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Explicit energy calculation for a charged elliptical plate
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a b s t r a c t

Potential problems for thin elliptical plates are solved exactly with emphasis on computa-

tion of the electrostatic energy. Expansions in terms of Jacobi polynomials are used.
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1. Introduction

Let Ω denote a thin flat plate lying in the plane z = 0, where Oxyz is a system of Cartesian coordinates. The charge
distribution on the plate is σ(x), where x = (x, y). The potential on the plate is

f (x′) =
1

4π

∫

Ω

σ(x)

|x − x
′|
dx, x

′ ∈ Ω. (1)

The electrostatic energy, I , is given by

I =
∫

Ω

f (x′) σ (x′) dx′ =
1

4π

∫

Ω

∫

Ω

σ(x′) σ (x)

|x − x
′|

dx dx′,

where the overbar denotes complex conjugation. In a recent paper, Laurens and Tordeux [1] showed how to calculate I when
Ω is an ellipse and σ(x, y) is a linear function of x and y. We generalize their result: we allow arbitrary polynomials in x and
y, and we incorporate a weight function to represent singular behaviour near the edge of the plate.

2. An elliptical plate

WhenΩ is elliptical, it is convenient to introduce coordinates ρ and φ so that

x = aρ cosφ, y = bρ sinφ, 0 < b ≤ a. (2)

Then,Ω is defined byΩ = {(x, y, z) : 0 ≤ ρ < 1, −π ≤ φ < π, z = 0}. Thus, ρ = 1 gives the edge of the plateΩ .
Eq. (1) can be regarded as an integral equation for σ when f is given [2–4]. Alternatively, (1) can be regarded as a formula

for f when σ is given; this is the view adopted in [1].
When f is given, the function σ is infinite at ρ = 1, in general. In fact, there is a general result, known as Galin’s theorem,

asserting that if f (x, y) is a polynomial, then σ is a polynomial of the same degree multiplied by (1 − ρ2)−1/2. In particular,
if f is a constant, then σ is a constant multiple of (1 − ρ2)−1/2.
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3. Fourier transforms

We start with a standard Fourier integral representation,

1

|x − x
′|

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
|ξ|−1 exp{iξ · (x − x

′)} dξ, (3)

where ξ = (ξ , η). Henceforth, we write
∫∫

when the integration limits are as in (3). Thus

f (x′) =
1

4π

∫∫

|ξ|−1U(ξ) exp(−iξ · x′) dξ (4)

and

I =
1

2

∫∫

|ξ|−1 |U(ξ)|2 dξ, (5)

where

U(ξ) =
1

2π

∫

Ω

σ(x) exp(iξ · x) dx. (6)

For an elliptical plate, we write the Fourier-transform variable ξ as

ξ = (λ/a) cosψ and η = (λ/b) sinψ.

Then, using (2), ξ · x = λρ cos(φ − ψ). Hence,

exp(iξ · x) =
∞

∑

n=0

ǫn i
nJn(λρ) cos n(φ − ψ),

where Jn is a Bessel function, ǫ0 = 1 and ǫn = 2 for n ≥ 1.
In order to evaluate U(ξ), defined by (6), we suppose that σ has a Fourier expansion,

σ(x) =
∞

∑

m=0

σm(ρ) cosmφ +
∞

∑

m=1

σ̃m(ρ) sinmφ. (7)

Then, using dx = abρ dρ dφ and defining

Sn[gn; λ] =
∫ 1

0

gn(ρ)Jn(λρ) ρ dρ, (8)

we obtain

U(ξ) = ab

∞
∑

n=0

inSn[σn; λ] cos nψ + ab

∞
∑

n=1

inSn[σ̃n; λ] sin nψ.

We have dξ = (ab)−1λ dλ dψ and |ξ| = (λ/b)(1 − k2 cos2 ψ)1/2, where k2 = 1 − (b/a)2; k is the eccentricity of the
ellipse.

