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Abstract. In a recent paper Calogero and Alcántara [Kinet. Relat. Models,

4 (2011), pp. 401-426] derived a Lorentz-invariant Fokker-Planck equation,
which corresponds to the evolution of a particle distribution associated with

relativistic Brownian Motion. We study the “one and one-half” dimensional
version of this problem with nonlinear electromagnetic interactions - the rel-

ativistic Vlasov-Maxwell-Fokker-Planck system - and obtain the first results

concerning well-posedness of solutions. Specifically, we prove the global-in-time
existence and uniqueness of classical solutions to the Cauchy problem and a

gain in regularity of the distribution function in its momentum argument.

1. Introduction. A plasma is a partially or completely ionized gas. Matter exists
in this state if the velocities of individual particles in a material achieve magnitudes
approaching the speed of light. If a plasma is of sufficiently low density or the time
scales of interest are small enough, it is deemed to be “collisionless”, as collisions
between particles become extremely infrequent. Many examples of collisionless
plasmas occur in nature, including the solar wind, the Van Allen radiations belts,
and galactic nebulae.

From a mathematical perspective, the fundamental Lorentz-invariant equations
which describe the time evolution of a collisionless plasma are given by the rela-
tivistic Vlasov-Maxwell system:

∂tf + v̂ · ∇xf + (E + v̂ ×B) · ∇vf = 0

ρ(t, x) =

∫
f(t, x, v) dv, j(t, x) =

∫
v̂f(t, x, v) dv

∂tE = ∇×B − j, ∇ · E = ρ

∂tB = −∇× E, ∇ ·B = 0.

(RVM)
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Here, f represents the distribution of (positively-charged) ions in the plasma, while
ρ and j are the charge and current density, and E and B represent electric and
magnetic fields generated by the charge and current. The independent variables,
t ≥ 0 and x, v ∈ R3 represent time, position, and momentum, respectively, and
physical constants, such as the charge and mass of particles, as well as, the speed of
light, have been normalized to one. The structure of the velocity terms v̂ in (RVM)
arise due to relativistic corrections, and this quantity is defined by

v̂ =
v

v0
, v0 =

√
1 + |v|2.

In order to include collisions of particles with a background medium in the physi-
cal formulation, often a diffusive Fokker-Planck term is added to the Vlasov equation
in (RVM). With this, the system is referred to as the relativistic Vlasov-Maxwell-
Fokker-Planck equation. Since basic questions of well-posedness remain unknown
even in lower dimensions, we study a dimensionally-reduced version of this model
for which x ∈ R and v ∈ R2, the so-called “one and one-half dimensional” analogue,
given by

∂tf + v̂1∂xf +K · ∇vf = ∇v · (D∇vf)

D =
1

v0

[
1 + v21 v1v2
v1v2 1 + v22

]
K1 = E1 + v̂2B, K2 = E2 − v̂1B

ρ(t, x) =

∫
f(t, x, v) dv − φ(x), j(t, x) =

∫
v̂f(t, x, v) dv

∂tE2 = −∂xB − j2, ∂tB = −∂xE2, ∂xE1 = ρ, ∂tE1 = −j1.

(RVMFP)

Here, we assume a single species of particles described by f(t, x, v) in the presence
of a given, fixed background φ ∈ C1

c (R) that is neutralizing in the sense that∫
ρ(0, y) dy =

∫ (∫
f(0, y, v) dv − φ(y)

)
dy = 0.

The quantities ρ(t, x) and j(t, x) are the charge and current densities of the plasma,
respectively. The electric and magnetic fields are given by E(t, x) = 〈E1(t, x), E2(t,
x)〉 and B(t, x), while K(t, x, v) represents the Lorentz force above. Finally, the
matrix D = v−10 (I+v⊗v) ∈ R2×2 is the relativistic diffusion operator and possesses
some desirable properties, as discovered for its three-dimensional variant in [1]. We
note, however, that the operator ∇v · (D∇vf) is not uniformly elliptic and provides
less dissipation than the Laplacian ∆vf . Namely, for any u ∈ R2, D satisfies

v−10 |u|2 ≤ |u ·Du| ≤ v0|u|2. (1)

For initial data we take a nonnegative particle density f0 with compact x-support
and bounded moments vb0∂

k
xf

0 ∈ L2(R3), along with fields E0
2 , B

0 ∈ H2(R). We
specify particular data for E1, namely

E1(0, x) =

∫ x

−∞

(∫
f0(y, w) dw − φ(y)

)
dy.

In fact, this particular choice of data for E1 is the only one which leads to a solution
possessing finite energy (see Lemma 2.3 and [6]). The inclusion of the neutralizing
density φ is also necessary in order to arrive at finite energy solutions for (RVMFP)
with a single species of ion.
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Over the past twenty-five years significant progress has been made in the analy-
sis of (RVM), specifically, the global existence of weak solutions (which also holds
for the non-relativistic system (VM); see [5]) and the determination of conditions
which ensure global existence of classical solutions (originally discovered in [8], and
later in [2] and [10] using different methods) for the Cauchy problem. Additionally,
a wide array of results have been obtained regarding electrostatic simplifications of
(RVM) - the Vlasov-Poisson and relativistic Vlasov-Poisson systems, obtained by
taking the limit as c→∞ [19] and B ≡ 0, respectively. These models do not include
magnetic effects, and the electric field is given by an elliptic equation rather than a
hyperbolic PDE. This simplification has led to a great deal of progress concerning
the electrostatic systems, including theorems regarding the well-posedness of solu-
tions [14, 15, 18, 20]. General references on kinetic equations of plasma dynamics,
such as (RVM) and (RVMFP), include [7] and [22].

Independent of recent advances, many of the most basic existence and regular-
ity questions remain unsolved for (RVMFP). For much of the existence theory for
collisionless models, one is mainly focused on bounding the velocity support of the
distribution function f , assuming that f0 possess compact momentum support, as
this condition has been shown to imply global existence [8]. Hence, one of the
main difficulties which arises for (RVMFP) is the introduction of particles that are
propagated with infinite momentum, stemming from the inclusion of the diffusive
Fokker-Planck operator. Thus, the momentum support is necessarily unbounded
and many known tools are unavailable. Though the v-support of the distribution
function is not bounded, we are able to overcome this issue by controlling large
enough moments of the distribution function to guarantee sufficient decay of f in
its momentum argument. This also allows us to control the singularities which arise
from representing derivatives of the fields. As an additional difference arising from
the Fokker-Planck operator, we note that when studying collisionless systems, in
which D ≡ 0, L∞ is typically the proper space in which to estimate both the parti-
cle density and the fields. With the inclusion of the diffusion operator, the natural
space in which to estimate the particle density is now L2. Thus, to take advantage
of the gain in regularity that should result from the Fokker-Planck term, we iterate
in a weighted L2 setting by estimating moments vγ0∂

k
x,vf . Other crucial features

which appear include the cone estimate, conservation of mass, and the symmetry
and positivity of the diffusive operator.

Though this is the first investigation of the well-posedness of (RVMFP), others
have studied Vlasov-Maxwell models incorporating a Fokker-Planck operator. Both
Yang and Yu [25] and Chae [3] constructed global classical solutions to the non-
relativistic Vlasov-Maxwell-Fokker-Planck system for initial data sufficiently close
to Maxwellian using Kawashima estimates and the well-known energy method. Ad-
ditionally, Lai [11, 12] arrived at a similar result for a one and one-half dimensional
“relativistic” Vlasov-Maxwell-Fokker-Planck system using classical estimates. An-
other large data global existence result for a non-relativistic Vlasov-Maxwell-Fokker-
Planck system posed in one and one-half dimensions was recently proved in [17].
The unfortunate commonality amongst these models, however, is that they lack in-
variance properties. Namely, each couples the Lorentz-invariant Maxwell equations
to either a Galilean-invariant Vlasov equation with non-relativistic velocities or a
hybrid Vlasov equation that includes relativistic velocity corrections, but utilizes
the Laplacian ∆v as the Fokker-Planck term. This latter term destroys the inherent
Lorentz-invariance of the relativistic Vlasov-Maxwell system. Thus, we consider a
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diffusive operator of the form ∇v · (D∇vf) which preserves this property. In addi-
tion, the previous works do not utilize the smoothing property (in the v argument)
of the diffusion operator. Thus, our main theorem provides the first such result
that builds global classical solutions from possibly non-smooth initial data. With
this structure in place, we can prove global existence of classical solutions under
relatively relaxed assumptions:

Theorem 1.1. Assume the initial particle distribution satisfies va0f
0 ∈ L∞(R3)

for some a > 5 and v
b−k/2
0 ∂kxf

0 ∈ L2(R3) for some b > 2 and all k = 0, 1, 2.
Additionally, assume f0 possesses compact support in x with E0

2 , B
0 ∈ H2(R) and

φ ∈ C1
c (R). Then, for any T > 0 there exist unique functions f ∈ C1((0, T ) ×

R;C2(R2)), E ∈ C1((0, T )×R;R2), and B ∈ C1((0, T )×R) satisfying (RVMFP) on
(0, T ) and the Cauchy data f(0, x, v) = f0(x, v), E2(0, x) = E0

2(x), and B(0, x) =
B0(x).

