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a b s t r a c t

We develop an orders-of-scattering approximation, termed the “screened cylindrical void/

core” (SCV) approximation, for a composite cylinder. The composite cylinder consists of a

large host cylinder that contains a small, eccentrically embedded, core cylinder. The SCV

approximation is developed via separation of variables in conjunctionwith addition theorems

for cylindrical functions. We show that the SCV approximation is in good agreement with the

numerically exact solution. A simple physical interpretation of the SCV approximation is also

presented.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a monochromatic plane wave scattering from

an infinitely long isotropic composite cylinder. The com-

posite cylinder is composed of a small core cylinder of

radius b that is eccentrically embedded into a large host

cylinder of radius a, as shown in Fig. 1. To experimentally

isolate the core cylinder's contribution to the scattered

field of the composite cylinder, one would measure the

total field Uð1Þ outside the composite cylinder and the total

field U
ð1Þ outside an identical host cylinder. Then, the

difference, V ðscaÞðr; θÞ ¼Uð1Þðr; θÞ$U
ð1Þðr; θÞ, would contain

the effect that the core cylinder had on the scattered field.

In our recent paper [1], we considered the simplest

composite cylinder geometry (the core cylinder is con-

centric with the host cylinder) and developed an approx-

imation to V ðscaÞ, which we termed the “screened

cylindrical void/core” (SCV) approximation. In this paper,

we derive an analogous formula for an eccentrically

stratified composite cylinder, which can also be inter-

preted as an orders-of-scattering approximation. Further-

more, we numerically investigate the accuracy of the SCV

approximation when jk2ja& 300 and 0o jk3jbr1, where

k2 (k3) is the wavenumber in the host (core) cylinder.

Scattering by an eccentrically stratified composite

cylinder has previously been considered in the literature

in various contexts [2–4] and by various techniques [5–7].

In the electromagnetic context, a perturbation series solu-

tion has been constructed in powers of ðk3$k2Þ [8,9],

b [10], and eccentricity [11,12] by using separation of

variables. An “exact” treatment based on separation of

variables with a truncation of the resultant infinite size

matrix is also available, e.g. in [13]. Our orders-of-

scattering approach is also based on separation of vari-

ables, but the resultant power series expansion of the

solution is different from the ones mentioned above.

There are many diverse applications where the scatter-

ing by an eccentrically stratified composite cylinder is

important, for example, see [4,8,9] and references therein.

As mentioned in [1], we are particularly interested in using

the composite cylinder to experimentally study Anderson
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localization [14–16] at millimeter/sub-millimeter wave-

lengths. We are currently fabricating a model of a

millimeter-wave random medium from a large cylinder

of Teflon (ultra low-loss material) with thousands of small

holes drilled in a random pattern. To increase the dielectric

contrast between the host cylinder and the holes, we

envision filling the holes with quartz or fused silica rods;

with this dielectric contrast, the Ioffe–Regel criterion [17,

Section 7.4.4] for localization requires roughly two/three

scatterers (filled holes) per wavelength. Practically, the

host cylinder needs to be rather large (a( 10 cm) in order

to accommodate thousands of small holes (b( 0:3 mm),

thus the numerical examples considered in this paper are

for k2a& 300 and 0ok3br1. Furthermore, the experi-

mental role of the host cylinder is simply to hold the rods

in place, and so it is beneficial to have a solution in which

the effects of the host cylinder and the rods on the

scattered field can be distinguished. In other words, the

SCV approximation developed in this paper for scattering

by a single core cylinder eccentrically embedded into a

large host may offer valuable physical insight into under-

standing the experimental model we described above.

Moreover, the approach taken in this paper may be

extended via a cluster T-matrix as outlined in [18, Chapter

6] to the full envisioned experiment, where thousands of

core cylinders are eccentrically embedded into one large

host cylinder.