From (4), we obtain

f (x) = f0(ρ)+ 2

∞
∑

n=1

{

fn(ρ) cos nφ + f̃n(ρ) sin nφ
}

where

fn(ρ) =
b

2π

∞
∑

m=0

Icmn(k)

∫ ∞

0

Jn(λρ) Sm[σm; λ] dλ, (9)

f̃n(ρ) =
b

2π

∞
∑

m=1

Ismn(k)

∫ ∞

0

Jn(λρ) Sm[σ̃m; λ] dλ, (10)

Icmn(k) = im(−i)n
∫ π

0

cosmψ cos nψ
√

1 − k2 cos2 ψ
dψ, (11)

Ismn(k) = im(−i)n
∫ π

0

sinmψ sin nψ
√

1 − k2 cos2 ψ
dψ (12)
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and we have noticed that |ξ| is an even function ofψ . The integrals Icmn and Ismn can be reduced to combinations of complete
elliptic integrals, K(k) and E(k). They are zero unless m and n are both even or both odd. (See [5, p. 276] for a discussion of
similar integrals.) Explicit formulae for a few of these integrals will be given later.

For the energy, I , (5) gives

I =
1

2a

∫ ∞

0

∫ π

−π
|U(ξ)|2

dψ dλ
√

1 − k2 cos2 ψ

= ab2
∞

∑

m=0

∞
∑

n=0

Icmn(k)

∫ ∞

0

Sm[σm; λ] Sn[σn; λ] dλ+ ab2
∞

∑

m=1

∞
∑

n=1

Ismn(k)

∫ ∞

0

Sm[σ̃m; λ] Sn[σ̃n; λ] dλ. (13)

4. Polynomial expansions

Tomake further progress, wemust be able to evaluate Sn[gn; λ], defined by (8). We do this by expanding gn(ρ) using the
functions

G
(n,ν)
j (ρ) = ρn(1 − ρ2)νP

(n,ν)
j (1 − 2ρ2),

where P
(n,ν)
j is a Jacobi polynomial. The parameter ν controls the behaviour near the edge of the ellipse, ρ = 1. Thus, when

ν = 0,G
(n,0)
j (ρ) is a polynomial; this covers the case discussed in [1]. Setting ν = − 1

2
gives appropriate expansion functions

when the goal is to solve (1) for σ . We note that Boyd [6, Section 18.5.1] has advocated using the polynomials G
(n,0)
j (r) as

radial basis functions in spectral methods for problems posed on a disc, 0 ≤ r < 1.

The functions G
(n,ν)
j are orthogonal. To see this, note that Jacobi polynomials satisfy

∫ 1

−1

(1 − x)α(1 + x)βP
(α,β)

i (x)P
(α,β)

j (x) dx = hi(α, β)δij,

where hi is known and δij is the Kronecker delta; see [7, Section 18.3]. Hence, the substitution x = 1 − 2ρ2 gives

∫ 1

0

G
(n,ν)
i (ρ)G

(n,ν)
j (ρ)

ρ dρ

(1 − ρ2)ν
= 2−n−ν−2hi(n, ν)δij. (14)

Next, we use Tranter’s integral [8,9] to evaluate Sn[G(n,ν)j ; λ]:
∫ 1

0

Jn(λρ)G
(n,ν)
j (ρ) ρ dρ =

2ν

λν+1 j!
Γ (ν + j + 1)J2j+n+ν+1(λ).

Thus, if we write

σn(ρ) =
∑

j=0

j! snj
2νΓ (ν + j + 1)

G
(n,ν)
j (ρ), (15)

where snj are coefficients, we find that

Sn[σn; λ] =
∑

j=0

snj

λν+1
J2j+n+ν+1(λ). (16)

We also expand σ̃n(ρ) as (15) but with coefficients s̃nj .

If we substitute (16) in (9), we encounterWeber–Schafheitlin integrals; these can be evaluated.We give a simple example
later.

If we substitute (16) in (13), we encounter integrals of the type

∫ ∞

0

λ−2µJp+µ(λ)Jq+µ(λ) dλ (17)

where µ = ν + 1, and p and q are non-negative integers. The integral (17) is known as the critical case of the Weber–
Schafheitlin integral; its value is [7, Eq. 10.22.57]

Γ
(

1
2
[p + q + 1]

)

Γ (2µ)

22µ Γ
(

1
2
[2µ+ p − q + 1]

)

Γ
(

1
2
[2µ+ q − p + 1]

)

Γ
(

1
2
[4µ+ p + q + 1]

) . (18)
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5. Three examples

We discuss three examples. In the first, we examine the dependence on the parameter ν but, for simplicity, we ignore
any dependence on the angle φ. In the second example, we compare with some results of Roy and Sabina [2] for ν = − 1

2
.