We also note that the methods we employ could also be used in the case D = I,
and hence provide an improved global existence theorem for the systems studied
by Lai, Yu-Yang, and Chae, but with less regularity imposed on the initial data.
Finally, Theorem 1.1 can be altered slightly to accommodate friction terms which
may arise within the formulation of the model. In this case, the Maxwell equations
are unchanged and the Vlasov equation undergoes very minor alterations, taking
the form

∂tf + v̂1∂xf +K · ∇vf = ∇v · (D∇vf + vf) .

The new terms are lower order and have no additional effect on the results we
present. Lai has already displayed this within the context of his methods [12],
though the additional friction term in [12] is v̂f and not vf .

This paper proceeds as follows. In the next section, we will state and prove a
number of L∞ estimates for the particle density and the fields. Then, in Section
3, we state and prove a number of L2 dissipative estimates that use different tools
from those of Section 2 and will enable the control of derivatives of the density
and fields. These lemmas are included in separate sections in order to simplify
the proof of the global-in-time existence and uniqueness result. Finally, we sketch
the proof of Theorem 1.1 in Section 4. Throughout the paper the value C > 0 will
denote a generic constant that may change from line to line. When necessary, we will
specifically identify the quantities upon which C may depend. Regarding norms, we
will abuse notation and allow the reader to differentiate certain norms via context.
For instance, ‖f(t)‖∞ = ess sup

x∈R,v∈R2

|f(t, x, v)|, whereas ‖B(t)‖∞ = ess sup
x∈R

|B(t, x)|,

with analogous statements for ‖·‖2 and 〈·, ·〉 which denote the L2 norm and inner
product, respectively. Finally, for derivative estimates we will use the notation

‖vγ0∂jx∇kvf(t)‖2 =
∑
|α|=k

‖vγ0∂jx∂αv f(t)‖2

for γ ∈ R, j, k = 0, 1, 2, ..., and a multi-index α = (α1, α2) where we denote ∂α1
v1 ∂

α2
v2

by ∂αv .

2. L∞ estimates. Let T > 0 be given so that we may estimate on the bounded
time interval (0, T ) throughout. To begin, we will first prove a result that will allow
us to estimate the particle density and its moments. When studying collisionless
kinetic equations, one often wishes to integrate along the Vlasov characteristics
in order to derive estimates. However, the appearance of the Fokker-Planck term
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changes the structure of the operator in (RVMFP), and the values of the distribution
function are not conserved along such curves. Hence, the following lemma (similar
to that of [4]) will be utilized to estimate the particle distribution in such situations.

Lemma 2.1. Let g ∈ L1((0, T ), L∞(R3)), F ∈ W 1,∞((0, T ) × R3;R2), and h0 ∈
L∞(R3) ∩ L2(R3) be given with D ∈ C(R2;R2×2) positive semi-definite. Assume
h(t, x, v) is a weak solution (see [4]) of{

∂th+ v̂1∂xh+ F (t, x, v) · ∇vh−∇v · (D∇vh) = g(t, x, v)

h(0, x, v) = h0(x, v).
(2)

Then, for every t ∈ [0, T ]

‖h(t)‖∞ ≤ ‖h0‖∞ +

∫ t

0

‖g(s)‖∞ ds.

Proof of Lemma 2.1. The proof will first require an additional result regarding the
positivity of solutions to the linear Fokker-Planck equations arising from positive
initial data. Much of our argument is adapted from ideas of Lions [13], Tartar
[21], and Degond [4]. Thus, we sketch the proof of the lemma using results from
these papers while correcting for the differences in the systems, including changes
in dimension and the appearance of a diffusion operator with variable coefficients.
Consider the linear equation (2) and define

Lh := ∂th+ v̂1∂xh+ F · ∇vh−∇ · (D∇vh).

We first comment that solutions h ∈ L∞((0, T );L2(R3)) of the equation Lh = g
exist for any T > 0 and g ∈ L∞((0, T );L∞(R3)), and this follows directly from
either a variational argument [4], the use of Green’s functions [23], or by properties
of the heat equation on a Riemannian manifold [1]. With this, we prove a positivity
result:

Lemma 2.2. Let T > 0 be given. Assume h0 ∈ L2(R3) and g ∈ L∞((0, T );L2(R3))
are given with h ∈ L∞((0, T );L2(R3)) satisfying Lh = g ≥ 0 and h(0, x, v) =
h0(x, v) ≥ 0. Then, h(t, x, v) ≥ 0 for all t ≥ 0, x ∈ R, v ∈ R2.

Proof of Lemma 2.2. Let λ > 1
2 ‖∇v · F‖∞ be given. Define u(t, x, v) = e−λth(t, x,

v) and f(t, x, v) = e−λtg(t, x, v). These functions then satisfy{
Lu+ λu = f

u(0, x, v) = h0(x, v)
(3)

Let u−(t, x, v) = max{−(u(t, x, v)), 0}. In what follows, we will use the notation
〈·, ·〉 to denote the L2 inner product in (t, x, v) and ‖·‖2 to denote the corresponding
induced norm. It follows immediately from [4, 21] that〈

∂u

∂t
+ v̂1∂xu, u−

〉
=

1

2

(∫∫
|u−(0, x, v)|2 dx dv −

∫∫
|u−(t, x, v)|2 dx dv

)
.

(4)
Using this, we find

〈f, u−〉 = 〈Lu+ λu, u−〉

=

〈
∂u

∂t
+ v̂1∂xu, u−

〉
+ 〈F · ∇vu, u−〉 − 〈∇v · (D∇v · u), u−〉+ λ 〈u, u−〉
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For the last term we split the integral into two portions, namely

〈u, u−〉 =

∫ T

0

∫∫
u(t, x, v)u−(t, x, v) dv dx dt

=

∫
A

u(t, x, v)u−(t, x, v) dv dx dt+

∫
Ac

u(t, x, v)u−(t, x, v) dv dx dt

where A = {(t, x, v) : u(t, x, v) ≥ 0}. On the set A, we have u−(t, x, v) = 0, and the
corresponding integrals vanish. On Ac we have u−(t, x, v) = −u(t, x, v) and hence∫ T

0

∫∫
u(t, x, v)u−(t, x, v) dv dx dt = −

∫
Ac

|u−(t, x, v)|2 dv dx dt

= −
∫ T

0

∫∫
|u−(t, x, v)|2 dv dx dt.

Hence, we find

λ 〈u, u−〉 = −λ‖u‖2
After a similar analysis for the other terms above, we find

〈F · ∇vu, u−〉 = −〈F · ∇vu−, u−〉 .

For the diffusion term, we proceed similarly and integrate by parts to find

−〈∇v · (D∇v · u), u−〉 = 〈D∇vu,∇vu−〉
= −〈D∇vu−,∇vu−〉
≤ 0,

since D is positive semi-definite. Therefore, using these identities with (4) we have
the inequality

〈f, u−〉 ≤
1

2

(∫∫
|u−(0, x, v)|2 dx dv −

∫∫
|u−(t, x, v)|2 dx dv

)
−〈F · ∇vu−, u−〉 − λ ‖u−‖22

By assumption, h0(x, v) ≥ 0 and thus u−(0, x, v) = 0. The first term above is then
nonpositive and

〈f, u−〉 ≤ − 〈F · ∇vu−, u−〉 − λ ‖u−‖22 .
Lastly, we integrate by parts to find

−〈F · ∇vu−, u−〉 = −
∫ T

0

∫∫
F (t, x, v) · ∇v

(
1

2
|u−|2

)
, dv dx dt

=
1

2

∫ T

0

∫∫
∇v · F (t, x, v)|u−|2dv dx dt

≤ 1

2
‖∇v · F‖∞‖u−‖22

We finally have

〈f, u−〉 ≤
(

1

2
‖∇v · F‖∞ − λ

)
‖u−‖22 ≤ 0.

