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Abstract

Mellin transforms are used here to find asymptotic approximations for functions defined by
series. The simplest cases are those of the form

∑∞
n=1 u(nx). Such series are called separable

here, because the given function u is sampled at points whose variation with n and x is separated.
Non-separable series are analysed by first approximating them by separable series. Both types
of series arise in the theory of electromagnetic waveguides and in the theory of linear water
waves; several examples are worked out in detail.

1 Introduction

Asymptotic approximations for functions defined by integrals in the form

f(x) =
∫ ∞
0

c(µ)u(µx) dµ, (1)

for small or large values of x, can be found using Mellin transforms [2], [18]. We are interested in
obtaining analogous results for functions defined by series,

f(x) =
∞∑
n=1

cnu(µnx). (2)

Here, cn are known constants and µn is an increasing sequence, n = 1, 2, . . .; the function u(y) is
defined for all y > 0. We assume that the series is convergent for all positive real x (it may diverge
at x = 0), and seek the asymptotic behaviour of f(x) as x → 0+. (The behaviour as x → ∞
can be found in a similar manner.) Some problems of this type were considered by Ramanujan [1,
chap. 15]: he took µn = np and u(x) = e−x or u(x) = (1 + x)−l, for integer values of p and l, and
is believed to have obtained his results using the Euler-Maclaurin formula.

In (2), the function u(y) is sampled at points y = µnx; we describe such points, and the series
(2), as separable. Separable series can often be analysed directly using Mellin transforms (§3). For
example, this method was used by Macfarlane [10] on one example; he showed that

N∑
n=1

√
1− xn2/3

n2/3
∼ 3π

4
√
x

+ ζ(2/3) + 1
4x−

1
8ζ(−2/3)x2

∗Appeared as IMA Journal of Applied Mathematics 54 (1995) 139–157
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Figure 1: Closed region – finite depth.

as x→ 0, where N is the largest integer such that xN2/3 < 1 and ζ is the Riemann zeta function.
Macfarlane’s work is described in the books by Sneddon [16, §4-7] and by Davies [3, §13.1]; Davies
also gives some other examples. Mellin transforms were also used by Berndt [1] to confirm some
of Ramanujan’s results. Estrada & Kanwal [5] and Estrada [4] have obtained similar results, using
the theory of generalized functions.

A natural generalization of (1) is

f(x) =
∫ ∞
0

c(µ)U(µ, x) dµ, (3)

where U is a function of two variables. We are interested in a similar generalization of (2). Thus,
we consider series where u(y) is sampled at non-separable points, y = λn(x), where λn(x) is a
known function of x for each n;

f(x) =
∞∑
n=1

cnu(λn(x)) (4)

is called a non-separable series.
There are no general methods for the asymptotic approximation of integrals of the form (3).

Similarly, we do not expect to find a general method for the asymptotic approximation of non-
separable series; indeed, we are not aware of any previous results for such series. However, in certain
applications (described below), the quantities λn(x) occur as the solutions of a transcendental
equation, and then progress can be made. Our method proceeds in two stages. First, we look
for suitable separable approximations to λn(x), and then we use Mellin-transform techniques (§§4
and 5).

Both separable and non-separable series arise in waveguide problems. Such problems are often
solved using various modal expansions (separation of variables, matched eigenfunction expansions,
Wiener-Hopf techniques, etc.). In these expansions, the lateral variation is represented by a series
of eigenfunctions, which depend on the width of the wave guide (related to x). Moreover, if
the waveguide walls are hard (Neumann boundary condition) or soft (Dirichlet condition), the
associated eigenvalues are separable (in the above sense), and so (2) is typical. However, if the
walls are impedance boundaries (Robin condition), the lateral eigenvalues are usually determined
as the roots of a transcendental equation, leading to the non-separable series (4).

In the context of waveguide problems, the limit 1/h→ 0 is of interest, where h is the width of
the waveguide. This limit has been discussed by Mittra & Lee [13, §3-11.(2)]. They consider the
infinite bifurcated waveguide shown in Fig. 1, with a semi-infinite plate (the septum) at a fixed
distance d from the wall at y = 0; this geometry is referred to as a closed region. The governing
partial differential equation is the Helmholtz equation,

(∇2 + k2)φ = 0,
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Figure 2: Open region – infinite depth.

where k is the positive real wavenumber. A waveguide mode is incident from x = −∞ in the region
0 < y < d; it is partially reflected at the end of the septum and partially transmitted into the rest
of the guide. The corresponding reflection and transmission coefficients can be determined exactly
(Mittra & Lee [13] solve this problem in detail).

