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Transient acoustic waves are generated by the

oscillations of an object or are scattered by the

object. This leads to initial-boundary value problems

(IBVPs) for the wave equation. Basic properties

of this equation are reviewed, with emphasis

on characteristics, wavefronts and compatibility

conditions. IBVPs are formulated and their properties

reviewed, with emphasis on weak solutions and the

constraints imposed by the underlying continuum

mechanics. The use of the Laplace transform to

treat the IBVPs is also reviewed, with emphasis on

situations where the solution is discontinuous across

wavefronts. All these notions are made explicit by

solving simple IBVPs for a sphere in some detail.

1. Introduction
The three-dimensional wave equation has been studied

since the nineteenth century: recall the familiar

contributions of Poisson, Kirchhoff, Rayleigh and

Hadamard, for example. There are at least two reasons

for such studies. First, the wave equation arises in the

context of physical applications, especially in acoustics

where sound waves propagate and are scattered by

obstacles. Second, the wave equation is the prototypical

hyperbolic partial differential equation (PDE). In the

theory of such PDEs, a prominent role is played

by characteristics (§3). These are related to scattering

problems because the wave field can be discontinuous

across moving surfaces, and these surfaces (wavefronts)

are closely related to characteristics.

The usual way to handle discontinuities is to seek

weak solutions; this idea goes back to Courant &

Hilbert [1] in 1937. Thus, classical (twice differentiable)

solutions are weak solutions, but not all weak solutions

are classical solutions. The theory predicts that the jump

in the solution across wavefronts evolves according to

the transport equation (§4c). On the other hand, the

2016 The Author(s) Published by the Royal Society. All rights reserved.
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balance laws of continuum mechanics imply constraints on the same jump (§5), and these can

conflict with the implications of seeking weak solutions.

After reviewing properties of thewave equation and its solutions, we turn to the formulation of

initial-boundary value problems (IBVPs) in §6. Typical scattering problems involve one boundary

condition on the surface of the scatterer and two initial conditions. Various possibilities and

combinations are encountered in the literature, conveniently separated into two groups, those

with zero boundary conditions and those with zero initial conditions. The first group is simpler

mathematically (because of energy conservation), but the second group is more common in

applications.

Initial conditions are specified everywhere outside the scatterer at time t = 0, whereas the

boundary condition is specified on the scatterer for all t > 0. The smoothness of the solution is

largely determined by what happens at the ‘space–time corner’, where the initial conditions meet

the boundary condition. Consistency conditions arise, and their effects are examined, especially

as they affect the jump conditions across wavefronts.

There are several good ways to solve IBVPs numerically. One way, currently receiving a lot of

attention, is to derive and solve a time-domain boundary integral equation. Another way is to use

Laplace transforms, thus converting the wave equation into the modified Helmholtz equation (an

elliptic PDE). We discuss this second way, paying attention to the effects of wavefronts and their

associated jump discontinuities. As might have been anticipated, these jumps can be ignored

when applying the Laplace transform if one is satisfied with a weak solution—but solutions

obtained in this way will have to be examined a posteriori to ensure that physical constraints

across wavefronts are satisfied.

To illustrate many of these phenomena, spherically symmetric IBVPs for a sphere are solved

explicitly. These solutions have independent interest because they can be used as benchmarks.

In summary, the purpose of the paper is to review the formulation of acoustic scattering

problems in the time domain. Extensions to electromagnetic and elastodynamic problems are

envisaged. We emphasize characteristics, wavefronts and compatibility conditions. We compare

and contrast jump properties of weak solutions across wavefronts with those mandated by

the underlying continuum mechanics. We observe that some recent analyses (and numerical

analyses of associated computational methods) assume more smoothness of the wave field than

is expected in realistic applications. A good example is the scattering of a step pressure pulse by

an obstacle: such an incident field is discontinuous, and so it is desirable that numerical methods

can accommodate restricted classes of non-smooth data. We hope that this review will encourage

further work on time-domain scattering problems.

2. Acoustic scattering
Linear acoustics in a homogeneous compressible fluid is governed by the wave equation. In three

dimensions, this equation is

∇2u ≡
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
=

1

c2
∂2u

∂t2
, (2.1)

where x, y and z are Cartesian coordinates, t is time and c is the (positive) constant speed of sound.

We always consider u to be a velocity potential, so that the velocity and (excess) pressure in the

fluid are given by

v = gradu and p = −ρ
∂u

∂t
, (2.2)

respectively, where ρ is the constant ambient density of the fluid. Evidently, p and each Cartesian

component of v all satisfy (2.1). Solutions of (2.1) are called wave functions. For details on the

derivation of the governing equations, see ch. 1 of [2] or ch. 1 of [3].

One branch of scattering theory concerns time-harmonic wave functions. These are of the

form u(x, y, z, t)=Re{U(x, y, z) e−iωt}, where U is complex valued and ω is the circular frequency:

solutions are constructed in the frequency domain. From (2.1), U satisfies the Helmholtz equation,

 on May 5, 2016http://rspa.royalsocietypublishing.org/Downloaded from 



3
rspa.royalsocietypublishing.org

Proc.R.Soc.A
472:20160037

...................................................
∇2U + (ω/c)2U = 0. We want to retain the unspecified dependence on time: we work in the time

domain. Of course, the two domains are linked via Fourier or Laplace transforms.

In the time domain, we usually specify both a boundary condition and initial conditions. To

fix ideas, consider a bounded obstacle B with smooth boundary S. Denote the unbounded region

exterior to S by Be. The problem is to find a wave function u(P, t), where P(x, y, z) is a typical point

in Be, subject to a boundary condition when P ∈ S and initial conditions at t = 0. All these will be

discussed and defined later (§6).

By way of comparison, in the frequency domain, we usually require that U(P) satisfies a

boundary condition when P ∈ S and a ‘condition at infinity’ as P recedes away from B. The latter is

usually taken as the Sommerfeld radiation condition; it ensures that waves generated or scattered

by B travel away from B.

3. Characteristics and discontinuities
Solutions of the wave equation can be discontinuous. This means that the exterior domain Be
may be partitioned into subdomains by moving surfaces, with discontinuities across them. These

surfaces are known as wavefronts, and they are closely related to characteristics. To motivate their

study, we can hardly do better than quote Courant & Hilbert:

The relevant fact, of great importance for wave propagation, is: Physically

meaningful discontinuities of solutions occur only across characteristic surfaces

(hence in this context such discontinuities are called wave fronts) and are

propagated in these characteristics along bicharacteristic rays. This propagation

is governed by a simple ordinary differential equation.

Courant & Hilbert [4, p. 570]

This quotation is a little misleading because characteristics are not ‘surfaces’, they are three-

dimensional objects (hypersurfaces) in four-dimensional space–time, as we shall see.

(a) Characteristics

Denote a typical point in space by r = (x, y, z)= (x1, x2, x3). Denote a typical point in space–time

by x = (x0, x1, x2, x3)= (ct, r). We use two summation conventions. Repeated lower case subscripts

or superscripts are summed from 1 to 3, whereas repeated upper case subscripts or superscripts

are summed from 0 to 3. Thus, |r|2 = xixi and |x|2 = xIxI.

