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a b s t r a c t

An inhomogeneous solid layer is bounded on one side by a fluid half-space and on the other
by a homogeneous solid half-space. An acoustic wave in the fluid is incident on the layer.
Experiments suggest that some kind of shear-wave resonance of the layer exists. Here, the
layer is modeled with exponential variations of the material properties (Epstein model).
Solutions in terms of hypergeometric functions are found. Genuine resonances are found
but only when the layer is not bonded to the solid half-space; these are analogous to Jones
frequencies in fluid–solid interaction problems. When the solid half-space is present, the
resonances become complex: they are scattering frequencies. Simple but accurate asymp-
totic approximations are found using known estimates for hypergeometric functions with
large parameters.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Shear waves in marine sediments is the title of a 600-page edited book, published in 1991 [1]. Its subject has long been
of interest to underwater acousticians. The basic model considered is a fluid (the ocean) on top of an inhomogeneous solid
layer (the sediment) on top of a homogeneous solid (the basement). Such configurations (usually without the fluid) have
also been studied in the context of seismology and soil dynamics.

Ourmotivation comes from studies by Godin and Chapman [2,3], and others, which show some kind of resonance behav-
ior, attributed to shear waves in the inhomogeneous layer; see, especially, [2, Fig. 1]. In fact, these are not genuine resonance
frequencies; they are complex scattering frequencies close to the real-frequency axis. We shall investigate these scattering
frequencies, using mainly analytical methods.

Various analytical formulas have been used to represent the variations of the material properties through the inhomo-
geneous layer. For an isotropic elastic solid, lying between planes z = 0 and z = h, the relevant quantities are the Lamé
moduli, λ(z) and µ(z), and the density, ρ(z). We shall assume exponential variations, giving models of Epstein type: in
1930, Epstein [4] considered acoustic waves in a continuously varying medium (not a layer), and he gave solutions in terms
of hypergeometric functions; we shall encounter such functions later. For elastodynamic problems with Epstein models,
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see, for example, Rao [5], Vrettos [6], Muravskii [7], Rao and Li [8] and Manolis et al. [9]; all these authors assume that ρ
and λ/µ are constants. The same assumptions are made by Godin and Chapman [2,3], but they use power-law variations
of µ(z). Robins [10] allows ρ to vary but not the Lamé moduli. For two other approaches, see [11,12]. For more details on
acoustic models, see [13, Chapter 3].

We begin by recalling the governing equations for the fluid–solid–solid problem.We consider two-dimensional motions,
with plane-strain conditions in the solid regions. There is a plane time-harmonic acoustic wave in the fluid, incident upon
the fluid–solid interface. Our focus is on normal incidence because then the whole problem decouples into two subprob-
lems, one involving the acoustic pressure and the z-component of the elastic displacement (we call this the ‘‘compressional
problem’’), and one involving the other component of the displacement (‘‘shear problem’’). If the shear problem has any
non-trivial solutions, such solutions do not couple to the fluid, and so the potential for resonance would arise. Indeed, such
real resonance frequencies do exist but only when the layer is not bonded to the homogeneous elastic half-space. (This is
a simple consequence of Sturm–Liouville theory.) When the layer is bonded to the half-space, we find complex scattering
frequencies. In both cases, the frequencies are found by setting an appropriate 2 × 2 determinant to zero. We also give a
brief discussion of a semi-infinite smoothly inhomogeneous half-space (so that there is no interface at z = h).

The numerical results are compared with simple asymptotic approximations. These are obtained by approximating the
relevant determinants, which consist of products of hypergeometric functions. Unusually, we have to estimate such func-
tions when their argument is fixed but their parameters are large; for example, F(1 + δ, 1 + δ; 1 + 2δ; ζ ) when ζ is fixed
but δ → ∞. Fortunately, an appropriate (but complicated) asymptotic approximation was given by G.N. Watson almost
100 years ago. (For a recent review of this topic, see [14].) It turns out that the asymptotic approximations give excellent
agreement with the numerical results.