The same problem can be considered (and solved) when h =∞. This corresponds to an open-
ended waveguide; the geometry is sketched in Fig. 2 and is referred to as an open region. The
connection between open-region and related closed-region problems is of interest because the latter
are often easier to solve: for example, when the Wiener-Hopf technique is used, a certain function
of a complex variable has to be factorised; this function is meromorphic in closed-region problems
but has branch points in open-region problems. Mittra & Lee [13] show that the open-waveguide
problem can be solved by taking the limit h → ∞ of the bifurcated-waveguide problem, but only
when the walls and septum are hard. The methods described below can be used to analyse such
problems, even when the walls are impedance boundaries.

The geometry sketched in Fig. 1 has also been used by Linton & Evans [9] in the context of
small-amplitude water waves. The governing partial differential equation is the modified Helmholtz
equation

(∇2 − l2)φ = 0,

where l is the positive real wavenumber in a direction perpendicular to the xy-plane. The semi-
infinite plate and the bottom (y = h) are hard, whereas the boundary condition on the mean free
surface y = 0 is an impedance condition,

Kφ+ ∂φ/∂y = 0 on y = 0,

where K is another positive real wavenumber. Two more wavenumbers, k and k0 are defined to be
the unique positive real roots of the dispersion relations

K = k tanh kd and K = k0 tanh k0h, (5)

respectively, and then l is chosen to satisfy K < k0 < l < k. Consequently, when a surface wave
is incident from x = −∞, it will be totally reflected by the end of the plate. Linton & Evans [9]
gave an explicit formula for the argument of the (complex) reflection coefficient, which they used
to estimate the frequencies of waves trapped above a long horizontal submerged plate. We shall
examine their formula below, and extract the limiting formula for deep water (h → ∞) (§5).
Indeed, it was a study of the limiting problem (for the geometry sketched in Fig. 2) that originally
motivated the present analysis.
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2 Mellin transforms

In order to find asymptotic approximations for separable series (2), we use Mellin transforms. Given
a function f(x), its Mellin transform is defined by

f̃(z) =
∫ ∞
0

f(x)xz−1 dx,

where we shall always use the notation z = σ+ iτ for the transform variable z. Typically, f̃(z) will
be an analytic function of z within a strip, a < σ < b, say; within this strip, we have

|f̃(σ + iτ)| → 0 as |τ | → ∞. (6)

The inverse Mellin transform is given by

f(x) =
1

2πi

∫ c+i∞

c−i∞
f̃(z)x−z dz

for x > 0, where a < c < b. We can obtain an asymptotic expansion of f(x) for small x by moving
the inversion contour to the left; each term arises as a residue contribution from an appropriate
pole in the analytic continuation of f̃(z) into σ ≤ a. Specifically, we have the following result.

Theorem 1 [14, p. 7] Suppose that f̃(z) is analytic in a left-hand plane, σ ≤ a, apart from poles
at z = −am, m = 0, 1, 2, . . .; let the principal part of the Laurent expansion of f̃(z) about z = −am
be given by

N(m)∑
n=0

Amn
(−1)nn!

(z + am)n+1
.

Assume that (6) holds for a′ ≤ σ ≤ a. Then, if a′ can be chosen so that

−Re (aM+1) < a′ < −Re (aM )

for some M , we have

f(x) =
M∑
m=0

N(m)∑
n=0

Amnx
am(log x)n +RM (x),

where

RM (x) =
1

2πi

∫ a′+i∞

a′−i∞
f̃(z)x−z dz =

x−a

2π

∫ ∞
−∞

f̃(a′ + iτ)x−iτ dτ.

Furthermore, suppose that ∫ ∞
−∞
|f̃(a′ + iτ)| dτ <∞, (7)

or, less restrictively, ∫ ∞
−∞

f̃(a′ + iτ)eiτX dτ <∞ (8)

with X = − log x. Then, the remainder RM (x) is o(xRe (aM )), whence f(x) has the asymptotic
expansion

f(x) ∼
M∑
m=0

N(m)∑
n=0

Amnx
am(log x)n as x→ 0+.
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Note that (8) will be satisfied if f̃(a′ + iτ) is integrable for finite τ , and is O(|τ |−δ) as |τ | → ∞
for some δ > 0.

More information on Mellin transforms can be found in the books [2, chap. 4], [3, §§12, 13],
[16, chap. 4] and [18, chap. 3]. In addition, we have used Mellin transforms previously to find
asymptotic approximations for solutions to certain integral equations, near the end-points of the
range of integration [11], [12].

3 Separable series: a problem of Ramanujan

Consider the series (2), namely

f(x) =
∞∑
n=1

cnu(µnx). (9)

We shall find the asymptotic behaviour of f(x) as x→ 0+ by calculating its Mellin transform. We
have

f̃(z) =
∞∑
n=1

cn

∫ ∞
0

xz−1u(µnx) dx = ũ(z)
∞∑
n=1

µ−zn cn. (10)

To make progress, we must be able to locate the singularities of ũ(z) and of the sum on the
right-hand side of (10). So, to fix ideas, consider the following example.

