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1. Introduction

Let £2 denote a thin flat plate lying in the plane z = 0, where Oxyz is a system of Cartesian coordinates. The charge
distribution on the plate is o (x), where ¥ = (x, y). The potential on the plate is

o(x

f()——/idx, X e Q. (1)
47 Jo |x —X|

The electrostatic energy, I, is given by

I_/f(x)a(x’)dx = // o(x)a(x) dx dx’,
|x — x|

where the overbar denotes complex conjugation. In a recent paper, Laurens and Tordeux [ 1] showed how to calculate I when
£2 is an ellipse and o (x, y) is a linear function of x and y. We generalize their result: we allow arbitrary polynomials in x and
y, and we incorporate a weight function to represent singular behaviour near the edge of the plate.

2. An elliptical plate

When §2 is elliptical, it is convenient to introduce coordinates p and ¢ so that
X = apcos o, y=bpsing, 0<b<a. (2)

Then, §2 is defined by 2 = {(x,y,2) : 0<p <1, —m < ¢ < m, z = 0}. Thus, p = 1 gives the edge of the plate £2.

Eq. (1) can be regarded as an integral equation for o when f is given [2-4]. Alternatively, (1) can be regarded as a formula
for f when o is given; this is the view adopted in [1].

When f is given, the function o is infinite at p = 1, in general. In fact, there is a general result, known as Galin’s theorem,
asserting that if f (x, y) is a polynomial, then o is a polynomial of the same degree multiplied by (1 — p?)~"/2. In particular,
if f is a constant, then o is a constant multiple of (1 — p%)~1/2,
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3. Fourier transforms

We start with a standard Fourier integral representation,

1 _ 1
x—x| 27

/ / |&7" expli& - (x — %)} &, (3)

where § = (&, n). Henceforth, we write [ when the integration limits are as in (3). Thus

1
) = o / E71U) exp(—i& - ¥) dé (4)
TT
and
1
1= f £ U@ dE, (5)
where
1
U = = f o (x) exp(i& - x) dx. (6)
T Jo

For an elliptical plate, we write the Fourier-transform variable & as
& =(A/a)cosyy and n = (A/b)siny.
Then, using (2), & - x = A p cos(¢ — ). Hence,

exp(§ - %) = ) _ & i"n(1p) cosn(¢ — ),
n=0

where J, is a Bessel function, g = 1and ¢, = 2 forn > 1.
In order to evaluate U (&), defined by (6), we suppose that o has a Fourier expansion,

o) =) om(p)cosme + Y Gn(p)sinmg. (7)

m=0 m=1

Then, using dx = abp dp d¢ and defining

1
5n[gn;k]=/ gn(P)n(Ap) pdp, (8)
0

we obtain

o0 oo
U =ab ) i"8ylon: Alcosnyr +ab Y i"84[Gn; Al sinny.
n=0 n=1
We have dé = (ab)~'Adrdy and |&] = (A/b)(1 — k? cos® y)'/2, where k> = 1 — (b/a)?; k is the eccentricity of the
ellipse.
From (4), we obtain

£ =fop) +2 ) {fa(p) cosne + (o) sinng |
n=1

where
b o0 '
falp) = E,;Im”(k)/o Jo(Ap) Bpmlom; AldA, (9)
- h & s o .
fn<p>=gr;1mn<k) /0 JaO0) Sml[Gm; A1 dA, (10)
. T cos myr cos nys
I€ (k) = i™(—i)" , 11
< (k) =i"( 1)/0 ety (11)
I, (k) —im(—i)”/7r sinmy sinng. (12)
me 0 /1—k?cos?y
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and we have noticed that || is an even function of 1. The integrals I}, and I}, , can be reduced to combinations of complete
elliptic integrals, K (k) and E (k). They are zero unless m and n are both even or both odd. (See [5, p. 276] for a discussion of
similar integrals.) Explicit formulae for a few of these integrals will be given later.

For the energy, I, (5) gives

Cdydh
[ = —
/ /—n VO sy V1= k2 cos?
=abZZZI (k)/ Jm[am,k]én[an,k]dk+abZZZI (k)/ Bn[Gm: 1] BnlGn; ] dA. (13)
m=0 n=0 m=1 n=1 0

4. Polynomial expansions

To make further progress, we must be able to evaluate ,[g,; 1], defined by (8). We do this by expanding g, (p) using the
functions

G (p) = p"(1 = p*)' P (1 = 2p%),

where Pj("’v) is a Jacobi polynomial. The parameter v controls the behaviour near the edge of the ellipse, p = 1. Thus, when
v =0, o (p) is a polynomial; this covers the case discussed in [ 1]. Setting v = —% gives appropriate expansion functions

when the goal is to solve (1) for o. We note that Boyd [6, Section 18.5.1] has advocated using the polynomials G;"’O)(r) as
radial basis functions in spectral methods for problems posed on adisc,0 <r < 1.