2. Formulation of the problem

We consider a three-part layered medium with two flat interfaces, at z = 0 and z = h > 0.
In the semi-infinite region z < 0 (the ‘‘water’’), there is a homogeneous compressible inviscid fluid with density ρf and

sound speed cf. The pressure P satisfies the wave equation for z < 0.
In the semi-infinite region z > h (the ‘‘substrate’’), there is a homogeneous isotropic elastic solid with density ρs and

Lamé moduli µs and λs.
In the region 0 < z < h (the ‘‘layer’’), there is an inhomogeneous isotropic elastic solid with density ρ(z) and Lamé

moduli µ(z) and λ(z).
For plane-strain motions in the solid regions, the elastodynamic displacement vector has components u1(x, z, t) and

u3(x, z, t) in the x and z directions, respectively. The governing equations are

ρ
∂2u1

∂t2
= (λ + 2µ)

∂2u1

∂x2
+ µ

∂2u1

∂z2
+ (λ + µ)

∂2u3

∂x ∂z
+ µ′(z)

(

∂u1

∂z
+

∂u3

∂x

)

, (1)

ρ
∂2u3

∂t2
= (λ + 2µ)

∂2u3

∂z2
+ µ

∂2u3

∂x2
+ (λ + µ)

∂2u1

∂x ∂z
+ λ′(z)

∂u1

∂x
+ (λ′ + 2µ′)

∂u3

∂z
. (2)

The relevant stresses are

σ33 = λ
∂u1

∂x
+ (λ + 2µ)

∂u3

∂z
, σ13 = µ

(

∂u1

∂z
+

∂u3

∂x

)

. (3)

At the water-layer interface, the boundary conditions are

∂P

∂z
+ ρf

∂2u3

∂t2
= 0, P + σ33 = 0 and σ13 = 0 at z = 0. (4)

At the layer-substrate interface, the boundary conditions are

u1, u3, σ13 and σ33 are continuous across z = h. (5)

2.1. Time-harmonic motions

Suppose now that

P(x, z, t) = p(z) ei(ξx−ωt), u1(x, z, t) = i u(z) ei(ξx−ωt), u3(x, z, t) = w(z) ei(ξx−ωt).

(The factor i in u1 is inserted for algebraic convenience.) In the water, we have

p′′(z) + {(ω/cf)
2 − ξ 2}p(z) = 0.

In the solid regions, Eqs. (1) and (2) become

µu′′ + µ′u′ + [ρω2 − (λ + 2µ)ξ 2]u + (λ + µ)ξw′ + µ′ξw = 0, (6)

(λ + 2µ)w′′ + (λ′ + 2µ′)w′ + (ρω2 − µξ 2)w − (λ + µ)ξu′ − λ′ξu = 0. (7)
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In particular, in the substrate (z > h), where u ≡ us and w ≡ ws, we have

µsu
′′
s + [ρsω

2 − (λs + 2µs)ξ
2]us + (λs + µs)ξw′

s = 0, (8)

(λs + 2µs)w
′′
s + (ρsω

2 − µsξ
2)ws − (λs + µs)ξu

′
s = 0. (9)

At the water-layer interface, the boundary conditions, Eq. (4), give

p′(0) − ρfω
2w(0) = 0, (10)

p(0) − λ(0)ξu(0) + [λ(0) + 2µ(0)]w′(0) = 0, (11)

µ(0)[u′(0) + ξw(0)] = 0. (12)

At the layer-substrate interface, the boundary conditions, Eq. (5), give

u(h) = us(h), µ(h)[u′(h) + ξw(h)] = µs[u′
s(h) + ξws(h)], (13)

w(h) = ws(h), λ(h)ξu(h) − [λ(h) + 2µ(h)]w′(h) = λsξus(h) − (λs + 2µs)w
′
s(h). (14)

2.2. Normal incidence: ξ = 0

When ξ = 0, the problem simplifies and decouples. In thewater, p′′+(ω/cf)
2p = 0. In the layer, Eqs. (6) and (7) reduce to

µu′′ + µ′u′ + ρω2u = 0, (15)

(λ + 2µ)w′′ + (λ′ + 2µ′)w′ + ρω2w = 0. (16)

In the substrate, Eqs. (8) and (9) reduce to

µsu
′′
s + ρsω

2us = 0, (17)

