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Abstract

The problem of an elastic half-space with stress-free surface and a crack of arbitrary
shape with prescribed displacements or tractions is reduced to an equivalent system of
integral equations on the crack. For a pressurized crack in a plane perpendicular to the
free surface, a scalar integral equation is derived. In properly chosen function spaces,
unique solvability of the integral equation and regularity of solutions for regular data
are proven.
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1 Introduction

The problem of a crack terminating at a boundary has been attacked by several authors and
different methods. The general method of [3], [5], [18], [21] and others leads typically to
systems of integral equations involving layer potentials on the crack and on the boundary.
In special cases one may expect simplifications due to a particular simple geometry and/or
simplified boundary conditions.

The simplest case of a pressurized plane crack in an unbounded elastic solid leads to a
scalar integral equation, which is investigated e.g. in [4], [16] and [21]. Special geometries of
plane cracks are treated in [6], [12] and [13].

Now, consider a body containing a crack, where the crack does not intersect the body’s
boundary. The interaction between the crack and the boundary may be resolved by a version
of Schwartz’s alternating process, in which one alternates between (i) solving a problem in
the uncracked body and (ii) solving a problem for the crack in an unbounded solid. The
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convergence of the process is proved in [5] for a plane crack, provided that the distance
between the crack and the boundary is sufficiently large.

Here we use another method. We derive the integral equations starting from Green’s
function for the uncracked body. Then a system of integral equations on the crack only
arises. Although the method can be applied for general domains explicit formulae can be
expected only in cases when the Green’s function is known analytically. For the half-space
one can use Mindlin’s fundamental solution. This is carried out in Section 2.

In Section 3 we make the additional assumption that the crack-plane is orthogonal to the
free surface. Then the system of integral equations decouples and a scalar integral equation
remains. Its kernel is given by (3.5).

Section 4 is devoted to the scalar integral equation. It is shown that for each given
pressure a uniquely determined jump of the normal displacement component exists, provided
data and solution are in appropriate spaces. In the proof, we construct a homotopy through
Fredholm operators connecting the given operator with a simpler one which has index zero.
In contrast to the works [3] and [21] here no G̊arding inequality is known up to now. A
regularity result is given in Theorem 4.3. It states that in a certain interval of the smoothness
parameter, better data give rise to better solutions. This result cannot be improved in the
sense that it definitely fails for each larger interval.

2 The Half-Space with Stress-Free Surface

Consider a homogeneous isotropic elastic half-space y > 0 (x, y, z are cartesian coordinates),
whose surface y = 0 is stress free. For given body forces f , one has to solve the following
boundary-value problem.

Problem B. Find u where

∆∗u = µ∆u + (λ + µ) grad divu = f in R3
+, i.e. y > 0, (2.1)

T (u) = λ(divu)n + 2µ
∂u

∂n
+ µn × curlu = 0 on ∂R3

+, i.e. y = 0, and (2.2)

u = o(1), ∇u = o(|x|−1) as |x| → ∞. (2.3)

Here, ∆∗ denotes the Lamé operator, λ and µ are the Lamé moduli, T is the traction operator

and n is the exterior unit normal. In terms of cartesian coordinates, the traction vector has
components

(T (u))i = njτij(u),

where
τij(u) = cijklekl(u),

cijkl = λδijδkl + µ(δikδjl + δilδjk),

eij(u) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.4)
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and, as usual, repeated subscripts are summed from 1 to 3. Explicitly, we have

(T (u))i = λni
∂uk

∂xk

+ µnj

(
∂ui

∂xj

+
∂uj

∂xi

)
.

For all given f ∈ H−1
comp(R

3
+) the existence of a unique solution u ∈ H1

loc(R
3
+) is well

known [9]. For simplicity we take the notation Hs(R3
+) etc. also for spaces of vector-valued

functions instead of the notation [Hs(R3
+)]3, indicating that each component belongs to the

given function space. Further details on the function spaces are given in the Appendix.
When (2.1) is replaced by

∆∗u = 0, (2.5)

we denote the corresponding homogeneous boundary-value problem by B0.
The solution of Problem B can be expressed explicitly by means of a special fundamental

solution G with matrix-components Gij. Gij(x,x′) is the i-th component of displacement
at x due to a point force acting at x′ in the j-th direction, where y = 0 remains stress-free.
This fundamental solution was first calculated by Mindlin in 1936 [15].

Now we give the formulae. Gij can be written as

Gij = GF
ij + GC

ij, (2.6)

where GF
ij denotes the corresponding solution for the full space (Kelvin’s fundamental solu-

tion for the Lamé operator)

AGF
ij =

κ

R
δij +

1

R3
(xi − x′

i)(xj − x′

j),

A = 16πµ(1 − ν), κ = 3 − 4ν, ν = 1
2
λ/(λ + µ)

is Poisson’s ratio, R = |x − x′|, x = (x, y, z) = (x1, x2, x3) and x′ = (x′, y′, z′) = (x′

1, x
′

2, x
′

3).
Note that GF

ij is a convolution kernel since it depends only on the difference between coor-
dinates.