Write the wave equation as a first-order symmetric hyperbolic system,

AK
∂u

∂xK
=

1

c

∂u

∂t
+ Ak

∂u

∂xk
= 0, (3.1)

where u = (u0,u1,u2,u3)= (c−1∂u/∂t, ∂u/∂x1, ∂u/∂x2, ∂u/∂x3) and AK is a symmetric 4 × 4

matrix, K = 0, 1, 2, 3: A0 = I4, the 4 × 4 identity matrix,

A1 =











0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0











, A2 =











0 0 −1 0

0 0 0 0

−1 0 0 0

0 0 0 0











and A3 =











0 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 0











.

If we denote the entries in AK by aKIJ , we can write (3.1) as

aKIJ
∂uJ

∂xK
= 0, I = 0, 1, 2, 3. (3.2)

Writing hyperbolic PDEs as the first-order systems such as (3.1) is standard practice; see, for

example, §7.3 of [5] or Appendix 2.I of [6].
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In the next few paragraphs, we follow [7], where further details can be found; see also

§5.9 of [8] and [9]. We take the defining property of characteristics to be that u need not be

smooth across a characteristic, even though it satisfies the wave equation (3.1) elsewhere. To

be more precise, write the equation of a characteristic C as F(x)= 0. Denote a normal to C by

N = (N0,N1,N2,N3); this 4-vector is parallel to the gradient of F, so thatNI = α ∂F/∂xI for some α.

We seek those N(x) for which u(x) is not constrained to be smooth across C.

Let q = (q0, q1, q2, q3) be an arbitrary 4-vector. Multiply (3.2) by qI and sum over I, giving

qIa
K
IJ

∂uJ

∂xK
= 0. (3.3)

This states that the directional derivative of uJ in the direction of the 4-vector

dJ = (qIa
0
IJ , qIa

1
IJ , qIa

2
IJ , qIa

3
IJ) (3.4)

is zero. We have four directions, one for each J. Can we arrange that all four are perpendicular to

a single direction N? For this to happen, we require

qIa
K
IJNK = 0, J = 0, 1, 2, 3. (3.5)

A consequence would be that the four 4-vectors dJ become linearly dependent.

At this stage, q is arbitrary. Our question reduces to seeking a non-zero q such that (3.5) holds,

and this will be possible if the determinant of the 4 × 4 matrix with entries (aKIJNK) is zero. Some

calculation gives

N2
0{N

2
0 − (N2

1 + N2
2 + N2

3)} = 0. (3.6)

One solution of (3.6) is N0 = 0. Then (3.5) gives q0 = 0 and Niqi = 0. As there is no time

dependence, such characteristics are hypercylinders in space–time corresponding to arbitrary

static surfaces in space. Alternatively, from (3.6) we have

N2
0 − (N2

1 + N2
2 + N2

3)= 0, (3.7)

which is equation (2.3.1) in [10], for example. In detail, system (3.5) is N0q0 = Niqi, N0q1 = N1q0,

N0q2 = N2q0 andN0q3 = N3q0. Then, ignoring constant factors, we can express the directions dJ in

terms of the components of N, d0 = (N0,−N1,−N2,−N3), d1 = (N1,−N0, 0, 0), d2 = (N2, 0,−N0, 0)

and d3 = (N3, 0, 0,−N0). We note that, using (3.7),N0d0 − Nidi = 0: we do have linear dependence,

as expected.

(b) Eikonal equations

As NI = α ∂F/∂xI, (3.7) gives the eikonal equation (see p. 153 of [6])

∂F

∂xi

∂F

∂xi
=

(

∂F

∂x

)2

+

(

∂F

∂y

)2

+

(

∂F

∂z

)2

=
1

c2

(

∂F

∂t

)2

. (3.8)

However, it is perhaps clearer and more usual to write F(x)= x0/c − τ (x1, x2, x3)= t − τ (r), so that

a characteristic C is defined by

t = τ (r), r ∈H⊂ R
3, (3.9)

for some function τ and some spatial domain H. Then, for fixed t, τ (r)= t defines a surface in

space. As t varies, this surface moves through space: it is called a wavefront.

Substituting (3.9) in (3.8) gives

∂τ

∂xi

∂τ

∂xi
=

1

c2
(3.10)

or, equivalently, |grad τ | = c−1. These are also known as eikonal equations; see eqn (2.3.3) in [10]

or p. 93 in [5].
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Solving the eikonal equation (3.10) as a PDE generates characteristics. A simple solution is

τ (r)= t′ + k̂ ·
r − r′

c
, (3.11)

where (ct′, r′) is an arbitrary fixed point in space–time and k̂ is a constant unit 3-vector. This

solution represents a plane moving through space at speed c in the direction of k̂. Further

solutions of (3.10) are suggested by its evident spherical spatial symmetry. For example,

τ (r)= t′ +
|r − r′|

c
(3.12)

represents an expanding sphere, centred at r′; the sphere has radius c(t − t′) at time t > t′. In space–

time, t = τ (r) gives a cone-like structure, a conoid.

(c) Discontinuous solutions

The calculations in §3a show that certain second-order derivatives of u, namely

NI
∂uJ

∂xI
, J = 0, 1, 2, 3,

are unrestricted across characteristics: they can be discontinuous. John [11, §3.5] gives an

alternative analysis of the same situation. However, it is more interesting to ask if u or first

derivatives of u can be discontinuous across characteristics.

Before doing that, let us clarify what we mean by ‘discontinuous across a characteristic’. For a

characteristic C defined by F(x)= 0, we can consider the level sets of F defined by F(x)= F0, where

F0 is a constant. Then we can say that solutions for x when F0 > 0 define one ‘side’ of C, whereas

solutions for x when F0 < 0 define the other side. (Recall that C is a hypersurface in space–time.)

The situation is clearer when we define C by (3.9). The wavefront t = τ (r) defines a surface Γ (t)

moving through space as t varies. Denote the two sides of Γ (t) by Γ + and Γ −. The discontinuity

(or jump) in some quantity g across Γ (t) is denoted and defined by

[[g]](r, t)= g+ − g−, r ∈ Γ (t), (3.13)

where g± is the limiting value of g when r ∈ Γ (t) is approached from the ± side.

As t varies, [[g]] varies, giving

[[g]](r, τ (r))≡ [[g]](r), r ∈H⊂ R
3, (3.14)

with a slight abuse of notation. Thus, (3.13) gives the jump across a single surface Γ (t),

whereas (3.14) gives the jump across a characteristic.

A normal to Γ is grad τ , so that a unit normal n(r, t)= (n1,n2, n3) is given by

ni =
±1

|grad τ |

∂τ

∂xi
= ±c

∂τ

∂xi
,

using (3.10). Also, differentiating t = τ with respect to t gives

1=
∂τ

∂xi

dxi

dt
= ±

1

c
ni
dxi

dt
.