2. Background and conventions

In this paper, we will assume that all fields are

polarized in the positive ẑ$direction (out of the page in

Fig. 1) and have expð$ iωtÞ time dependence, where ω is

the angular frequency. The permittivity of the space out-

side the composite cylinder (Region 1 in Fig. 1) is denoted

by ε1AR
þ , and the permittivity of the host (core) cylinder

is denoted by ε2AC
þ (ε3AC

þ ), where R
þ denotes the

positive real numbers and C
þ denotes the complex

numbers with positive real and imaginary parts. Further-

more, the core cylinder, host cylinder, and Region 1 in

Fig. 1 are assumed to be non-magnetic. Lastly, we will use

the Gaussian unit system for all physical quantities and

only consider fields that satisfy the two-dimensional (2D)

Helmholtz equation.

The radial solution of the 2D Helmholtz equation is

composed of a linear combination of an integer order

Bessel function of the first kind and an integer order

Hankel function of the first kind, which we denote by

JmðξÞ and HmðξÞ, respectively. The functions JmðξÞ and HmðξÞ
satisfy the Wronskian relationship [19, Section 9.1]:

Jm ξð ÞH0
m ξð Þ$ J0m ξð ÞHm ξð Þ ¼ 2i

πξ
; ð1aÞ

and the recurrence relation [19, Section 9.2]:

Ψ 0
m ξð Þ ¼m

ξ
Ψm ξð Þ$Ψmþ1 ξð Þ; ð1bÞ

where Ψ denotes J or H, and the prime denotes the

derivative with respect to the argument. It is convenient

to introduce the shorthand curly bracket notation,

fΨmþ1ðξÞ;ΦmðηÞg, by which we mean

fΨmþ1 ξð Þ;Φm ηð Þg ,Ψmþ1 ξð ÞΦm ηð Þ$η

ξ
Ψm ξð ÞΦmþ1 ηð Þ:

For example, if Ψ and Φ satisfy (1b), then

fΨmþ1 ξð Þ;Φm ηð Þg ¼ η

ξ
Ψm ξð ÞΦ0

m ηð Þ$Ψ 0
m ξð ÞΦm ηð Þ ð1cÞ

Lastly, we note the Jacobi–Anger expansion of a plane

wave [20, p. 37], namely,

eiξ cos θ ¼∑
m
imJmðξÞeimθ ; ð2Þ

where ∑m indicates the summation from m¼ $1 to

m¼1.

3. Host cylinder

Consider a unit plane wave, UðincÞ ¼ exp ik1r cos θð Þ, inci-
dent from Region 1 onto the host cylinder, see Fig. 1 with b¼0

(i.e., without the core cylinder). Then, after decomposing the

total field in Region 1 as Uð1Þ ¼U
ðincÞþU

ðscaÞ, we have [1]

U
ðscaÞðr; θÞ

U
ð2Þðr; θÞ

" #

¼∑
m
im

AmHmðk1rÞ
BmJmðk2rÞ

" #

eimθ ; ð3Þ

where ki ¼
ffiffiffiffi

εi
p

ω=c for i¼1,2 and c is the speed of light in

vacuum. In (3), Uð2Þ denotes the total field inside the host

cylinder, and the expansion coefficients are given by

Am ¼ $ fJmþ1ðk1aÞ; Jmðk2aÞg
fHmþ1ðk1aÞ; Jmðk2aÞg

; ð4aÞ

Bm ¼ $2i

πk1afHmþ1ðk1aÞ; Jmðk2aÞg
: ð4bÞ

4. Composite cylinder

If the plane wave U
ðincÞ is incident from Region 1 onto

the composite cylinder shown in Fig. 1, then the total fields

Fig. 1. The cross-sectional view of the composite cylinder, with regions

labeled by a number, is shown. Region 1 is the space outside of the

composite cylinder (r4a), Region 2 is the host cylinder, and Region 3 is

the core cylinder. The origin of the ðr; θÞ coordinate system, where

$πrθoπ, is centered on the host cylinder, and the origin of the ðρ;ϕÞ
coordinate system, where $πrϕoπ, is centered on the core cylinder. The

axes of these two coordinate systems are parallel to each other and the

center of the ðρ;ϕÞ coordinate system is offset by r0 cos θ0x̂þr0 sin θ0ŷ

with respect to the origin of the ðr; θÞ coordinate system.
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in Regions 1, 2, and 3 may be written as