Example 1. Find the behaviour of

fν(x) =
∞∑
n=1

nν−1e−nx as x→ 0+,

where ν is a real parameter.
We can take cn = nν−1, µn = n and u(x) = e−x. Hence

f̃ν(z) = ζ(z − ν + 1)Γ(z), (11)

where Γ(z) is the the gamma function and ζ(z) is the Riemann zeta function. It is known that Γ(z)
is an analytic function of z, apart from simple poles at z = −N , N = 0, 1, 2, . . .; near z = −N ,

Γ(z) ' (−1)N{(z +N)−1 + ψ(N + 1)}/N !,

where ψ(z) = Γ′(z)/Γ(z). It is also known that ζ(z) is analytic for all z, apart from a simple pole
at z = 1; near z = 1,

ζ(z) ' (z − 1)−1 + γ, (12)

where γ = 0.5772 . . . is Euler’s constant.
Let us suppose that 0 < ν < 1. Then, f̃ν(z) is analytic for σ > ν. We choose the inversion

contour along σ = c, with c > ν. Moving the contour to the left, we pick up a residue contribution
from the simple pole at z = ν: this gives the leading contribution as

fν(x) ∼ x−νΓ(ν) as x→ 0+, for 0 < ν < 1. (13)

Mittra & Lee [13, §1-4, eqn. (4.1)] have obtained this result, using the Euler-Maclaurin sum formula.
If we move the inversion contour further to the left, we formally obtain Ramanujan’s expan-

sion [1, p. 306],

fν(x) ∼ x−νΓ(ν) +
∞∑
m=0

(−x)m

m!
ζ(1− ν −m) as x→ 0. (14)
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The fact that this is an asymptotic expansion follows from Theorem 1 and the known properties of
ζ(z) and Γ(z) as |τ | → ∞. Thus, from [17, p. 276], we have

ζ(σ + iτ) = O(|τ |α(σ) log |τ |) as |τ | → ∞, where (15)

α(σ) =


1
2 − σ, σ ≤ 0,

1
2 , 0 ≤ σ ≤ 1

2 ,
1− σ, 1

2 ≤ σ ≤ 1,
0, σ ≥ 1,

(16)

and the factor of log |τ | can be omitted except when σ is close to 0 or 1; and

Γ(σ + iτ) = O(|τ |σ−1/2e−π|τ |/2) as |τ | → ∞. (17)

Hence, although ζ(σ + iτ) grows algebraically as |τ | → ∞, for σ < 1, the exponential decay of
Γ(σ + iτ) ensures that (7) is satisfied for all values of a′.

The asymptotic formula (14) is valid for all values of ν, apart from ν = −N . In these cases,
there is a double pole at z = −N , giving a term proportional to xN log x. For example, when ν = 0,
we obtain

f0(x) ∼ − log x+
∞∑
m=1

(−x)m

m!
ζ(1−m) (18)

= − log x+ 1
2x−

∞∑
n=1

x2nB2n

2n(2n)!
as x→ 0,

since ζ(0) = −1
2 , ζ(−2m) = 0, ζ(1− 2m) = −B2m/(2m), m = 1, 2, . . ., and where Bn is a Bernoulli

number. In fact, f0(x) can be found explicitly by integrating the geometric series to give

f0(x) = − log (1− e−x),

which agrees completely with (18).
A related example is the following.
Example 2. Find the behaviour of

gν(x) =
∞∑
n=1

(n− 1
2)ν−1e−(n−1/2)x as x→ 0+,

where ν is a real parameter.
We find that

g̃ν(z) = (2z−ν+1 − 1)f̃ν(z),

where f̃ν(z) is given by (11) and we have used

∞∑
n=1

(n− 1
2)−z = (2z − 1)ζ(z). (19)

So, if 0 < ν < 1, the leading contribution is again given by (13), although the subsequent terms
are different.
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4 Non-separable series: a model problem

In this section, and the next, we consider some non-separable series involving the roots of the
transcendental equation (5)2. Apart from the real roots ±k0, (5)2 also has an infinite number of
pure imaginary roots, ±ikn, n = 1, 2, . . .; thus, kn are the positive real roots of

K + kn tan knh = 0, n = 1, 2, . . . ; (20)

they are ordered so that (n − 1
2)π < knh < nπ. In the context of water-wave problems, h is the

constant water depth and K is the positive real wavenumber. We are interested in the deep-water
limit, h→∞. In dimensionless variables, we define

x = (Kh)−1 and λn(x) = knh,

so that
cosλn(x) + xλn(x) sinλn(x) = 0 (21)

with
(n− 1

2)π < λn(x) < nπ, n = 1, 2, . . . . (22)

Later, we shall study some series involving λn(x). Clearly, the convergence of these series will
depend on the behaviour of λn(x) as n → ∞, although we are interested in the behaviour as
x → 0. It is straightforward to show that, in these limits λn(x) ∼ nπ as n → ∞ for fixed x, but
λn(x) ∼ (n− 1

2)π as x→ 0 for fixed n. These estimates can be refined:

λn(x) ∼ nπ − (nπx)−1 − (x− 1
3)(nπx)−3 as n→∞ for fixed x, and (23)

λn(x) ∼ (n− 1
2)π(1 + x+ x2) as x→ 0 for fixed n. (24)

It is this non-uniform behaviour that causes difficulties.
To find some uniform approximations, we return to the definition (21). Write

λn(x) = µn + νn(x), (25)

where
µn = (n− 1

2)π

and 0 < νn < π/2. Then, (21) gives

sin νn(x)− x{µn + νn(x)} cos νn(x) = 0. (26)

Discarding the second term inside the braces (this is certainly reasonable for large n), we obtain

νn(x) ' tan−1 (µnx) = ν(1)
n (x), (27)

say, which is a separable approximation to νn(x). One can show that the approximation λn(x) '
µn + ν

(1)
n (x) agrees with the first two terms in (23) and with the first two terms in (24).

We can obtain an improved approximation by iteration: replace νn(x) by ν
(1)
n (x) inside the

braces in (26) to give

νn(x) ' tan−1 {µnx+ x tan−1 (µnx)} = ν(2)
n (x), (28)

say. Then, the approximation λn(x) ' µn + ν
(2)
n (x) agrees with the three-term asymptotics in (23)

and in (24).
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For a simple, but non-trivial problem, we consider the following example.
Example 3. Let

f(x) = π
∞∑
n=1

(
1

λn(x)
− 1
nπ

)
.

The series converges for all x ≥ 0; in fact, using the bounds (22), we have

0 < f(x) < π
∞∑
n=1

(
1

(n− 1
2)π
− 1
nπ

)
= 2

∞∑
m=1

(−1)m+1

m
= 2 log 2

for x > 0. Since λn(0) = (n− 1
2)π = µn, for all n, we write

f(x) = 2 log 2 + S(x), (29)

where

S(x) = π
∞∑
n=1

sn(x) and sn(x) =
1

λn(x)
− 1
µn
.

We have S(x) → 0 as x → 0 and S(x) is bounded as x → ∞, whence S̃(z) is analytic in a strip
−δ < σ < 0, where δ > 0. In fact, we note that sn(x) = O(x) as x→ 0 and is bounded as x→∞,
whence s̃n(z) is analytic for −1 < σ < 0; thus, we expect that δ = 1. However, we also note that
formal differentiation of S(x) results in a divergent series, suggesting that S(x) does not behave
like x as x→ 0.

We shall treat S(x) using our separable approximations for νn(x). Since the latter may not be
appropriate for small values of n, we split the sum and write

S(x) = π
M∑
n=1

sn(x) + π
∞∑

n=M+1

sn(x) = SM (x) + S∞M (x), (30)

say, where M is fixed. For SM , we can use (24) to give

SM (x) ∼ π
M∑
n=1

µ−1
n {(1 + x+ x2)−1 − 1} = −πx

M∑
n=1

µ−1
n +O(x3) (31)

as x→ 0. For S∞M , we start with

sn(x) =
1
µn

{(
1 +

νn
µn

)−1

− 1

}
' −1
µ2
n

{
νn −

ν2
n

µn

}
,

since |νn/µn| is small. Next, we approximate νn by ν(2)
n and ν2

n by (ν(1)
n )2, where ν(1)

n and ν
(2)
n are

defined by (27) and (28), respectively. Finally, since |ν(1)
n /µn| is small, we can approximate ν(2)

n

using the Taylor approximation

tan−1 (X +H) ' tan−1X +H(1 +X2)−1 (32)

for small H; the result is

sn(x) ' −µ−2
n {ν(1)

n (x) + xν(1)
n (x) [1 + (µnx)2]−1 − µ−1

n [ν(1)
n (x)]−2} = s(1)

n (x),

say. This is our final separable approximation for sn(x). We find that the error, |sn−s(1)
n | is O(n−4)

as n→∞ for fixed x, and is O(x3) as x→ 0 for fixed n.
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The Mellin transform of s(1)
n (x) is given by

s̃(1)
n (z) = −µ−z−2

n ũ1(z) + µ−z−3
n ũ2(z), (33)

where

ũ1(z) =
∫ ∞
0

xz−1 tan−1 x dx and

ũ2(z) =
∫ ∞
0

xz−1{tan−1 x− x(1 + x2)−1} tan−1 x dx. (34)

ũ1(z) is analytic for −1 < σ < 0. Within this range, we can integrate by parts, giving

ũ1(z) =
−1
2z

∫ ∞
0

y(z−1)/2 dy
1 + y

=
π

2z sin [π(z − 1)/2]
, (35)

using a standard integral. Also, since the integrand in (34) is O(xz+3) as x→ 0, we see that ũ2(z)
is analytic for −4 < σ < 0.