(λs + 2µs)w
′′
s + ρsω

2ws = 0. (18)

The water-layer interface conditions, Eqs. (10)–(12), become

p′(0) − ρfω
2w(0) = 0, p(0) + [λ(0) + 2µ(0)]w′(0) = 0, µ(0)u′(0) = 0,

and the layer-substrate interface conditions, Eqs. (13) and (14), become

u(h) = us(h), µ(h)u′(h) = µsu
′
s(h), (19)

w(h) = ws(h), [λ(h) + 2µ(h)]w′(h) = (λs + 2µs)w
′
s(h). (20)

Thus the problem of calculating p, w and ws (the ‘‘compressional problem’’) decouples from the problem of calculating u

and us (the ‘‘shear problem’’). This means that if the forcing comes from a pressure wave in the water, at normal incidence,
then the horizontal components of the displacement in the solid, u and us, may not be determined uniquely (they could be
zero). For a more general incident field, a Fourier analysis suggests that some components with ξ = 0 may be present.

3. The shear problem

Let us restate the problem. From Eqs. (15) and (17), we have

[µ(z)u′(z)]′ + ρ(z)ω2u(z) = 0, 0 < z < h, (21)

µsu
′′
s (z) + ρsω

2us(z) = 0, z > h, (22)

with

µ(0)u′(0) = 0, (23)

u(h) = us(h), µ(h)u′(h) = µsu
′
s(h). (24)

In the substrate (z > h), we assume that waves propagate away from the layer-substrate interface whence

us(z) = A exp(izω/cs) where cs =
√

µs/ρs

is the speed of shear waves in the substrate and A is an arbitrary constant. Then substituting in the two conditions, Eq. (24),
and eliminating A gives

u(h) +
iT

ω
c(h)u′(h) = 0 with T =

ρ(h)c(h)

ρscs
, (25)

where c(h) =
√

µ(h)/ρ(h) is the speed of shearwaves at the bottomof the layer. The boundary condition Eq. (25) (including
the dimensionless parameter T ) was given by Godin and Chapman [2, Eq. (35)]; in their application, T ≃ 0.1.



1164 P.A. Martin / Wave Motion 51 (2014) 1161–1169

3.1. A Sturm–Liouville problem

When T = 0, the shear problem simplifies to a boundary value problem for u(z), with a differential equation in 0 < z < h,
namely Eq. (21), together with boundary conditions, Eq. (23) at z = 0 and (from Eq. (25) with T = 0)

u(h) = 0.

If µ(z) > 0 and ρ(z) > 0 for 0 ≤ z ≤ h, this problem is a regular Sturm–Liouville problem for u. The general theory of such
problems asserts that there are infinitely many eigenvalues, all real, giving resonance frequencies for the shear problem. At
these frequencies, the layer can oscillate without coupling to the water. In the context of acoustic scattering by a bounded
elastic object, these frequencies are known as Jones frequencies [15,16].

Mature software packages exist for solving Sturm–Liouville problems numerically; for analytical and computational
aspects, see, for example, Zettl’s book [17].

For a homogeneous layer, with µ = µlay and ρ = ρlay, both constants, we obtain

u(z) = cos knz, kn =
ωn

clay
=

(2n − 1)π

2h
, clay =

√

µlay

ρlay

, n = 1, 2, . . . . (26)

Let us compare with the experimental results in [2]. From Eq. (26), the first two frequencies are

f1 =
ω1

2π
=

clay

4h
and f2 = 3f1.

If we take h = 25.5 m and f1 = 1.06 Hz from [2], we obtain clay = 108 m/s, which is plausible. But the experiments give
f2 = 2.16 Hz, which is not close to 3f1 = 3.18 Hz. Thus, we confirm that assuming a homogeneous layer does not yield good
agreement with the marine experiments.

3.2. Approximations when T ≪ 1

When T 6= 0, we no longer have a Sturm–Liouville problem. For example, reconsider the homogeneous layer but now
bonded to the substrate. Then we find that u(z) = cos kz where k = ω/clay solves

cos kh − iT sin kh = 0 with T = (ρlayclay)/(ρscs).