The additional, ‘correction’ term GC
ij is more complicated. It is a function of

R+ =
√

(x − x′)2 + (y + y′)2 + (z − z′)2,

the distance between x and the mirror image of x′ with respect to the plane y = 0. It also
depends on the combinations y + y′, y − y′ and yy′, as well as x − x′ and z − z′. Here are
the explicit formulae:

AGC
11 =

1

R+

+ κ
(x − x′)2

R3
+

+ 2
yy′

R3
+

[
1 −

3(x − x′)2

R2
+

]

+
D

(R+ + y + y′)

[
1 −

(x − x′)2

R+(R+ + y + y′)

]

AGC
33 =

1

R+

+ κ
(z − z′)2

R3
+

+ 2
yy′

R3
+

[
1 −

3(z − z′)2

R2
+

]

+
D

(R+ + y + y′)

[
1 −

(z − z′)2

R+(R+ + y + y′)

]
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AGC
13 = AGC

31 =
(x − x′)(z − z′)

R+

[
κ

R2
+

−
6yy′

R4
+

−
D

(R+ + y + y′)2

]

A(GC
12 + GC

21) = 2κ
(x − x′)(y − y′)

R3
+

A(GC
12 − GC

21) = 2
(x − x′)

R+

[
6yy′(y + y′)

R4
+

−
D

R+ + y + y′

]

A(GC
32 + GC

23) = 2κ
(z − z′)(y − y′)

R3
+

A(GC
32 − GC

23) = 2
(z − z′)

R+

[
6yy′(y + y′)

R4
+

−
D

R+ + y + y′

]

AGC
22 =

8(1 − ν)2 − κ

R+

+
κ(y + y′)2 − 2yy′

R+
3 +

6yy′(y + y′)2

R5
+

where D = 4(1 − ν)(1 − 2ν). Note the behaviour of G at infinity,

G(x;x′) = O(|x′|−1), ∇G(x;x′) = O(|x′|−2) as |x′| → ∞, (2.7)

uniformly for x in a compact subset of R3
+.

The solution u to Problem B is then given by the formula

u(x′) =
∫

R3
+

G(x;x′)f(x) dx = Gf ,

say. Obviously, the integral operator G is linear and continuous,

G : C∞

0 (R3
+) −→ C∞(R3

+).

It extends continuously to the scale of Sobolev spaces.

Theorem 2.1 G defines a continuous mapping

G : Hs
comp(R

3
+) −→ Hs+2

loc (R3
+) for each s > −3

2
.

Proof Problem B is an elliptic boundary-value problem in the half-space. The homoge-
neous problem B0 only has the trivial solution. Therefore, according to the general theory
of elliptic boundary-value problems ([1], [19]), we have the following estimate: for each
ϕ ∈ C∞

0 (R3
+) and each s > −3

2
there is a constant c such that

‖ϕGf |Hs+2(R3
+)‖ ≤ c ‖f |Hs(R3

+)‖

for all f ∈ Hs
comp(R

3
+). This is the stated continuity property.

Let Ω be an open subset of R3 with piecewise smooth boundary satisfying a two-sided
cone condition. Then the symmetric bilinear form associated with ∆∗ ([9]) is given by

ΦΩ(u,v) = λ
∫

Ω
divu divv + 2µeij(u)eij(v),
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where u,v ∈ H1(Ω) and eij is defined by (2.4).
Green’s formulae have the form

ΦΩ(u,v) =
∫

Ω
u∆∗v + 〈T (v), γ(u)〉 (2.8)

∫

Ω
(u∆∗v − v∆∗u) = 〈T (v), γ(u)〉 − 〈T (u), γ(v)〉 (2.9)

where u,v ∈ H1(Ω), ∆∗u, ∆∗v ∈ L2(Ω) and γ denotes the ordinary trace operator at ∂Ω.
Moreover, 〈·, ·〉 denotes the extension of the standard bilinear pairing of L2(∂Ω) to the space
H−s(∂Ω)×Hs(∂Ω). Note that at first the formulae (2.8) and (2.9) make sense only for twice
continuously differentiable functions, but they extend from this dense subspace by continuity.

We recall the following well-known result.

Lemma 2.1 The trace operator γ gives a linear and continuous mapping

γ : Hs
loc(Ω) −→ H

s−1/2
loc (∂Ω) for each s > 1

2
.

If we know in addition that ∆∗u ∈ L2(Ω) then the restriction on s can be weakened,
i.e. Lemma 2.1 is then true for all s > −1

2
.

Denote by D(∆∗) the subspace of L2(Ω) of all u such that ∆∗u ∈ L2(Ω) and consider
Hs(Ω) ∩ D(∆∗) for s > 1

2
with its natural topology. Then we have the following lemma.

