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Concentration-Dependent
Chemical Expansion
in Lithium-Ion Battery
Cathode Particles
In this work, the effect of the concentration-dependent chemical-expansion coefficient, b,
on the chemo-elastic field in lithium-ion cathode particles is examined. To accomplish
this, an isotropic linear-elastic model is developed for a single idealistic particle sub-
jected to potentiostatic-discharge and charge conditions. It is shown that b can be a key
parameter in demarcating the chemo-stress–strain state of the cathode material under-
going nonlinear volumetric strains. As an example, such strains develop in the
hexagonal-to-monoclinic-phase region of LixCoO2 (0.37� x� 0.55) and, subsequently,
the corresponding b is a linear function of concentration. Previous studies have assumed
a constant value for b. Findings suggest that the composition-generated chemo-elastic
field that is based on a linear-b dramatically affects both the interdiffusion and the me-
chanical behavior of the LixCoO2 cathode particle. Because the chemo-elastic phenom-
ena emanate in a reciprocal fashion, the resulting linear b-based hydrostatic-stress
gradients significantly aid the diffusion of lithium. Thus, diffusion is accelerated in either
electrochemical process that the cathode material undergoes. [DOI: 10.1115/1.4027833]

1 Introduction

The use of lithium (Li) ion batteries (LIBs) has been exten-
sively investigated in response to increasing high demands for
environmentally friendly portable renewable energy devices.
Diffusion-induced stresses (DIS) can develop in the electrode par-
ticles as a result of compositional inhomogeneities [1]. These
stresses are of great concern since the material can undergo signif-
icant volume changes under Li intercalation/deintercalation into/
out of the host material. The accumulated structural changes can
enhance proneness to particle fracture [1]. The phenomena of DIS
and correlated stress-induced diffusion (SID) have been investi-
gated based on the thermodynamics of stressed solids; more spe-
cifically, under the delineation of a modified chemical-potential
concept. In the classical Fickian diffusion, which has been typi-
cally used in electrochemistry-related studies of LIB electrodes,
the contribution of the elastic energy induced by the diffusing sub-
stance is neglected. The composition gradients that emerge inside
the particle can be affected by elastic self-stresses, which arise
from the nonuniform solute-composition distribution, and such an
effect cannot be captured by the classical Fickian relation. One of
the first theories to formulate an expression of the chemical poten-
tial in interdiffusion analyses of a multicomponent stressed solid
was developed by Larch�e and Cahn [2]. Bohn et al. [3] proposed a
nonideal chemical-potential relation, l, for LIB electrodes where
the parameter g was introduced to account for the Li–ion interac-
tion within the solid material, neglecting the dependence of elastic
constants on solute composition, C. The chemical potential was
taken as

l ¼ l0 þ gRT
C

Cmax

þ RT log
C

Cmax ÿ C

� �
ÿ Xrh (1)

where l0 is a constant, R is the gas constant, T is the temperature,
X is the partial molar volume, rh is the hydrostatic stress, and

Cmax represents the stoichiometric solute concentration in the host
lattice. It can be inferred that the parameter g in Eq. (1) is only ap-
plicable to solid electrode materials in which ionic diffusion
occurs and/or the analysis is oriented to the electrode–electrolyte
interface.

A few authors have investigated the contribution of concentration-
dependent elastic constants [4–10] and concentration-dependent
effective diffusivity [7,8,11,12] in the Li flux and resulting LIB
electrode stress-state. Regarding the former, Yang et al. [8] and He
et al. [10] used a linear Li-content-dependent Young’s modulus in
Si and Si–graphite, respectively. In their work [8,10], the
Larch�e–Cahn chemical-potential approach [2] for a binary-alloy
solid solution was employed. He et al. [10] expressed their modifi-
cation of Eq. (1) as

l ¼ l0 þ RT log
C

Cmax ÿ C

� �
ÿ Xrh ÿ

@

@C

1ÿ �

E

� �
r2h (2)

which satisfies the non-Fickian conservation of species relation

@C

@t
¼ D

@

@z

Cmax

Cmax ÿ C

� �
@C

@z
ÿ
XC

RT

@rh
@z

�

þ
ð1ÿ �ÞC

RT

@

@z

r2h
E2

@E

@C

� ��
(3)

assuming one-dimensional diffusion in the z-direction along the
axis of the anode structure.

Numerical solutions have been proposed for the analysis of the
coefficient of diffusion when this strictly depends on the
diffusing-substance concentration [3,13,14]. However, in the case
of LIB electrode materials, there is no clear agreement in the liter-
ature with respect to whether the Li diffusivity depends only on
composition or if the driving force is constituted by the mass-
transfer activity gradient [15,16]. In a nonideal Li-flux analysis in
electrode materials, Bohn et al. [3] and Purkayastha and McMeek-
ing [14] presented a model wherein a concentration-dependent
mobility of the Li, M, is implemented in the flux relation,
J¼ÿMCrl,
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M ¼ M0 1ÿ
C

Cmax

� �
(4)

where M0 is the concentration-independent mobility. A modified
version of non-Fickian diffusion relation was then calculated as

J ¼ D0 1þ
C

Cmax

1ÿ
C

Cmax

� �
gþ C

dg

dC

� �� �
rC

�

ÿ 1ÿ
C

Cmax

� �
XC

RT
rrh

�
(5)