However, by hypothesis f(t, x, v) ≥ 0 and by definition u−(t, x, v) ≥ 0, so 〈f, u−〉 ≥
0. Therefore, it must be the case that ‖u−‖2 = 0, from which it follows that u− = 0
and hence h(t, x, v) ≥ 0.
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Now, we utilize Lemma 2.2 and a very simple argument to finish the proof of
Lemma 2.1. Let g ∈ L1((0, T );L∞(R3)), F ∈ W 1,∞((0, T ) × R3;R2), and h0 ∈
L2(R3)∩L∞(R3) be given. Assume h ∈ L∞((0, T );L2(R3)) satisfies Lh = g(t, x, v)
in the weak sense and h(0, x, v) = h0(x, v). Define

w(t, x, v) := ‖h0‖∞ +

∫ t

0

‖g(s)‖∞ ds − h(t, x, v).

Then, we have

w(0, x, v) = ‖h0‖∞ − h0(x, v) ≥ 0

and

Lw = ‖g(t)‖∞ − Lh
= ‖g(t)‖∞ − g(t, x, v)

≥ 0.

Thus, by Lemma 2.2, we find w(t, x, v) ≥ 0, by which it follows that

h(t, x, v) ≤ ‖h0‖∞ +

∫ t

0

‖g(s)‖∞ ds

for all t, x, v. Finally, taking the supremum in (x, v), the conclusion follows.

Next, we derive a lemma that will allow us to control the fields and moments of
the particle distribution.

Lemma 2.3 (Cone Estimate and Field Bounds). Assume va0f
0 ∈ L∞(R3) for

some a > 3, f0 possesses compact support in x, and E0
2 , B

0 ∈ H1(R). Then, for
any t ∈ [0, T ], x ∈ R, we have∫ t

0

(∫
(v0 ± v1)f(s, x± (t− s), v) dv +

1

2
|E1(s, x± (t− s))|2

+
1

2
|E2 ±B|2(s, x± (t− s))

)
ds ≤ C(1 + t),

(5)

∫ t

0

|j2(s, x± (t− s))|ds ≤ C(1 + t), (6)

and

‖E(t)‖∞ + ‖B(t)‖∞ ≤ C(1 + t). (7)

Proof of Lemma 2.3. To prove the cone estimate, we begin by using conservation
of mass. Integrating the Vlasov equation over all (x, v) we find

d

dt

∫∫
f(t, x, v) dv dx = 0.

Thus, using the decay of f0 we find for every t ∈ [0, T ]∫∫
f(t, x, v) dv dx =

∫∫
f0(x, v) dv dx <∞. (8)

To derive the necessary energy identities, we first rewrite the Fokker-Planck term
in the Vlasov equation as

∇v · (D∇vf) = v−10

(
∂v1(v21∂v1f) + ∂v2(v22∂v2f) + 2v1v2∂v1v2f + ∆vf

)
.
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Then, multiplying the Vlasov equation by v0 and integrating in v, the Fokker-Planck
term becomes∫

v0∇v · (D∇vf) dv =

∫ (
∂v1(v21∂v1f) + ∂v2(v22∂v2f) + 2v1v2∂v1v2f + ∆vf

)
=

∫
2v1v2∂v1v2f dv1 dv2

= 2

∫
f dv

after two integrations by parts. Hence, using the divergence structure of the Vlasov
equation, we arrive at the local energy identity

∂te+ ∂xm = 2

∫
f(t, x, v) dv (9)

where

e(t, x) =

∫
v0f(t, x, v) dv +

1

2

(
|E(t, x)|2 + |B(t, x)|2

)
and

m(t, x) =

∫
v1f(t, x, v) dv + E2(t, x)B(t, x).

Since f0 has compact support in x with suitable decay in v, we find v0f
0 ∈ L1(R3).

We can then integrate (9) over all space to deduce the global energy identity

d

dt

∫
e(t, x) dx = 2

∫∫
f0(x, v) dx dv

whence we find ∫
e(t, x) dx ≤ C(1 + t)

for all t ∈ [0, T ) and E1, E2, B ∈ L∞([0, T ];L2(R)).
To derive local estimates, we fix (t, x), integrate (9) along the backwards cone in

space-time {(s, y) ∈ (0, t)× R : |y − x| ≤ t− s}, and use Green’s Theorem to find∫ t

0

[
(e+m)(s, x+ t− s) + (e−m)(s, x− t+ s)

]
ds

=

∫ x+t

x−t
e(0, y) dy + 2

∫ t

0

∫ x+t−s

x−t+s

∫
f(s, y, v) dvdyds.

Using the positivity of the mass and energy, the assumptions on the data, and
conservation of mass, the right side satisfies∫ x+t

x−t
e(0, y) dy + 2

∫ t

0

∫ x+t−s

x−t+s

∫
f(s, y, v) dvdyds

≤
∫
e(0, y) dy + 2

∫ t

0

∫∫
f(s, y, v) dvdy ds

=

∫
e(0, y) dy + 2

∫ t

0

(∫∫
f0(y, v) dv dy

)
ds

≤ C(1 + t)

and this yields the first result.



1.5D RELATIVISTIC VLASOV-MAXWELL-FOKKER-PLANCK EQUATION 177

The other conclusions of the lemma then follow from the first. More specifically,
we find

v0 ± v1 =
v20 − v21
v0 ∓ v1

=
1 + v22
v0 ∓ v1

≥ 2|v2|
v0 ∓ v1

≥ 2|v2|
2v0

= |v̂2| (10)

and by (5)∫ t

0

|j2(s, x± (t− s))|ds ≤
∫ t

0

∫
|v̂2|f(s, x± (t− s), v) dv ds

≤
∫ t

0

∫
(v0 ± v1)f(s, x± (t− s), v) dv ds

≤ C(1 + t).

Next, we represent the fields in terms of the source j2 in the associated transport
equations. Either adding or subtracting the equations for E2 and B in (RVMFP)
yields

∂t(E2 ±B)± ∂x(E2 ±B) = −j2.
Thus, we can write the sum or difference of the fields in terms of initial data and
an integral of j2 along one side of the backwards cone, namely

(E2 ±B)(t, x) = (E2 ±B)(0, x∓ t)−
∫ t

0

j2(s, x∓ (t− s)) ds. (11)

Then, in view of the previous conclusion of the lemma and the assumption on the
initial fields, we find

‖(E2 ±B)(t)‖∞ ≤ C(1 + t)

and since

E2(t, x) =
1

2
(E2 +B)(t, x) +

1

2
(E2 −B)(t, x),

and similarly for B, it follows that ‖E2(t)‖∞ and ‖B(t)‖∞ are controlled by this
same quantity.

Finally, control of E1 follows from conservation of mass and the assumption on
the background density. Integrating the equation for E1 and using the assumption
on E1(0, x) yields

E1(t, x) =

∫ x

−∞
ρ(t, y) dy

and we find for x ∈ R

|E1(t, x)| ≤
∫∫

f(t, y, v) dv dy + ‖φ‖1 ≤ C.

The second conclusion of the theorem then follows by adding the field estimates.

Once control of the fields is obtained, higher moments of the particle distribution
function can be controlled as well.

Lemma 2.4 (Estimates on moments). Let the assumptions of Lemma 2.3 hold.
Then, for any γ ∈ [0, a] and t ∈ [0, T ]

‖vγ0 f(t)‖∞ ≤ C(1 + t)2γ (12)

and for any γ ∈ [0, a− 2) and t ∈ [0, T ]∥∥∥∥∫ vγ0 f(t) dv

∥∥∥∥
∞
≤ C(1 + t)2a. (13)
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Proof of Lemma 2.4. We begin by noting that v is an eigenvector of D since

Dv = v−10 [I + v ⊗ v]v = v−10 [v + (v · v)v] = v−10 (1 + |v|2)v = v0v. (14)

Now, let γ ≥ 0 be given. Multiplying the Vlasov equation by vγ0 , we find

∂t(v
γ
0 f) + ∂x(v̂1v

γ
0 f) +∇v · [Kvγ0 f ]−∇v(vγ0 ) ·Kf = vγ0∇v · [D∇vf ]. (15)

We first compute the right side of this equation. Using (1) and (14), we find

vγ0∇v · [D∇vf ] = ∇v · [vγ0D∇vf ]−∇v(vγ0 ) ·D∇vf
= ∇v · [D∇v(vγ0 f)]−∇v · [D∇v(vγ0 )f ]−∇v(vγ0 ) ·D∇vf
= ∇v · [D∇v(vγ0 f)]− γ∇v · [vγ−20 fDv]− γvγ−20 v ·D∇vf
= ∇v · [D∇v(vγ0 f)]− γ∇v · [vγ−10 fv]− γvγ−20 Dv · ∇vf
= ∇v · [D∇v(vγ0 f)]− γ[(γ − 1)vγ−30 |v|2 + vγ−10 v · ∇vf ]

−2γvγ−10 f − γvγ−10 v · ∇vf
= ∇v · [D∇v(vγ0 f)]− γ(γ − 1)vγ−30 |v|2 − 2γvγ−10 v · ∇vf
−2γvγ−10 f.