Lemma 2.2 The traction operator T gives by (2.8) a linear and continuous mapping

T : Hs
loc(Ω) ∩ D(∆∗) −→ H

s−3/2
loc (∂Ω) for each s > 1

2
.

Proof For each s > 3
2

the assertion is clear immediately since T is a composition of a first
order differentiation and restriction. For each s, with 1

2
< s < 3

2
and w ∈ H−s+3/2

comp (∂Ω) let
v ∈ H−s+2

comp (Ω) be such that w = γv. Then (2.8) gives

〈T (u), γ(v)〉 = ΦΩ(u,v) −
∫

Ω
v∆∗u

which shows that T (u) defines a continuous linear functional on the dual of H
s−3/2
loc (∂Ω).

The case s = 3
2

follows by interpolation.

Now, let Ω be an open subset of R3
+ with smooth boundary. We seek solutions of (2.5)

in Ω, subject to (2.2) and (2.3). We derive in the standard manner a version of Betti’s
representation formula by applying Green’s formula to u and to Mindlin’s fundamental
solution G with respect to a domain Ω \ Bǫ where Bǫ is a ball of radius ǫ with centre at a
distinguished point x′. With ǫ → 0 we get for any solution u ∈ H1

loc(Ω)

pu(x′) =
∫

∂+Ω

{
(TxG(x;x′))tu(x) − G(x;x′)T (u(x))

}
dsx (2.10)

where we have set ∂+Ω = ∂Ω ∩ R3
+ in order to distinguish the boundary in R3

+ from the
boundary in R3, and

p =





1 for x′ ∈ Ω,
1
2

for x′ ∈ ∂+Ω,
0 for x′ 6∈ Ω.
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At first (2.10) makes sense for sufficiently smooth functions u. Due to Lemma 2.1, Lemma 2.2
and Theorem 2.1, the representation remains valid for u ∈ Hs

loc(Ω) ∩ D(∆∗) for s > 1
2
.

The right-hand side of (2.10) involves operators of potential type, which map functions
or distributions on ∂+Ω into those on Ω. Denote by P (G) the operator

P (G)(w)(x′) =
∫

∂+Ω
G(x;x′)w(x) dsx

and by P (TG) the operator

P (TG)(w)(x′) =
∫

∂+Ω
(TxG(x;x′))tw(x) dsx

where w is given on ∂+Ω.

Lemma 2.3 The operator P (G) gives a linear and continuous mapping

P (G) : Hs
comp(∂+Ω) −→ H

s+3/2
loc (Ω) for each s > −1.

The operator P (TG) gives a linear and continuous mapping

P (TG) : Hs
comp(∂+Ω) −→ H

s+1/2
loc (Ω) for each s > 0.

According to Lemma 2.1, Lemma 2.2 and Lemma 2.3 the operators occurring on the
right-hand side of (2.10) define continuous operators

P (G) ◦ T : Hs
comp(Ω) −→ Hs

loc(Ω)

P (TG) ◦ γ : Hs
comp(Ω) −→ Hs

loc(Ω)

for all s > 1
2
. Moreover, we have the following result.

Lemma 2.4 The following compositions of operators are continuous:

γ ◦ P (G) : Hs(∂+Ω) −→ Hs+1(∂+Ω) for s > −1,
T ◦ P (G) : Hs(∂+Ω) −→ Hs(∂+Ω) for s > −1,

γ ◦ P (TG) : Hs(∂+Ω) −→ Hs(∂+Ω) for s > 0, and

T ◦ P (TG) : Hs(∂+Ω) −→ Hs−1(∂+Ω) for s > 0.

Remark 2.1 When the intersection ∂Ω ∩ ∂R3
+ is empty, all the operators in Lemma 2.4

are pseudo-differential operators of order −1, 0, 0 and 1, respectively. This is no longer true
near intersection points, as Mellin type operators also occur. These will be analysed in the
proofs of Theorems 4.1 and 4.2.

Now it is easy to derive from (2.10) representation formulae for domains with cracks. Let
Γ ⊂ R3

+ be a bounded submanifold with boundary of a smooth two-dimensional surface S,
which intersects ∂R3

+ transversally. We may assume that each ball BR of radius R and centre
at the origin is divided by S into the two domains Ω+

R and Ω−

R which satisfy the two-sided
cone condition. The orientation of the normal n on S is taken with respect to Ω+

R, and so
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points into Ω−

R. Adding up the equations (2.10) for the domains Ω+
R and Ω−

R we obtain for
each x′ ∈ BR \ S

u(x′) =
∫

S

{
(TxG(x;x′))t[u(x)] − G(x;x′)〈T (u)(x)〉

}
dsx

+
∫

∂+BR

{
(TxG(x;x′))tu(x) − G(x;x′)T (u)(x)