The value of X has been established as a key parameter influ-
encing the diffusion of Li and stress–strain state in the LixMn2O4

material [14,17]. In the published literature, a vast number of stud-
ies oriented to the LIB-electrode mechanical response upon the
hydrostatic-stress-gradient contribution [14,18–26] have imple-
mented the modified chemical-potential relation wherein X is con-
stant. With the exception of the works of Chung et al. [22] and
Lim et al. [26], which were oriented to LixCoO2 cathode particles,
the cathode-based material studied was LixMn2O4, wherein the
constant-b assumption could be appropriately based on the meas-
ured data presented in Ref. [27]. Nevertheless, a number of cath-
ode materials, such as LixCoO2 [28], Li1þxFe1-xPO4 [29], and
LixNiO2 [30], exhibit nonlinear volumetric changes upon variant
Li-composition.2 To the authors’ knowledge, however, no formu-
lation addressing how a composition-dependent b (or X) affects
the chemo-elastic field of LIB electrodes is found in the literature.

In this investigation, an isotropic linear-elastic model is devel-
oped to elucidate the effects of a linear concentration-dependent
chemical-expansion coefficient, b, on the DIS and correlated SID
of LixCoO2 particles. Based on the experimental data provided by
Reimers and Dahn [28], illustrated in Fig. 1, the use of a linear b
(bL) is more appropriate during the nonlinear volumetric contrac-
tion/expansion in the hexagonal-to-monoclinic (H2-to-M1) phase
transition in the LixCoO2 crystal structure (0.37� x� 0.55). The
Li diffusion and mechanics in the active-electrode material during
intercalation and deintercalation is carried out using an idealized
spherical particle. The formulation presented here incorporates a
composition-variant diffusivity to consider the effect of the lithia-
tion/delithiation state on Li mobility. The elastic constants of the
cathode material are considered to be constant throughout the lith-
iation process. The electrode–electrolyte interaction is modeled
through a boundary condition on the particle surface that describes
the Li concentration in terms of electrochemical discharge-and-
charge potentiostatic conditions (constant potential control).

The present approach and solution formulations can be applied
to on-going research in LIB electrodes undergoing nonlinear
crystal volume changes during battery operation. Although the

examined compositional range may be unrepresentative of the
practical compositional LixCoO2 material in commercial batteries
(0.50� x� 1.00), an improved understanding of the nature of
emerging coupled SID-DIS is desirable in the development of
this LIB cathode material and potential derivatives. Extensions of
the principles proposed in the current work include applications
in the thermal sciences to delineate the contribution of
temperature-dependent thermal-expansion coefficients in the
thermomechanical field.

2 Diffusion With Concentration-Dependent
Chemical Expansion

The general case where b (or equivalently X) is a function of
the solute concentration, C, across an entire concentration range is
examined here. The partial molar volume, X, where X¼ 3b, is
determined from the change in the crystal volume, V, with respect
to concentration between two concentration values C1 and C2

as [19]

X ¼
DV=V0ð Þ1ÿ2

DC

where V0 is the reference volume and DC¼C2 – C1. For cases in
which the volume change is linear with respect to composition, b
(or X) is related to the (constant) slope of the linear DV/V0 curve.
If DV/V0 varies quadratically

DV=V0ð Þ1ÿ2¼ aðDCÞ2 þ bDC

say, then X(C)¼ aDCþ b, or in terms of the coefficient of chemi-
cal expansion

bðCÞ ¼ nDCþ g (6)

where n¼ a/3 and g¼ b/3.
In the mathematical model presented here, the nonclassical

chemical potential, l, is implemented as [2]

l ¼ l0 þ RT log
C

Cmax ÿ C

� �
ÿ 3brh (7)

Here, b is allowed to be composition-dependent, b¼ b(C). Equa-
tion (7) is Eq. (1) when g¼ 0. C itself depends on the spatial vari-
able, x; so, derivatives of b(C) with respect to xj are calculated
using

@b

@xj
¼

db

dC

@C

@xj

The chemical species flux, J¼ÿMCrl, is calculated using
Eq. (7),

J ¼ ÿMRT
Cmax

Cmax ÿ C
ÿ
3rhC

RT

db

dC

� �
rC

�
ÿ
3bC

RT
rrh

�
(8)

Note in Eq. (8), the term involving ðdb=dCÞ. This term will gener-
ate additional concentration gradient terms in the final equation
for the flux. Under the assumption that M decreases linearly with
the Li-composition fraction, the relation in Refs. [3] and [14],
Eq. (4), is used giving

J ¼ ÿD0 1ÿ
C

Cmax

� �

�
Cmax

Cmax ÿ C
ÿ
3rhC

RT

db

dC

� �
rCÿ

3bC

RT
rrh

� �
(9)

Fig. 1 LixCoO2 crystal volume as a function of Li content
(adapted from Reimers and Dahn [28]). The monoclinic phase is
labeled as M1; two hexagonal phases are labeled as H1 and H2.