Summing over n, using (30) and (33), gives

S̃∞M (z) ' −ψM (z + 2)ũ1(z) + ψM (z + 3)ũ2(z), (36)

where, by definition,

ψM (z) = π
∞∑

n=M+1

µ−zn = π1−z(2z − 1)ζ(z)− π
M∑
n=1

µ−zn , (37)

and we have used (19). ψM (z) is analytic for all z, apart from a simple pole at z = 1;

ψM (z) ' (z − 1)−1 + γ + log (4/π)− π
M∑
n=1

µ−1
n near z = 1. (38)

Note that S̃∞M (σ + iτ) decays exponentially as |τ | → ∞, whence Theorem 1 will yield an
asymptotic expansion for S∞M (x). In order to invert S̃∞M (z), we start with the inversion contour
to the left of z = 0, and then move it further to the left; thus, we are interested in singularities
in σ < 0. Consider the first term on the right-hand side of (36). From (35), we see that ũ1(z) has
simple poles at z = −1,−3, . . . (and other poles in σ ≥ 0); near z = −1, we have

ũ1(z) ' (z + 1)−1 + 1. (39)

Hence, ψM (z + 2)ũ1(z) has a double pole at z = −1; (38) and (39) give

−ψM (z + 2)ũ1(z) ' −(z + 1)−2 − (z + 1)−1

{
1 + γ + log (4/π)− π

M∑
n=1

µ−1
n

}
near z = −1, giving terms proportional to x log x and x in S∞M (x). The next singularity at z = −3
gives a term in x3, but we have already made errors of this order when we replaced sn(x) by s(1)

n (x).
The second term on the right-hand side of (36) is analytic for −4 < σ < 0, apart from a simple pole
at z = −2, and so this gives a term proportional to x2. Combining these results, using Theorem 1,
gives

S∞M (x) = x log x− x
{

1 + γ + log (4/π)− π
M∑
n=1

µ−1
n

}
+O(x2)

as x→ 0. Finally, using (30) and (31), we obtain

S(x) = x log x− x{1 + γ + log (4/π)}+O(x2), (40)

as x→ 0, and then f(x) is given by (29). Note that, as expected, this result does not depend on M
(see (30)).
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5 Non-separable series: a problem of Linton and Evans

In this section, we consider a water-wave problem described in §1 and solved by Linton & Evans [9].
The geometry is shown in Fig. 1. They calculate a certain complex reflection coefficient; its argu-
ment is proportional to the right-hand side of their equation (3.34), which we write as follows:

E(h) = tan−1
(
α−1

√
l2 − k2

0

)
− tan−1 (l/α)− 1

2π − (α/π)L0 + T, (41)

where L0 = c log (h/c) + d log (h/d) and

T =
∞∑
n=1

{
tan−1

(
α√

l2 + n2π2/c2

)
− tan−1

(
α√

l2 + k2
n

)
+ tan−1

(
α√

l2 + κ2
n

)}
.

The parameters d, l and K are fixed. k0 is defined by (5)2 and α =
√
k2 − l2, where k is defined

by (5)1. We have c = h− d > 0 and K < k0 < l < k. The quantities kn solve (20) whereas κn are
the positive real roots of

K + κn tanκnd = 0, n = 1, 2, . . . ,

satisfying (n − 1
2)π < κnd < nπ. Note that we use k0, kn and κn where Linton and Evans use κ,

κn+1 and kn, respectively; also, there is an additional term of (−π/2) in (41) which was omitted
by Linton & Evans [9] (Linton, private communication).

Example 4. Find
lim
h→∞

E(h) = E∞, (42)

say, where E(h) is defined by (41). This corresponds, physically, to solving the same water-wave
problem as Linton & Evans [9] but for the geometry shown in Fig. 2 in which the water is infinitely
deep.

Note that, as h varies, so too do k0, kn and c; all other parameters remain unchanged. To begin
with, (5)2 shows that

k0h ∼ Kh(1 + 2e−2Kh) as Kh→∞,

so we can replace k0 by K in the first term of E(h), as h → ∞. It is elementary to show that
L0 = d(log h+ 1− log d) + o(1) as h→∞. For T , we note that the arguments of the three inverse
tangents behave like

αc

nπ
,

αh

nπ
and

αd

nπ
,

respectively, as n→∞, and so we can write T = T1 − T2 + T3, where

T1 =
∞∑
n=1

{
tan−1

(
α√

l2 + n2π2/c2

)
− αc

nπ

}
, (43)

T2 =
∞∑
n=1

{
tan−1

(
α√

l2 + k2
n

)
− αh

nπ

}
, (44)

T3 =
∞∑
n=1

{
tan−1

(
α√

l2 + κ2
n

)
− αd

nπ

}
, (45)

and we have used c− h+ d = 0. We note that T1 is a separable series, T2 is a non-separable series
and T3 is independent of h. So, at this stage, we have

E(h) = − tan−1 [α(l2 −K2)−1/2]− tan−1 (l/α)
− (αd/π)(log h+ 1− log d) + T1 − T2 + T3 + o(1) (46)

as h→∞, since tan−1X + tan−1 (1/X) = π/2. We examine T1 and T2 in turn.
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5.1 Deep-water behaviour of T1

From (43), we have T1 = f(π/c), where f(x) is defined by (9) with cn = 1, µn = n and

u(x) = tan−1
(

α√
l2 + x2

)
− α

x
. (47)

Proceeding as in §3, we obtain f̃(z) = ζ(z)ũ(z), where ũ(z) is analytic for 1 < σ < 3. We must
find the singularities of ũ(z) in 0 ≤ σ ≤ 1; singularities in σ < 0 will lead to terms that are o(1) as
h→∞.