Uð1Þðr; θÞ ¼U
ð1Þðr; θÞþV ðscaÞðr; θÞ; ð5aÞ

Uð2Þðr; θ; ρ;ϕÞ ¼U
ð2Þðr; θÞþV ð2Þðr; θ; ρ;ϕÞ; ð5bÞ

and

Uð3Þðρ;ϕÞ ¼∑
m
imDmJmðk3ρÞeimϕ; ð5cÞ

respectively, where

V ðscaÞðr; θÞ ¼∑
m
imAmHmðk1rÞeimθ; ð5dÞ

V ð2Þðr; θ; ρ;ϕÞ ¼∑
m
imðBmJmðk2rÞeimθþCmHmðk2ρÞeimϕÞ; ð5eÞ

and k3 ¼
ffiffiffiffiffi

ε3
p

ω=c. In writing (5), we are thinking of the

composite cylinder as the host cylinder into which a

scatterer (the core cylinder) has been inserted. Also, notice

that we required Uð3Þðρ;ϕÞ to be finite at ρ¼ 0, and

imposed the Sommerfeld radiation (outgoing cylindrical

wave) condition on V ðscaÞðr; θÞ. To find the unknown expan-

sion coefficients in (5), we require that the electric field

and its normal derivative be continuous across the ρ¼ b

and r¼a interfaces.

To apply the continuity conditions at the ρ¼ b interface,

we first re-express Uð2Þðr; θ; ρ;ϕÞ solely in terms of the ðρ;ϕÞ
coordinate system by using Graf's addition theorem [20,

Section 2.5]; [19, Section 9.2]. Namely, using

Jmðk2rÞeimθ ¼∑
n
Jm$nðk2r0Þeiðm$nÞθ0 Jnðk2ρÞeinϕ;

and (3) with (2), we obtain

Uð2Þðρ;ϕÞ ¼∑
n
i$nJnðk2ρÞeinϕ∑

m
TnmðBmþBmÞ

þ∑
m
imCmHmðk2ρÞeimϕ;

where Tnm ¼ imþnJm$nðk2r0Þeiðm$nÞθ0 . Then, requiring that

Uð2Þ ¼ Uð3Þ and ð∂=∂ρÞUð2Þ ¼ ð∂=∂ρÞUð3Þ on ρ¼ b yields

DpJpðk3bÞ ¼ CpHpðk2bÞþð$1ÞpJpðk2bÞ∑
m
TpmðBmþBmÞ; ð6aÞ

and

k3
k2
DpJ

0
p k3bð Þ ¼ CpH

0
p k2bð Þþð$1ÞpJ0p k2bð Þ∑

m
Tpm BmþBmð Þ;

ð6bÞ

respectively. Eliminating Dp from (6) yields

Cp ¼ ð$1ÞpΔp∑
m
TpmðBmþBmÞ; ð7aÞ

where

Δp ¼ $
fJpþ1ðk3bÞ; Jpðk2bÞg
fJpþ1ðk3bÞ;Hpðk2bÞg

: ð7bÞ

Similarly, to apply the continuity conditions at the r¼a

interface, we first re-express Uð2Þðr; θ; ρ;ϕÞ solely in terms

of the ðr; θÞ coordinate system by using Graf's addition

theorem for Hmðk2ρÞeimϕ [20, Section 2.5]; [19, Section 9.2].

Namely, using

Hmðk2ρÞeimϕ ¼∑
n
ð$1Þm$nJm$nðk2r0Þeiðm$nÞθ0Hnðk2rÞeinθ

for r4r0, and (3) with (2), we obtain

Uð2Þðr; θÞ ¼∑
m
imðBmþBmÞJmðk2rÞeimθ

þ∑
n
inHnðk2rÞeinθ∑

m
ð$1ÞmTnmCm;