}
dsx

where

[u(x)] = γ+u(x) − γ−u(x),

〈T (u)(x)〉i = nj(x)
{
(τij(u))+ + (τij(u))−

}

and the superscripts + and − denote limits taken from Ω+
R and Ω−

R, respectively. The
integrands in the first integral vanish outside Γ so that we can replace S by Γ. When
R → ∞, the integrals over ∂+BR vanish according to (2.3) and (2.7) and so we obtain

u(x′) =
∫

Γ

{
(TxG(x;x′))t[u(x)] − G(x;x′)〈T (u)(x)〉

}
dsx, (2.11)

for x′ ∈ BR \ Γ. For x′ ∈ Γ we get

1

2
〈u(x′)〉 =

∫

Γ

{
(TxG(x;x′))t[u(x)] − G(x;x′)〈T (u)(x)〉

}
dsx, (2.12)

where
〈u(x)〉 = γ+u(x) + γ−u(x).

The integral equation (2.12) can be used for solving the Dirichlet problem in a half-space
with a thin rigid inclusion Γ:

Problem D. Find u such that

∆∗u = 0 in R3
+ \ Γ

T (u) = 0 on ∂R3
+

γ±u = g± on Γ±, and
u = o(1), ∇u = o(|x|−1) as |x| → ∞.

Here, Γ+ and Γ− are the two sides of the surface Γ. We have the following theorem.

Theorem 2.2 Let g+, g− ∈ H1/2(Γ), g+ − g− = [g] ∈ H1/2(R2
+, Γ). Then

u ∈ H̃1
loc(R

3
+ \Γ) solves Problem D iff u is given by (2.11) where 〈T (u)(x)〉 ∈ H−1/2(R2

+, Γ)
solves the integral equation

1

2
〈g(x′)〉 =

∫

Γ

{
(TxG(x;x′))t[g(x)] − G(x;x′)〈T (u)(x)〉

}
dsx, x′ ∈ Γ. (2.13)

In the special case g+ = g− = g, say, (2.13) reduces to

∫

Γ
G(x;x′)〈T (u)(x)〉 dsx = −g(x′) x′ ∈ Γ.
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Equations of this type are discussed in [7] and [21] for thin rigid inclusions in full spaces.
For a loaded crack Γ in an elastic half-space, we must solve the following Neumann

problem:

Problem N . Find u such that

∆∗u = 0 in R3
+ \ Γ

T (u) = 0 on ∂R3
+

nj(x)(τij(u))± = h±

i on Γ±, and
u = o(1), ∇u = o(|x|−1) as |x| → ∞.

For this problem, we first have to calculate the tractions on the crack. From (2.11), we
obtain

1

2
[T (u)(x′)] =

∫

Γ

{
Tx′(TxG(x;x′))t[u(x)] − Tx′G(x;x′)〈T (u)(x)〉

}
dsx

for all x′ ∈ Γ, where

[T (u)(x)]i = nj(x)
{
(τij(u))+ − (τij(u))−

}
.

This is the integral equation for Problem N ; it is to be solved for the jump in the displacement
[u] across Γ. The equivalence of the integral equation and the original boundary-value
problem is given by the next theorem.

Theorem 2.3 Let h+, h− ∈ H−1/2(Γ), h+ + h− = 〈h〉 ∈ H−1/2(R2
+, Γ). Then

u ∈ H̃1
loc(R

3
+\Γ) solves Problem N iff u is given by (2.11) where [u(x)] ∈ H1/2(R2

+, Γ) solves

the integral equation

1

2
[h(x′)] =

∫

Γ

{
Tx′(TxG(x;x′))t[u(x)] − Tx′G(x;x′)〈h(x)〉

}
dsx, x′ ∈ Γ. (2.14)

Theorems 2.2 and 2.3 are valid for quite general cracks in the half-space. In fracture
mechanics, the most important problem is Problem N , in which the given tractions satisfy

h+ = −h− = h,

say, whence the integral equation (2.14) reduces to

∫

Γ
Tx′(TxG(x;x′))t[u(x)] dsx = h(x′). (2.15)

In the special case of a crack perpendicular to the free surface it is possible to calculate the
kernel of the integral equation (2.15) explicitly and hence to study its properties. This will
be done in the next section. We remark that equations similar to (2.15) are discussed in [21]
and [22] for cracks in full spaces.
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3 The Flat Perpendicular Crack

Let Γ be a flat crack in the xy-plane, so that the crack is in a plane perpendicular to the
free surface y = 0. Assume that the crack is pressurized, so that

h(x) =
µ

4π(1 − ν)
p(x)k, (3.1)

where k is a unit vector in the z-direction, p(x) is a given (scalar) function of x ∈ Γ and the
factor µ/(4π(1 − ν)) is inserted for later convenience.

According to Theorem 2.3 the displacement field u can be represented as an elastic
double-layer potential,

um(x′) = cijkl

∫

Γ
[ui(x)]nj(x)

∂

∂xk

Glm(x;x′) dsx.