Thus, the normal velocity of Γ is±c; the sign depends on the chosen direction of n. This result was

obtained by Love [12, §9]. He noted that his ‘rather intricate analysis . . . constitutes an abstract

proof of the proposition that the velocity with which the wave-boundary advances is the velocity

c . . .. From a physical point of view, this conclusion might be perhaps assumed’ [12].
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Let us fix definitions. For amovingwavefront Γ (t), we choose n so that it points in the direction

of motion and into the region denoted by Γ − above (3.13). Thus, (3.13) becomes

[[g]]= (value of g just behind Γ ) − (value of g just ahead of Γ ). (3.15)

This definition is convenient because in many applications the second term on the right-hand

side of (3.15) is zero. Indeed, Love [12, §8] considered such a problem with Γ advancing into

a quiescent region so that u = 0 ahead of Γ . He assumed further that u is continuous across Γ ,

[[u]]= 0, but first derivatives of u may be discontinuous. As u = 0 at Γ (t), we have

0=
∂u

∂t
+

∂u

∂xi

dxi

dt
=

∂u

∂t
+ cni

∂u

∂xi
=

∂u

∂t
+ c

∂u

∂n
on Γ (t). (3.16)

One year later, Love allowed motion ahead of Γ but with [[u]]= const. He obtained [13, eqn (5)]
[[

∂u

∂n

]]

+
1

c

[[

∂u

∂t

]]

= 0 on Γ (t). (3.17)

For a careful derivation of many such compatibility conditions, see Chadwick & Powdrill [14],

where it is also pointed out that (3.17) was derived by Hadamard [15, p. 101, eqn (48)] in his 1903

book on wave propagation.

In terms of pressure and velocity, (2.2) and (3.17) give

[[p]]= ρcn · [[v]] on Γ (t). (3.18)

This jump condition will appear later, in §5.

4. Weak solutions and discontinuities

(a) Green’s formula

In order to study jumps across characteristics, we will use a four-dimensional version of Green’s

formula. To derive this, let Σ be a bounded region of space–time bounded by a hypersurface S.

The divergence theorem for such a region is∫
Σ

∂VI

∂xI
dΣ =

∫
S

VINI dS, (4.1)

where N = (N0,N1,N2,N3) is a unit normal 4-vector to S pointing out of Σ and V =

(V0,V1,V2,V3) is a continuously differentiable 4-vector field. Also the element of integration dS

is given by N0 dS = dV(r)= dx1 dx2 dx3 (e.g. eqn (2.2.3) in [10]).

Apply (4.1) with V = (u ∂v/∂t, 0, 0, 0), V = (0,u∂v/∂x1,u∂v/∂x2,u∂v/∂x3) and again with u and

v interchanged. Subtracting the results gives Green’s formula [10, eqn (3.2.3)]
∫
Σ

(u�
2v − v �

2u) dΣ =

∫
S

(

u
∂v

∂T
− v

∂u

∂T

)

dS, (4.2)

where �
2u ≡ ∇2u − c−2∂2u/∂t2 defines the wave operator and ∂u/∂T denotes a transverse

derivative of u, defined by
∂u

∂T
= Ni

∂u

∂xi
−

N0

c

∂u

∂t
= TI

∂u

∂xI
, (4.3)

say, where T = (T0,T1,T2,T3)= (−N0,N1,N2,N3). We have NITI = NiNi − N2
0 , so that T is

tangential to S if, and only if, S is a characteristic [10, §3.2]; here we have used (3.7) to define

a characteristic.

(b) Weak solutions of the wave equation

Classical solutions of the wave equation are twice differentiable, but we expect that discontinuous

solutions can occur and, in fact, such solutions are physically interesting. To handle them, we

generalize the notion of ‘solution’.
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Following Friedlander [10, pp. 42–45] and Lax [16], we say that u is a weak solution of the wave

equation �
2u = 0 in the space–time region Σ if∫

Σ

u�
2v dΣ = 0 for all v ∈ V0

Σ , (4.4)

where V0
Σ is the set of all smooth test functions v with compact support contained in Σ (implying

that v ≡ 0 in the vicinity of S).

If u is twice differentiable in Σ , we can use (4.2) to infer that
∫

Σ v �
2udΣ = 0 for all v ∈ V0

Σ ,

whence �
2u = 0 in Σ . In other words, smooth weak solutions are classical solutions.

(c) Discontinuous weak solutions

Suppose that u is discontinuous across some hypersurface, and that this hypersurface intersects

a bounded space–time region Σ , splitting it into two sub-regions, Σ1 and Σ2. Let S denote the

piece of the hypersurface inside Σ ; it is the ‘interface’ between Σ1 and Σ2.

Clearly, if u is a weak solution of �
2u = 0 in Σ , then it is also a classical solution in Σ1 and Σ2.

To handle the interface, we write the definition (4.4) as∫
Σ1

u�
2v dΣ +

∫
Σ2

u�
2v dΣ = 0 for all v ∈ V0

Σ .

We use (4.2) twice, once in Σ1 and once in Σ2. As �
2u = 0 in Σ1 ∪ Σ2 and v ≡ 0 near the boundary

of Σ (but not near S), we are left with an integral over S,
∫
S

(

[[u]]
∂v

∂T
− v

[[

∂u

∂T

]])

dS = 0 for all v ∈ V0
Σ , (4.5)

where [[w]] is the jump in w across S, that is, the difference in the values of w as a point in S

is approached from Σ1 and from Σ2; this difference arises from the opposite directions of the

outward pointing normals for Σ1 and Σ2.

Suppose first that S is not a characteristic. Then the transverse derivative, ∂/∂T, is not a

tangential derivative. It follows that v and ∂v/∂T on S are independent. We conclude from (4.5)

that [[u]]= 0: thus, jump discontinuities can only occur across characteristics.

So, suppose next that S is a piece of a characteristic, C. Then the transverse derivative is

a tangential derivative. This means that ∂v/∂T on C can be calculated as a certain tangential

derivative of v on C. In more detail, define C by t = τ (r) for r ∈H, where τ satisfies the eikonal

equation (3.10). Then, given a function w(x)= w(r, t), its values on C are w(r, τ (r))= {w}, say, with

r ∈H; we use { } to indicate evaluation on C.

The chain rule gives
∂{w}

∂xi
=

{

∂w

∂xi

}

+

{

∂w

∂t

}

∂τ

∂xi
. (4.6)

Hence definition (4.3) gives
{

∂v

∂T

}

dS =

{

Ni
∂v

∂xi
−

N0

c

∂v

∂t

}

dS = −cN0

{

∂τ

∂xi

∂v

∂xi
+

1

c2
∂v

∂t

}

dS

= −c

(

∂τ

∂xi

{

∂v

∂xi

}

+
1

c2

{

∂v

∂t

})

N0 dS

= −c

(

∂τ

∂xi

(

∂{v}

∂xi
−

{

∂v

∂t

}

∂τ

∂xi

)

+
1

c2

{

∂v

∂t

})

dV = −c
∂τ

∂xi

∂{v}

∂xi
dV(r),

using N0 dS = dV and the eikonal equation (3.10). A similar calculation gives
[[

∂u

∂T

]]

dS = −c
∂τ

∂xi

∂[[u]]

∂xi
dV(r).

Hence (4.5) becomes ∫
H

(

[[u]]
∂τ

∂xi

∂{v}

∂xi
− {v}

∂τ

∂xi

∂[[u]]

∂xi

)

dV(r)= 0 (4.7)
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for all smooth functions {v} with support inH. For such functions, the divergence theorem gives

∫
H

[[u]]
∂τ

∂xi

∂{v}

∂xi
dV = −

∫
H

{v}
∂

∂xi

(

[[u]]
∂τ

∂xi

)

dV.

Hence (4.7) gives

0=
∂

∂xi

(

[[u]]
∂τ

∂xi

)

+
∂τ

∂xi

∂[[u]]

∂xi
= 2

∂τ

∂xi

∂[[u]]

∂xi
+ [[u]]∇2τ . (4.8)

‘This equation is called, following Luneburg, the transport equation associated with the

wavefronts’ (3.9) [10, p. 45]; see [17] and eqn (3.3.7) in [10].