The next to last term here can be rewritten as

−2γvγ−10 v · ∇vf = −2γv−10 v · ∇v(vγ0 f) + 2γ2vγ−30 v · vf

= −2γv̂ · ∇v(vγ0 f) + 2γ2vγ−10

(
|v|2

1 + |v|2

)
f.

Combining this with (15) yields

∂t(v
γ
0 f) + ∂x(v̂1v

γ
0 f) +∇v · [Kvγ0 f ]−∇v(vγ0 ) ·Kf

= ∇v · [D∇v(vγ0 f)]− γ(γ − 1)vγ−30 |v|2 − 2γv̂ · ∇v(vγ0 f)

+ 2γ2vγ−10

(
|v|2

1 + |v|2

)
f − 2γvγ−10 f. (16)

Thus, if we rearrange terms and use the operator

Vh := ∂th+ v̂1∂xh+ (K + 2γv̂) · ∇vh−∇ · (D∇vh),

we have

V(vγ0 f) = g(t, x, v) (17)

where

g(t, x, v) = ∇v(vγ0 ) ·Kf − γ(γ − 1)vγ−30 |v|2 + 2γ2vγ−10

(
|v|2

1 + |v|2

)
f − 2γvγ−10 f.

Estimating g, we find

|g(t, x, v)| ≤ γvγ−10 |v̂ ·K|f + γ(γ − 1)vγ−10 |v̂|2 + 2γ2vγ−10 f + 2γvγ−10 f

≤ γvγ−10 (‖E(t)‖∞ + ‖B(t)‖∞)f + Cvγ−10 f

≤ C(1 + t)‖vγ−10 f(t)‖∞
Since the coefficients of V satisfy the hypotheses of Lemma 2.1, we use this result

with h = vγ0 f , L = V, and g defined as above. This yields

‖vγ0 f(t)‖∞ ≤ ‖vγ0 f0‖∞ + C

∫ t

0

(1 + s)‖vγ−10 f(s)‖∞ ds.
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Of course, the same lemma can be invoked with h = f and g = 0 using the Vlasov
equation in order to find

‖f(t)‖∞ ≤ ‖f0‖∞
for all t ∈ [0, T ]. With this bound on the particle distribution, which represents the
γ = 0 case above, we use induction to bound ‖vγ0 f(t)‖∞ for any γ ≥ 0 such that
‖vγ0 f0‖∞ is finite, and the first conclusion follows.

The second conclusion is a straightforward application of the first. Namely, for
any γ ∈ [0, a− 2),∫

vγ0 f(t, x, v) dv ≤ ‖va0f(t)‖∞

(∫
vγ−a0 dv

)
≤ C(1 + t)2a

since γ − a < −2.

With control on moments of the density, we may bound derivatives of the field
by adapting a well-known argument [6, 8] that projects these derivatives onto the
backward light cone.

Lemma 2.5 (Estimates on field derivatives). Let the assumptions of Lemma 2.3
hold, and assume additionally that E0

2 , B
0 ∈ H2(R). Then, for any t ∈ [0, T ], we

have

‖∂tE(t)‖∞ + ‖∂xE(t)‖∞ + ‖∂tB(t)‖∞ + ‖∂xB(t)‖∞ ≤ C(1 + t)2(a+1). (18)

Thus, we have C1 estimates on the fields without requiring any regularity of the
density.

Proof of Lemma 2.5. We begin by noting that E1 can be handled separately from
the other field terms, since by Lemma 2.4

∂xE1 =

∫
f(t, x, v) dv − φ(x) ≤

∥∥∥∥∫ f(t)dv

∥∥∥∥
∞

+ ‖φ‖∞ ≤ C(1 + t)2a.

The same bound holds using this argument for ∂tE1 = −j1 since |v̂1| ≤ 1.
Next, we represent the field equations for E2 and B as in the proof of Lemma

2.3. We will consider only x-derivatives and the term (E2 +B)(t, x), but note that
the same computations below can be done for (E2 − B)(t, x) and time derivatives.
Using (11) and differentiating in x, we find

∂x(E2 +B)(t, x) = (E2 +B)′(0, x− t)−
∫ t

0

∫
v̂2∂xf(s, x− (t− s), v) dvds.

At this point, we wish to project ∂x onto the directions of “good” derivatives in-
cluded in the field representation. This idea was used by Glassey and Schaeffer
[6] for the collisionless problem and originally developed for the three-dimensional
relativistic Vlasov-Maxwell system by Glassey and Strauss [8]. We introduce the
operators {

T+ = ∂t + ∂x

S = ∂t + v̂1∂x

and transform x-derivatives on the density as

∂x =
1

1− v̂1
(T+ − S).

Contrastingly, the operator T− = ∂t−∂x would be needed for an estimate of E2−B.
Using the Vlasov equation, we can write

Sf = ∂tf + v̂1∂xf = −∇v(Kf) +∇v · (D∇vf)
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so that integrating by parts yields∫ t

0

∫
v̂2∂xf dvds =

∫ t

0

∫
v̂2

1− v̂1
(T+f − Sf)(s, x− t+ s, v) dvds

=

∫ t

0

∫
v̂2

1− v̂1

[
d

ds
(f(s, x− t+ s, v))

+∇v · (Kf)(s, x− t+ s, v)

−∇v · (D∇vf)(s, x− t+ s, v)

]
dvds

=

∫
v̂2

1− v̂1
[f(t, x, v)− f0(x− t, v)] dv

+

∫ t

0

∫
v̂2

1− v̂1
∇v · (Kf)(s, x− t+ s, v) dvds

−
∫ t

0

∫
v̂2

1− v̂1
∇v · (D∇vf)(s, x− t+ s, v)

]
dvds

=: I + I + III

The first term is easily estimated since moments of the density are bounded. We
use (10) and a > 3 to find

I =

∫
v2

v0 − v1
[f(t, x, v)− f0(x− t, v)] dv

≤
∫
|v2|(v0 + v1)

1 + v22
f(t, x, v) dv

≤ ‖va0f(t)‖∞
∫
v1−a0 dv ≤ C(1 + t)2a.

To estimate II, we first integrate by parts to find∫ t

0

∫
v̂2

1− v̂1
∇v · (Kf)(s, x− t+ s, v) dvds

= −
∫ t

0

∫
∇v
(

v̂2
1− v̂1

)
· (Kf)(s, x− t+ s, v) dvds

+ lim
|v|→∞

∫ t

0

v̂2
1− v̂1

(Kf)(s, x− t+ s, v) · v⊥
|v|

ds

where v⊥ = 〈v2,−v1〉. The boundary term vanishes on (0, T ) because K and va0f
are bounded in L∞, and thus moments can be used to introduce sufficient decay in
v. For the remaining term, we compute the gradient

∇v
(

v̂2
1− v̂1

)
=

〈
v̂2

v0 − v1
,

1

v0 − v1
− v̂2v2

(v0 − v1)2

〉
The first term is bounded since (10) implies |v̂2| ≤ v0− v1. Similarly, one can show
the second term is bounded by 3v0 using (10). Hence, using a > 3, we have

II ≤
∫ t

0

‖K(s)‖∞‖va0f(s)‖∞
(∫

v1−a0 dv

)
ds ≤ C(1 + t)2(a+1)
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Finally, we use the symmetry of D and integrate by parts twice in III to find∫ t

0

∫
v̂2

1− v̂1
∇v · (D∇vf)

∣∣∣∣
(s,x−t+s,v)

dvds

=

∫ t

0

∫
∇v ·

[
D∇v

(
v̂2

1− v̂1

)]
f(s, x− t+ s, v) dvds

+ lim
|v|→∞

∫ t

0

v̂2
1− v̂1

∇vf(s, x− t+ s, v) ·Dv⊥
1

|v|
ds

− lim
|v|→∞

∫ t

0

∇v
(

v̂2
1− v̂1

)
·Dv⊥

1

|v|
f(s, x− t+ s), v) ds

For the boundary terms, we use the property Dv⊥ = v−10 v⊥ so that an extra order
of decay appears, and these terms vanish on (0, T ). To estimate the remaining term,
a long computation yields the bound∣∣∣∣∇v · [D∇v ( v̂2

1− v̂1

)]∣∣∣∣ ≤ 4.