Computing the corresponding tractions on Γ gives the integral equation (2.15). It turns out
that for the present geometry the problem decouples. Moreover, for a pressurized crack only
[u3] is non-zero. It will be determined from a scalar integral equation.

In the solid, i.e. for y′ > 0 and z′ 6= 0, or z′ = 0 and (x′, y′) ∈ CΓ, CΓ being the
complement of Γ in the plane, we get

um(x′) =
∫

Γ
[u3(x)]Σm(x;x′) dsx

where

Σm(x;x′) = λ
∂Gαm

∂xα

+ (λ + 2µ)
∂G3m

∂z

is the τ33 component of the stress tensor at x ∈ Γ due to a point force acting at x′ in the
m-th direction, and we have used the convention that repeated Greek subscripts are to be
summed over 1 and 2. Σm can be calculated from Mindlin’s solution; we find that it has the
form

8π(1 − ν)Σ1 = (x − x′)[A1 + B1(z − z′)2],

8π(1 − ν)Σ2 = A2 + B2(z − z′)2,

8π(1 − ν)Σ3 = (z − z′)[A3 + B3(z − z′)2],

with z = 0 on Γ. Just as in (2.6), we can write

Σm = ΣF
m + ΣC

m,

with corresponding decompositions for Am and Bm. The full-space solution is given by

AF
1 = (1 − 2ν)R−3, AF

2 = (y − y′)AF
1 , AF

3 = −AF
1 ; (3.2)

the expressions for BF
m are not required here. The half-space correction is given by

AC
1 =

κ(1 − 2ν)

R3
+

+
6y′

R5
+

[2νy′ − (1 − 2ν)y] −
D

R+(R+ + y + y′)2
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AC
2 =

(1 − 2ν)

R3
+

[κy − (3 + 4ν)y′] −
6(y + y′)

R5
+

[
2νy′2 − (1 − 2ν)yy′

]

−
D

R+(R+ + y + y′)2

AC
3 =

(5 − 4ν)(1 − 2ν)

R3
+

+
6y′

R5
+

[2νy′ − (3 − 2ν)y] −
3D

R+(R+ + y + y′)2

Next, we compute (T (u))3 at x′ ∈ Γ. We need to evaluate

λ
∂Σα

∂x′
α

+ (λ + 2µ)
∂Σ3

∂z′

on z′ = 0; denote this quantity by (cf. (3.1))

µ

4π(1 − ν)
KA(x,x′).

Then, from the structure of Σm, we have

2µKA(x,x′) = λ

[
(x − x′)

∂A1

∂x′
− A1 +

∂A2

∂y′

]
− (λ + 2µ)A3. (3.3)

In particular, using (3.2), we obtain

2µKF
A = (2µ − λ)AF

1 +

[
(x − x′)

∂AF
1

∂x′
+ (y − y′)

∂AF
1

∂y′

]
,

which gives
KF

A (x,x′) = R−3
1 , (3.4)

where R1 = |x − x′| =
√

(x − x′)2 + (y − y′)2. The calculation of KC
A is straightforward but

tedious; one merely substitutes the expressions for AC
m into (3.3). The final result is

KA(x,x′) =
1

R3
1

+
(−5 + 20ν − 24ν2)

R3
2

(3.5)

+
6

R5
2

[
3yy′ − 2ν(1 − 2ν)(y + y′)2

]
+

12(1 − ν)(1 − 2ν)

R2(R2 + y + y′)2
,

where R2 =
√

(x − x′)2 + (y + y′)2; this formula is in agreement with results in [6] and [10].
The integral equation to be solved is

∫

Γ
v(x)KA(x,x′) dx = p(x′), x′ ∈ Γ, (3.6)

where we have set v(x) = [u3(x)]. The kernel KA is seen to be a function of x − x′, and no
other x, x′ dependence, whereas the dependence on y, y′ is more complicated: it depends on
y − y′ but also on yy′ and y + y′. Let A denote the operator with kernel KA. Clearly, A
defines a linear and continuous mapping

A : C∞

0 (R2
+) −→ C∞(R2

+).
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The mapping properties of the operator A in Sobolev spaces are direct consequences of
Lemma 2.4. It gives a continuous operator

A : Hs
comp(R

2
+) −→ Hs−1

loc (R2
+) (3.7)

for s > 0.

4 Solvability and Regularity

In this section we study the integral equation (3.6). We start with a special case, in which
Γ = E, where

E = {(x, y, z) : −∞ < x < ∞, 0 < y < a, z = 0}. (4.1)

E is called an edge crack; it corresponds to a saw-cut of depth a in the surface of the elastic
half-space. A Fourier transform with respect to x leads to a two-dimensional boundary-value
problem in the y-z plane, with y > 0; references to the mechanics literature on this problem
are given in [14]. Our analysis of this problem is given in §4.1. Then, we consider the general
situation in which Γ is bounded. There are two cases, depending on whether the crack edge
∂Γ meets the free surface ∂R3

+, or not. In the latter case, we have the same situation as in
[16], since the integral operator in (3.6) and the pseudodifferential operator with symbol |ξ|
have a compact (in fact, smoothing) difference, provided that either y or y′ vary in a closed
subset of R2

+ not intersecting ∂R2
+. The former case, in which ∂Γ∩∂R2

+ 6= ∅, demands some
further efforts, due to the corner points at the free surface. This case is analysed in §4.2.