The functions Gf”’”) are orthogonal. To see this, note that Jacobi polynomials satisfy

1
[ =0 0B 0B 0 = e, 1
-1

where h; is known and §;; is the Kronecker delta; see [7, Section 18.3]. Hence, the substitutionx = 1 — 2p? gives
G ()G pdp vz
(0)G"" (p) —ZV = 27" 2hy(n, )5y (14)
0 (1 )
Next, we use Tranter’s integral [8,9] to evaluate 4, [G}"’”) DA

v

1
/ InGp)G" () pdp = ———T (v +j+ Dlgjinror1 (3.
0

)Lqul il

Thus, if we write

j'sf (n.v)
— G\ , 15
n(p) ]:ZO o 0 @ (15)
where 51'7 are coefficients, we find that
SH
Salows A = Y s B (1) (16)
=0

We also expand 6,,(p) as (15) but with coefficients §]'7’.

If we substitute (16)in (9), we encounter Weber-Schafheitlin integrals; these can be evaluated. We give a simple example
later.
If we substitute (16) in (13), we encounter integrals of the type

/0 A i W) () dA (17)

where 1 = v + 1, and p and q are non-negative integers. The integral (17) is known as the critical case of the Weber-
Schafheitlin integral; its value is [7, Eq. 10.22.57]

r(3lp+q+11) rew
20l (52u+p—q+10) I (320 +q—p+1) I (34 +p+q+1])

(18)
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5. Three examples

We discuss three examples. In the first, we examine the dependence on the parameter v but, for simplicity, we ignore
any dependence on the angle ¢. In the second example, we compare with some results of Roy and Sabina [2] for v = — %

In the third example, we assume that o (x, y) is a general quadratic function of x and y (so that v = 0); this extends the
calculations in [1], where o was taken as a linear function.

5.1. Example: dependence on v

For a very simple example, suppose that o (x) = (1 — p?)" for some v > —1. Thus, as P(" ) = 1, (15) gives sg =2
I' (v + 1). All other coefficients sT' and §'.1 are zero. Then, from (16), 8p[og; A] = sok v 1]1,“()») Hence

f@) =folp) = 0Ico(k)/ A Jop)opr (M) dr, 0 <p < 1. (19)
From (11), we obtain
/2 dx
I5, = 2/ — = 2K(k), (20)
0 A

where A = (1 — k? sin? x)'/2. From [7, Eq. 10.22.56], the integral in (19) evaluates to
T 1 1
274 (v42) \2 2

where F is the Gauss hypergeometric function. Hence

oI’ 1 1
fx) = K(’)wl‘" =, —v—=; 1, p*), 0<p<l.
(v + %) 2 2
When v = —%, F(3.,0; 1; p*) = 1and f (%) = 1bK (k), a constant, in accord with Galin’s theorem.

When v = 0, we obtain f(x) = (2b/7?)K(k)E(p) for 0 < p < 1, using [7, Eq. 19.5.2]. Thus, for this particular f, the
solution of the integral equation (1) is o = 1. Although this solution is bounded, we see that adding a small constant to f
adds a constant multiple of (1 — p?)~/2 to o. In other words, the integral equation (1) has bounded solutions for some f,
but these solutions are not typical: singular behaviour around the edge of £2 should be expected.

5.2. Example: comparison with Roy and Sabina

Roy and Sabina [2] consider o () = (1— p?)~/?g(x, y) when g(x, y) is a quadratic in x and y. As a particular example, let
us take g(x,y) = 4nx = 4mwap cos¢. Thus,n = 1,v = —% and j = 0in (15), giving sé = 4ma./m /2; all other coefficients
si' are zero. Then, from (16), 81[07; A] = ssA712]35(A). Hence

f@&) =2fi(p)cos¢ = 01C1(1<) COS¢/ Ji(p)J3/2(A) 7 0=p<1 (21)

Itis shown in Section 5.3 that I{; (k) = 2(K — E)/k*.From [7, Eq. 10.22.56], the integral in (21) evaluates to %p«/n/z. Hence
f(x) = mbxIf,, in agreement with [2, Eq. (14b)].