2Crystal volumetric variations in other LIB electrode materials, such as

LixM1=6Mn2O4 derivative cathodes (M¼Cr, Co, and Ni) and Li-alloy anodes,

appear to experience linear volume changes with Li content [31,32].
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where D0¼M0RT. Next, the diffusion of the chemical species is
computed from

@C

@t
þr � J ¼ 0 (10)

Substituting for J leads to

1

D0

@C

@t
¼ 1ÿ 1ÿ

C

Cmax

� �
arhC

db

dC

� �
r2C

ÿ 1ÿ
C

Cmax

� �
aCbr2rh ÿ arh

�
1ÿ

2C

Cmax

� �
db

dC

þ 1ÿ
C

Cmax

� �
C
d2b

dC2

�
rCj j2ÿa b 1ÿ

2C

Cmax

� ��

þ 1ÿ
C

Cmax

� �
2C

db

dC

� ��
ðrCÞ � ðrrhÞ (11)

where a¼ 3/(RT). When b is constant, Eq. (11) reduces to

1

D0

@C

@t
¼ r2Cÿ 1ÿ

C

Cmax

� �
aCbr2rh

ÿ ab 1ÿ
2C

Cmax

� �
ðrCÞ � ðrrhÞ (12)

This agrees with Ref. [14], Eq. (39(b)). When b¼ 0, the standard
linear diffusion equation for C is recovered.

For cases in which a constant mobility is assumed, M¼M0,
Eq. (10) gives

1

D0

@C

@t
¼

Cmax

Cmax ÿ C
ÿ arhC

db

dC

� �
r2Cÿ aCbr2rh

þ
Cmax

ðCmax ÿ CÞ2
ÿ arh

db

dC
ÿ arhC

d2b

dC2

 !
rCj j2

ÿ a 2C
db

dC
þ b

� �
ðrCÞ � ðrrhÞ (13)

which should be compared with Eq. (11). Note that Eq. (13) does
not reduce to the linear diffusion equation when b¼ 0. In addition,
there is potential singular (nonphysical) behavior as C approaches
Cmax. Thus, Eq. (11) is used.

3 Equilibrium and Constitutive Equation

The mechanical field is treated as quasi-static since the elastic
wave speeds are far in excess of the diffusion. In the absence of
body forces, the stresses, rij, are in equilibrium

@rij
@xj

¼ 0; i ¼ 1; 2; 3 (14)

The stresses are related to the strains, eij, and the concentration, C,
by a constitutive relation. For an isotropic solid, the analogous
thermoelastic generalization of Hooke’s law [33] is used

rij ¼ kekkdij þ 2Geij ÿ ð3kþ 2GÞf ðCÞdij (15)

where k and G are the Lam�e moduli, and f(C) is a dimensionless
function of C. For a linear relationship between the volume
change and concentration, this is

f ðCÞ ¼ bDC where DC ¼ Cÿ C0 (16)

and C0 is the reference concentration at zero strain. In terms of a
quadratic relationship between the volume change and concentra-
tion this is expressed as

f ðCÞ ¼ nðDCÞ2 þ gDC (17)

or in terms of a linear b

f ðCÞ ¼ bðCÞDC; bðCÞ ¼ nDCþ g (18)

From Eq. (15),

rkk ¼ ð3kþ 2GÞðekk ÿ 3f Þ (19)

Equilibrium, Eq. (14), gives

0 ¼
@rij
@xj

¼ k
@ekk
@xi

þ 2G
@eij
@xj

ÿ ð3kþ 2GÞ
@f

@xi

Differentiating with respect to xi gives

0 ¼ ðkþ 2GÞr2ekk ÿ ð3kþ 2GÞr2f

after contraction. But, from Eq. (19),

3r2rh ¼ ð3kþ 2GÞr2ðekk ÿ 3f Þ

Hence, eliminating r2ekk results in

3ðkþ 2GÞr2rh þ 4Gð3kþ 2GÞr2f ¼ 0 (20)

In terms of Young’s modulus, E, and Poisson’s ratio, �, Eq. (20)
becomes

r2rh þ
2E

3ð1ÿ �Þ
r2f ¼ 0 (21)

This relation, due to Yang [34] when f is a constant multiple of C,
is used to simplify Eq. (11) to some degree. It is also employed to
simplify the solution for a spherical particle. It is noted that
Eq. (21) represents a constraint on the relationship between the
hydrostatic stress and the choice for f(C).

4 The Spherical Particle

For a simple example, a spherical particle of radius rs with
associated spherically symmetric boundary conditions is consid-
ered. These boundary conditions are taken as rrr¼ 0 and C¼Cs

(a constant value) at r¼ rs, where r is a spherical polar coordinate.
The constant maximum-concentration boundary condition repre-
sents a potentiostatic state in a battery cathode. This constant-
voltage boundary condition has been commonly used in studies of
the stress–strain state of LIB electrode materials [10,17,35–37].

The whole problem involves a coupling between a nonlinear
diffusionlike equation and a linear elasticitylike equation. In this
section, the linear part of the problem is solved. The main objec-
tive is to obtain an explicit relation between the hydrostatic stress,
rh, and the concentration, C. Both of these quantities are functions
of r and t (only). Later, the stress components within the particle
are required.

4.1 Direct Solution. In spherical coordinates ðr; h;/Þ, the
problem depends only on the radial coordinate, r. The correspond-
ing displacement components are ur¼ u(r) and uh ¼ u/ ¼ 0 [38].
The displacement equilibrium equations for spherically symmetric
problems reduce to [33]

d

dr

du

dr
þ
2u

r

� �
¼

1þ �

1ÿ �

df

dr
(22)

where f is a specified function of C; refer to Eq. (16). Note that, in
this section, C and u are denoted as functions of r only; the
dependence on t plays no role.