Thus, we find for a > 2

III ≤ 4

∫ t

0

∫
f(s, x− t+ s, v) dvds ≤

(∫ t

0

‖va0f(s)‖∞ds

)(∫
v−a
0 dv

)
≤ C(1 + t)2a+1.

Combining the estimates and using the regularity of the initial fields, each term is
controlled by C(1+ t)2(a+1). Thus, the bound on ‖∂x(E2 +B)(t)‖∞ follows, as does
the conclusion of the lemma.

3. Dissipative estimates. To begin this section we utilize energy estimates to
bound the density (Lemma 3.1) and its derivatives (Lemma 3.2) in L2(R3).

Lemma 3.1. Assume f0 ∈ L2(R3). Then, for every t ∈ [0, T ]

‖f(t)‖2 ≤
∥∥f0∥∥

2
.

If additionally, vγ0 f
0 ∈ L2(R3) for some γ > 0 and the hypotheses of Lemma 2.3

hold, then

‖vγ0 f(t)‖2 ≤ CT
for every t ∈ [0, T ].

Proof of Lemma 3.1. We proceed by using energy estimates. We calculate:

1

2

d

dt
‖f(t)‖22 = 〈−v̂1∂xf −K · ∇vf +∇v · (D∇vf), f〉

= −〈v̂1∂xf, f〉 − 〈K · ∇vf, f〉+ 〈∇v · (D∇vf), f〉 .

Notice that the first two terms are pure derivatives in x and v, respectively. Thus,

〈v̂1∂xf, f〉 =
1

2

∫∫
∂x
(
v̂1f

2
)
dv dx = 0

and

〈K · ∇vf, f〉 =
1

2

∫∫
∇v ·

(
Kf2

)
dv dx = 0.
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Finally 〈∇v · (D∇vf), f〉 = −
∥∥D1/2∇vf(t)

∥∥
2
. Hence d

dt‖f(t)‖22 ≤ 0 and the first

conclusion follows. Similarly, we may multiply by v2γ0 and proceed in the same
manner

1

2

d

dt
‖vγ0 f(t)‖22 = −〈vγ0 v̂1∂xf, v

γ
0 f〉 − 〈v

γ
0K · ∇vf, v

γ
0 f〉+ 〈vγ0∇v · (D∇vf), vγ0 f〉 .

As in the previous conclusion of the lemma the first term is zero. Integrating by
parts in the second term we find

−〈vγ0K · ∇vf, v
γ
0 f〉 =

∫∫
v2γ0 K · ∇v

(
1

2
f2
)
dv dx

= −2γ

∫∫
v2γ−10 (v̂ ·K)

1

2
f2 dv dx.

Hence, this yields

|〈vγ0K · ∇vf, v
γ
0 f〉| ≤ C ‖K(t)‖∞

∥∥∥vγ− 1
2

0 f(t)
∥∥∥
2
.

For the last term we integrate by parts and use the symmetry of D,

〈vγ0∇v · (D∇vf), vγ0 f〉 = −2γ
〈
v2γ−10 v̂ ·D∇vf, f

〉
−
∥∥∥vγ0D1/2∇vf(t)

∥∥∥2
2

= −2γ
〈
v2γ−10 v · ∇vf, f

〉
−
∥∥∥vγ0D1/2∇vf(t)

∥∥∥2
2

= −2γ

∫∫
v2γ−10 v · ∇v

(
1

2
f2
)
dv dx−

∥∥∥vγ0D1/2∇vf(t)
∥∥∥2
2

We may drop the latter term. After integrating by parts again in v we can bound

the former term by Cγ
∥∥∥vγ− 1

2
0 f(t)

∥∥∥2
2
. Putting the estimates together and using the

field bound of Lemma 2.3, we find

1

2

d

dt
‖vγ0 f(t)‖22 ≤ Cγ(1 + t)

∥∥∥vγ− 1
2

0 f(t)
∥∥∥2
2
.

Using the first conclusion of the lemma for the γ = 1/2 case and proceeding by
induction yields

‖vγ0 f(t)‖22 ≤
∥∥vγ0 f0∥∥22 + C(1 + t)4γ ≤ CT

for every γ with 2γ ∈ N for which the norm of the initial data is finite. Using the
structure of v0, this can then be extended to γ ≥ 0.

Lemma 3.2. Assume the hypotheses of Lemma 2.5 hold with vγ+1
0 f0, vγ0∂xf

0 ∈
L2(R3) for some γ ≥ 0. Then for all t ∈ [0, T ] we have

‖vγ0∂xf(t)‖2 ≤ CT .

Proof of Lemma 3.2. To begin, we estimate derivatives of the density in x, and first
define some notation. Since density derivatives will depend upon field derivatives,
we let

F(t) = ‖E(t)‖∞ + ‖B(t)‖∞ + ‖∂xE(t)‖∞ + ‖∂xB(t)‖∞
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and note that ‖F‖∞ ≤ CT by Lemmas 2.3 and 2.5. We differentiate the Vlasov

equation in x, multiply by v2γ0 ∂xf and integrate to yield

1

2

d

dt
‖vγ0∂xf(t)‖22 = −

∫∫
∂x

(
1

2
v̂1v

2γ
0 |∂xf |2

)
dv dx

−
∫∫

v2γ0 ∂xf∇v · (∂xKf +K∂xf) dx dv

+

∫∫
v2γ0 ∂xf∇v · (D∇v∂xf) dv dx

=

∫∫ [
v2γ−10 (2γv̂∂xf + v0∇v∂xf) · (∂xKf)

−1

2
v2γ0 K · ∇v(|∂xf |2)

]
dx dv

−
∫∫

v2γ−10 (2γv̂∂xf + v0∇v∂xf) · (D∇v∂xf) dv dx

=: I + II

Here, we have integrated by parts in v and used the divergence-free structure of K,
as well as, the fact that the transport term above is a pure x-derivative along with
the compact x-support of the particle distribution. Using Cauchy’s inequality with
ε we find for any ε > 0

I ≤ C

∫∫ [
‖∂xK(t)‖∞

(
γv2γ−10 |∂xf |f + v2γ0 |∇v∂xf |f

)
+γ‖K(t)‖∞v2γ−10 |∂xf |2

]
dxdv

≤ CF(t)

(
γ
∥∥∥vγ− 1

2
0 ∂xf(t)

∥∥∥2
2

+ γ
∥∥∥vγ− 1

2
0 f(t)

∥∥∥2
2

+ ε
∥∥∥vγ− 1

2
0 ∇v∂xf(t)

∥∥∥2
2

+
1

ε

∥∥∥vγ+ 1
2

0 f(t)
∥∥∥2
2

)
≤ CT

(
γ
∥∥∥vγ− 1

2
0 ∂xf(t)

∥∥∥2
2

+
∥∥∥vγ+ 1

2
0 f(t)

∥∥∥2
2

+ ε
∥∥∥vγ− 1

2
0 ∇v∂xf(t)

∥∥∥2
2

)
Then, the symmetry of D along with Dv̂ = v implies

II = −
∫∫

v2γ−10 (2γv̂∂xf + v0∇v∂xf) · (D∇v∂xf) dv dx

= −γ
∫∫

v2γ−10 v · ∇v(|∂xf |2) dv dx− ‖vγ0D1/2∇v∂xf‖22

≤ Cγ
∥∥∥vγ− 1

2
0 ∂xf(t)

∥∥∥2
2
−
∥∥∥vγ− 1

2
0 ∇v∂xf(t)

∥∥∥2
2
.

Combining I and II, we use Lemma 3.1 to find for ε sufficiently small

d

dt
‖vγ0∂xf(t)‖22 ≤ CT

(
γ
∥∥∥vγ− 1

2
0 ∂xf(t)

∥∥∥2
2

+
∥∥∥vγ+ 1

2
0 f(t)

∥∥∥2
2

)

≤ CT
(

1 + γ
∥∥∥vγ− 1

2
0 ∂xf(t)

∥∥∥2
2

)
.
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If we compute this for γ = 0 and use the bound on F , the result is just

d

dt
‖∂xf(t)‖22 ≤ CT ‖f(t)‖22

which, by Lemma 3.1, leads to

‖∂xf(t)‖22 ≤ CT
(∥∥∂xf0∥∥22 +

∥∥f0∥∥2
2

)
≤ CT

for every t ∈ [0, T ]. Then, by induction, for every γ ≥ 0 for which vγ0∂xf ∈ L2(R3)
we have

‖vγ0∂xf(t)‖22 ≤ CT
(

1 +
∥∥vγ0∂xf0∥∥22) ≤ CT (19)

for all t ∈ [0, T ].