4.1 An edge crack

Consider the integral equation (3.6), in which Γ = E.

Theorem 4.1 Let Γ = E, defined by (4.1). The integral equation (3.6) has a unique solution

v in Hs(R2
+, E) for each given right-hand side p belonging to Hs−1(E), for all s, 0 < s < 1.

Proof

Step 1: Injectivity. The equation has at most one solution. Assuming the existence of a
non-trivial solution v to the homogeneous equation then P (TG)v solves the homogeneous
form of Problem N , contradicting the (assumed) uniqueness.

Step 2: A is Fredholm. In order to prove that the operator

A : Hs(R2
+, E) −→ Hs−1(E)

is Fredholm for all s, with 0 < s < 1, we appeal to the general theory in [17], [19] and [20].
Thus, we have to show the bijectiveness of the interior symbol and of the boundary symbol.
First, according to (3.7), A is a continuous linear operator that is elliptic in the interior, as
its symbol is equal to |ξ|.

Next, we prove the ellipticity of the boundary symbol. This is a family of operators
σ∂(A, ξ) depending on ξ ∈ R and acting on a half-axis (see [19], [20]), defined by

(σ∂(A, ξ)w) (y′) =
∫

∞

0
k̂A(ξ, y, y′) w(y) dy,

11



where we have set KA(x, x′, y, y′) = kA(x− x′, y, y′) and the caret denotes Fourier transform
with respect to x:

k̂A(ξ, y, y′) =
∫

∞

−∞

kA(x, y, y′) eiξx dx.

We have to show that the family of operators σ∂(A, ξ) is invertible for every ξ ∈ R. We
reduce this to the case ξ = 0 (i.e. to the Mellin symbol) by the following observations. From
(3.5), we have

kA(λx, λy, λy′) = λ−3kA(x, y, y′)

for any non-zero scalar λ, whence

k̂A(ξ, y, y′) = λ−2k̂A(λξ, y/λ, y′/λ).

Also, if we define
wλ(y) = w(λy)/λ,

we have
(σ∂(A, ξ)w) (y′) = (σ∂(A, λξ)wλ) (y′/λ).

Hence, by continuity in ξ and the above homogeneity, we can conclude that if σ∂(A, ξ) is
invertible at ξ = 0 then it is invertible for all ξ.

Next, we calculate the Mellin symbol M(A) := σ∂(A, 0). From the kernel KA of A we
obtain the kernel KM(A) by

KM(A)(y, y′) =
1

2
k̂A(0, y, y′) =

∫
∞

0
kA(x, y, y′) dx

Inserting (3.5), we obtain

KM(A)(y, y′) =
1

(y − y′)2
−

1

(y + y′)2
+

12yy′

(y + y′)4
,

where we have used the following elementary integrals:

∫
∞

−∞

dx

R3
1

=
2

(y − y′)2
,

∫
∞

−∞

dx

R3
2

=
2

(y + y′)2
,

∫
∞

−∞

dx

R5
2

=
4

3(y + y′)4
,

∫
∞

−∞

dx

R2(R2 + y + y′)2
=

2

3(y + y′)2
.

Note that KM(A) does not depend on ν. The integral operator M(A) with kernel KM(A)(y, y′)
arises in the two-dimensional (plain strain) problem of a line crack perpendicular to the free
surface of an elastic half-plane, y > 0 ([8]). M(A) admits a Mellin representation as follows.
Set kM(A)(y

′/y) = y2KM(A)(y, y′). Then

M(A)v(y′) =
∫

∞

0
KM(A)(y, y′)v(y) dy =

∫
∞

0
kM(A)

(
y′

y

)
v(y)

y

dy

y
,

which is a Mellin convolution. Thus, with the Mellin transform taken as

Mu ≡ ũ(z) =
∫

∞

0
tz−1u(t) dt,
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we obtain
M{y′M(A)v(y′)} = mA(z)ṽ(z),

where the Mellin symbol mA(z) is given by

mA(z) = k̃M(A)(z + 1) =
∫

∞

0
tzkM(A)(t) dt.

Explicit evaluation gives [14]

mA(z) =
2πz

sin πz

[
sin2

(
π
2
z
)
− z2

]
.

The Mellin symbol mA(z) is analytic in the strip |ℜz| < 2; within this strip, mA(z) has a
single (double) zero at z = 0. Hence, the Mellin symbol M(A) = σ∂(A, 0) is invertible and
thus the Fredholm property follows.