Journal of Applied Mechanics SEPTEMBER 2014, Vol. 81 / 091005-3

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 01/07/2015 Terms of Use: http://asme.org/terms



The solution of Eq. (22) in the thermoelastic case, with constant
coefficient of thermal expansion (f(T)¼ aDT), has been presented
in Ref. [38]. In the situation reported here, a slightly modified
solution is presented as

rrr ¼
2E

1ÿ �

1

r3s

ðrs

0

fq2dqÿ
1

r3

ðr

0

fq2dq

� �
(23)

rhh ¼ r// ¼
E

1ÿ �

2

r3s

ðrs

0

fq2dq

�
þ

1

r3

ðr

0

fq2dqÿ f

�
(24)

These equations reduce to those presented in Ref. [38] for thermo-
elasticity with constant coefficient of thermal expansion. Note that
the individual stress components given by Eqs. (23) and (24) con-
tain two contributions (the two integrals appearing in the stress
equations): a contribution dependent on the position r where the
stress is to be computed, and a global contribution given by the in-
tegral over the entire volume of the spherical particle. Addition-
ally, the stresses given by Eq. (24) contain a local contribution
given by the last term.

The hydrostatic stress rh ¼ rrr þ rhh þ r//
ÿ �

=3 can be
computed

rhðrÞ ¼
2E

3ð1ÿ �Þ

3

r3s

ðrs

0

f ðCðqÞÞq2dqÿ f ðCðrÞÞ

� �
(25)

This agrees with Ref. [19] when f(C)¼ bDC and b is a constant.

4.2 Alternative Method for Calculation of rh. For solutions
of interest, which involve spherical symmetry, Yang’s relation
Eq. (21) implies that

rh þ
2E

3ð1ÿ �Þ
f ¼ Aþ

B

r
(26)

where A and B are constants.3 For solutions bounded at the center
of the sphere at r¼ 0, B¼ 0. In order to find the constant A,
Eq. (26) is integrated over the particle

4

3
pr3sA ¼ 4p

ðrs

0

2Ef

3ð1ÿ �Þ
þ rh

� �
r2dr

Thus,

A ¼
2E

r3s ð1ÿ �Þ

ðrs

0

fr2dr þ
3

r3s

ðrs

0

rhr
2dr

It will be shown that the second integral vanishes, assuming that
the surface of the particle at r¼ rs is traction free, rrr(rs)¼ 0.
Then, using Eq. (26), it is found that rh is given by Eq. (25), as
presented before. To demonstrate that the integral of the hydro-
static stress over the spherical particle vanishes, the radial
equilibrium equation is invoked

0 ¼
drrr

dr
þ
1

r
2rrr ÿ rhh ÿ r//
ÿ �

¼
drrr

dr
þ
1

r
3rrr ÿ 3rhð Þ

Hence,

3rhr
2 ¼ r3

drrr

dr
þ 3r2rrr ¼

d

dr
r3rrr
ÿ �

Finally, integrate and use the traction-free boundary condition at
r¼ rs. It is remarked that

ð

particle

rhdV ¼ 0 (27)

even though the stress components are not all zero.

5 The Spherical Particle: Tentative Scaling

In the idealized-particle problem, the equations are made
dimensionless by appropriate scaling. This is to allow the
approach of the current work to be applicable in the study of any
LIB electrode material. Thus,

Ĉ ¼
C

Cmax

; r̂h ¼
c

E
rh; b̂ðĈÞ ¼

3E

cRT
bðCÞ (28)

where c is a dimensionless constant to be selected later and b̂ is a
dimensionless function of Ĉ. The first two terms (left to right) in
Eq. (28) are dimensionless variables used in related works
[17,19]. The dimensionless b̂ (third relation in Eq. (28)) has been
reformulated in this study so that this parameter is composition-
dependent. Equation (11) becomes

1

D0

@Ĉ

@t
¼ 1ÿ ð1ÿ ĈÞr̂hĈ

db̂

dĈ

( )
r2Ĉÿ ð1ÿ ĈÞĈb̂r2r̂h

ÿ r̂h

�
ð1ÿ 2ĈÞ

db̂

dĈ
þ ð1ÿ ĈÞĈ

d2b̂

dĈ2

�
rĈ
�� ��2

ÿ b̂ð1ÿ 2ĈÞ þ 2Ĉð1ÿ ĈÞ
db̂

dĈ

( )

rĈ � rr̂h (29)

If f is defined by Eq. (18), it is found that

f ðCÞ ¼
1

3
cRðĈÿ Ĉ0Þb̂ðĈÞ (30)

with Ĉ0 ¼ C0=Cmax and R ¼ RTCmax=E. The quantity R is a
dimensionless number. Numerical values in Ref. [14] for
LixMn2O4 give R ’ 0:00057; for LixCoO2, R ’ 0:00015. The
Yang relation, Eq. (21), becomes

r2r̂h þ
2c2R

9ð1ÿ �Þ
r2 ðĈÿ Ĉ0Þb̂ðĈÞ
n o

¼ 0 (31)

For the symmetric spherical particle studied here, r̂h is given by
Eq. (25), whence

r̂hðrÞ ¼
2c2R

9ð1ÿ �Þ

3

r3s

ðrs

0

ðĈÿ Ĉ0Þb̂q
2dqÿ ðĈÿ Ĉ0Þb̂

� �
(32)

To simplify Eqs. (31) and (32), c is chosen so that the common
prefactor equals 1,

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð1ÿ �Þ

2R

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð1ÿ �ÞE

2RTCmax

s

(33)

For LixCoO2, c ’ 150.

