverse expansion when

compressed; the magnitude of this transverse deformation is gov-

erned by Poisson’s ratio. Poisson’s ratio has  two theoretical limits

for a  linear elastic, isotropic material: −1  < �  < 0.5. The upper limit,

� → 0.5, represents the incompressible limit for the material, and

the lower limit, � → −1, is required for the strain energy to be a

positive definite function (Fung et al., 1965).

Lakes (1987) presented a new foam structure which exhibited a

negative Poisson’s ratio. This was achieved by converting a conven-

tional foam using heating and compression techniques to create

a reentrant structure. This type of material is called auxetic:  the

material expands laterally upon longitudinal tensile loading and

contracts laterally under longitudinal compression. Auxetic mate-

rials are not completely new: Love (1944) in his treatise book on

elasticity presents an example of “single crystal pyrite” with a  Pois-

son’s ratio of −1/7. However, this material is cubic and Poisson’s

ratios do not follow the isotropic limits. For anisotropic solids, no

such limits exist as shown by Ting and Chen (2005).

Auxetic materials are very rare in nature as discussed by

Stavroulakis (2005). Some examples are silicon polymorphs

(Kimizuka et al., 2000; Yeganeh-Haeri et  al., 1992;Alderson and
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Evans, 2002; Keskar and Chelikowsky, 1992), zeolite (Grima et al.,

2005), and silicates (Grima et al., 2005). Additionally, auxetic

behavior can be created in foams and similar materials by varying

the geometric structure (Grima and Evans, 2000, 2006; Smith et al.,

2000; Grima et al., 2012). The auxetic behavior in these materials

can be explained in terms of  their geometry and deformation mech-

anisms. Auxetic behavior has also been observed to occur locally

on the nanoscale in certain materials (Alderson et  al., 2005; Franke

and Magerle, 2011), and auxetic behavior has been noted in cer-

tain plate problems (Bhullar et  al., 2010). A review article by Yang

et al. (2004) summarizes much of the state of the art as to current

understanding of both natural and man-made auxetic materials.

The effects of  auxetic behavior on material properties have been

investigated (see, for example, Lakes and Drugan, 2002) to study if

material properties such as hardness, toughness, indentation resis-

tance, and acoustic response can be enhanced. For example, in

Lakes (1987) and Grima and Evans (2000) the shear modulus, �, is

predicted to increase as the Poisson’s ratio approaches the lower

theoretical limit (� → −1.0) if  Young’s modulus (E) is constant.

Indentation resistance has been investigated and enhancements

in hardness have been found. Auxetic foams have been found to

be up to  three times more difficult to indent than conventionally

processed polymers (Alderson et al., 2000). Foams with negative

Poisson’s ratios were also found to have higher resilience than

conventional foams (Lakes, 1987). Finally, auxetic materials are

predicted to become very tough according to classical elasticity the-

ory when the Poisson’s ratio approaches the lower limit of −1.0. For

example, the fracture toughness of negative Poisson’s ratio open

cell copper foams are enhanced by 80%, 130%, and 160% for per-

manent volumetric compression ratio values of 2.0, 2.5 and 3.0,

respectively, compared to a  conventional foam with a positive Pois-

son ratio (Choi and Lakes, 1996).
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Fig. 1.  General elastic bimaterial problem.

The motivation for the present paper is to investigate problems

in elastic bimaterials when one portion of the bimaterial is auxetic.

Typical problems of this nature are the free-edge singularity (which

can be useful in investigating delaminatation failures in bimateri-

als) and the interface crack problem. To  generalize the problem, we

present results for both the free-edge and interface crack problems

over the entire range of permissible Poisson ratios where the effect

of a material becoming auxetic on the stress singularity order may

be readily seen.

2. Singularities in bimaterials

We consider the general bimaterial problem shown in Fig. 1.

Both Material 1  and Material 2 are taken to  be linear, elastic,

isotropic, and homogeneous. Material j  has Poisson’s ratio �j,  shear

modulus �j,  and Young’s modulus Ej, j  =  1, 2. We will assume the

two materials are perfectly bonded at the planar interface so dis-

placements and tractions are continuous across the interface. The

local polar coordinate system r,  �  is positioned at the root of the

notch, and the notch-face angle � is assumed to be symmetric with

respect to the interface. We focus on two specific problems: the

free-edge problem (� =  �/2 in Fig. 1) and the interface crack problem

(� =  �). Of particular interest in both problems is the nature of the

increase in stress (if any) as r  → 0.

The singularity order ı has been studied extensively in isotropic

bimaterials. For interface cracks, solutions of the type � ∼ rı have

been obtained where ı is complex valued. The free-edge prob-

lem has been extensively studied by Bogy (1968, 1970) and others,

and the stress field solution was of the type rı where ı was real-

valued depending on the elastic properties of the two  materials.