Equation (4.8) is a first-order PDE for [[u]] on C. It is the differential equation mentioned in the

quotation from Courant & Hilbert [4] at the beginning of §3.

To investigate the consequences of (4.8), we choose a function τ (r) that satisfies the eikonal

equation. One simple choice is the plane-wave function (3.11); in particular, if we choose the unit

vector k̂ in the x3-direction, we have

τ (r)= t′ +
x3 − x′

3

c
,

∂τ

∂xi
=

1

c
δi3, ∇2τ = 0.

For this choice, (4.8) reduces to ∂[[u]]/∂x3 = 0: [[u]] can be an arbitrary function of the in-plane

variables x = x1 and y = x2 but it cannot depend on the out-of-plane variable z = x3. To labour the

point, we construct [[u]] from u(x, y, z, t) with t = τ (x, y, z), giving [[u]] as a function of x, y and z;

for a plane characteristic moving in the z-direction, [[u]] cannot change with z.

Next, suppose we have a spherical wavefront with τ given by (3.12). Then, if we put R =

|r − r′|, we obtain grad τ = (r − r′)/(cR), ∇2τ = 2/(cR) and (4.8) reduces to

(xi − x′
i)

∂[[u]]

∂xi
+ [[u]]= 0. (4.9)

If we define spherical polar coordinates by x1 − x′
1 = R sin θ cosφ, x2 − x′

2 = R sin θ sinφ and

x3 − x′
3 = R cos θ , (4.9) simplifies to

R
∂[[u]]

∂R
+ [[u]]= 0 whence u =

A(θ ,φ)

R
, (4.10)

where A is an arbitrary function of θ and φ. Note that the wavefront is defined by t = τ whence

R = c(t − t′) in (4.10).

We remark that the results of §4, including (4.10), are valid for any weak solutions of the wave

equation such as the potential u, the pressure p and any Cartesian component of the velocity v.

5. Jump relations in continuummechanics
Let us return to the quotation from Courant & Hilbert [4] in §3. It refers to ‘physically meaningful

discontinuities’: what does this mean? Love [12, p. 53] remarked that there may be conditions on

the solution ‘imposed by the constitution of the medium or the nature of the disturbance, if it is

to represent waves of a specified type transmitted through a specified medium’ with a footnote:

‘The importance of these conditions was emphasized by Dr. Larmor at the meeting at which the

paper was communicated’ (in January 1903).

The conditions mentioned are derived within the general theory of continuummechanics. For

a thorough development, see Part C of [18]. For the special case of a compressible inviscid fluid,

see, for example, [19] or [20]. In this context, there are two exact jump relations across a moving

surface Γ (t),

[[ρex(V − n · vex)]]= 0 and [[ρex(V − n · vex)vex − pexn]]= 0, (5.1)

where ρex, vex and pex denote the exact density, velocity and pressure, respectively,V is the normal

velocity of Γ , and the unit normal to Γ , n, points in the direction of motion. For a characteristic C,

Γ is defined by (3.9) and the normal velocity is V = c.
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Now, in linear acoustics, we have ρex ≃ ρ + ερ1, pex ≃ p0 + εp1 and vex ≃ εv1, where ρ and p0

are constants and ε is a small parameter. Then we see that (5.1) is satisfied exactly at leading order

in ε, whereas at first order in ε we obtain

c[[ρ1]]= ρn · [[v1]] and ρc[[v1]]= [[p1]]n. (5.2)

The (excess) pressure p is defined by pex = p0 + p. Therefore, in linear acoustics, we have p = εp1 =

εc2ρ1, where the second equality comes from the definition of c. We also define the velocity v by

v = εv1. Then the first of (5.2) gives

[[p]]= ρc n · [[v]] (5.3)

and the second gives

[[p]]n = ρc [[v]]. (5.4)

Evidently, (5.3) is the normal component of the vector equation (5.4). It is also equivalent to the

condition found by Hadamard [15] and by Love [13]; see (3.18).

Let t be a tangent vector to Γ at P ∈ Γ . Then (5.4) gives [[v]] · t = 0: tangential components of

the velocity are continuous across a wavefront Γ , whereas, by (5.3), the normal component of

v has a jump proportional to the jump in the pressure across Γ . The wavefront Γ is sometimes

called a weak acoustic shock.

These results go back to Christoffel [21] (see also [22,23, 10, p. 45]).

The jump relation (5.4) holds as Γ (t) evolves. If we introduce the velocity potential u, so that,

from (2.2), v = gradu and p = −ρ (∂u/∂t), (5.4) becomes
[[

∂u

∂t

]]

grad τ = −[[gradu]], r ∈H,

where we have used n = cgrad τ . But, from (4.6),
[[

∂u

∂t

]]

grad τ = grad [[u]] − [[gradu]], r ∈H.

Comparing these two equations, we infer that grad [[u]]= 0 inH, whence

[[u]](r)= const., r ∈H. (5.5)

As all physical quantities are obtained from appropriate derivatives of u, we expect that we can

take the constant to be zero. This would mean that the velocity potential is continuous across

wavefronts, a result stated by Friedlander [10, p. 45], and then we could use formula (3.16) at a

wavefront. Also, when u is continuous across wavefronts, it can be advantageous to work with

the potential u rather than the pressure p, for example. In general, p is not continuous across

wavefronts; in fact, discontinuous pressure pulses are of great interest.

If we compare with the discussion of discontinuous weak solutions in §4c, we see that wemust

have A = 0 in (4.10) when u is required to be continuous across a wavefront. Similar formulae

hold for p and the Cartesian components of v, but then the coefficients corresponding to A will

not vanish, in general.

The constant in (5.5) might be determined by boundary and initial conditions. If it is not

zero, we see a mismatch between the physically justified jump condition (5.5) and the jump

condition (4.10) obtained by seeking weak solutions.

6. Initial-boundary value problems
Consider a bounded obstacle B with smooth boundary S. Denote the unbounded region exterior

to S by Be. We are interested in solving the wave equation in Be subject to initial and boundary

conditions. This leads to a variety of IBVPs.

Formally, we seek a wave function u(x) for x = (ct, r) ∈ Σ = R
+ ∪ Be, whereR

+ denotes positive

real numbers. Thus, Σ is a semi-infinite hypercylinder in space–time. There is a boundary

condition on the lateral boundary of Σ , R
+ ∪ S, and there are two initial conditions on the ‘base’
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of Σ , {0} ∪ Be. Of some interest will be the intersection of the lateral boundary and the base,

{0} ∪ S = E , say (the boundary S at t = 0), because this is where the boundary condition and the

initial conditions may be in conflict. We call E the space–time edge or corner of Σ .

Returning to the formulation of IBVPs, suppose that, as usual, u is a velocity potential.

Thus, from (2.2), the pressure p = −ρ ∂u/∂t and the velocity v = grad u. We seek a wave function

u(x)≡ u(P, t), where P(x, y, z) is a typical point in Be, subject to a boundary condition when P ∈ S

and initial conditions at t = 0. We take the latter as

u(P, 0)= u0(P) and
∂u

∂t
(P, 0)= u1(P) for all P ∈ Be, (6.1)

where u0 and u1 are given functions.

We shall consider three choices for the boundary condition (although other choices could be

made). The first choice is the Dirichlet condition,

u(P, t)= d(P, t) for P ∈ S and t > 0, (6.2)

where d is a given function. The second choice is the Neumann condition,

∂u

∂n
(P, t)= v(P, t) for P ∈ S and t > 0, (6.3)

where v is a given function and ∂/∂n denotes normal differentiation.