6 Quadratic Volume Change

As a specific example, consider the isotropic case of the spheri-
cal particle where the volume change is quadratic with respect to
concentration. From Eqs. (18) and (28)

b̂ðĈÞ ¼ n̂DĈþ ĝ
3The general spherically symmetric solution of Laplace’s equation, r2

U¼ 0, is

U(r)¼AþB/r.
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where

n̂ ¼
3E

cRT
Cmaxn; ĝ ¼

3E

cRT
g

In order to scale our numerical solution, let

r̂ ¼ r=rs; t̂ ¼ tD0=r
2
s

Now write Eq. (32) with c chosen as in Eq. (33)

r̂h ¼ bI ÿ ðn̂DĈþ ĝÞDĈ (34)

where

bI ¼ 3

ð1

0

ðn̂DĈþ ĝÞDĈq̂2dq̂:

Note that bI will be spatially constant at a given time step. The
normalized derivatives are then

@r̂h
@r̂

¼ ÿ
@Ĉ

@r̂
2n̂DĈþ ĝ
� �

(35)

and

@2r̂h

@r̂2
¼ ÿ

@2Ĉ

@r̂2
2n̂DĈþ ĝ
� �

ÿ 2n̂
@Ĉ

@r̂

 !2

(36)

Equation (29) becomes

@Ĉ

@ t̂
¼ 1ÿ ð1ÿ ĈÞðbI ÿ ðn̂DĈþ ĝÞDĈÞĈn̂
n o

r2Ĉ

ÿ ð1ÿ ĈÞĈðn̂DĈþ ĝÞr2r̂h

ÿ ðbI ÿ ðn̂DĈþ ĝÞDĈÞ ð1ÿ 2ĈÞn̂
n o

rĈ
�� ��2

ÿ ðn̂DĈþ ĝÞð1ÿ 2ĈÞ þ 2Ĉð1ÿ ĈÞn̂
n o

rĈ � rr̂h (37)

In the special case of full spherical symmetry, Eq. (37) is

@Ĉ

@ t̂
¼ 1ÿ ð1ÿ ĈÞ bI ÿ ðn̂DĈþ ĝÞDĈ

h i
Ĉn̂

n o @2Ĉ

@r̂2
þ
2

r̂

@Ĉ

@r̂

 !

ÿ ð1ÿ ĈÞĈðn̂DĈþ ĝÞ
@2r̂h

@r̂2
þ
2

r̂

@r̂h
@r̂

� �

ÿ bI ÿ ðn̂DĈþ ĝÞDĈ
h i

ð1ÿ 2ĈÞn̂
n o @Ĉ

@r̂

 !2

ÿ ðn̂DĈþ ĝÞð1ÿ 2ĈÞ þ 2Ĉð1ÿ ĈÞn̂
n o @Ĉ

@r̂

@r̂h
@r̂

(38)

Finally, using Eqs. (35) and (36), Eq. (38) becomes

@Ĉ

@ t̂
¼

@2Ĉ

@r̂2
þ
2

r̂

@Ĉ

@r̂

 !

A1ðĈÞ þ
@Ĉ

@r̂

 !2

A2ðĈÞ (39)

where

A1ðĈÞ ¼ 1ÿ ð1ÿ ĈÞ bI ÿ ðn̂DĈþ ĝÞDĈ
h i

Ĉn̂

þ ð1ÿ ĈÞĈðn̂DĈþ ĝÞð2n̂DĈþ ĝÞ (40)

A2ðĈÞ ¼ ÿ bI ÿ ðn̂DĈþ ĝÞDĈ
h i

ð1ÿ 2ĈÞn̂

þ 2n̂ð1ÿ ĈÞĈðn̂DĈþ ĝÞ þ ðn̂DĈþ ĝÞð1ÿ 2ĈÞ
h

þ 2Ĉð1ÿ ĈÞn̂
i
ð2n̂DĈþ ĝÞ (41)

Note that when n̂ ¼ ĝ ¼ 0, A1¼ 1, A2¼ 0, and Eq. (39) reduces
properly to the classical Fickian diffusion equation (i.e., no me-
chanical contribution in the solute flux). The initial condition is
taken as Ĉðr̂; 0Þ ¼ Ĉi, which is the initial concentration of Li in
the particle everywhere except on the surface of the sphere. The
traction-free boundary condition on the surface of the particle has
already been satisfied, so the particle is free to contract/expand.
The potentiostatic boundary condition is imposed on the surface
of the particle, so that the Li content remains invariant on the
surface, Ĉð1; t̂Þ ¼ Ĉs.