Dundurs (1969) reduced the number of parameters that the stress

field depends on from three to two and used these parameters to

express the solution in a more compact way.

The plane problem of bonded dissimilar wedges of arbitrary

angle subjected to general forms of loading was studied by Hein

and Erdogan (1971).  The solution was obtained by solving two sim-

pler problems where the solution is given by the sum of solutions of

the two separated problems. The dependence of singularity order

in the stress field on the wedge angles and the elastic constants

of the materials was also investigated by Hein and Erdogan (1971).

Numerical results of several angle geometries for all relevant mate-

rial constants combinations were produced. Finally, we note that

Green’s function methods have also been used successfully on the

free-edge problem. The anisotropic problem was  considered by

Tewary (1991), where the Green’s function was represented by an

exact integral. Both the displacement and the stress Green’s func-

tion were obtained. A Green’s function method was  also employed

by Martin (2003) where a reduced equation for calculating the sin-

gularity order was found. An anisotropic bimaterial problem was

also considered by Berger et al. (1998) where it was noted that the

free edge singularity vanishes for certain free-surface angles and

elastic constants combinations.

3.  Formulation

In this section, we review the analytical solution for the bima-

terial wedge as introduced in previous papers, see for example

Bogy (1968), Ding and Kumosa (1994). To be definite, we consider

plane-strain problems; similar results are available for plane-stress

problems. Typical solutions use an Airy stress function in polar

coordinates,  (r, �) (Williams, 1952), written in each portion of

the bimaterial,

 j(r, �) = rıFj(�), j = 1, 2  (1)

where Fj(�) can be determined from the governing differential

equation for  , ∇4  = 0. The stress components in each portion

of  the bimaterial are then

�(j)
rr = (ı + 1)rı

{

ı[Aj sin ı� − Bj cos ı�]

−(ı + 2)[Cj sin(ı  +  2)�  + Dj cos(ı + 2)�]
}

,
(2)

�(j)
r�

= (ı + 1)rı
{

ı[Aj cos ı� + Bj sin ı�]

+(ı + 2)[Cj cos(ı + 2)� − Dj sin(ı + 2)�]
}

,
(3)

�(j)
��

= (ı + 1)(ı + 2)rı
{

Aj sin ı� + Bj cos ı�

+Cj sin(ı + 2)�  + Dj cos(ı + 2)�
}

,
(4)

where j  = 1, 2 indicates if the stress component is in Material 1 or 2.

Using similar notation, the displacements in each portion of the

bimaterial are

u
(j)
r =

rı+1

Ej

{(

ı + �j(ı + 2)
)

[Aj sin ı� − Bj cos ı�]

−(ı + 2)(1 + �j)[Cj sin(ı + 2)�  + Dj cos(ı + 2)�]
}

,

(5)

u
(j)
�

=
rı+1

Ej
{−(�j(ı + 2) + (ı + 6))[Aj cos ı� + Bj sin ı�]

+(ı + 2)(1 + �j)[Cj cos(ı + 2)�  + Dj sin(ı  + 2)�]}.

(6)

For continuity of displacement and traction at  the interface, � = 0,

u(1)
r (r, 0) = u(2)

r (r, 0),  u(1)

�
(r, 0) = u(2)

�
(r, 0), (7)

�(1)

��
(r, 0) = �

(2)

��
(r, 0), �

(1)

r�
(r, 0) = �

(2)

r�
(r, 0).  (8)

Finally, the traction-free surface conditions are

�(1)

��
(r, �) = �(2)

��
(r, −�) = �(1)

r�
(r, �) = �(2)

r�
(r, −�) = 0. (9)

Substituting the stress and displacement equations in the boundary

and continuity conditions, we  obtain eight linear equations in the

eight unknown values of Aj, Bj, Cj, and Dj which can be written

in matrix form as Ax = 0. For a non-trivial solution we then have

det A  = 0, which yields the singularity order ı.
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Fig. 2. Singularity order ı for the free-edge problem as  a function of �1 (with

�2 = 0.30) for 2 ≤ E = E1/E2 ≤  1000.