For 1 < σ < 3, we integrate by parts to remove the inverse tangent, giving

f̃(z) = (α/z)ζ(z)ũ1(z), (48)

where

ũ1(z) =
∫ ∞
0

xz
{

x√
x2 + l2 (x2 + k2)

− 1
x2

}
dx (49)

and we have used the relation k2 = α2 + l2. ũ1(z) is also analytic for 1 < σ < 3. To find the
singularities of ũ1(z) in σ ≤ 1, write

ũ1(z) = ũ2(z) + ũ3(z) + ũ4(z), (50)

where

ũ2(z) =
∫ β

0

xz+1

√
x2 + l2 (x2 + k2)

dx, ũ3(z) = −
∫ β

0
xz−1 dx,

ũ4(z) =
∫ ∞
β

xz
{

x√
x2 + l2 (x2 + k2)

− 1
x2

}
dx

and β is an arbitrary positive number. ũ2(z) is analytic for σ > −2. ũ3(z) is analytic for σ > 1,
and can be continued analytically into the whole plane, apart from a simple pole at z = 1; near
z = 1, we have

ũ3(z) ' −(z − 1)−1 − log β.

ũ4(z) is analytic for σ < 3. Hence, ũ1(z) is analytic for −2 < σ < 3, apart from a simple pole at
z = 1; near z = 1, we have

ũ1(z) ' −(z − 1)−1 +Q,

where
Q = − log β + ũ2(1) + ũ4(1). (51)

Q can be evaluated explicitly (see Appendix A):

Q = log (2/l) + (k/α) log [(k − α)/l]. (52)

Returning to (48), we see that f̃(z) has a double pole at z = 1, a simple pole at z = 0, and is
otherwise analytic in −2 < σ < 3; near z = 1,

f̃(z) ' α(1 + w)−1(w−1 + γ)(−w−1 +Q) ' α{−w−2 + w−1(Q− γ + 1)},

where w = z − 1, whereas near z = 0,

f̃(z) ' (α/z)ζ(0)ũ1(0) = −1
2z
−1 tan−1 (α/l),
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after evaluating ũ1(0) (see Appendix B). Moreover, it is clear that the analytic continuation of
ũ1(z) is bounded as |τ | → ∞ for −2 < σ < 3. Hence, (48) and (15) imply that we can move the
inversion contour to the left of z = 0, so that Theorem 1 yields the asymptotic approximation

f(x) = (α/x) log x+ (α/x)(Q− γ + 1)− 1
2 tan−1 (α/l) + o(1)

as x→ 0. Replacing x by π/c, with c = h− d, and expanding for large h gives

T1 = (α/π){−h log h+ h(log π +Q− γ + 1) + d(log (h/π)−Q− γ)}
−1

2 tan−1 (α/l) + o(1) (53)

as h→∞, where Q is given by (52).

5.2 Deep-water behaviour of T2

T2, defined by (44), is a non-separable series. As in Example 3, we expect the leading behaviour
to be given by (44) with knh replaced by µn = (n− 1

2)π. So, we consider

T∞(1/h) =
∞∑
n=1

{
tan−1

(
α√

l2 + µ2
n/h

2

)
− αh

nπ

}
. (54)

We have

T∞(x) =
∞∑
n=1

{
tan−1

(
α√

l2 + µ2
nx

2

)
− α

µnx

}
+
α

x

∞∑
n=1

(
1
µn
− 1
nπ

)
;

the second sum is (2/π) log 2. Hence,

T∞(x) = (2α/(πx)) log 2 + f(x),

where f(x) is the separable series (9), with cn = 1, µn = (n− 1
2)π and u(x) is again given by (47).