7 Finite Difference Formulation

For numerical computation, an explicit finite difference method
for the diffusion equation, Eq. (39), is formulated. A forward dif-
ference representation for the spatial and time derivatives, and the
second-order spatial derivative is approximated in the typical way

@2Ĉ

@r̂2
�

Ĉiþ1;j ÿ 2Ĉi;j þ Ĉiÿ1;j

ðDr̂Þ2

where Dr̂ is the spatial discretization, Ĉi;j � ĈðiDr̂; jDt̂Þ, and Dt̂ is
the temporal discretization. The difference formula is

Ĉi;jþ1 ¼ Ĉiþ1;j A1ðĈÞs 1þ 2
Dr̂

r̂i

� �
þ A2ðĈÞs

� �

þ Ĉi;j 1ÿ A1ðĈÞs 1þ 2
Dr̂

r̂i

� �
þ A2ðĈÞs

� �

þ Ĉiÿ1;jA1ðĈÞs (42)

where s ¼ Dt̂=ðDr̂Þ2 and r̂i ¼ iDr̂. The repeated trapezoidal rule is

used to compute bI so the nodal values needed for the concentra-
tion are at the same locations as are needed for the finite differ-
ence expressions. In this case, noting that the integrand equals
zero at r̂ ¼ 0

bI � 3h
XNÿ1

i¼1

DĈi;jðn̂DĈi;j þ ĝÞr̂2i þ
3h

2
DĈN;jðn̂DĈN;j þ ĝÞ

Finally, note that Eq. (39) cannot be directly evaluated at r̂ ¼ 0.
Following Ref. [39], consider a Maclaurin expansion for @Ĉ=@r̂

@Ĉ

@r̂
ðr̂; t̂Þ ¼

@Ĉ

@r̂
ð0; t̂Þ þ r̂

@2Ĉ

@r̂2
ð0; t̂Þ þ � � �

As @Ĉ=@r̂ ¼ 0 at r̂ ¼ 0, the Maclaurin series gives

lim
r̂!0

1

r̂

@Ĉ

@r̂
ðr̂; t̂Þ ¼

@2Ĉ

@r̂2
ð0; t̂Þ

and then Eq. (39) at r̂ ¼ 0 becomes

@Ĉ

@ t̂
¼ 3A1

@2Ĉ

@r̂2
(43)

The difference form of this equation is

Ĉ0;jþ1 ÿ Ĉ0;j

Dt̂
¼ 3A1

Ĉ1;j ÿ 2Ĉ0;j þ Ĉÿ1;j

ðDr̂Þ2

 !

(44)
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Furthermore, from ð@Ĉ=@r̂Þð0; t̂Þ ¼ 0; Ĉÿ1;j ¼ Ĉ1;j. Thus, Eq. (44)
reduces to

Ĉ0;jþ1 ¼ Ĉ1;j 6A1sð Þ þ Ĉ0;j 1ÿ 6A1sð Þ

The parameters used in the numerical simulations are summarized
in Table 1.

8 Computational Results

The intent of this investigation is to ascertain the importance of
including a variable chemical-expansion coefficient, b(C), in the
analysis of the nonlinear volumetric changes experienced by LIB
cathodes during lithiation or delithiation. Both linear b (bL) and
constant b (bC) are considered. In dimensionless form, these are

b̂L ¼ n̂DĈþ ĝ and b̂C ¼ ĝ

The case b̂ ¼ 0 is also considered; this is to demarcate the signifi-
cance of incorporating the mechanical contribution in the Fickian
relation. In order to delineate the nature of the coupled relation of
SID and DIS, three cases are considered: (i) fictitious choices for
the parameters ĝ and n̂; (ii) no stress-assisted diffusion (classical
Fick’s law, b̂ ¼ 0); and (iii) experimental b̂ parameters for con-
tracting/expanding LixCoO2, based on published data [28]. In (iii),
the data are approximated by both b̂C and b̂L. The b̂L-based simu-
lations are oriented to the nonlinear volumetric strain that the ma-
terial undergoes in the 0.37� x� 0.55 compositional range. Here,
it is discussed if the impact of a linear-concentration-dependent b̂
in the chemo-elastic response of the cathode material is
significant.

8.1 Effect of b on SID. The effect of changing the parameters
in b̂L on Li-saturation time, t̂s (saturation at r̂ ¼ 0:5), is depicted
in Fig. 2.4 As n̂ increases in positive values, with a fixed
ĝ ¼ 1:0; t̂s declines dramatically.5 As shown in Fig. 2(a), t̂s devi-
ates up to a 21% increment (n̂ ¼ ÿ4) or 45% decrement (n̂ ¼ 10)
from the constant-b̂C assumption under the presented hypothetical
case scenarios, depending on the nature of the nonlinear volumet-
ric strain.

In Fig. 2(b), a concavelike response is described by the parame-
ter ĝ, at a fixed value of n̂ ¼ 1:0, suggesting that as ĝ � 0 it takes
more time for maximum lithiation to occur. However, the varying
ĝ indicates that pronounced rises or decays in the volumetric
change versus composition will conduct faster saturation in the
material. Results demonstrate that the diffusion of Li is highly
sensitive to minute changes in the definition of the nature of b;
this preliminary assessment agrees with the work presented in
Refs. [17] and [14], where a strong effect of a constant X on Li
concentration (and stress–strain profile) in the LixMn2O4 material
was elucidated upon various X-case scenarios. Findings show that the chemo-elastic response of the material is strongly

b-dependent.