4.  The free-edge problem

For this problem, we consider the effects of an auxetic material

on the singularity at the intersection between an interface and the

free surface of the bimaterial. Following Martin (2003),  the singu-

larity order for � =  �/2 can be computed from

det A  = −44(ı + 1)2
[(1  − �1)�2 + (1 − �2)�1]

2�(ı)  = 0 (10)

where

�(ı)  = (ˇ2 − 1)S4 +
[

1 + 2(ı  + 1)2(  ̨ −  ˇ)ˇ
]

S2

+(ı + 1)2
[

(ı + 1)2(  ̨ − ˇ)2
− ˛2

]

,
(11)

S = − sin 1
2

(ı + 1)�, and ˛,  ̌ are Dundurs constants (Dundurs,

1969); for plane-strain problems,

˛ =
E − 1

E + 1
,   ̌ =

(1 − 2�2)�1 −  (1 − 2�1)�2

2(1 − �2)�1 + 2(1 − �1)�2
, E =

E1

E2
. (12)

In the majority of  the literature (see, for example, Hutchinson and

Suo, 1992), physically admissible values for the Dundurs constants

are restricted to lie within the parallelogram enclosed by   ̨ = ±1

and  ̨ − 4  ̌ = ±1 in the (˛, ˇ) plane. However, this result assumes

that Poisson’s ratio is positive. If we permit auxetic materials, the

parallelogram is 50% larger; it is enclosed by ˛  = ±1 and  ̨ − 8
3
ˇ =

±1.

To examine the influence of one portion of the bimaterial

becoming auxetic, we calculate the singularity order, ı, from Eq.

(11) as we vary �1. For this calculation we fix �2 =  0.30 and allow

the elastic moduli ratio, E = E1/E2, to  vary. The first set of results

is shown in Fig. 2, where we plot ı as a function of �1. We take

values of �1 across the entire range of  permissible values of  the

Poisson ratio, −1 < �1 <  0.5. Note in the figure that the singularity

order, ı, becomes increasingly negative as E is increased for fixed

�1.  Also, once Material 1 becomes auxetic (�1 < 0), the singularity

order is significantly affected by the Poisson ratio. In certain cases

the singularity order decreases over 18% due to Material 1 becom-

ing auxetic. Finally, in Fig. 2 we note that for E = 2, the singularity

disappears when �1 decreases below −0.4. This is explored in more

detail in Fig. 3 for moduli ratios of 1.5 ≤ E ≤ 4.5. In Fig. 3,  note that

if E ≥ 3, the singularity cannot be eliminated.

Fig. 3. Singularity order ı for the free-edge problem as a  function of �1 (with

�2 = 0.30) for 1.5 ≤ E ≤ 4.5.

5. The interface crack problem

For this problem, we  investigate the effect of  an auxetic material

on the singularity at  the tip of an interface crack, that is, when

� =  �. The stress field near the tip of the crack varies, for example,

as (Atkinson, 1979)

�∼r−1/2 cos(Im(ı) log r)  (13)

where the second term arises from the imaginary part of the sin-

gularity order and is usually referred to in the literature as the

oscillatory part of the singularity. This can be computed in plane-

strain as (Gu and Belytschko, 1994)  as

Im(ı) =
1

2�
log

[

(3 − 4�1)�2 +  �1

(3 − 4�2)�1 +  �2

]

.  (14)

When the two portions of the bimaterial are closely matched

elastically, the imaginary part of the singularity order is very small

as expected. In Fig. 4  we have plotted Im(ı)  for a variety of ratios

�1/�2 as a function of �1. As with the free-edge problem, we  have

kept �2 = 0.30 for these calculations. We note in the figure that, in

Fig. 4. Imaginary part of the singularity order ı for the interface crack problem as  a

function of �1 (with �2 = 0.30) for 1.5 ≤ E1/E2 ≤  1000.



M.M. Adam et al. /  Mechanics Research Communications 47 (2013) 102– 105 105

Table 1

Values of �1 where Im(ı)  = 0 (�2 = 0.3).

�1/�2 1.5 2.0 2.5  3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

�1 0.2 0.1 0.0 −0.1 −0.2 −0.3 −0.4 −0.5 −0.6 −0.7 −0.8 −0.9

general, a negative Poisson’s ratio causes the oscillatory singularity

to decrease when compared to cases where the Poisson’s ratio is

positive. Of particular interest are cases where the decrease due to

�1 becoming negative can actually drive Im(ı) to zero. In Table 1

we present values for �1 where Im(ı) =  0 for various ratios �1/�2.

Note in the table that if  �1/�2 > 2.5, the material must be auxetic

in order for the crack-tip singularity to be purely real.

6. Summary

In this paper, we have investigated stress singularities in elastic

bimaterials where we allow the Poisson’s ratio of one portion of

the bimaterial to vary completely over −1 <  � <  0.5. Our motivation

for this study comes from recent discoveries of auxetic materials,

and how this might affect stress singularities in such problems. We

found that when one portion of the bimaterial becomes auxetic,

the effect on either the free-edge or interface crack singularity can

be profound, even causing it  to vanish given appropriate values

of the remaining elastic constants. As more auxetic materials are

developed, this fact could lead to  strategies helping to suppress

delamination or fracture failures in these bimaterials.
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