Thus kh = (n − 1/2)π − iξ where tanh ξ = T . This means that we do not have genuine resonance frequencies, we have
complex ‘‘scattering frequencies’’. We notice that ξ is small when T is small: all the scattering frequencies are close to the
real-ω axis. However, the real parts of the scattering frequencies are unchanged from those given in Eq. (26) for T = 0. We
will see similar results when the layer is not homogeneous (Section 4.4).

4. Inhomogeneous layer: Epstein model

To model an inhomogeneous solid, we assume that the shear modulus varies exponentially with distance from the in-
terface. Such an assumption has been investigated by many authors (see Section 1 for citations), but mainly within infinite
or semi-infinite media: we use it within a layer of finite thickness, h. Godin and Chapman [2,3] have used power-law forms
for µ(z). Unlike previous workers, we also allow ρ(z) to vary with depth.

4.1. The model: exponential µ and ρ

Following Vrettos [6] and others, we consider solids in which the shear modulus varies as

µ(z) = µ0 + µ1(1 − e−αz), α > 0, (27)

where µ0, µ1 and α are constants. We have µ(0) = µ0 and µ′(0) = αµ1. We assume that µ1 > 0 because we want µ(z)
to increase with z.

Vrettos [6, Eq. (16)] makes a change of independent variable, writing

ζ = ζ0 e
−αz with ζ0 = µ1/(µ0 + µ1) (28)

so that Eq. (27) becomes µ = (µ0 + µ1)(1− ζ ). The range 0 < z < h is mapped to 0 < ζh < ζ < ζ0 < 1. In particular, the
water-layer interface at z = 0 is mapped to ζ = ζ0 whereas ζ = ζh = ζ0 e

−αh corresponds to the layer-substrate interface
at z = h.

For the density, we take

ρ(z) = ρ0 + ρ1(1 − e−αz) = ρ0 + ρ1 − (ρ1/ζ0)ζ

so that ρ = ρ0 at z = 0. Setting ρ1 = 0 will give a constant density, ρ0, in the layer.
Let us write U(ζ ) = u(z). Then we have

du

dz
=

du

dζ

dζ

dz
= −αζ

dU

dζ
,

d2u

dz2
= α2ζ 2 d

2U

dζ 2
+ α2ζ

dU

dζ
.
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Also

dµ

dz
= −(µ0 + µ1)

dζ

dz
= (µ0 + µ1)αζ .

Using a prime to denote d/dζ , Eq. (21) becomes

ζ (1 − ζ )U ′′ + (1 − 2ζ )U ′ + ζ−1
(

θ2
0 − θ2

1 ζ
)

U = 0, (29)

where

θ2
0 =

(ρ0 + ρ1)ω
2

(µ0 + µ1)α2
and θ2

1 =
ρ1ω

2

µ1α2
. (30)

Eq. (29) is to be solved for U(ζ ), ζh < ζ < ζ0, subject to

U ′(ζ0) = 0 and U(ζh) −
iT

ω
c(h)αζhU

′(ζh) = 0, (31)

where

[c(h)]2 =
µ

ρ

∣

∣

∣

∣

z=h

=
µ0 + µ1(1 − e−αh)

ρ0 + ρ1(1 − e−αh)
=

(µ0 + µ1)(1 − ζh)

ρ0 + ρ1 − (ρ1/ζ0)ζh
.

4.2. Solution of Eq. (29)

Eq. (29) is similar to the hypergeometric differential equation [18, 15.10.1],

z(1 − z)f ′′(z) + (c − (a + b + 1)z)f ′(z) − abf (z) = 0. (32)

To change one into the other, put U(ζ ) = ζ δq(ζ ) in Eq. (29), where δ is to be chosen. We obtain

ζ (1 − ζ )q′′ + [2δ + 1 − 2(δ + 1)ζ ]q′ + ζ−1[δ2 + θ2
0 − (δ2 + δ + θ2

1 )ζ ]q = 0.