The next lemma allows us to bound second derivatives of the density in L2 by
incorporating the corresponding second derivatives of the electric and magnetic
fields. This requires bounds on the fields (Lemma 2.5) and moments of the particle
density (Lemma 2.4) in L∞ to estimate contributions from nonlinear terms that
arise.

Lemma 3.3. Assume the hypotheses of Lemma 2.5 hold with va0f
0 ∈ L∞(R3) for

some a > 5 and v
b−k/2
0 ∂kxf

0 ∈ L2(R3) for some b > 2 and any k = 0, 1, 2. Then,
for all t ∈ [0, T ]

‖vγ0∂xxf(t)‖2 +

2∑
k=0

(
‖∂kE(t)‖2 + ‖∂kB(t)‖2

)
≤ CT

for every γ ∈ [0, c], where c = min
{
a−3
2 , b− 1

}
and ∂k is any t or x derivative of

order k.

Proof of Lemma 3.3. To begin, we estimate second derivatives of the density. These
involve second derivatives of the fields, which must be estimated in L2 rather than
L∞. As before, denote

F(t) = ‖E(t)‖∞ + ‖B(t)‖∞ + ‖∂xE(t)‖∞ + ‖∂xB(t)‖∞
and now let

G(t) = ‖∂xxE(t)‖22 + ‖∂xxB(t)‖22.
We differentiate the Vlasov equation twice in x, multiply by v2γ0 ∂xxf and integrate
to yield

1

2

d

dt
‖vγ0∂xxf(t)‖22 = −

∫∫
∂x

(
1

2
v̂1v

2γ
0 |∂xxf |2

)
dv dx

−
∫∫

v2γ0 ∂xxf∇v · (∂xxKf + 2∂xK∂xf +K∂xxf) dx dv

+

∫∫
v2γ0 ∂xxf∇v · (D∇v∂xxf) dv dx

=

∫∫ [
v2γ−10 (2γv̂∂xxf + v0∇v∂xxf) · (∂xxKf + 2∂xK∂xf)

−1

2
v2γ0 K · ∇v(|∂xxf |2)

]
dxdv

−
∫∫

v2γ−10 (2γv̂∂xxf + v0∇v∂xxf) · (D∇v∂xxf) dv dx

= I + II
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As before, we have integrated by parts in v and used the compact x-support of
the particle distribution. With this, bounds for I follow as in Lemma 3.2 with the
exception of terms involving ∂xxK. More specifically, we use Lemmas 2.3, 3.1, 3.2,
Cauchy-Schwarz, and Cauchy’s inequality to find

I ≤ CG(t)1/2

[∫ (∫
(v2γ−10 |∂xxf |+ v2γ0 |∇v∂xxf |) f dv

)2

dx

]1/2
+CF(t)

(
‖vγ−

1
2

0 ∂xxf(t)‖22 + ‖∂xf(t)‖22 + ε‖vγ−
1
2

0 ∇v∂xxf(t)‖22

+
1

ε
‖vγ+

1
2

0 ∂xf(t)‖22
)

≤ CG(t)1/2
[∫ (∫

v2γ−10 |∂xxf |2dv
)
·
(∫

v2γ−10 f2dv

)
dx

+

∫ (∫
v2γ−10 |∇v∂xxf |2dv

)
·
(∫

v2γ+1
0 f2dv

)
dx

]1/2
+CT

(
1 +

∥∥∥vγ− 1
2

0 ∂xxf(t)
∥∥∥2
2

+
ε

2

∥∥∥vγ− 1
2

0 ∇v∂xxf(t)
∥∥∥2
2

)
≤ CT

(
1 +

(
1 +

1

ε

)
G(t)

+
∥∥f0∥∥∞ ∥∥∥∥∫ v2γ+1

0 f(t)

∥∥∥∥
∞

[∥∥∥vγ− 1
2

0 ∂xxf(t)
∥∥∥2
2

+ ε
∥∥∥vγ− 1

2
0 ∇v∂xxf(t)

∥∥∥2
2

])
≤ CT

(
1 + G(t) +

∥∥∥vγ− 1
2

0 ∂xxf(t)
∥∥∥2
2

+ ε
∥∥∥vγ− 1

2
0 ∇v∂xxf(t)

∥∥∥2
2

)
for 2γ < a− 3. We estimate II exactly as before to find

II ≤ C
∥∥∥vγ− 1

2
0 ∂xxf(t)

∥∥∥2
2
−
∥∥∥vγ− 1

2
0 ∇v∂xxf(t)

∥∥∥2
2
.

Hence, combining I and II, we find for ε small enough,

d

dt
‖vγ0∂xxf(t)‖22 ≤ CT

(
1 + G(t) +

∥∥∥vγ− 1
2

0 ∂xxf(t)
∥∥∥2
2

)
≤ CT

(
1 + G(t) + ‖vγ0∂xxf(t)‖22

)
.

By Gronwall’s Lemma we have

‖vγ0∂xxf(t)‖22 ≤ CT (1 + G(t)) (20)

for all t ∈ [0, T ] and γ < min
{
a−3
2 , b− 1

}
.

Before turning to field derivatives, we will need a way to relate the current density
and its derivatives to that of the particle distribution. So, for k = 0, 1, 2 we estimate

‖∂kxj2(t)‖22 ≤
∫ (∫

|∂kxf |dv
)2

dx

≤
(∫∫

v2γ0 |∂kxf |2dvdx
)(∫

v−2γ0 dv

)
≤ C‖vγ0∂kxf(t)‖22.

(21)
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for γ > 1. Additionally, we will need to bound ∂tj2 in L2, which can be done using
(19). Using the Vlasov equation and integrating by parts in v, we see

∂tj2 = −
∫
v̂1v̂2∂xf +

∫
∇v(v̂2) ·Kf dv +

∫
∇v · [D∇v(v̂2)]f dv

≤
∫
|∂xf |dv +

∫
(1 + ‖K(t)‖∞)f dv

Thus, it follows by Lemmas 2.3 and 3.1 that

‖∂tj2(t)‖22 ≤ CT
(
1 + ‖vγ0∂xf(t)‖22

)
≤ CT . (22)

for every t ∈ [0, T ] where γ > 1.
Now, we estimate field derivatives. Since ∂xE1 = ρ, we find for all t ∈ [0, T ]

‖∂xE1(t)‖22 ≤ C

∫ (∫
f(t, x, v) dv

)2

dx+ ‖φ‖22

≤ C

(
1 + ‖vγ0 f(t)‖22

(∫
v−2γ0 dv

))
≤ CT

by Lemma 3.1 where γ > 1 to bound the integral. We estimate identically for ∂xxE1

and use φ ∈ C1
c so that by Lemma 3.2 with γ > 1

‖∂xxE1(t)‖22 ≤ C
(
‖φ′‖2 + ‖vγ0∂xf(t)‖22

(∫
v−2γ0 dv

))
≤ CT .

Using the transport equations of (RVMFP) for E2 and B, it follows that these
quantities and their derivatives satisfy wave equations with derivatives of j2 as
source terms, namely

�B = ∂xj2, �E2 = −∂tj2.
Using standard L2 estimates for the wave equation, we multiply the first equation
by ∂tB and integrate in x. After integrating by parts and using Cauchy’s inequality,
this yields

d

dt

(
‖∂tB(t)‖22 + ‖∂xB(t)‖22

)
≤ ‖∂xj2(t)‖22 + ‖∂tB(t)‖22.

Using Lemma 3.2 with (21), this becomes

d

dt

(
‖∂tB(t)‖22 + ‖∂xB(t)‖22

)
≤ CT

(
1 + ‖∂tB(t)‖22

)
which, by Gronwall’s inequality, yields

‖∂tB(t)‖22 + ‖∂xB(t)‖22 ≤ CT .
Since ∂xE2 = −∂tB and ∂xE2 = −∂xB − j2, the same bounds hold for derivatives
of E2.

We may now proceed in a similar fashion for second derivatives of the field. From
the field equations, we see

�(∂xB) = ∂xxj2

and thus
d

dt

(
‖∂txB(t)‖22 + ‖∂xxB(t)‖22

)
≤ ‖∂xxj2(t)‖22 + ‖∂txB(t)‖22.