We obtain
f̃(z) = π−z(2z − 1)ζ(z)ũ(z) = (α/z)π−z(2z − 1)ζ(z)ũ1(z),

where ũ1(z) is defined by (49) and we have used (19). Note that, unlike the function defined by
(48), here, f̃(z) does not have a pole at z = 0 (because 2z−1 has a simple zero at z = 0). However,
it does have a double pole at z = 1; near z = 1,

f̃(z) ' α(1 + w)−1π−1(1− w log π)(1 + 2w log 2)(w−1 + γ)(−w−1 +Q)
' (α/π){−w−2 + w−1(Q− γ + 1 + log π − 2 log 2)},

where w = z − 1. Hence

T∞(x) = (α/π){x−1 log x+ x−1(Q− γ + 1 + log π)}+ o(1)

as x→ 0, and so, as h→∞, we obtain

T∞(1/h) = −(α/π)h log h+ (α/π)h(Q− γ + 1 + log π) + o(1). (55)

We now examine the difference between T2 and T∞(1/h). Using (44) and (54), we define

T4 = T2 − T∞(1/h) =
∞∑
n=1

tn, (56)

12



where

tn = tan−1

(
α√

l2 + k2
n

)
− tan−1

(
α√

l2 + µ2
n/h

2

)
.

Clearly, tn = o(1) as h→∞, for fixed n, so we have

T4 =
∞∑

n=M+1

tn + o(1) as h→∞,

where M is fixed (cf. (30)). Writing knh = µn + νn, as in (25), we have

l2 + k2
n ' ∆2

n + 2νnµn/h2

as |νn/µn| is small, where ∆2
n = l2 + µ2

n/h
2. Hence

α√
l2 + k2

n

' α

∆n

(
1− νnµn

∆2
nh

2

)
.

Then, using the Taylor approximation (32), we find that

tn '
−ανnµn

h2∆n(∆2
n + α2)

.

Finally, we use the approximation (27), νn ' ν(1)
n = tan−1 (µn/(Kh)), giving

tn ' −(α/h)t(1)
n (1/h),

where

t(1)
n (y) =

µny tan−1 (µny/K)√
l2 + µ2

ny
2 (k2 + µ2

ny
2)

(57)

and we have used k2 = α2 + l2. So, we have approximated T4 by a separable series:

T4 = −(α/h)T∞M (1/h) + o(1) (58)

as h→∞, where

T∞M (x) =
∞∑

n=M+1

t(1)
n (x)

and t
(1)
n (x) is defined by (57). We now take the Mellin transform of T∞M (x). Since t

(1)
n (x) ∼

1
2π(µnx)−2 as x → ∞, we see that T̃∞M (z) is analytic in a strip β < σ < 2, for some β, so we can
take the inversion contour just to the left of σ = 2. We have

T̃∞M (z) = π−1ψM (z)ũ(z),

where ψM (z) is defined by (37) and

ũ(z) =
∫ ∞
0

yz tan−1 (y/K)√
y2 + l2 (y2 + k2)

dy

is analytic for −2 < σ < 2. Hence, T̃∞M (z) is analytic for −2 < σ < 2, apart from a simple pole at
z = 1; using (38), we have

T̃∞M (z) ' Lπ−1(z − 1)−1

13



near z = 1, where

L = ũ(1) =
∫ ∞
0

y tan−1 (y/K)√
y2 + l2 (y2 + k2)

dy. (59)

(The evaluation of L will be discussed below.) Hence, as the conditions of Theorem 1 are easily
seen to be satisfied, we obtain

T∞M (x) = L/(πx) + o(1)

as x→ 0, whence (58) gives T4 = −(α/π)L+ o(1) as h→∞. Finally, we combine this result with
(55) and (56) to give

T2 = (α/π){−h log h+ h(Q− γ + 1 + log π)− L}+ o(1) as h→∞. (60)

5.3 Evaluation of L

L, defined by the integral (59), cannot be evaluated in terms of elementary functions. However, it
can be expressed in terms of dilogarithms [8]. We find that (see Appendix C)

αL = 1
4π

2 − 1
2A log(k +K) + 1

2A log(k −K)− δ tan−1(ψ/α)− L (61)

where ψ =
√
l2 −K2,

L = Li2(e−A, δ)− Li2(e−A, π + δ), (62)

A = sinh−1(α/l) = − log((k − α)/l) and δ = tan−1(ψ/K). (63)

Here, the dilogarithm is defined by

Li2(z) = −
∫ z

0
log(1− w)

dw
w

(64)

for complex z, and

Li2(r, θ) = Re
{

Li2(reiθ)
}

= −1
2

∫ r

0
log(1− 2x cos θ + x2)

dx
x
.

5.4 Synthesis

From (53) and (60), we have

T1 − T2 = (α/π){L+ d(log h− log π −Q+ γ)} − 1
2 tan−1(α/l) + o(1), (65)

as h→∞, so that the terms involving h and h log h in (53) and (60) cancel. Moreover, when (65) is
substituted into (46), we see that the terms in log h cancel, leaving only bounded terms as h→∞.
Specifically, from (42), we obtain

E∞ = (αd/π){log(d/π) + γ − 1−Q}+ αL/π + T3 − 1
2π − tan−1(α/ψ) + 1

2 tan−1(α/l).