8.2 Effect of b on the Chemo-Elastic Response. For the re-
mainder of this section, the parameter values used in b̂C and b̂L

Table 1 Cathode model parameters used in the numerical simulations

Name Symbol Value Reference

Young’s modulus E 370.0 GPa [1]
Poisson’s ratio � 0.20 [1]
Li stoichiometric concentration C100% 25.72 kmol mÿ3 [40]
Gas constant R 8.314 J molÿ1 Kÿ1 —
Temperature T 293K —
Linear chemical-expansion coefficient b̂L ÿ0:5417DĈþ 2:2072 (Current study)
Constant chemical-expansion coefficient b̂C 1.2101 (Current study)
Dimensionless compositional range Dx 0.18 [28]

Fig. 2 Influence of hypothetical parameters of a linear b̂ on sat-
uration time, t̂s, within the LixCoO2 cathode particle (0.37 £ x £

0.55) at r̂ 5 0:5: (a) n̂ effect at fixed ĝ51:0 and (b) ĝ effect at fixed
n̂5 1:0 during potentiostatic discharge conditions

Fig. 3 Influence of the b̂ parameter at r̂ 5 0:5 for normalized
values on the (a) Li diffusion and (b) hydrostatic stress during
discharge-and-charge potentiostatic conditions (0.37 £ x £

0.55)

4For practical purposes, the saturation time is considered to be the time needed to

lithiate the cathode particle until it reaches the maximum concentration of the

compositional range studied (i.e., Li0.55CoO2).
5Note that the terms Ĉ and x in LixCoO2 are equivalent.
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are found in Table 1. Note that the values of n̂ and ĝ presented
correspond to the volumetric strain of LixCoO2 in the composi-
tional range selected.

Defining the coupled dependence of the relation of SID and
DIS is rather complex due to the reciprocate contribution of the
stress–strain state and the Li-composition in chemo-elastic
behavior of the electrode particle. This is because each chemo-
elastic parameter controls the degree of influence that the
hydrostatic-stress gradient has on Li migration and vice-versa.
Both chemo-elastic processes, DIS and SID, are originated from
the nonuniform nature of composition gradients and stress gra-
dients, respectively. While the former develops self stresses in
unconstrained electrode particles, the latter affects the rate of the
pre-existing diffusion process. Figure 3(a) shows that both
lithiation and delithiation are accelerated under a linear chemical-

expansion coefficient, b̂L, followed by the constant b̂C-based con-

centration and the stress-independent Li-diffusion (b̂ ¼ 0 case), in
that order. This indicates that the hydrostatic-stress gradients,
rrh, that develop in the particle noticeably assist either electro-
chemical process that the cathode material undergoes. For

instance, at t̂ ¼ 0:1, the concentration of Li that results from the

mechanical contribution with a linear b̂L, is nearly 6% higher with

respect to contributions accounting for the b̂C effect, and up to
11% greater when no mechanical influence is taken into account

under the b̂ ¼ 0 case (i.e., based on the classical Fickian relation).
The difference among the various concentration fields studied

through t̂ is more accentuated during the first 20% of the lithiation

process (t̂ ¼ 0:2).6 It is found that the concentration gradients,
rC, in coupled cases are lesser in value with respect to those cor-
responding to the uncoupled model. This indicates that stress gen-
erated upon rC results in a driving force by which the migration
of Li into/out the inner layers of the particle is promoted during
both intercalation and deintercalation. Hence, stress-coupling aids
the diffusion phenomena significantly.

According to Fig. 3(b), the hydrostatic stress difference
between b̂L and b̂C is on the order of 46%. A similar observation
is found in Ref. [41] for a LixMn2O4 numerical model suggesting
electrode fracture proneness. Christensen and Newman [41]
reported radial stresses of up to 31% greater for fictitious linear X
cases with respect to constant X, depending on the steepness of
the lattice-constant slope as a function of Li content. Note that r̂h
in the decoupled flux case scenario has been defined based on the
b̂L concept and, subsequently, the peaks of hydrostatic stresses in
the linear-b̂L case and the stress-independent flux case are of equal
magnitude, see Eq. (32). However, the corresponding response of

b̂L and b̂C simulations the does not coincide along t̂; the r̂h peaks
are found at t̂ ¼ 0:02 for the b̂L (and b̂C) and at t̂ ¼ 0:03 for the
b̂ ¼ 0 case, respectively. At t̂ ¼ 0:5; r̂h is on the order of 0.03 for
both the linear- and zero-b̂ cases under the lithiation process and
r̂h ¼ ÿ0:05 under the delithiation condition. In both electrochem-
ical processes, this is r̂h ¼ 0:00 under the constant-b̂C assump-
tion. The latter infers the rrr¼ rhh relation is reached midway of
the Li intercalation or deintercalation when the volumetric strain
of the material varies linearly with composition. Note this is
shown later in Sec. 8.3; it is important to notice that the particle is
not under steady-state conditions at t̂ ¼ 0:5.

During both the discharge and charge of the cathode, the Li dif-
fusion occurs at a more sluggish fashion when b̂ ¼ 0, leading to a
more nonuniform composition field. This is because the mechani-
cal contribution in the flux relation is absent and, therefore,
unaffected concentration gradients become dominant. As a conse-
quence, mechanical strains rise in a more heterogeneous fashion
and prevail in time throughout the remainder of the intercalation
(internal tensile r̂h) and deintercalation (internal compressive r̂h)
processes. It can be established that the degree at which the linear-
concentration-dependent b affects the DIS is much greater than the
influence this chemical parameter has on the assisted diffusion,
SID.