Since ∂txB = −∂xxE2, this is equivalent to

d

dt

(
‖∂xxE2(t)‖22 + ‖∂xxB(t)‖22

)
≤ ‖∂xxj2(t)‖22 + ‖∂xxE2(t)‖22.
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Using (20) and (21), this implies

G′(t) ≤ CT (1 + G(t)),

and using Gronwall’s inequality and the assumption on the initial fields, we find

‖∂xxE2(t)‖22 + ‖∂xxB(t)‖22 ≤ CT .

With this, (20) provides an a priori bound on ‖vγ0∂xxf(t)‖22 for all t ∈ [0, T ].
Since �B = −∂xj2, we see that ∂ttB = ∂xxB − ∂xj2 ∈ L∞([0, T ];L2(R)) by
(19) and (21). Then, ∂txE2 = −∂ttB ∈ L∞([0, T ];L2(R)) and ∂txB = −∂xxE2 ∈
L∞([0, T ];L2(R)), and finally ∂ttE2 = −∂txB − ∂tj2 ∈ L∞([0, T ];L2(R)) by (22).

Next, we derive dissipative inequalities for lower-order derivatives of the density.
Ultimately, these will be used to prove the gain in regularity achieved by Lemma
3.6.

Lemma 3.4 (Low-order Dissipation). Assume the hypotheses of Lemma 3.3 hold.
Then, for all t ∈ (0, T ), we have the following

d

dt
‖v20f(t)‖22 ≤ CT ‖v20f(t)‖22 − ‖v

3/2
0 ∇vf(t)‖22

d

dt
‖v3/20 ∇vf(t)‖22 ≤ CT

(
‖v3/20 ∇vf(t)‖22 + ‖v0∂xf(t)‖22

)
− ‖v0∇2

vf(t)‖22

d

dt
‖v3/20 ∂xf(t)‖22 ≤ CT

(
‖v3/20 ∂xf(t)‖22 + ‖v20f(t)‖22

)
− (1− ε)‖v0∇v∂xf(t)‖22

d

dt
‖v0∇v∂xf(t)‖22 ≤ CT

(
‖v0∇v∂xf(t)‖22 + ‖∂xxf(t)‖22 + ‖v3/20 ∇vf(t)‖22

)
−(1− ε)‖v1/20 ∇2

v∂xf(t)‖22.

Proof of Lemma 3.4. Throughout, we will use v0 ≥ 1 in order to increase moments
of the estimates where necessary so as to match the results of the lemma. Addi-
tionally, we will use the notation Rγ(v) to generically denote a function of v such
that |Rγ(v)| ≤ CT vγ0 , but the specific value of Rγ(v) may change from line to line.
We first estimate moments of the density. Computing

1

2

d

dt
‖v20f(t)‖22 =

∫∫
v40f [−v̂1∂xf −K · ∇vf +∇v · (D∇vf)] dvdx

= I + II + III.

The first term vanishes as it is a pure x-derivative. For II, we integrate by parts
and use the field bounds of Lemma 2.3 so that

II = −
∫∫

v40∇v · (Kf2) dvdx

= 4

∫∫
v30 v̂ ·Kf2 dvdx

≤ CT ‖v3/20 f(t)‖22.
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To estimate III, we integrate by parts, then use the property Dv̂ = v and integrate
by parts again in the first term. Also, we use (1) in the second term to find

III = −
∫∫
∇v(v40f) ·D∇vf dvdx

= −
∫∫

(4v30 v̂f + v40∇vf) ·D∇vf dvdx

≤ C‖v3/20 f(t)‖22 − ‖v20D1/2∇vf(t)‖22.

≤ C‖v3/20 f(t)‖22 − ‖v
3/2
0 ∇vf(t)‖22.

Combining the estimates, the first inequality follows.
Next, we let ∂v be either first-order derivative and compute

1

2

d

dt
‖v3/20 ∂vf(t)‖22 =

∫∫
v30∂vf [−v̂1∂v∂xf − ∂v v̂1∂xf

−∂vK · ∇vf −K · ∇v∂vf
+∇v · ((∂vD)∇vf) +∇v · (D∇v∂vf)] dvdx

= I + II + III.

The first term in I vanishes as before and thus using Cauchy’s inequality

I = −
∫∫

v30R
−1(v)∂vf∂xf dvdx

≤ C
(
‖v0∂vf(t)‖22 + ‖v0∂xf(t)‖22

)
.

For II, we use the field bounds of Lemma 2.3 and integrate by parts in the second
term to find

II = −
∫∫

v30∂vf [R−1(v)∇vf +K · ∇v∂vf ] dvdx

≤ CT ‖v3/20 ∇vf(t)‖22.
Finally, in III we integrate by parts while using Dv̂ = v and boundedness of
derivatives of D to find

III = −
∫∫ [

3v20 v̂∂vf + v30∇v∂vf
]

[∂vD∇vf +D∇v∂vf ] dvdx

= −
∫∫ [

3v20R
0(v)∂vf∇vf +

1

2
v30R

0(v)∂v |∇vf |2

+
3

2
v20Dv̂ · ∇v|∂vf |2 + v30∇v∂vf ·D∇v∂vf

]
dvdx

≤ C‖v0∇vf(t)‖22 − ‖v0∇v∂vf(t)‖22.
We collect these estimates, use ‖∂vf(t)‖22 ≤ ‖∇vf(t)‖22, and then sum over first-

order v-derivatives to arrive at an estimate on d
dt‖v

3/2
0 ∇vf(t)‖22. With this, the

second result follows.
The final two results concern x-derivatives of the density, so we first compute

1

2

d

dt
‖v3/20 ∂xf(t)‖22 =

∫∫
v30∂xf

[
−v̂1∂xxf −∇v · (∂xKf)

−K · ∇v∂xf +∇v · (D∇v∂xf)

]
dvdx

= I + II + III + IV.
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As in the other estimates, I vanishes. For II, we integrate by parts and use the
bounds on field derivatives provided by Lemma 2.5 and Cauchy’s inequality to find

II ≤ CT
(
‖v3/20 ∂xf(t)‖22 +

(
1 +

1

ε

)
‖v20f(t)‖22 + ε‖v0∇v∂xf(t)‖22

)
.

We note that for ε sufficiently small, the last term can be controlled by the final
term arising in IV below. Next, we integrate by parts in III to find

III = −
∫∫

v30∇v · (K|∂xf |2) dvdx = 3

∫∫
v20 v̂ · (K|∂xf |2) dvdx ≤ CT ‖v0∂xf(t)‖22.

In the last term, we again integrate by parts and use Dv̂ = v along with (1) to find

IV = −
∫∫ (

3v20 v̂∂xf + v30∇v∂xf
)
·D∇v∂xf dvdx

≤ ‖v0∂xf(t)‖22 − ‖v0∇v∂xf(t)‖22.

Combining the estimates, the third results follows.
To prove the last inequality, we let ∂v be either first-order derivative and compute

1

2

d

dt
‖v0∂v∂xf(t)‖22 =

∫∫
v20∂v∂xf [−v̂1∂v∂xxf − ∂v v̂1∂xxf

−∂vK · ∇v∂xf − ∂xK · ∇v∂vf
−∂v∂xK · ∇vf −K · ∇v∂v∂xf
+∇v · ((∂vD)∇v∂xf) +∇v · (D∇v∂v∂xf)] dvdx

= I + II + III.

Because the first term of I vanishes yet again, we use Cauchy’s inequality to find

I = −
∫∫

v20R
−1(v)∂v∂xf∂xxf dvdx ≤ CT

(
‖v0∂v∂xf(t)‖22 + ‖∂xxf(t)‖22

)
.

To estimate II, we integrate by parts in the third and fourth terms below and use
the bounds on fields and field derivatives (Lemmas 2.3 and 2.5) as well as Cauchy’s
inequality so that

II = −
∫∫

v20∂v∂xf

(
∂vK · ∇v∂xf + ∂xK · ∇v∂vf

+∂v∂xK · ∇vf +K · ∇v∂v∂xf
)
dvdx

= −
∫∫

v20R
−1(v)∂v∂xf [∇v∂xf +∇vf ] dvdx

−
∫∫

v20∂v∂xf∇v · (∂xK∂vf) dvdx

−
∫∫

v20∇v · (K∂v∂xf) dvdx

≤ CT

(
‖v0∇v∂xf(t)‖22 +

(
1 +

1

ε

)
‖v0∇vf(t)‖22 + ε‖v0∇v∂v∂xf(t)‖22

)
We note that for ε sufficiently small, the last term can be controlled by the final
term arising in III below. Lastly, we estimate III exactly as in the proof of the
second inequality, but for ∂xf instead of f , to find

III ≤ C‖v0∇v∂xf(t)‖22 − ‖v0∇v∂v∂xf(t)‖22.
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With this, we combine the estimates, sum over all first-order v-derivatives, and
proceed as for the second inequality, which yields the final estimate. We note that
throughout we have rescaled ε > 0 by a factor of CT > 0 when necessary.