In the third example, we assume that σ(x, y) is a general quadratic function of x and y (so that ν = 0); this extends the
calculations in [1], where σ was taken as a linear function.

5.1. Example: dependence on ν

For a very simple example, suppose that σ(x) = (1 − ρ2)ν for some ν > −1. Thus, as P
(n,ν)
0 = 1, (15) gives s00 = 2ν

Γ (ν + 1). All other coefficients snj and s̃nj are zero. Then, from (16), S0[σ0; λ] = s00λ
−ν−1Jν+1(λ). Hence

f (x) = f0(ρ) =
bs00

2π
Ic00(k)

∫ ∞

0

λ−ν−1J0(λρ)Jν+1(λ) dλ, 0 ≤ ρ < 1. (19)

From (11), we obtain

Ic00 = 2

∫ π/2

0

dx

∆
= 2K(k), (20)

where∆ = (1 − k2 sin2 x)1/2. From [7, Eq. 10.22.56], the integral in (19) evaluates to
√
π

2ν+1Γ
(

ν + 3
2

)F

(

1

2
, − ν −

1

2
; 1; ρ2

)

,

where F is the Gauss hypergeometric function. Hence

f (x) =
b

2π
K(k)

√
π Γ (ν + 1)

Γ
(

ν + 3
2

) F

(

1

2
, − ν −

1

2
; 1; ρ2

)

, 0 ≤ ρ < 1.

When ν = − 1
2
, F( 1

2
, 0; 1; ρ2) = 1 and f (x) = 1

2
bK(k), a constant, in accord with Galin’s theorem.

When ν = 0, we obtain f (x) = (2b/π2)K(k)E(ρ) for 0 ≤ ρ < 1, using [7, Eq. 19.5.2]. Thus, for this particular f , the
solution of the integral equation (1) is σ = 1. Although this solution is bounded, we see that adding a small constant to f

adds a constant multiple of (1 − ρ2)−1/2 to σ . In other words, the integral equation (1) has bounded solutions for some f ,
but these solutions are not typical: singular behaviour around the edge ofΩ should be expected.

5.2. Example: comparison with Roy and Sabina

Roy and Sabina [2] consider σ(x) = (1−ρ2)−1/2g(x, y)when g(x, y) is a quadratic in x and y. As a particular example, let
us take g(x, y) = 4πx = 4πaρ cosφ. Thus, n = 1, ν = − 1

2
and j = 0 in (15), giving s10 = 4πa

√
π/2; all other coefficients

snj are zero. Then, from (16), S1[σ1; λ] = s10λ
−1/2J3/2(λ). Hence

f (x) = 2f1(ρ) cosφ =
bs10

π
Ic11(k) cosφ

∫ ∞

0

J1(λρ)J3/2(λ)
dλ
√
λ
, 0 ≤ ρ < 1. (21)

It is shown in Section 5.3 that Ic11(k) = 2(K − E)/k2. From [7, Eq. 10.22.56], the integral in (21) evaluates to 1
2
ρ
√
π/2. Hence

f (x) = πbxIc11, in agreement with [2, Eq. (14b)].

5.3. Example: quadratic σ

Suppose that

σ(x) = α0 + α1(x/a)+ α2(y/b)+ 2α3(x/a)
2 + 2α4(xy)/(ab)+ 2α5(y/b)

2

= {α0 + ρ2(α3 + α5)} + α1ρ cosφ + α2ρ sinφ + (α3 − α5)ρ
2 cos 2φ + α4ρ

2 sin 2φ,

with constants αj; Laurens and Tordeux [1] have α3 = α4 = α5 = 0. Then (7) gives

σ0(ρ) = α0 + (α3 + α5)ρ
2, (22)

σ1 = α1ρ, σ̃1 = α2ρ, σ2 = (α3 − α5)ρ
2 and σ̃2 = α4ρ

2. All other terms in (7) are absent.

Next, we use P
(n,ν)
0 = 1 and ν = 0. These give s10 = α1, s̃

1
0 = α2, s

2
0 = α3 − α5 and s̃20 = α4. For s

0
j , we use P

(0,0)
1 (x) =

P1(x) = x, giving

σ0(ρ) = s00G
(0,0)
0 + s01G

(0,0)
1 = s00 + s01(1 − 2ρ2).
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Comparison with (22) gives α0 = s00 + s01 and α3 + α5 = −2s01; these determine s00 and s01. Apart from the six mentioned, all
other coefficients snj and s̃nj are zero.