The Neumann condition (6.3) is physically realizable: the normal velocity is prescribed on S.

However, the Dirichlet condition (6.2) does not have an obvious physical interpretation. For this

reason, we also consider the ‘pressure condition’,

p(P, t)= −ρ
∂u

∂t
(P, t)= pS(P, t) for P ∈ S and t > 0, (6.4)

where pS is the prescribed pressure on S. At first sight, it appears that the solution satisfying (6.4)

can be obtained from a time-derivative of the solution to the Dirichlet problem, but we will see

that the situation is not so straightforward. Note that p itself is a wave function, so IBVPs could

be formulated directly in terms of p.

(a) Six basic problems

By linearity, the IBVPs outlined above can be reduced to problems with homogeneous boundary

conditions or homogeneous initial conditions. This leads to six simpler problems, listed in table 1.

The first three problems in table 1 have zero boundary conditions, the last three have zero

initial conditions. The literature is divided, with most authors preferring to work with zero

initial conditions. In fact, there is no loss of generality in doing this, because we can construct a

wave function satisfying the inhomogeneous initial conditions (6.1), and then subtract this wave

function in order to obtain a new IBVP with zero initial conditions. The relevant construction is

due to Poisson (see [24, §287, 10, §1.6, 4, pp. 201–202] or [8, §7.6]).

Much of the earlier mathematical literature assumes zero boundary conditions. For example,

the whole of the famous book on Scattering Theory by Lax & Phillips [25] is concerned with

Problem ID0. Wilcox [26,27] allows non-smooth S and he also considers Problem IN0. The

Wilcox and Lax–Phillips theories are abstract: their goal is not to actually construct solutions.

Moreover, although different, it is known that their theories are equivalent [28]. There is also

the work of Ladyzhenskaya, which goes back to the early 1950s. In her 1985 book, she discusses

Problem ID0 [29, §IV.3] and also the Robin problem with boundary condition ∂u/∂n + σu = 0 on

S where σ (P, t) is a prescribed function [29, §IV.5].

Prior to the work of Lax, Phillips and Wilcox, there is the book by Friedlander [10] on Sound

Pulses. He also considers problems with zero boundary conditions but, in addition, he discusses

scattering problems where a specified wave field (an incident ‘sound pulse’) interacts with B; this

leads to Problems DI0 and NI0 [10, pp. 8–9], with zero initial conditions and an inhomogeneous

boundary condition. Ladyzhenskaya [29, p. 149] also mentions Problem DI0 and a related Robin
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Table 1. Six initial-boundary value problems.

problem initial conditions boundary condition on S

ID0 u(P, 0)= u0(P) (∂u/∂ t)(P, 0)= u1(P) u(P, t)= 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IP0 u(P, 0)= u0(P) (∂u/∂ t)(P, 0)= u1(P) ∂u/∂ t = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IN0 u(P, 0)= u0(P) (∂u/∂ t)(P, 0)= u1(P) ∂u/∂n= 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DI0 u(P, 0)= 0 (∂u/∂ t)(P, 0)= 0 u(P, t)= d(P, t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PI0 u(P, 0)= 0 (∂u/∂ t)(P, 0)= 0 −ρ ∂u/∂ t = pS(P, t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NI0 u(P, 0)= 0 (∂u/∂ t)(P, 0)= 0 ∂u/∂n= v(P, t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

problem. She remarks that such IBVPs ‘are more difficult, but are more frequently encountered in

applications’. It is these problems, together with Problem PI0, that will be our main concern.

One advantage of assuming zero boundary conditions is that we have conservation of energy:

energy is input via the initial conditions and there is no subsequent energy flux through the

boundary S. Thus, writing in 1970, Morawetz could state that ‘for conservative systems we can

prove rather easily the existence and uniqueness of solutions’ [30]. For problems in acoustics,

where p and v are specified at t = 0, see ch. 7 in [31].

Existence and uniqueness results for problems with zero initial conditions (such as

Problems DI0 and NI0) are more recent. The basic results are due to Bamberger & Ha Duong

[32,33]. Thus, for Problem DI0, we have [32, §3], with summaries in [34, §2.3, 35, §1]. With our

notation, Lubich [34, p. 370] states: ‘For smooth compatible boundary data d(P, t) there exists

a unique smooth solution u with u(·, t) ∈ H1(Be) for all t’. Here, H1 is a Sobolev space and

‘compatible’ means d(P, 0)= 0 for all P ∈ S; additional smoothness comes by requiring that partial

derivatives of dwith respect to t vanish at t = 0 for all P ∈ S, thus permitting a smoother extension

of d(P, t) from t > 0 to t ≤ 0. We will say more about compatibility conditions in §6b.

For Problem NI0, we have [33, §2.1], with summaries in [36, §2, 37, §1]. Again, it is assumed

that we have ‘compatible data’; in particular [37, eqn (2.1)] ‘at least the following conditions’ are

assumed: v = ∂v/∂t = ∂2v/∂t2 = 0 at t = 0 for all P ∈ S.

(b) Compatibility conditions

The solution to an elliptic [PDE] is weakly singular in the corners of the domain

unless the forcing and boundary data are special. These ‘corner’ singularities are

well known . . . It is less well known that hyperbolic [PDEs] are equally prone to

singularities in the corners of the space–time domain—that is to say, at the spatial

boundaries at the initial time, t = 0. Unless the initial conditions, boundary data

and forcing satisfy [certain] ‘compatibility’ conditions, the kth spatial derivative

of u will be unbounded at the spatial boundary for some finite order k. . . . In

the absence of damping, [these] weak singularities propagate away from the

boundary and persist forever. Boyd & Flyer [38, p. 281]

The compatibility conditions mentioned have been well studied; Boyd & Flyer [38] refer to the

early work of Ladyzhenskaya (see p. 165 in [29]) and give additional references.

For simple examples, consider Problems ID0 and DI0, and examine the behaviour near the

space–time corner E , where t = 0 and P ∈ S. For Problem ID0, we have the boundary condition

u(P, t)= 0 for P ∈ S and the initial condition u(P, 0)= u0(P) for P ∈ Be. If we want both of these to

hold at E , then u0(P)= 0 for P ∈ S; this is a compatibility condition. Similarly, for Problem DI0, the

simplest compatibility condition is d(P, 0)= 0, P ∈ S. If these conditions are not satisfied, u will be

discontinuous across characteristics passing through E , in general.
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Higher order compatibility conditions have been worked out. For example, Boyd & Flyer [38,

Theorem 1] give formulae for Problems ID0 and IN0. The underlying question is often: What do

we have to do at E to make the solution smoother? In our applications, we have some kind of

incident wave (such as a pressure step pulse), with known properties, and we want to calculate

the scattered waves: we do not have the luxury of being able to make the solution smoother by

adjusting the conditions at E . In addition, we also have to ensure that physical constraints across

wavefronts are satisfied.

7. Problems with spherical symmetry
Let us consider IBVPs for a sphere of radius a. We assume that the forcing is such that the waves

generated have spherical symmetry, which means that u depends on r = |r| and t only. This is a

strong assumption but it permits exact solutions, and these solutions are revealing.