Step 3: The index vanishes. This property is shown by means of a homotopy through
Fredholm operators. At the end we arrive at an operator with index zero. Since the index
is unchanged under homotopies, the same is true for the original operator A.

The kernel of the operator A is exactly the value at t = 1 of

kt,ν(x − x′, y, y′) =
1

R3
1

+
(−5 + 20ν − 24ν2)

R3
2

+
6

R5
2

[
3tyy′ − 2ν(1 − 2ν)(y + y′)2

]
+

12(1 − ν)(1 − 2ν)

R2(R2 + y + y′)2
.

Consider a homotopy giving a connection between k1,ν and k0,1/2, taking, for instance, t as
the path parameter and ν(t) = 1

2
+ (ν − 1

2
)t. Note the particularly simple form of the kernel

at the end point t = 0,
k0,1/2(x − x′, y, y′) = R−3

1 − R−3
2 .

Along the homotopy the ellipticity conditions remain valid. In fact, the interior symbol,
which arises from the term R−3

1 only, is unaffected. It remains to consider the Mellin symbol.
Similar calculations as in Step 2 show that kt,ν has the associated Mellin operator with kernel

1

(y − y′)2
−

1

(y + y′)2
+

12tyy′

(y + y′)4
.

The corresponding Mellin symbol is mt(z), where

mt(z) =
2πz

sin πz

[
sin2

(
π
2
z
)
− 1 + t(1 − z2)

]
,

so that m1 = mA. This symbol is also analytic within the strip |ℜz| < 2. Moreover, it does
not vanish for 0 < |ℜz| ≤ 1 and for all 0 ≤ t ≤ 1. Therefore, the homotopy runs through
Fredholm operators only.

The operator A0 with kernel k0,1/2 in the half-space is closely connected with an operator
B with kernel KF

A (defined by (3.4)) in the full space. In fact, let l denote the extension
operator by symmetric reflection,

lu(x, y) =

{
u(x, y) if y > 0,
u(x,−y) if y < 0;
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the continuity of l,
l : Hs(R2

+) −→ Hs(R2) for 0 ≤ s < 1

is well known [11]. Then

A0u(x, y) =
∫

∞

−∞

∫
∞

0

(
1

R3
1

−
1

R3
2

)
u(x′, y′) dx′ dy′ = Blu(x, y)

for y > 0. Since Blu is symmetric we see that lA0 = Bl, i.e. the diagram

H1/2(R2
+)

l
−→ H1/2(R2)

A0 ↓ ↓ B

H−1/2(R2
+)

l
−→ H−1/2(R2)

commutes. Moreover, the restriction to a subdomain G ⊂ R2
+ makes sense,

H1/2(R2
+,G)

l
−→ H1/2(G1)

A0 ↓ ↓ B

H−1/2(G)
l

−→ H−1/2(G1)

where G1 is the double of G, i.e. G1 = G ∪ G−, where G− is the mirror image of G in R3
−
; in

particular, we can take G = E.
It is well known that B is an isomorphism and has index zero, in particular. This remains

true when restricted to symmetric functions. Therefore, A0 and hence the original operator
A both have index zero.

Remark 4.1 The homotopy in the proof of the previous theorem could have been avoided
if the Mellin symbol had not depended on t. Then the difference between the operators A
and A0 would have been compact.

4.2 A bounded crack

In this subsection, we study the integral equation (3.6) wherein Γ is bounded; we assume
that the crack edge, ∂Γ, meets the free surface, ∂Γ ∩ ∂R2

+ 6= ∅.

Theorem 4.2 The integral equation (3.6) has a unique solution v in Hs(R2
+, Γ) for each

given right-hand side p belonging to Hs−1(Γ), for all s, 0 < s < 1.

Proof

Step 1: Injectivity. This follows, as before, from uniqueness for Problem N .

Step 2: A is Fredholm. According to the general theory [20], we have to check bijectivity
of the interior symbol, the boundary symbol, and the corner symbol at each corner point.
To begin with, let us reconsider the homotopy of integral operators described in the proof
of Theorem 4.1. There, we checked bijectivity of the boundary symbols at ∂Γ ∩ ∂R2

+ along
the homotopy. At the rest of the boundary, ∂Γ \ ∂R2

+, the boundary symbol is bijective
according to [16]. It remains to treat the corner symbols.
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To be specific, suppose that the crack has two corner points, at C1(−b, 0) and C2(b, 0) in
the x-y plane. Focussing attention on C1, define polar coordinates r, θ by

x = −b + r cos θ and y = r sin θ,

so that, close to C1, Γ occupies the interval 0 ≤ θ ≤ α, where α is the opening angle at C1.
Now, recall that the corner symbol at a given corner arises by taking a Mellin transform in
a radial direction. It yields a family of operators on the base of a cone, which, in our case,
is the interval 0 ≤ θ ≤ α. We denote these operators by Mt,ν(z). They are continuous,

Mt,ν(z) : Hs(0,
o
α) −→ Hs−1(0,

o
α), (4.2)

where Hs(0,
o
α) ⊆ Hs(0, π) denotes the subspace of functions which is embedded by extension

by zero across α. They are Fredholm operators since the interior and boundary symbols are
bijective for 0 < s < 1.