Then, from (16), we obtain

λS0[σ0; λ] = s00J1(λ)+ s01J3(λ),

λS1[σ1; λ] = s10J2(λ), λS1[σ̃1; λ] = s̃10J2(λ),

λS2[σ2; λ] = s20J3(λ), λS2[σ̃2; λ] = s̃20J3(λ).

We use these to compute the energy, I , given by (13). We will need the integrals (see (18))

Jpq =
∫ ∞

0

1

λ2
Jp+1(λ)Jq+1(λ) dλ

=
Γ

(

1
2
[p + q + 1]

)

4Γ
(

1
2
[3 + p − q]

)

Γ
(

1
2
[3 + q − p]

)

Γ
(

1
2
[5 + p + q]

) . (23)

Thus

I

ab2
= Ic00

∫ ∞

0

|S0[σ0; λ]|2 dλ+ Ic11

∫ ∞

0

|S1[σ1; λ]|2 dλ+ Ic22

∫ ∞

0

|S2[σ2; λ]|2 dλ

+ 2Ic02 Re

∫ ∞

0

S0[σ0; λ] S2[σ2; λ] dλ+ Is11

∫ ∞

0

|S1[σ̃1; λ]|2 dλ+ Is22

∫ ∞

0

|S2[σ̃2; λ]|2 dλ

= Ic00

{

∣

∣s00

∣

∣

2
J00 + 2 Re

(

s00 s
0
1

)

J02 +
∣

∣s01

∣

∣

2
J22

}

+ Ic11

∣

∣s10

∣

∣

2
J11

+ Ic22

∣

∣s20

∣

∣

2
J22 + 2Ic02 Re

(

s00s
2
0J02 + s01s

2
0J22

)

+ Is11

∣

∣s̃10

∣

∣

2
J11 + Is22

∣

∣s̃20

∣

∣

2
J22. (24)

From (23), we obtain

J00 =
4

3π
, J11 =

4

15π
, J22 =

4

35π
, J02 =

4

45π
.

For Icmn and Ismn, we have Ic00 = 2K(k) (see (20)), Icmm + Ismm = Ic00,

Is11 − Ic11 = Ic02 = 2

∫ π/2

0

cos 2x

∆
dx =

2

k2
(k2 − 2)K(k)+

4

k2
E(k),

Ic22 − Is22 = 2

∫ π/2

0

cos 4x

∆
dx =

32k′2

3k4
K + 2K +

16

3k4
(k2 − 2)E,

where k′2 = 1 − k2 = (b/a)2. Thus

Ic11 = 2(K − E)/k2, Is11 = 2(E − k′2K)/k2,

Ic22 = 2{(3k4 + 8k′2)K + 4(k2 − 2)E}/(3k4),
Is22 = 8{(2 − k2)E − 2k′2K}/(3k4).

One can check that these all have the correct limiting values as k → 0.
This completes the computation of all the quantities required in (24). In the special case considered by Laurens and

Tordeux [1], we have s00 = α0, s
1
0 = α1, s̃

1
0 = α2 and s01 = s20 = s̃20 = 0, whence

I/(ab2) = |α0|2Ic00J00 + |α1|2Ic11J11 + |α2|2Is11J11

=
8

15π

{

5|α0|2K + |α1|2
K − E

k2
+ |α2|2

E − k′2K

k2
,

}

in agreement with [1, Theorem 1.1].

6. Discussion

The (weakly singular) integral equation (1) ariseswhen Laplace’s equation holds in the three-dimensional region exterior
to a thin flat plate Ω with Dirichlet boundary conditions on both sides of Ω . There are analogous (hypersingular) integral
equations when a Neumann boundary condition is imposed. Explicit formulae for σ in terms of f are known when Ω is
circular; for a review, see [10].

Expansion methods of the kind used above for problems involving elliptical plates, screens or cracks have a long history.
The author’s 1986paper [5] gives references forNeumannproblems, in the context of crack problems. ForDirichlet problems,
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see [2–4]. Similar expansionmethods have been used recently for the problem of internal wave generation in a continuously
stratified fluid by an oscillating elliptical plate [11].
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