Because of the assumed spherical symmetry, the wave equation simplifies to

∂2(ru)

∂r2
=

1

c2
∂2(ru)

∂t2
, (7.1)

and then we can write down the general solution. It is

u(r, t)= r−1{f (r − ct) + g(r + ct)}, (7.2)

where f and g are arbitrary smooth functions. These are to be determined using initial and

boundary conditions. Specifically, we seek u(r, t) in Q, a quarter of the (r, t)-plane where r > a

and t > 0. There is a boundary condition at r = a for t > 0, and two initial conditions at t = 0 for

r > a. There is a characteristic of the PDE (7.1) emanating from the corner at (r, t)= (a, 0) along the

straight line r = a + ct, t > 0. Denote this line by W as it corresponds to the wavefront; solutions

may be discontinuous across W . In three-dimensional space, there is a spherical wavefront at

r = a + ct, Γ (t). The space–time edge or corner E is at r = a, t = 0; it is Γ (0).

We use the wavefrontW to partition the quadrantQ=Q+ ∪ Q− ∪ W , where

Q+ = {(r, t) : a < r < a + ct, t > 0} and Q− = {(r, t) : r > a + ct, t > 0}; (7.3)

thusQ+ is the region behind the wavefront andQ− is the region ahead of the wavefront.

The initial conditions are (6.1), which become

u(r, 0)= u0(r) and
∂u

∂t
(r, 0)= u1(r), r > a,

where u0 and u1 are given. When combined with (7.2), they give

f (r) + g(r)= ru0(r) and − f ′(r) + g′(r)=
r

c
u1(r), r > a

whence, for r > a,

f (r)=
1

2
ru0(r) −

1

2c

∫ r

a
ξu1(ξ ) dξ + C (7.4)

and

g(r)=
1

2
ru0(r) +

1

2c

∫ r

a
ξu1(ξ ) dξ − C, (7.5)

where C is an arbitrary constant. Hence (7.2) gives

u(r, t)=
1

2r
{(r + ct)u0(r + ct) + (r − ct)u0(r − ct)} +

1

2cr

∫ r+ct

r−ct
ξu1(ξ ) dξ , (7.6)

for r > a + ct: the solution inQ− does not depend on the boundary condition because information

from the boundary at r = a first reaches the wavefront Γ (t) after travelling at speed c for time t.
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The solution behind the wavefront in Q+ is determined using both the boundary condition

and the initial conditions, and it splits as

u(r, t)= ubc(r, t) + uic(r, t), a < r < a + ct. (7.7)

We calculate u for Dirichlet, pressure and Neumann boundary conditions separately.

(a) Dirichlet boundary condition

If we take the Dirichlet condition (6.2),

u(a, t)= d(t), t > 0, (7.8)

where d(t)≡ d(P, t) is given when P is on the sphere, and use it in (7.2), we obtain

ad(t)= f (a − ct) + g(a + ct), t > 0, (7.9)

whence f (ξ )= ad([a − ξ ]/c) − g(2a − ξ ) for ξ < a. Hence (7.2) and (7.5) give (7.7) in which

ubc(r, t)=
a

r
d

(

t −
[r − a]

c

)

, (7.10)

and

uic(r, t)=
1

2r
{(r + ct)u0(r + ct) − (2a − r + ct)u0(2a − r + ct)} +

1

2cr

∫ r+ct

2a−r+ct
ξu1(ξ ) dξ . (7.11)

Note that ubc(a, t)= d(t) and uic(a, t)= 0, thus verifying (7.8).

Across the wavefront at r = a + ct, we find that the jump in u (defined by (3.15)) is

[[u]]=
a

r
{d(0) − u0(a)},

where we have used (7.6), (7.7), (7.10) and (7.11). We note that this result, [[u]]= A/r, is consistent

with the known jump behaviour of weak solutions, (4.10). However, the physical constraint is

much stronger: it requires that [[u]] be constant as the wavefront evolves; see (5.5). Thus, we must

impose the consistency condition

u0(a)= d(0).

In fact, this condition gives more, namely [[u]]= 0.

A similar argument shows that d(t) must be continuous for t > 0, otherwise unphysical

discontinuities will be induced in u.

(b) Pressure boundary condition

Next, consider the pressure condition (6.4),

p(a, t)= −ρ
∂u

∂t
(a, t)= pa(t), t > 0, (7.12)

where pa(t)≡ pS(P, t) is given when P is on the sphere. Use of (7.2) gives

apa(t)= ρc{f ′(a − ct) − g′(a + ct)}, t > 0.

An integration then gives

f (ξ )= −
a

ρ

∫ (a−ξ )/c

0
pa(η) dη − g(2a − ξ ) + aA, ξ < a,

where A is an arbitrary constant. Hence (7.2) and (7.5) give (7.7) in which uic(r, t) is given by (7.11)

again and

ubc(r, t)= −
a

rρ

∫ t−(r−a)/c

0
pa(η) dη +

a

r
A, a < r < a + ct. (7.13)

Note that −ρ ∂ubc/∂t = pa(t) and ∂uic/∂t = 0 when r = a, which confirms (7.12).
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Across the wavefront at r = a + ct, we obtain

[[u]]=
a

r
{A − u0(a)}.

For this to be independent of r, in accordance with the physical constraint (5.5), we must take the

constant A = u0(a), whence [[u]]= 0.

We also find [[p]]= (a/r){ρu1(a) + pa(0)}. Thus, we obtain [[p]]= 0 if pa(0)= −ρu1(a). If this

condition is not satisfied, the pressure will jump across the wavefront even though the potential

does not. Similarly, if pa(t) is not continuous for t > 0, points of discontinuity in pa(t) will induce

admissible discontinuities in p(r, t) but no discontinuities in u(r, t).

Of course, jumps in p across wavefronts are what we expect in more general cases, such as

when a plane pressure pulse is scattered by a sphere.

(c) Neumann boundary condition

Instead of (7.8) or (7.12), we can take the Neumann boundary condition (6.3),

∂u

∂r
(a, t)= v(t), t > 0, (7.14)

where v(t)≡ v(P, t) is given. Substitution of (7.2) in (7.14) gives a first-order differential equation

for f , f ′(ξ ) − a−1f (ξ )= h(ξ ) for ξ < a, where

h(ξ )= av

(

a − ξ

c

)

− g′(2a − ξ ) + a−1g(2a − ξ )

and g is given by (7.5). Solving gives

f (ξ ) e−ξ/a = A1 −

∫ a

ξ

h(η) e−η/a dη, ξ < a, (7.15)

where A1 is an arbitrary constant. The piece of h containing v generates ubc in (7.7):

ubc(r, t)= −
a

r
e(r−ct)/a

∫ a

r−ct
e−η/av

(

a − η

c

)

dη, a < r < a + ct; (7.16)

one can check that ubc satisfies (7.14). Substituting the other piece of h in (7.15) gives

f (ξ ) e−ξ/a = A1 +

∫ a

ξ

g′(2a − η) e−η/a dη −
1

a

∫ a

ξ

g(2a − η) e−η/a dη

= A2 + g(2a − ξ ) e−ξ/a −
2

a

∫ a

ξ

g(2a − η) e−η/a dη, (7.17)

after an integration by parts; A2 (=A1 − e−1g(a)) is an arbitrary constant. We use (7.17) with ξ =

r − ct, and then (7.2) and (7.7) give

uic(r, t)=
A2

r
e(r−ct)/a +

1

r
{g(r + ct) + g(2a − r + ct)} −

2

ar
e(r−ct)/a

∫ a

r−ct
g(2a − η) e−η/a dη. (7.18)

The last term can be simplified after using (7.5). Then, using (7.5) again, (7.18) gives

uic(r, t)=
A

r
e(r−ct)/a +

1

2r
{(r + ct)u0(r + ct) + (2a − r + ct)u0(2a − r + ct)}

+
1

2cr

∫ r+ct

2a−r+ct
ξu1(ξ ) dξ −

e(r−ct)/a

re2

∫ 2a−r+ct

a
ξ eξ/a

(

u0(ξ )

a
−

u1(ξ )

c

)

dξ (7.19)

for a < r < a + ct, where A (=A2 − 2C/e) is an arbitrary constant. Direct calculation verifies that

∂uic/∂r = 0 on r = a.