Step 3: The index vanishes. Bijectivity is guaranteed for large |z|, with c < ℜz < C, where
c and C are arbitrary constants. It remains to show injectivity for all z, with 0 < ℜz < 1
(cf. [17]). Note that the bijectivity of the boundary symbol shown in the proof of Theorem 4.1
implies the bijectivity of

Mt,ν(z) : Hs(0, π) −→ Hs−1(0, π),

because we can treat the half-space as a special case of a cone. Then Mt,ν , acting according
to (4.2), must be injective as a restriction to subspaces. Thus, we have proved that the
homotopy runs through Fredholm operators only. The end point has index zero and so does
every other point along the homotopy.

Finally we shall give a regularity result.

Theorem 4.3 Let v ∈ Hs(R2
+, Γ) be the unique solution to (3.6), for a given p ∈ Hs−1(Γ).

Then p ∈ H t−1(Γ) with t > s, |t − 1
2
| < 1

2
implies v ∈ H t(R2

+, Γ).

Proof By Theorem 4.2, the solutions in Hs(R2
+, Γ) and H t(R2

+, Γ) for all s and t satisfying
|s − 1

2
| < 1

2
and |t − 1

2
| < 1

2
must coincide.

Remark 4.2 The strength of the singularity term r1/2 at the interior boundary of Γ shows
that this result cannot be improved in terms of Sobolev spaces. For totally characteristic
spaces with weights ([20]) the smoothness order can be increased indefinitely, but the weight
is subject to the same limitations.

Special interest lies in the singularity at the corner points of Γ. A quantitative determi-
nation as in the case of interior corner points in [17] would be highly desirable.

Appendix. Function Spaces

We begin with the necessary notations of the different function spaces. The notation for
the standard function spaces we use as in [11], in particular for the Sobolev spaces Hs with
arbitrary real smoothness index s in the euclidean space Rn. We need a careful distinction
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between the different possibilities of definition of Sobolev spaces for subsets of Rn. We
suppose that all open and closed subsets have piecewise smooth boundaries.

Let Γ ⊂ Rn be closed. Then

Hs(Rn, Γ) = {u ∈ Hs(Rn) : supp u ⊂ Γ}

is a closed subset of Hs(Rn) and hence complete with the induced topology.
Let Ω ⊂ Rn be open. Then we set

Hs(Ω) = rΩHs(Rn)

where rΩ denotes the restriction operator of distributions to the open subset Ω. The exact
sequence

0 −→ Hs(Rn,Rn \ Ω) −→ Hs(Rn) −→ Hs(Ω) −→ 0

implies the algebraical isomorphism

Hs(Ω) ∼= Hs(Rn)/Hs(Rn,Rn \ Ω)

which turns Hs(Ω) into a Hilbert space with the factor topology. Its elements can be repre-
sented as distributions on Ω which are extendible to Hs(Rn)-distributions. In particular we
need the cases n = 2, n = 3, Ω = R2

+ and Γ = R2
+.

This construction also makes sense when Ω has interior boundary parts, like cracks. Then,
for s > 1

2
, the spaces Hs(Ω) inherit certain compatibility conditions of the boundary values

from both sides of the crack. For instance, for 1
2

< s < 3
2
, the traces from both sides must

coincide, and for 1
2

< s − k < 3
2

the same for traces of all normal derivatives of order ≤ k.
In order to avoid these compatibility conditions we introduce another notion of extendible
distributions. The local model is Rn with a crack Γ which is a closed subset of Rn−1. Then
H̃s(Rn \ Γ) is defined as the closed subspace of Hs(Rn

+) ⊕ Hs(Rn
−
) with the compatibility

conditions only on Rn−1 \ Γ. If Γ ⊂ Rn is the closure of an (n − 1)-dimensional manifold
Ω ⊂ Rn, then H̃s(Rn \ Γ) is defined in the standard way with a partition of unity, local
charts and the above local model for the crack.

Let now Γ ⊂ Rn
+ be closed. As far as ∂Γ ∩ ∂Rn

+ 6= ∅ Γ is no longer closed in Rn. Then
there is a closed Γ1 ⊂ Rn such that Γ = Rn

+ ∩ Γ1. We define

Hs(Rn
+, Γ) = Hs(Rn, Γ1)/H

s(Rn, Γ1 \ Γ).

Elements of this factor space can be represented as distributions in the half-space Rn
+ with

support in Γ which can be extended to Hs(Rn)-distributions.
We shall need mainly the spaces H̃s(R3

+ \ R2
+), H̃s(R3

+ \ Γ) and H̃s(R2
+, Γ).
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