Comparingwith Eq. (32), we choose δ2+θ2
0 = 0 and then q solves the hypergeometric equationwith c = 2δ+1, a+b+1 =

2δ + 2 and ab = δ2 + δ + θ2
1 , giving

a = δ +
1 − φ1

2
, b = δ +

1 + φ1

2
, c = a + b, φ1 =

√

1 − 4θ2
1 .

Hence

U(ζ ) = Aζ−δF

(

−δ +
1

2
(1 − φ1), −δ +

1

2
(1 + φ1); 1 − 2δ; ζ

)

+ Bζ δF

(

δ +
1

2
(1 − φ1), δ +

1

2
(1 + φ1); 1 + 2δ; ζ

)

, (33)

where δ = iθ0, A and B are arbitrary constants, and F is the Gauss hypergeometric function. Application of the boundary
conditions, Eq. (31), gives a homogeneous pair of equations for A and B. Setting the determinant to zero gives an equation
from which the scattering frequencies can be determined.

In what follows, we simplify slightly by assuming that the density is constant, ρ(z) = ρ0. Thus ρ1 = 0, θ1 = 0, φ1 = 1
and Eq. (33) reduces to

U(ζ ) = Aζ−δF(−δ, 1 − δ; 1 − 2δ; ζ ) + Bζ δF(δ, 1 + δ; 1 + 2δ; ζ ). (34)

Also, using (d/dz){zaF(a, b; c; z)} = aza−1F(a + 1, b; c; z) [18, 15.5.3],

U ′(ζ ) = −Aδζ−δ−1F(1 − δ, 1 − δ; 1 − 2δ; ζ ) + Bδζ δ−1F(1 + δ, 1 + δ; 1 + 2δ; ζ ). (35)

(The expression for U ′ would be more complicated if we had differentiated Eq. (33) with φ1 6= 1.)

4.3. An inhomogeneous layer but no substrate

For an inhomogeneous layer without a substrate, we obtain a Sturm–Liouville problem. Combining Eqs. (34) and (35)
with the boundary conditions, U ′(ζ0) = 0 and U(ζh) = 0, gives

AF(1 − δ, 1 − δ; 1 − 2δ; ζ0) − Bζ 2δ
0 F(1 + δ, 1 + δ; 1 + 2δ; ζ0) = 0, (36)

AF(−δ, 1 − δ; 1 − 2δ; ζh) + Bζ 2δ
h F(δ, 1 + δ; 1 + 2δ; ζh) = 0. (37)

Denote the determinant of this 2 × 2 system by ∆0(δ). Recall that δ = iθ0 and θ0 is proportional to the frequency, ω (see
Eq. (30)). Thus Sturm–Liouville theory implies that there are infinitely many real values of θ0 for which ∆0(iθ0) = 0.
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Fig. 1. A graph of |∆0(iθ0)|/∆0(0) as a function of θ0 , for ζ0 = 0.99 and ζh = 0.5. The first seven zeros are θ0 ≃ 1.35, 3.28, 5.24, 7.23, 9.22, 11.23 and

13.24.

As an example, suppose that µ0 = 0.02µ(h) and µ1 = 2µ(h), whence ζh/ζ0 = e−αh = 0.51 and ζ0 = 0.99. (These
numerical values are comparable to the data in [2].) A plot of |∆0(iθ0)| as a function of θ0 (obtained using Mathematica) is
given in Fig. 1, where the first seven zeros are seen.

For large θ0, an asymptotic analysis (see Appendix) shows that the zeros occur (approximately) when

cos(θ0[ξh − ξ0]) = 0, (38)

where ξh = ξ(ζh), ξ0 = ξ(ζ0) and ξ(ζ ) is defined by

e−ξ(ζ ) = ζ−1
(

2 − ζ − 2
√

1 − ζ
)

.

For ζ0 = 0.99 and ζh = 0.5, we obtain ξ0 = 0.201 and ξh = 1.763. Then Eq. (38) predicts zeros at θ0 ≃ 1.01 + 2.01m,m =
0, 1, 2, . . . , which is in good agreement with the numerical results.