Note that the first term in (7.19), (A/r)e(r−ct)/a, is a wave function that satisfies the

homogeneous boundary condition, ∂u/∂r = 0 on r = a.
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Table 2. The six IBVPs in table 1 for a sphere of radius a. The wavefrontΓ is at r = a + ct.

problem behindΓ , inQ+ ahead ofΓ , inQ− physical constraint

ID0 u= uic, de2ned by (7.11) u is given by (7.6) u0(a)= 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IP0 u= uic + aA/r, uic from (7.11) u is given by (7.6) u0(a)= A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IN0 u= uic de2ned by (7.19) u is given by (7.6) A= 0 in (7.19)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DI0 u= ubc, de2ned by (7.10) u≡ 0 d(0)= 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PI0 u= ubc, de2ned by (7.13) u≡ 0 A= 0 in (7.13)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NI0 u= ubc + (A/r)e(r−ct)/a, with u≡ 0 A= 0

ubc de2ned by (7.16)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Across the wavefront, we find that [[u]]= Ae/r, after using (7.6), (7.7), (7.16) and (7.19). Then

the physical constraint (5.5) implies that we must take A = 0, whence [[u]]= 0. Note that seeking a

weak solution would lead to non-uniqueness because the term involving A is admissible.

(d) Discussion and special cases

In table 2, we collect the results for the six simpler problems listed in table 1. In each case, there is

a wavefront Γ (t) at r = a + ct, and the physical constraint (5.5) implies that [[u]]= 0 across Γ .

The pressure and velocity fields are easily calculated. For example, we calculate the pressure

jump across the wavefront when there are zero initial conditions. For Problem DI0, (7.10) gives

[[p]]= −ρ(a/r)d′(0), so that [[p]]= 0 if d′(0)= 0 in addition to d(0)= 0. For Problem PI0, [[p]]=

(a/r)pa(0). For Problem NI0, (7.16) gives [[p]]= −ρ(a/r)v(0).

The literature on spherically symmetric pulsations of a sphere, using the general solution (7.2),

is extensive, going back to Lord Rayleigh [39]. See also Love [12,13], Lamb [24, §286], John [11,

p. 15], Whitham [8, §7.3], Lighthill [2, §1.11] and Pierce [3, §4-1].

8. Use of Laplace transforms
It is natural to use Laplace transforms to solve initial-value problems. Their use converts the

wave equation into the modified Helmholtz equation. The earliest use of transform methods for

a pulsating sphere is probably that in Jeffreys’ 1927 book [40] on Operational methods.

However, there is a difficulty: what is the effect of possible discontinuities across wavefronts?

Can we ignore such discontinuities?

(a) Laplace transform of discontinuous functions

Define the Laplace transform of u(r, t) with respect to t by

U(r, s)=L{u} =

∫∞

0
u(r, t) e−st dt.

Suppose that there is a surface of discontinuity at t = τ (r). Then, splitting the range of integration

at t = τ (r) followed by differentiation, we obtain

∂

∂xi
L{u} =

∫ τ

0

∂u

∂xi
e−st dt + u(r, τ−) e−sτ ∂τ

∂xi
+

∫∞

τ

∂u

∂xi
e−st dt − u(r, τ+) e−sτ ∂τ

∂xi

=L

{

∂u

∂xi

}

+ [[u]] e−sτ ∂τ

∂xi
, (8.1)
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where u(r, τ±)= limε→0 u(r, τ ± ε2) and [[u]]= u(r, τ−) − u(r, τ+), in agreement with (3.15).

Hence, replacing u by ∂u/∂xi,

L{∇2u} =
∂

∂xi
L

{

∂u

∂xi

}

−

[[

∂u

∂xi

]]

∂τ

∂xi
e−sτ =

∂

∂xi

(

∂U

∂xi
− [[u]] e−sτ ∂τ

∂xi

)

−

[[

∂u

∂xi

]]

∂τ

∂xi
e−sτ

= ∇2U −

(

∂[[u]]

∂xi

∂τ

∂xi
+ [[u]]∇2τ − s[[u]]

∂τ

∂xi

∂τ

∂xi
+

[[

∂u

∂xi

]]

∂τ

∂xi

)

e−sτ . (8.2)

For time derivatives, similar calculations give

L

{

∂u

∂t

}

= sL{u} − u0 + [[u]] e−sτ (8.3)

and

L

{

∂2u

∂t2

}

= s2L{u} − su0 − u1 +

(

s[[u]] +

[[

∂u

∂t

]])

e−sτ , (8.4)

where we have used the initial conditions (6.1).

Equations (8.1)–(8.4) can be found in a paper by Chadwick & Powdrill [41]. They show the

effects of discontinuities across t = τ (r); if there are no discontinuities, all the terms involving [[ · ]]

are absent, and we obtain standard formulae.

(b) Laplace transform of wave functions

Suppose that u is a wave function. Then taking the Laplace transform of (2.1) gives

∇2U −
( s

c

)2
U = fic(r, s) + f (r, s) e−sτ (r) (8.5)

where the initial conditions are contained in fic = −[su0(r) + u1(r)]/c
2 and

f =
∂[[u]]

∂xi

∂τ

∂xi
+ [[u]]∇2τ − s[[u]]

(

∂τ

∂xi

∂τ

∂xi
−

1

c2

)

+

[[

∂u

∂xi

]]

∂τ

∂xi
+

1

c2

[[

∂u

∂t

]]

.

The chain rule gives (4.6), which implies

∂[[u]]

∂xi
=

[[

∂u

∂xi

]]

+

[[

∂u

∂t

]]

∂τ

∂xi
.

Using this to eliminate [[∂u/∂xi]], we obtain

f = 2
∂[[u]]

∂xi

∂τ

∂xi
+ [[u]]∇2τ −

(

s[[u]] +

[[

∂u

∂t

]])(

∂τ

∂xi

∂τ

∂xi
−

1

c2

)

.

Now, we know that discontinuities can only occur across characteristics. It follows that τ

satisfies the eikonal equation (3.10) thus simplifying f to

f = 2
∂[[u]]

∂xi

∂τ

∂xi
+ [[u]]∇2τ , (8.6)

which does not depend on the transform variable s.

If we are satisfied with a weak solution, then we know that [[u]] satisfies the transport

equation (4.8). This immediately yields f ≡ 0: for weak solutions, we can ignore the presence of

discontinuities. On the other hand, we know that weak solutions need not respect the physical

constraints across wavefronts (see §5).

