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Abstract: Parabolic equation solutions use various techniques for
approximating range-dependent interfaces. One is a mapping approach
[M. D. Collins et al., J. Acoust. Soc. Am. 107, 1937–1942 (2000)] where
at each range the domain is vertically translated so that sloping bathym-
etry becomes horizontal, and range dependence is transferred to the
upper surface. In this paper, a scaled mapping is suggested where the
domain is vertically distorted so that both the bathymetry and upper
surface are horizontal. Accuracy is demonstrated for problems involv-
ing fluid sediments. Generalizations of the approach should be useful
for environments with layer thicknesses that vary with range.
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1. Introduction

Parabolic equation solutions are efficient for range-dependent ocean wave propagation
problems by marching solutions in range.1 Accuracy in range-dependent environments
is achieved by selecting an appropriate approach for treating sloping bathymetries and
sediment interfaces. Current techniques include: Stair-step approximations,2 where the
domain is split into a series of range-independent regions and appropriate interface
conditions are applied to march the solution between regions; coordinate rotations,3

where the domain is effectively “rotated” such that the solution is marching parallel to
the sloping bathymetry; and mapping approaches,4 where the domain is mapped such
that the bathymetry is flat. In this paper, a scaled mapping approach is introduced
which maps the domain to one where both the bathymetry and upper surface are flat.
This is in contrast to Ref. 4, where the domain is mapped translationally so that the
bathymetry is flat and the range dependence is transferred to the surface. Examples are
provided which demonstrate the accuracy of the approach for two ocean environments.
The technique described in this paper should extend well to seismo-acoustic environ-
ments where current treatments of sloping bathymetries in parabolic equation (PE)
approximations are not well handled.

a)Author to whom correspondence should be addressed.
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2. Scaled mapping PE

For a time-harmonic source, the Helmholtz equation for a fluid with an axially sym-
metric coordinate system in the far-field (rk � 1) is1
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þ k2p ¼ 0; (1)

where r and z are range and depth, pðr; zÞ is reduced complex pressure, qðr; zÞ is den-
sity, and kðr; zÞ ¼ x=cðr; zÞ is acoustic wave number with angular frequency x ¼ 2pf
and sound speed cðr; zÞ. Attenuation b, in units of dB/wavelength, is included by
allowing the sound speed to be complex.5 In this paper, the range dependence of the
acoustic parameters is a result of a sloping bathymetric interface between the ocean
and the sediment, modeled as an acoustic half-space, only. The range-dependent depth
of the bathymetry is bðrÞ and h ¼ hbðrÞi is the mean depth over all range. The surface
z ¼ 0 is assumed flat and satisfies a pressure-release condition.

To treat the bathymetric range dependence, a change of independent variables
is applied:
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where cðrÞ ¼ h=bðrÞ. This mapping transforms the original ðr; zÞ domain to a domain
where both the bathymetric and surface interfaces are horizontal (~zjz¼bðrÞ ¼ h; ~zjz¼0 ¼ 0
for all r). In the context of numerical grid generation, Eq. (2) is known as a shearing
transformation [see Eq. (1) in Ref. 6].

Substitution of Eq. (2) into Eq. (1) results in
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where p ¼ p ~r; ~zð Þ; q ¼ q ~zð Þ; k ¼ k ~zð Þ; and b
0 ¼ db=dr ¼ db=d~r. Neglecting terms

involving the slope b
0
and curvature b

00
reduces Eq. (3) to
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which is the leading-order Helmholtz equation in the scaled domain. This assumption
is equivalent to a small-slope approximation, and under this approximation the contri-
butions of the ignored terms are negligible when compared to the remaining terns in
Eq. (4). Equation (4) differs from Eq. (1) only by the c2 term in front of the ~z-deriva-
tive terms. Factoring Eq. (4) and retaining the outgoing operator yields the PE
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and k0 is a reference wave number. Equation (5) has a marching solution of the form

p ~r þ D~rð Þ ¼ exp ik0D~r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ X
p� �

p ~rð Þ; (7)
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where D~r is the range step, which can be numerically implemented by an appropriate
approximation to the exponential of the square root operator. For this work, this will
be achieved using a Pad�e approximation.7

Although the domain in the mapped coordinate system is range-independent
in a geometric sense, with constant bathymetry and surface depths, the PE in Eq. (5)
has range dependence on the operator X through c ~rð Þ. Furthermore, the factorization
used to obtain Eq. (5) is not exact because of the nonzero commutator term resulting
from the dependence cð~rÞ. The commutator term is
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where a Taylor series approximation is used to simplify the term 1þ Xð Þÿ1=2
.