Before proceeding to the shear problem, it is convenient to introduce some shorthand notation. Thus let

F (δ; ζ ) = F(1 + δ, 1 + δ; 1 + 2δ; ζ ), (39)

G(δ; ζ ) = F(δ, 1 + δ; 1 + 2δ; ζ ), (40)

so that Eqs. (36) and (37) become

AF (−δ; ζ0) − Bζ 2δ
0 F (δ; ζ0) = 0, (41)

AG(−δ; ζh) + Bζ 2δ
h G(δ; ζh) = 0, (42)

with

∆0(δ) = ζ 2δ
h F (−δ; ζ0)G(δ; ζh) + ζ 2δ

0 F (δ; ζ0)G(−δ; ζh). (43)

We observe that ∆0(δ) = (ζ0ζh)
2δ∆0(−δ): as expected, when δ is a zero of ∆0, so is −δ.

4.4. The shear problem: layer and substrate

For the full shear problem, the boundary conditions are Eq. (31). The first of these yields Eq. (41). The boundary condition
at ζ = ζh is more complicated; it gives

AG(−δ; ζh) + Bζ 2δ
h G(δ; ζh) − T

√

1 − ζh
{

AF (−δ; ζh) − Bζ 2δ
h F (δ; ζh)

}

= 0,

where we have used c(h)αδ/ω = i
√
1 − ζh. Setting the determinant to zero gives

∆(δ) ≡ ∆0(δ) + T
√

1 − ζh ∆1(δ) = 0, (44)

where ∆0 is given by Eq. (43) and

∆1(δ) = ζ 2δ
h F (−δ; ζ0)F (δ; ζh) − ζ 2δ

0 F (δ; ζ0)F (−δ; ζh). (45)

For small T , we can write δ = δ0 + Tδ1, where ∆0(δ0) = 0. Then, a simple perturbation argument shows that the correc-
tion δ1 ≃ −

√
1 − ζh∆1(δ0)/∆

′
0(δ0). At first sight, this is not very convenient because it requires differentiation of hypergeo-

metric functions with respect to their parameters. However, for large θ0, we can use the asymptotic approximation Eq. (A.5),
whence

δ1 ≃ 1/(ξh − ξ0),
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Fig. 2. A graph of |∆(iθ)|/∆(0) as a function of θ0 , where θ = θ0 − 0.064i and θ0 is real. Also ζ0 = 0.99, ζh = 0.5 and T = 0.1.

Fig. 3. A graph of |∆(iθ0)|/∆(0) as a function of θ0 , where θ = θ0 − 0.064i and θ0 is real. Also ζ0 = 0.99, ζh = 0.5 and T = 0.1. This is a magnification of

Fig. 2.

where ξh and ξ0 are defined below Eq. (38). Then, with δ = iθ and δ0 = iθ0, we find that ∆(iθ) is approximately zero when

θ ≃ θ0 − iT/(ξh − ξ0). (46)

Thus, using this approximation, the complex scattering frequencies are of the form

ω = ω0 − iγ ,

where ω0 is any solution of the Sturm–Liouville layer problem (Section 4.3) and γ is real, positive and independent of ω0:
all the complex scattering frequencies are given by displacing the (real) resonance frequencies by the same fixed amount,
γ , away from the real axis. (The fact that γ0 is positive is a consequence of causality.)

With the values of ξ0 and ξh used previously, namely, ξ0 = 0.201 and ξh = 1.763, together with T = 0.1, Eq. (46) gives
θ ≃ θ0 − 0.064i, with θ0 determined approximately by Eq. (38). Plotting ∆(i(θ0 − 0.064i)) as a function of θ0 (real) gives
a graph (Fig. 2) that is almost indistinguishable from the graph of ∆0(iθ0) given in Fig. 1. If we magnify by a factor of more
than 100, and look near the third zero, we obtain the result shown in Fig. 3: the asymptotic approximation is excellent.