8.3 Effect of b on DIS and SID. The analysis presented in
this section is intended to discern the linear versus constant
composition-relation effect of the chemical-expansion coefficient.
For this, both electrochemical processes are simulated and results
are summarized in Figs. 4 and 5 for the intercalation- and deinter-
calation condition, respectively. In Figs. 4(a)–4(d) it is observed
that the Li-concentration profile under the b̂C-lithiation assump-
tion is relatively steady through t̂, comparing to the b̂L case, par-
ticularly at r̂ � 0:0. In Figs. 4(e)–4(h) it is evident that during the
intercalation process, r̂h on the surface of the particle (which
equals to rhh) becomes compressive in nature whereas in the cen-
ter of the sphere, tensile stresses rise. This is due to the contraction
that the LixCoO2 cathode material undergoes during the discharge
process. Similar Li-diffusion and stress response was obtained for
the delithiation process simulations, see Figs. 5(a)–5(h), where
compressive r̂h rises on the surface whereas the inside of the par-
ticle remains in tension. It is found that, in a correlation fashion,
both b̂L and b̂C influence rr̂h and rĈ. Hence, the b parameter
constitutes a key parameter in defining the degree of (a) the driv-
ing forces in the diffusion of Li and (b) the stress–strain response
of the particle.

Figures 4(a)–4(e) and 5(a)–5(e) show that during the onset of
the electrochemical intercalation and deintercalation (t̂ ¼ 0:125),
the inner layers of the particle experience no diffusion and the

Fig. 4 Evolution of the Li concentration profile across the LixCoO2 particle radius (a)–(d) and
hydrostatic stress (e)–(f) under discharge potentiostatic conditions (0.37 £ x £ 0.55). Note that
no steady state is reached by the reported t̂ .

6Maximum discharge (at Ĉ ¼ 0:55) or charge (at Ĉ ¼ 0:37) is reached at t̂ ¼ 0:5.

Journal of Applied Mechanics SEPTEMBER 2014, Vol. 81 / 091005-7

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 01/07/2015 Terms of Use: http://asme.org/terms



stress is uniformly distributed, as could be anticipated. The corre-
lation of SID and DIS at this state is then established; this is
rĈ � 0 and rr̂h � 0; the latter is particularly more pronounced
with b̂C as the condition extends through time (t̂ ¼ 0:25). Figures
4 and 5 demonstrate that the stress evolution always facilitates the
diffusion of Li into or out of the interior of the LixCoO2 cathode
material. More explicitly, this suggests the absolute value in the
right-hand side of Eq. (29) prevails, i.e., rr̂h < 0 and rĈ > 0
during intercalation, and rr̂h > 0 and rĈ < 0 during intercala-
tion. The reciprocate effects of the resulting chemo-elastic
parameter gradients, rr̂h and rĈ, are greater than that of the
hydrostatic stress, r̂h, alone.

9 Conclusions

The purpose of this work is to provide an insight on the role of
the composition-dependent chemical-coefficient expansion in the
chemo-elastic response of the LixCoO2 cathode material. A new
formulation for the SID and DIS that emerge during electrochemi-
cal processes is developed and simulated in this study. This is
based on a modified nonlocal Fickian relation using an ideal
spherical particle under potentiostatic control.

Findings show that the reciprocate relation of SID and DIS is
highly sensitive to the chemical-coefficient expansion b. The lin-
ear bL case study results in a 11% higher diffusion of Li with
respect to the stress-decoupling case (b¼ 0) and 6% respecting
the typical constant chemical-expansion coefficient, bC. Likewise,
at the end of the lithiation process, the radial stresses as diffusion
progresses yield a difference of 39% more compressive stresses
(on the particle surface) and 49% more tensile stresses (in the
particle core), between the b¼ 0 and bC cases, predicting more
deleterious stresses for the stress-decoupling case. This is due to
the faster diffusion that is induced by the linear-bL case, which in
turn results in less inhomogeneous concentration fields. It was evi-
denced that mechanical contribution in diffusion-stress-coupling
relation has a greater effect on the chemical field (i.e., the influ-
ence of the linear bL on the SID becomes dominant) than in the
elastic field (in terms of hydrostatic stresses). It is found that the
internal hydrostatic-stress gradients significantly enhance diffu-
sion during Li intercalation/deintercalation under the linear-bL
formulation in the LixCoO2 material. This suggests that the stress
decoupling in the Fickian-based relation could mispredict
the chemo-stress–strain response of the LIB electrode, and the
linear-bL model constitutes a key parameter in demarcating the
chemo-elastic coupled phenomena.

It was determined that the effect of a linear-bL, which is Li-
content-dependent, is not of a negligible nature. The linearity
described by this chemical parameter under the conditions exam-
ined facilitates in a greater fashion the diffusion of Li during its

insertion and extraction. As a comparison to scenarios wherein
this parameter is defined as a constant (bC), the emanating internal
compressive hydrostatic stresses (or internal tensile stresses under
deintercalation) that can develop upon the relation of SID and DIS
are 46% higher under the linear-bL model. From the mechanical
perspective, the integrity of the cathode material can be compro-
mised during the nonlinear volumetric changes that the LixCoO2

cathode material withstands since DIS are greater in magnitude
when the linear-bL concept is imposed.
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