Equation (8) represents an unaccounted contribution in Eq. (5). As expected, the left-
hand side of Eq. (8) is zero if X did not depend on ~r. To compensate for this term, a
modified PE is used,
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While X̂ does not incorporate all effects of the commutator term in Eq. (8), it does
account for a portion of them so that Eq. (9) provides potential improvement to
Eq. (5).

The PE defined in Eq. (9) is also numerically implemented using a Pad�e
approximation on the square root operator.7 The operator X̂ is approximated using fi-
nite differences in depth as defined in Ref. 8. The scale factor cðrÞ is discretized in
range, so that X̂ must be updated when c varies with range. Moreover, when X̂ is
updated both the scaled depth variable ~z and step D~z must also be updated. This
implies that

~zjj~r1 6¼ ~zj j~r2 for c ~r1ð Þ 6¼ c ~r2ð Þ; (11)

where ~zj ¼ jD~z is the jth discrete depth step in the mapped coordinates and ~r1 and ~r2
are two discrete ranges. Thus it is possible that for some j, ~zj may “cross” the bathy-
metric interface as the solution is marched in range, even though the bathymetry
remains at a constant depth h in the mapped domain. This case is handled by appro-
priately re-discretizing k and q at the appropriate discrete depths ~zj, for j ¼ 1;…; N
where N is the maximum number of depth points, corresponding to the current range
step. No interpolation is needed when re-discretization occurs as ~X properly handles
marching to the new discrete depths.

3. Examples

Solutions from the scaled mapping PE using Eq. (9) and translational mapping PE in
Ref. 4 are compared, and the former is compared with reference solutions from the PE
Range-dependent Acoustic Model (RAM).9 Two example two-layer environments are
examined to illustrate the accuracy of the scaled mapping PE. For both examples an
artificial absorbing layer that prevents reflections lies below the acoustic sediment
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layer, modeled as a fluid. Acoustical parameters for these examples are given in
Table 1.

Example A examines a shallow-water environment containing a seamount. A
25Hz point source is located 112m in the ocean. The bathymetry is defined as:

bðrÞ ¼

200; r < 2400

ÿ2:8rþ 6920; 2400 < r < 2450

60; 2450 < r < 2550

2:8rÿ 7080; 2550 < r < 2600

200; r > 2600;

8

>

>

>

>

<

>

>

>

>

:

(12)

where units of each term are meters. The seamount rises up 140m from the seafloor
and has a slope of approximately 70�, which is steep but not unreasonable for environ-
ments near continental shelves. Solutions are computed with Dz¼ 1m and Dr¼ 10m in
the original domain. Transmission loss curves at receiver depth 30m are depicted in
Fig. 1 for the reference solution RAM (dashed line), the scaled mapping PE approach
(solid line), and the translational mapping approach of Ref. 4 (dotted-dashed line),
where the large-slope correction term described in Ref. 4 has been applied. The three
curves are in agreement until the start of the seamount upslope at 2.4 km, after which
the translational mapping solution differs strongly while the scaled mapping solution
closely follows the reference solution. If the scaled mapping PE in Eq. (5) is used, the
resulting solution matches the reference solution well in phase pattern; however, there
are amplitude differences. These amplitude errors are not seen using Eq. (9), which is
what is used for the scaled mapping PE in Fig. 1.

Fig. 1. Transmission loss curves for example A at receiver depth of 30m using RAM (dashed line), the scaled
mapping PE (solid line), and the translational mapping PE (dotted-dashed line).

Table 1. Acoustical parameters for examples A and B. Water parameters contain the subscript w, and bottom

parameters contain the subscript b.