4.5. A semi-infinite inhomogeneous solid

It is of interest to consider another special case, that of a semi-infinite inhomogeneous solid, obtained by letting h → ∞
(there is no longer a substrate). Thus, ζh → 0 and the limit z → ∞ corresponds to ζ → 0. In this limit,µ → µ0+µ1 ≡ µ∞,
say, the shear modulus far from the fluid–solid interface. Now, from Eq. (28),

ζ±δ = ζ±iθ0 = ζ
±iθ0
0 e∓ik∞z,

where k∞ = αθ0 = ω
√

ρ0/µ∞ is the shear wavenumber as z → ∞. Thus, as we want waves that propagate in the +z

direction, we take B = 0 in Eq. (34), giving

U(ζ ) = Aζ−δF(−δ, 1 − δ; 1 − 2δ; ζ ), δ = ik∞/α.

Then the boundary condition, U ′(ζ0) = 0, gives (see Eqs. (35) and (39))

F (−δ; ζ0) = 0. (47)

We are interested in finding (complex) values of ω for which Eq. (47) is satisfied. Note that δ is proportional to ω, and
that ζ0 = 1 − µ0/µ∞ is fixed. To proceed, let ω = (σ − iτ)c∞α, where σ and τ are real, and c∞ = ω/k∞ =

√
µ∞/ρ0 is

the shear wave speed as z → ∞. Then δ = ik∞/α = τ + iσ .
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A numerical investigation shows that all solutions for δ are real and positive, meaning that Reω = 0. For example, if
ζ0 = 0.99, we find that the smallest value of δ is about 0.9797. The fact that we do not find solutions with Reω 6= 0 implies
that we do not expect to find shear-wave resonances with an inhomogeneous half-space: the interface at z = h plays an
important role.

5. Discussion

Wehave shownhow to construct exact solutions of the shear problem in certain special situations. It is clear thatwe could
solve the analogous ‘‘compressional problem’’ (see Section 2.2), for p in the water, w in the layer, and ws in the substrate. To
do this, we would assume that

µ(z)

λ(z)
=

1 − 2ν

2ν

is constant; here, ν is Poisson’s ratio. (In the applications discussed in [2,3], 0 < µ/λ ≪ 1, so that ν ≃ 1
2
: the inhomogeneous

layer is almost incompressible.)
For waves at oblique incidence, the full coupled problem (Section 2.1) would have to be tackled. Solutions can be con-

structed by the method of Frobenius. This has been done by Vrettos [6] for Rayleigh-like waves at the surface of a semi-
infinite inhomogeneous solid. His approach could be adapted to the present problem.

Acknowledgment

I thank Jon Collis for sparking my interest in the problem discussed.

Appendix. Some asymptotics

The Sturm–Liouville problem solved in Section 4.3 led to a determinant, ∆0(δ), given in terms of hypergeometric func-
tions. Zeros of ∆0 were found numerically. Here, we are going to find a simple approximation for these zeros by estimating
∆0(δ) as |δ| → ∞. To do this, we use an asymptotic approximation due to G.N. Watson (see [19, p. 77, Eq. (16)]):

(2/[z − 1])δ+a F(a + δ, a − c + 1 + δ; a − b + 1 + 2δ; 2/[1 − z])

∼
2a+b

√
π Γ (a − b + 1 + 2δ)

δ1/2Γ (a − c + 1 + δ) Γ (c − b + δ)

e−(δ+a)ξ (1 − e−ξ )−c+1/2

(1 + e−ξ )a+b−c+1/2
(A.1)

as |δ| → ∞, | arg δ| < π . (For a related expansion, see [14, Eq. (36)].) The quantity ξ is defined by z ± (z2 − 1)1/2 = e±ξ . To
simplify the calculations, we first make a preliminary transformation, using one of Kummer’s relations [19, p. 105, Eq. (3)],

F(a, b; c; z) = (1 − z)−aF(a, c − b; c; z/[z − 1]). (A.2)

Let us start with F (δ; ζ ), defined by Eq. (39). We have

F (δ; ζ ) = F(1 + δ, 1 + δ; 1 + 2δ; ζ )

= (1 − ζ )−1−δF(δ, 1 + δ; 1 + 2δ; ζ/[ζ − 1])
∼ Λ(δ)P(δ; ζ ) as |δ| → ∞,

where

Λ(δ) =
√

π Γ (1 + 2δ)

δ1/2Γ (1 + δ) Γ (δ)
, P(δ; ζ ) =

e−δξ

(1 − ζ )ζ δ

(1 − e−ξ )1/2

(1 + e−ξ )1/2
,

we used Eq. (A.1) with a = b = c = 0 and 2/(1 − z) = ζ/(ζ − 1), whence z = (2/ζ ) − 1 and ξ(ζ ) is defined by

e−ξ(ζ ) = ζ−1
(

2 − ζ − 2
√

1 − ζ
)

.