5.3. Example: quadratic o

Suppose that
o (%) = g + a1(x/a) + az(y/b) + 2a3(x/a)* + 2a4(xy)/ (ab) + 2as5(y/b)?
= {ao + p°(a3 + as)} + a1p cos P + arp sing + (a3 — as)p” €0s 2¢ + agp” sin 2,
with constants «;; Laurens and Tordeux [1] have o3 = oy = a5 = 0. Then (7) gives

o0(p) = ag + (a3 + a5) p, (22)

01 =0w1p, 61 = azp, 09 = (a3 — a5) p? and 6, = aup?. All other terms in (7) are absent.
Next, we use Py"” = 1and v = 0.These give s} = 1,5} = 2,53 = a3 — a5 and 53 = a. For s?, we use P;"% (x) =
Py(x) = x, giving

oo(p) = ng(()O’O) + S?Ggo’o) = sg + s?(l —2p2).
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Comparison with (22) gives ag = s3 + 5% and a3 + a5 = —2s9; these determine sg and s9. Apart from the six mentioned, all
other coefficients s!' and 57 are zero.
Then, from (16), we obtain

A8oloo; A1 = sgJi(M) + 533 (),
A81lo1; M) = spla (L), A81[615 A] = Sgla (L),
ASalo2; Al = sz (M), A83[G2; Al = 53J3(M).
We use these to compute the energy, I, given by (13). We will need the integrals (see (18))

1
Fpg = / ﬁ]p-H()\)]q-H (*) da
0

r(3lp+q+1])

= ) (23)
4r (33+p—q) r (33+q—pl) I (315+p+aql)
Thus
I o0 o0 o0
— = 150/0 |50[00;A]|2dx+1§]/0 |51[01;k]|2d)»+1§2/0 185025 A11> dA
o0 o0 o0
+ 215, Re/ So[o0: Al gz[az;x]d,\Hi]/ |51[&1;A]|2dk+132/ |85[64; A7 dA
0 0 0
2 Y 2 2
= I {|58| Joo + 2Re (585?) Fo2 + |$(1)| 3’22} + 15, |$(1)| I
2 0 =y ~112 ~12
15, |53 gr + 205, Re (35302 + 505380 ) + Iy S0 1 + 152 [52]” 0- (24)
From (23), we obtain
4 4 4 4
Foo = 37’ I = 157’ I = 357’ o2 = 457"

For IS, and I, we have I§, = 2K (k) (see (20)), IS, + L = IS0,

mn’

/2 cos 2 2 4
L=l =1Ip = 2/ P ax = = (& = 2)K (k) + —E(k),
0 A k k

A 3k4
where k'* = 1 — k* = (b/a)2. Thus
15, =2(K —E)/K*, [, =2(E —K°K)/k?,
I, = 2{(3k* + 8K*)K + 4(k* — 2)E}/ (3k™),
I, = 8{(2 — K*)E — 2k°K}/(3k*).
One can check that these all have the correct limiting values as k — 0.
This completes the computation of all the quantities required in (24). In the special case considered by Laurens and
Tordeux [1], we have s) = a, sj = 1,5y = az and s = s3 = 52 = 0, whence
1/(ab®) = laolIogoo + leal’I5, g1 + laa L5, e
E—k°K
ko

S /2 cos 4x 32k 16
=2 dx = K + 2K + (¢ — 2,

8 JsiaelK + lenPX2E 4 jaup
= —_— (0% o _— o
157 0 ! k2 2

in agreement with [1, Theorem 1.1].

6. Discussion

The (weakly singular) integral equation (1) arises when Laplace’s equation holds in the three-dimensional region exterior
to a thin flat plate §£2 with Dirichlet boundary conditions on both sides of §2. There are analogous (hypersingular) integral
equations when a Neumann boundary condition is imposed. Explicit formulae for o in terms of f are known when 2 is
circular; for a review, see [10].

Expansion methods of the kind used above for problems involving elliptical plates, screens or cracks have a long history.
The author’s 1986 paper [5] gives references for Neumann problems, in the context of crack problems. For Dirichlet problems,
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see [2-4]. Similar expansion methods have been used recently for the problem of internal wave generation in a continuously
stratified fluid by an oscillating elliptical plate [11].
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