Example A B

cw (m/s) 1500 See Eq. (13)

qw (g/ cm3) 1.0 1.0

bw (dB/ k) 0.0 0.0

cb (m/s) 1704.5 1550

qb (g/ cm
3) 1.15 1.15

bb (dB/ k) 0.5 0.5
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The discrepancy of the translational mapping solution in Fig. 1 is a result of
an inaccurate treatment of the bathymetry change. This is illustrated in Fig. 2 which
shows transmission loss contours as functions of range and depth for example A.
Figure 2(a) shows loss curves for the scaled mapping PE in the mapped domain ~r; ~zð Þ.
Both the bathymetry and surface interfaces are flat, with the bathymetry now located
at h ¼ 195:81 m. This solution mapped back into the original domain r; zð Þ is shown
in Fig. 2(b), where propagation through the seamount is clearly observed. Comparing
Figs. 2(a) and 2(b) shows that the mapped domain is expanded near the seamount,
when h > bðrÞ. Away from the seamount, the mapped domain is slightly contracted
because h < bðrÞ; however, this is difficult to observe because h is so close to bðrÞ.
Figure 2(c) displays the result of the translational mapping PE solution after mapping
back to the original domain. This method cannot handle the seamount, producing
unphysical results in the water above the seamount and no transmission through the
seamount. The reference solution using RAM is shown in Fig. 2(d) and is in excellent
agreement throughout most of the domain with the scaled mapping solution in Fig.
2(b). The slight differences are attributed to the neglected terms in Eq. (3).

Example B is taken from the second example in Ref. 4 and examines propaga-
tion in a two-layer, deep-water, range-dependent environment with a depth-dependent
sound speed. A 25Hz point source is located 400m into the ocean, which contains a
depth-varying sound speed. The sound speed in the ocean is given by10

cwðzÞ ¼ c� 1þ a
zÿ z�
H

þ exp ÿ zÿ z�
H

� �

ÿ 1

� �� �

; (13)

Fig. 2. (Color online) Transmission loss contours for example A. (a) The solution using the scaled mapping PE
in the mapped domain. (b) The solution using the scaled mapping PE in the original domain. (c) The solution
using the translational mapping PE in the original domain. (d) The solution using RAM.
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where c� ¼ 1500 m/s, H ¼ 600 m, z� ¼ 1000 m, and a ¼ 0:007, as shown in Fig. 3(a).
The bathymetry is defined as

bðrÞ ¼
5; r < 25

ÿ0:16rþ 9; 25 < r < 50

1; r > 50;

8

<

:

(14)

where all units are in kilometers. Solutions are computed with Dz ¼ 1 m and Dr
¼ 10 m in the original domain, and in the mapped domain h ¼ 2:5 km.
Transmission loss curves at a receiver depth of 400m are given in Fig. 3(b) for the
scaled mapping PE (solid line) and RAM (dashed line). The two curves are in excel-
lent agreement for the 100 km propagation range. Loss contours for the scaled map-
ping PE solution are shown in the mapped domain in Fig. 3(c) and in the original
domain in Fig. 3(d). Refractive beams due to the depth-dependent sound speed pro-
file are seen in both contour plots. The solution in the mapped domain easily treats
these beams by appropriately contracting and expanding the domain through the
bathymetry changes in the original domain. The translational mapping solution
(not shown) is in agreement with the curves in Fig. 3(b) and the contour in Fig.
3(d); as noted in Ref. 4, it requires a phase correction term to be applied to the so-
lution. No such correction is required for the scaled mapping solution. Loss con-
tours for Fig. 3(d) are in excellent agreement with those from RAM, as can be seen
in Fig. 3 of Ref. 4.

Fig. 3. (Color online) Results for example B. (a) Depth-dependent sound speed profile in the fluid. (b)
Transmission loss curves at a receiver depth of 400m for RAM (dashed line) and the scaled mapping PE (solid
line). (c) The solution using the scaled mapping PE in the mapped domain. (d) The solution using the scaled
mapping PE in the original domain.
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4. Conclusions

A two-dimensional fluid PE is presented that treats range dependence through a scaled
mapping technique. This approach maps the original domain, where the bathymetry
varies with range, to one where both the bathymetry and surface are flat. Propagation
in the mapped domain is obtained by appropriately expanding or contracting the
waveguide as the solution is marched through range. The procedure is compared to
reference solutions for shallow-water and deep-water environments and is shown to be
more robust than a previous mapping approach, which distorts the waveguide only
translationally. Future extensions are to incorporate the technique into seismo-acoustic
PEs and to improve the solution by including some of the neglected terms in Eq. (3).
Another extension is to environments with multiple layers or various thicknesses,
requiring multiple scaled mappings to make all interfaces flat.
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