The physical constraints lead to (5.5), [[u]]= const., which reduces (8.6) to f = [[u]]∇2τ , which is

non-zero in general. However, if we can arrange that [[u]]= 0, then f ≡ 0 and, again, we can ignore

the presence of discontinuities. Note that although u is continuous, p, v and derivatives of u can

be discontinuous.
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(c) Laplace transform of boundary conditions

Write u(r, t)≡ u(P, t) and U(r, s)= U(P, s). As in §6, we impose a boundary condition at P ∈ S.

The simplest is the Dirichlet condition (6.2): u(P, t)= d(P, t) for P ∈ S and t > 0. Hence

U(P, s)= D(P, s), P ∈ S, (8.7)

where D =L{d} and we have assumed that d is a continuous function of t.

The pressure condition (6.4) requires that −ρ(∂u/∂t)= pS(P, t) for P ∈ S and t > 0. Applying L,

using (8.3), gives

sU(P, s) − u(P, 0) + [[u]] e−sτ (P) = −ρ−1PS(P, s), P ∈ S, (8.8)

where PS(P, s)=L{pS} and τ (P)= τ (r). We are free to choose u(P, 0)= u0(P) for P ∈ S. Doing this

ensures that [[u]]≡ 0 and then (8.8) simplifies.

For the Neumann condition (6.3), ∂u/∂n(P, t)= v(P, t), we use (8.1) and obtain

∂U

∂n
= V(P, s) + [[u]] e−sτ (P) ∂τ

∂n
, P ∈ S, (8.9)

where V =L{v} and we have assumed that v is a continuous function of t.

9. Laplace transforms and problems with spherical symmetry
Problems with spherical symmetry were discussed at length in §7. The wave equation is to be

solved exterior to a sphere of radius a. The solution u(r, t) depends on r and t only, where r is a

spherical polar coordinate and the sphere is r = a.

For simplicity, let us take zero initial conditions so that fic = 0 in (8.5). We expect a wavefront at

t = τ (r)= (r − a)/c, with [[u]] constant. From (8.5), (8.6) and the spherically symmetric form ∇2u =

r−1(∂2/∂r2)(ru), we obtain

∂2(rU)

∂r2
−

s2

c2
(rU)= [[u]]

∂2(rτ )

∂r2
=

2

c
[[u]]. (9.1)

Solving this equation, rU(r, s)=A e−sr/c + B esr/c − (2c/s2)[[u]], where A and B are arbitrary. We

take B = 0 because we do not want solutions that grow exponentially with r, whence

rU(r, s)=A(s) e−sr/c −
2c

s2
[[u]]. (9.2)

(a) Dirichlet boundary condition

For Problem DI0, we apply the Laplace transform of the Dirichlet boundary condition (7.8),

namely (8.7) at r = a, whence

rU(r, s)= aD(s)e−s(r−a)/c +
2c

s2
(e−s(r−a)/c − 1)[[u]].

Inverting, using L{f (t − b)H(t − b)} = e−sbL{f (t)}, gives

u(r, t)=
(a

r

)

d

(

t −
[r − a]

c

)

H

(

t −
[r − a]

c

)

+
2c

r

{(

t −
[r − a]

c

)

H

(

t −
[r − a]

c

)

− t

}

[[u]]. (9.3)

There is a wavefront at r = a + ct. Behind the wavefront (inQ+, see (7.3)),

u(r, t)=
a

r
d

(

t −
[r − a]

c

)

+
2

r
(a − r)[[u]].

Ahead of the wavefront (in Q−), u(r, t)= −(2ct/r)[[u]]. Combining these two equations so as to

calculate [[u]] gives [[u]]= (a/r)d(0). But [[u]] is required to be constant, whence d(0)= [[u]]= 0.
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Thus, (9.3) reduces to

u(r, t)=
a

r
d

(

t −
[r − a]

c

)

H

(

t −
[r − a]

c

)

,

in agreement with the solution of Problem DI0 obtained in §7d (table 2). We observe that, for this

problem, the term on the right-hand side of (9.1) is, in fact, zero.

(b) Pressure boundary condition

Next, consider Problem PI0. The Laplace transform of the pressure boundary condition (7.12)

gives (8.8), which becomes sU(a, s)= −ρ−1Pa(s) with Pa =L{pa}; recall that, for this problem, we

can assume that [[u]]= 0. Then (9.2) gives sAe−sa/c = −(a/ρ)Pa and

rU(r, s)= −
a

ρs
Pa(s) e

−s(r−a)/c = −
a

ρ
e−s(r−a)/cL

{∫ t

0
pa(η) dη

}

.

Thus, inverting,

u(r, t)= −
a

rρ
H

(

t −
[r − a]

c

) ∫ t−(r−a)/c

0
pa(η) dη,

in agreement with the solution of Problem PI0 obtained in §7d (table 2).

(c) Neumann boundary condition

For Problem NI0, we apply the Laplace transform of the Neumann boundary condition (7.14),

namely (8.9), which becomes ∂U/∂r = V + [[u]]/c at r = a. Using this in (9.2) gives

A(s)=
esa/c

sa + c

(

2c2

s2
[[u]] − a2[[u]] − a2cV(s)

)

,

whence

rU(r, s)= −
a2cV(s)

sa + c
e−s(r−a)/c + [[u]]

(

2c2 − s2a2

(sa + c)s2
e−s(r−a)/c −

2c

s2

)

= −acV(s)L{e−ct/a} e−s(r−a)/c − 2[[u]]L{ct} + [[u]]L{ae−ct/a + 2ct − 2a} e−s(r−a)/c.

The convolution theorem gives V(s)L{e−ct/a} =L{
∫t
0 v(η) e−c(t−η)/a dη}. Hence, inverting,

u(r, t)= −
ac

r
H

(

t −
[r − a]

c

)

e(r−ct)/a
∫ t−(r−a)/c

0
v(η) e(cη−a)/a dη

+ r−1

{

(ae(r−a−ct)/a + 2ct − 2r)H

(

t −
[r − a]

c

)

− 2ct

}

[[u]].

Behind the wavefront at r = a + ct, this solution simplifies to

u(r, t)= −
ac

r
e(r−ct)/a

∫ t−(r−a)/c

0
v(η) e(cη−a)/a dη +

1

r
{ae(r−a−ct)/a − 2r}[[u]],

whereas ahead of the wavefront u(r, t)= −(2ct/r)[[u]]. Combining these two equations so as to

calculate [[u]] gives [[u]]= 0. Hence we find agreement with the solution of Problem NI0 obtained

in §7d (see table 2 and (7.16)).

(d) Discussion

One observation from the calculations above is that the presence of all the [[u]] terms causes a

lot of complications. Ultimately, these disappear because it turns out that [[u]]= 0! This suggests

that we should start by seeking a weak solution (implying that all the [[u]] terms are set to zero).

Indeed, this is what is done in the literature. However, having found such a solution, we must
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then check the physical constraints across wavefronts. This is seldom done, but it can lead to

non-trivial consequences such as necessary consistency conditions on the data.

There are many papers in which Laplace transforms are combined with separation of variables

in spherical polar coordinates so as to solve a variety of IBVPs for a sphere. The earliest application

to problems that are not spherically symmetric seems to be that by Brillouin in 1950 [42]; see

also [43]. Friedlander [10, pp. 166–174] constructed Green’s function for a hard sphere (Neumann

problem). We also mention papers by Barakat [44], Tupholme [45] and Huang & Gaunaurd [46].

Finally, there is a paper by Greengard et al. [47] on scattering by a soft sphere (Dirichlet problem).
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