Similarly, from Eq. (40),

G(δ; ζ ) = F(1 + δ, δ; 1 + 2δ; ζ )

= (1 − ζ )−1−δF(1 + δ, 1 + δ; 1 + 2δ; ζ/[ζ − 1])
∼ Λ(δ)Q (δ; ζ ) as |δ| → ∞,

where we used Eq. (A.1) with a = b = c = 1 and

Q (δ; ζ ) =
4

ζ δ+1

e−(δ+1)ξ

(1 − e−ξ )1/2(1 + e−ξ )3/2
.
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Next, from Eq. (43),

∆0(δ) = ζ 2δ
h F (−δ; ζ0)G(δ; ζh) + ζ 2δ

0 F (δ; ζ0)G(−δ; ζh)

∼ Λ(δ)Λ(−δ)
{

ζ 2δ
h Q (δ; ζh)P(−δ; ζ0) + ζ 2δ

0 P(δ; ζ0)Q (−δ; ζh)
}

(A.3)

as |δ| → ∞. But, as ±δ = θ0 e
±iπ/2,

Λ(δ)Λ(−δ) =
π Γ (1 + 2δ) Γ (1 − 2δ)

θ0 Γ (1 + δ) Γ (1 − δ) Γ (δ) Γ (−δ)

=
π

θ0

2δ Γ (2δ) Γ (1 − 2δ)

Γ (1 − δ) Γ (δ) Γ (1 − [−δ]) Γ (−δ)

=
2πδ

θ0

π

sin 2πδ

sinπδ

π

sin(−πδ)

π

= −i tanπδ = tanhπθ0,

using Γ (z)Γ (1 − z) = π/(sinπz) thrice. Then, substitution in Eq. (A.3) gives

∆0(δ) ∼
8(1 − e−ξ0)1/2 e−ξh tanh(πθ0)(ζ0ζh)

δ cosh(δ[ξh − ξ0])
ζh(1 − ζ0)(1 + e−ξ0)1/2(1 − e−ξh)1/2(1 + e−ξh)3/2

, (A.4)

where ξ0 = ξ(ζ0) and ξh = ξ(ζh). Thus, for large θ0, there are zeros of ∆0(δ) at δ = iθ0 where cos(θ0[ξh − ξ0]) = 0. This
estimate is compared with direct numerical computations in Section 4.3; see Eq. (38).

For the full shear problem, with layer bonded to substrate, we can derive a similar estimate for ∆1, defined by (45). Thus

∆1(δ) = ζ 2δ
h F (−δ; ζ0)F (δ; ζh) − ζ 2δ

0 F (δ; ζ0)F (−δ; ζh)

∼ Λ(δ)Λ(−δ)
{

ζ 2δ
h P(δ; ζh)P(−δ; ζ0) − ζ 2δ

0 P(δ; ζ0)P(−δ; ζh)
}

=
2 tanh(πθ0)

(1 − ζ0)(1 − ζh)

√

(1 − e−ξ0)(1 − e−ξh)

(1 + e−ξ0)(1 + e−ξh)
(ζ0ζh)

δ sinh(δ[ξ0 − ξh]).

Then, if δ0 solves ∆0(δ0) = 0, and we write the estimate in Eq. (A.4) as ∆0(δ) ∼ A(δ) cosh(δ[ξh − ξ0]), we infer that

∆′
0(δ0) ∼ (ξh − ξ0)A(δ0) sinh(δ0[ξh − ξ0]).

Direct calculation then gives

∆1(δ0)

∆′
0(δ0)

∼
ζh sinh ξh

2(ξ0 − ξh)(1 − ζh)
=

1

(ξ0 − ξh)
√
1 − ζh

. (A.5)

This estimate is used in Section 4.4.
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