for r0þboroa. Then, requiring that Uð1Þ ¼ Uð2Þ and

ð∂=∂rÞUð1Þ ¼ ð∂=∂rÞUð2Þ on r¼a yields

ðBpþBpÞJpðk2aÞþHpðk2aÞ∑
m
ð$1ÞmTpmCm

¼ Jpðk1aÞþðApþApÞHpðk1aÞ; ð8aÞ

and

BpþBp

$ %

J0pðk2aÞþH0
pðk2aÞ∑

m
ð$1ÞmTpmCm

¼ k1
k2

J0pðk1aÞþ ApþAp

$ %

H0
pðk1aÞ

h i

; ð8bÞ

respectively. To solve (8) for Ap in terms of Cm, we

eliminate BpþBp

$ %

from (8), and then use (1a) and (4) to

rewrite the result as

Ap ¼Bp∑
m
ð$1ÞmTpmCm: ð9Þ

To solve (8) for Bp in terms of Ap, we eliminate Cm from (8),

and use (1a) to obtain

2i

πk1a
BpþBp

$ %

¼ ApþAp

$ %

fHpþ1 k1að Þ;Hp k2að Þg

þfJpþ1ðk1aÞ;Hpðk2aÞg: ð10Þ

To simplify (10) further, we substitute (4) into (10) and

note that

fJpþ1 k1að Þ;Hp k2að ÞgfHpþ1 k1að Þ; Jp k2að Þg

$fJpþ1 k1að Þ; Jp k2að ÞgfHpþ1 k1að Þ;Hp k2að Þg ¼ 2

πk1a

( )2

to obtain

Bp ¼
πk1a

2i
fHpþ1 k1að Þ;Hp k2að ÞgAp: ð11Þ

Finally, substituting (11) into (7a), and putting the result

into (9) yields

∑
n
ðδmn$FmnÞAn ¼ Gm; ð12aÞ

where

Fmn ¼
πk1a

2i
Bm ∑

p
TmpΔpTpn

 !

fHnþ1 k1að Þ;Hn k2að Þg; ð12bÞ

Gm ¼∑
n
Bm ∑

p
TmpΔpTpn

 !

Bn; ð12cÞ

and δmn denotes the Kronecker delta function.

Notice that in (12) the core cylinder parameters,

namely k3 and b, are solely contained in Δp, see (7b).

Furthermore, from (7b) and the small argument forms of Jp
and Hp, we see that if the core cylinder is small, then so is

Δp. This suggests that (12a) can be solved via the Neumann

series (Taylor series expansion, if you will), i.e.,

A¼ ðI$FÞ$1G¼ ∑
1

ℓ ¼ 0

FℓG; ð13Þ
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where An, Fmn, Gm are the elements of A, F, G, respectively,

and I is the identity matrix. The Neumann series in (13)

converges, provided that the spectral radius of F is less

than one [21, Section 4.3]. The spectral radius of F for a

large host cylinder, jk2ja& 300, with an eccentrically

embedded core cylinder is shown in Fig. 2. From Fig. 2,

we see that the spectral radius of F is indeed much smaller

than one and thus, we expect the Neumann series in (13)

to converge rapidly. We will discuss the spectral radius of F

further in Section 6, but for now turn our attention to the

physical interpretation of the SCV approximation.

5. The SCV approximation and its physical interpretation

If only the ℓ¼ 0 term is retained in (13), we obtain the

SCV approximation, namely,

AmffiGm ¼∑
n
Bm ∑

p
TmpΔpTpn

 !

Bn: ð14Þ

To interpret (14) physically, we consider the following

three-step scattering process:

1. If a unit plane wave, UðincÞ ¼ expðik1r cos θÞ, is incident
on the host cylinder, then the field inside the host

cylinder, Uð2Þðr; θÞ, is given by (3). Rewriting U
ð2Þ terms

of the ðρ;ϕÞ coordinate system yields

U
ð2Þðρ;ϕÞ ¼∑

n
i$nJnðk2ρÞeinϕ∑

m
TnmBm: ð15Þ

2. If we use (15) as an incident field for the core cylinder,

then the resulting scattered field is

∑
m
im ~CmHmðk2ρÞeimϕ; ð16aÞ

and the field inside the core cylinder is

~U
ð3Þðρ;ϕÞ ¼∑

m
im ~DmJmðk3ρÞeimϕ: ð16bÞ

Substituting (15) and (16) into the continuity condi-

tions for the ρ¼ b interface, and eliminating ~Dm from

the resultant two equations, yields

~Cp ¼ ð$1ÞpΔp∑
m
TpmBm: ð17Þ

3. Finally, if we use (16a) with (17) as an incident field

(from within the host cylinder) on the r¼a interface,

then there will be an outgoing field outside the host

cylinder given by

~V
ðscaÞðr; θÞ ¼∑

m
im ~AmHmðk1rÞeimθ; ð18aÞ

and a regular (finite at r¼0) field inside the host

cylinder given by

∑
m
im ~BmJmðk2rÞeimθ : ð18bÞ

Rewriting (16a) in terms of the ðr; θÞ coordinate system

and substituting it, as well as (18), into the continuity

conditions for the r¼a interface, and eliminating ~Bm

from the resultant two equations yields

~Am ¼∑
n
Bm ∑

p
TmpΔpTpn

 !

Bn: ð19Þ

By comparing (19) with (14), we conclude that the SCV

approximation can be viewed as an orders-of-scattering

approximation. Moreover, from the above three-step scat-

tering process, we see that TpnBn is the “screening” effect

of the host cylinder on U
ðincÞ and BmTmp is the “screening”

effect of the host cylinder on ~V
ðscaÞ

. These two screening

effects are identical if the core cylinder is concentric with

the host cylinder, as we have shown in [1]. To see that (19),

or equivalently (14), reduces to our previous result, we

note that Tpn ¼ inþp
δpn and Tmp ¼ ipþm

δmp when r0 ¼ 0, and

thus, the sums in (19) collapse and we obtain ~Am ¼B
2
mΔm.

6. Numerical examples and limitations

In practice, the computation of the Am coefficients via

(12) or (14) requires the truncation of the infinite sums, as

well as the indexm. From (12b), (12c) and (14), we see that

the sum over p is controlled by the small core cylinder

parameters, namely Δp. This observation suggests that the

summation over p be terminated at pmax (i.e., jpjrpmax),

where pmax is given by the well-known Wiscombe's

criterion for small scatterers [23], namely,

pmax ¼ ⌈k2bþ4ðk2bÞ1=3þ1⌉: ð20aÞ

The sum over n, as well as the index m, is controlled by the

large host cylinder and thus, they are terminated at Nmax

(i.e., jnjrNmax and jmjrNmax), where Nmax is given by the

Wiscombe's criterion for relatively large scatterers [23],

namely,

Nmax ¼ ⌈k1aþ4:05ðk1aÞ1=3þ2⌉: ð20bÞ

Fig. 2. (color online). The spectral radius of F at 100 GHz for a Teflon host

cylinder (a¼ 10 cm) with an eccentrically embedded quartz core cylinder

is shown as a function of jk3jb, and eccentricity, r0=a (with θ0 ¼ 0). The

permittivity of Teflon and quartz at 100 GHz is 2.1 and 3.8 with a

negligible loss-tangent [22], respectively.
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We note that a termination criterion in terms of prescribed

relative error has become available recently [24], but for

our purposes, the termination condition given by (20) will

be sufficient.

To numerically illustrate the accuracy of the SCV

approximation, we compute the relative error in the rate

at which the energy is extinguished by the core cylinder in

the presence of the host cylinder. The rate at which the

energy (per unit length of the composite cylinder) is

depleted by the core cylinder from the total field, Uð1Þ,

outside the host cylinder is given by [1]

Qext ¼ $ c2

2πω
∑
Nmax

m ¼ $Nmax

Re Am½ 1þ2Re AmA
n

m

, -$ %

; ð21Þ

where Re denotes the real part and n denotes the complex

conjugate. We compute the SCV approximate and numeri-

cally exact (& 7 significant digits) Qext by using (21) with

(14) and (21) with (13), respectively. The top row of Fig. 3

shows that the SCV approximation is in good agreement

with the numerically exact solution, and the bottom row of

Fig. 3 demonstrates that the Neumann series in (13)

converges rapidly as one would expect from the spectral

radius of F, see Fig. 2. Furthermore, from Fig. 3 we see that

the relative error in Qext is almost independent of the

angular position of the core cylinder but does depend on

its radial position, see Fig. 3 with r0=a40:7.