Now, substituting for Q and L from (52) and (61), respectively, we obtain our final expression for
E∞, namely

E∞ =
αd

π

{
log

ld

2π
+ γ − 1

}
− kd

π
log

k − α
l
− tan−1 α

ψ
− 1

2
tan−1 l

α

+ T3 −
1
π
L+

1
2π

log
k − α
l

log
k +K

k −K
− 1
π

tan−1 ψ

K
tan−1 ψ

α
, (66)
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where ψ =
√
l2 −K2, T3 is the series (45) and L is the combination of dilogarithms given by (62).

The above expression for E∞ bears little resemblance to E(h); indeed, it is perhaps surprising
to see terms involving products of logarithms and products of inverse tangents. Nevertheless, the
result can be checked by solving the deep-water problem (using the geometry in Fig. 2) directly.
This has been done by Parsons [15], using the Wiener-Hopf technique, as used for a similar problem
by Greene & Heins [7]; the two approaches yield the same result. In fact, the present work began
with the intention of confirming (66), but it seems that the methods devised may have wider
applicability.

Appendix A. Evaluation of Q

From the definition (51), we have

Q = − log β +
∫ β

0

y2√
y2 + l2(y2 + k2)

dy +
∫ ∞
β

(
y2√

y2 + l2(y2 + k2)
− 1
y

)
dy

= − log β +
∫ β

0

dy√
y2 + l2

+
∫ ∞
β

(
1√

y2 + l2
− 1
y

)
dy − k2Q1

= log(2/l)− k2Q1,

where
Q1 =

∫ ∞
0

dy√
y2 + l2(y2 + k2)

=
1
l2

∫ ∞
0

dθ
cosh θ + a

,

using the substitution y = l sinh 1
2θ, with

a = 2k2/l2 − 1; (A 1)

a > 1 since k2 > l2. Hence, using [6, eqn. 3.513(2)],

Q1 = −(αk)−1 log[(k − α)/l],

whence the result (52) follows.

Appendix B. Evaluation of ũ1(0)

From (50), and the analytic continuation of ũ3(z),

ũ1(0) = β−1 + ũ2(0) + ũ4(0) =
∫ ∞
0

y√
y2 + l2(y2 + k2)

dy

=
∫ ∞
l

dx
x2 + α2

=
1
α

tan−1 α

l
,

where we have made the substitution y =
√
x2 − l2.

Appendix C. Evaluation of L

L is defined by (59). Noting that the integrand is even, and putting y = l sinh θ, we obtain

L =
1
2

∫ ∞
−∞

g(θ) tan−1
(
l

K
sinh θ

)
dθ,
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where g(θ) = l sinh θ (l2 sinh2 θ + k2)−1. Now, consider the identity

tan−1(pt) + tan−1(p/t) = tan−1
(
p(t+ 1/t)

1− p2

)
.

Put t = ieθ and p = −iq, where q = (K/l) + i
√

1−K2/l2 = eiδ, say (so that |q| = 1 and δ is given
by (63)2). Hence

L =
1
2

∫ ∞
−∞

g(θ) tan−1(qeθ) dθ +
1
2

∫ ∞
−∞

g(θ) tan−1(−qe−θ) dθ.

The substitution θ = −ϕ shows that these two integrals are equal, whence

L =
∫ ∞
−∞

g(θ) tan−1(qeθ) dθ.

(One can check that L is real, even though q is not.) Put z = eθ, whence

L =
2
l

∫ ∞
0

(z2 − 1) tan−1(qz)
z4 + 2az2 + 1

dz,

where a is defined by (A 1). If we define A by α = l sinhA (so that k = l coshA), we find that the
denominator vanishes at z2 = −e±2A. Then, splitting into partial fractions gives L = (L+−L−)/α,
where

L± =
∫ ∞
0

e±A tan−1(qz)
z2 + e±2A

dz.

We have L− = I(qe−A), where

I(X) =
∫ ∞
0

tan−1(Xy)
y2 + 1

dy =
∫ π/2

0
tan−1(X tan θ) dθ.

For L+, note that tan−1(qz) = 1
2π − tan−1(q/z), since 1/q = q, the complex conjugate of q; then,

the substitution z = 1/w shows that

L+ = 1
4π

2 − I(qe−A),

whence
αL = 1

4π
2 − I(qe−A)− I(qe−A) = 1

4π
2 − 2Re {I(qe−A)}. (C 1)

To evaluate I(x), we follow Lewin [8, p. 224]. Differentiation gives

I ′(x) = (x2 − 1)−1 log x.

Then, splitting into partial fractions and integrating, we obtain

I(x) = −1
2

∫ x

0

(
1

1− y
+

1
1 + y

)
log y dy,

since I(0) = 0. An integration by parts then gives

I(x) = −1
2{log x log[(1 + x)/(1− x)]− Li2(x) + Li2(−x)},

where the dilogarithm is defined by (64). We obtain the final result (61) after using this result
in (C 1); note that

log

(
1 + qe−A

1− qe−A

)
=

1
2

log
k +K

k −K
+ i tan−1

(√
l2 −K2

α

)
.
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