The dependence of the relative error in Qext on the

radial position of the core cylinder may be explained in

terms of the internal resonances of the host cylinder. These

resonances are often referred to as Mie resonances, mor-

phological resonances, whispering-gallery modes, or nat-

ural/eigenmodes. At 100 GHz, the 10 cm host cylinder is

about hundred times larger than the wavelength of the

incident light and thus, the interaction of light with the

host cylinder can be described by ray theory. If a ray inside

the host cylinder strikes the surface of the host cylinder

above the critical angle, then the ray's trajectory will be

bounded by a cylindrical annulus with outer radius a and

inner radius rcaustic. To find the caustic radius, rcaustic, we set

the ray's angular momentum jk2;θjrℏ equal to jmjℏ (the

angular momentum of the mth eigenmode) and note that

k
2
2 ¼ k

2
2;θþk

2
2;r to obtain

rcaustic ¼
m

k2

.

.

.

.

.

.

.

.

: ð22aÞ

In the derivation of (22a), we used the fact that the radial

component of the wavevector must vanish on rcaustic, i.e.,

k2;rðr¼ rcausticÞ ¼ 0 [25,26]. Furthermore, we can deduce

the range of potentially excited eigenmodes of the host

cylinder as follows. If a ray inside the host cylinder strikes

the surface at an angle γ with respect to the normal, then

by equating the ray's and modal angular momenta

(jmj ¼ jk2ja sin γ), and using the total internal reflection

condition,
ffiffiffiffiffiffiffiffiffiffiffiffi

ε1=ε2
p

r sin γr1, we obtain

jk1jarmr jk2ja: ð22bÞ

Finally, from (22), we seewhy the SCV approximationworsens

when the radial location of the core cylinder exceeds the

caustic radius, see Fig. 3 for r0=aZrcaustic=a& 0:7.

If the frequency of the incident wave corresponds to

one of the eigenfrequencies of the host cylinder, then the

Neumann series in (13) will fail to converge only when

r0Zrcaustic. For example, the mode m¼228 is excited in

resonance at approximately 99.823859 GHz, i.e., the

denominator of B228 vanishes at this frequency,1 and the

spectral radius of F exceeds unity when r0=arrcaustic=a¼
228=ðk2aÞ & 0:75 as shown in Fig. 4. Moreover, from Fig. 4

we see that the SCV approximation remains valid even at

resonance frequency, provided that r0=aorcaustic=a& 0:75.

7. Conclusions

In this paper, we have extended the screen cylindrical

void/core (SCV) approximation [1] to a case where the

small core cylinder is eccentrically embedded into a large

host cylinder. We physically interpreted the SCV approx-

imation as the screening effect of the host cylinder on the

incident plane wave and the wave scattered by the core

cylinder (see Section 5). Furthermore, we showed that the

SCV approximation may be thought of as an orders-of-

scattering approximation.

The accuracy of the SCV approximation was demon-

strated numerically for an envisioned localization experi-

ment, where a large host cylinder (k2a& 300) contains a

small (k3b( 1) eccentrically embedded core cylinder. In

general, the SCV approximation was shown to be in good

agreement with the exact solution, even at the eigenfre-

quencies of the host cylinder. We showed that if the

incident frequency corresponds to one of the eigenfre-

quencies of the host cylinder, then the SCV approximation

remains valid, provided that the eccentricity r0=a does not

exceed the caustic radius of the mode (see Section 6). This

Fig. 3. (color online). The relative error in Qext (in percent) is shown as a

function of jk3jb and eccentricity, r0=a, for various θ0 angles. The top row

shows the relative error if only the ℓ¼ 0 term is retained in (13), i.e., the

SCV approximation, and the bottom row shows the relative error if the

ℓ¼ 0 and ℓ¼ 1 terms are retained. The above plot was produced with the

same parameters as the ones described in the caption of Fig. 2.

1 Strictly speaking, this occurs at a complex eigenfrequency, where

the imaginary part of the eigenfrequency is related to the spectral width

of the mode [27].
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condition was derived by considering the interplay

between the ray and wave pictures of the scattering

process. Moreover, the ray picture offered a valuable

physical insight into the validity of the SCV approximation.
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