The next lemma contains dissipative inequalities for higher-order derivatives of
the density. In particular, it will allow us to trade v-derivatives of the density for
those which are two orders less with the associated penalty of an x-derivative and a
v0 moment. For instance, use of this lemma will allow us to conclude the estimates

‖∇4
vf(t)‖22 . ‖v

1/2
0 ∇2

v∂xf(t)‖22 . ‖∂xxf(t)‖22 ≤ CT

along with the previously obtained bound on the second spatial derivative.

Lemma 3.5 (High-order dissipation). Assume the hypotheses of Lemma 3.3 hold.
Then, for all t ∈ (0, T ), we have

d

dt

∥∥vγ0∇kvf(t)
∥∥2
2
≤ CT

(∥∥vγ0∇kvf(t)
∥∥2
2

+

k−1∑
j=1

∥∥∥vγ+j−k0 ∇jvf(t)
∥∥∥2
2

+
∥∥∥vγ+1/2

0 ∂x∇k−2v f(t)
∥∥∥2
2

)
− (1− ε)

∥∥∥vγ−1/20 ∇k+1
v f(t)

∥∥∥2
2

for every γ ∈ [0, b− k/2], k = 2, 3, 4, and ε > 0 sufficiently small. Additionally, we
have

d

dt
‖v1/20 ∇2

v∂xf(t)‖22 ≤ CT

(
‖v1/20 ∇2

v∂xf(t)‖22 + ‖v0∇v∂xf(t)‖22

+

2∑
j=1

∥∥∥v2−j/20 ∇jvf(t)
∥∥∥2
2

+ ‖∂xxf(t)‖22
)

−(1− ε)
∥∥∇3

v∂xf(t)
∥∥2
2

for all t ∈ (0, T ) and ε > 0 sufficiently small.

Proof of Lemma 3.5. For each result the proof is made more difficult because of
the structure of D and its derivatives, while in the case D = I derivatives commute
with the Fokker-Planck operator and the computations are straightforward. Let
k = 2, 3, 4 be given and t ∈ (0, T ). As in the proof of the previous lemma, we will
use the notation Rγ(v) for a generic function satisfying |Rγ(v)| ≤ CT vγ0 .

Now, fix a multi-index α = (α1, α2) where we denote ∂α1
v1 ∂

α2
v2 by ∂αv , and consider

1

2

d

dt
‖vγ0∂αv f(t)‖22 = −〈vγ0 v̂1∂x∂αv f, v

γ
0∂

α
v f〉 − 〈v

γ
0K · ∇v∂αv f, v

γ
0∂

α
v f〉

+ 〈vγ0∇v · (D∇v∂αv f), vγ0∂
α
v f〉

+
∑

β+α′=α
|β|>0

(
α

α′ β

)[〈
R1−|β|+γ(v)∂x∂

α′

v f, v
γ
0∂

α
v f
〉

+
〈
BR1−|β|+γ(v)∂v1∂

α′

v f, v
γ
0∂

α
v f
〉

+
〈
BR1−|β|+γ(v)∂v2∂

α′

v f, v
γ
0∂

α
v f
〉

+
〈
vγ0∇v · (∂βv (D)∇v∂α

′

v f), vγ0∂
α
v f
〉 ]
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=: I + II + III +
∑

β+α′=α
|β|>0

(
α

α′ β

)[
IV 1

αβ + IV 2
αβ + IV 3

αβ + IV 4
αβ

]

For I, we integrate by parts in x so that

〈vγ0 v̂1∂x∂αv f, v
γ
0∂

α
v f〉 = −〈vγ0∂αv f, v

γ
0 v̂1∂x∂

α
v f〉

and hence the first term vanishes. For II we integrate by parts in v to find

−2 〈vγ0K · ∇v∂αv f, v
γ
0∂

α
v f〉 =

〈
(∇vv2γ0 ) ·K∂αv f, ∂αv f

〉
+ 〈vγ0 (∇v ·K)∂αv f, v

γ
0∂

α
v f〉 .

The second term vanishes by the divergence-free structure of K, while the first term
is bounded by field estimates so that

II ≤ C (‖B((t)‖∞ + ‖E(t)‖∞) ‖vγ0∂αv f(t)‖22 .

To estimate III, we integrate by parts in v to find

〈vγ0∇v · (D∇v∂αv f), vγ0∂
α
v f〉 = −

∥∥∥vγ0D1/2∇v∂αv f(t)
∥∥∥2
2
−
〈
∇v(v2γ0 ) ·D∇v∂αv f, ∂αv f

〉
.

Integrating by parts again in the second of these terms yields
〈
Rγ−1(v)∂αv f, v

γ
0∂

α
v f
〉
.

So we have

III ≤ −
∥∥∥vγ−1/20 ∇v∂αv f(t)

∥∥∥2
2

+ C ‖vγ0∂αv f(t)‖22

Next, we estimate the terms within IV 1
αβ . If |α′| = 0 then we may use Cauchy’s

inequality and hence

IV 1
αβ ≤

∥∥∥v1−k+γ0 ∂xf(t)
∥∥∥2
2

+ ‖vγ0∂αv f(t)‖22 .

Otherwise we may write ∂α
′

v = ∂vi∂
α′′

v with |α′′| = |α| − 2. Then, we integrate by
parts in vi and write this term as〈

R1−|β|+γ(v)∂x∂
α′

v f, v
γ
0∂

α
v f
〉

= −
〈
R−|β|+γ(v)∂x∂

α′′

v f, vγ0∂
α
v f
〉
−
〈
R1−|β|+γ(v)∂x∂

α′′

v f, vγ0∂vi∂
α
v f
〉

Applying Cauchy’s inequality with ε > 0 to both terms we arrive at

IV 1
αβ ≤

C

ε

∥∥∥vγ+1/2
0 ∂α

′′

v ∂xf(t)
∥∥∥2
2

+ ‖vγ0∂αv f(t)‖22 + ε
∥∥∥vγ−1/20 ∂vi∂

α
v f(t)

∥∥∥2
2

and we can choose ε small enough so that the last term here is absorbed by
the first term in the estimate of III. Both IV 2

αβ and IV 3
αβ possess the form〈

BR1−|β|+γ(v)∂vj∂
α′

v f, v
γ
0∂

α
v f
〉
. Hence, after applying Cauchy’s inequality we find

IV 2
αβ + IV 3

αβ ≤ ‖B(t)‖∞

(∥∥∥R1−|β|+γ(v)∂vj∂
α′

v f(t)
∥∥∥2
2

+ ‖vγ0∂αv f(t)‖22

)
(23)

≤ ‖B(t)‖∞

‖vγ0∂αv f(t)‖22 +
∑

1≤|α|<k

∥∥∥vγ+|α|−k0 ∂αv f(t)
∥∥∥2
2

 (24)
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To estimate IV 4
αβ we must consider cases. If |α′| < |α| − 1, we use Cauchy’s

inequality to find

IV 4
αβ ≤ C

(∥∥∥vγ−|β|0 ∂vi∂
α′

v f(t)
∥∥∥2
2

+
∥∥∥vγ+1−|β|

0 ∂vi∂vj∂
α′

v f(t)
∥∥∥2
2

+ ‖vγ0∂αv f(t)‖22
)

≤ C

‖vγ0∂αv f(t)‖22 +
∑

1≤|α|<k

∥∥∥vγ+|α|−k0 ∂αv f(t)
∥∥∥2
2


If |α′| = |α| − 1, suppose ∂vi∂

α′

v = ∂αv . Then the terms involving ∂vi∂
α′

v can be

handled using Cauchy-Schwarz. The terms involving ∂2vivj∂
α′

v f , after integration by

parts, are bounded by ‖vγ0∂αv f(t)‖22.
Collecting the estimates, summing over all α with |α| = k, and writing

‖vγ0∇kvf(t)‖22 =
∑
|α|=k

‖vγ0∂αf(t)‖22

we find

‖vγ0∇kvf(t)‖22 ≤ C

‖vγ0∇kvf(t)‖22 +

k−1∑
j=1

∥∥∥vγ+j−k0 ∇jvf(t)
∥∥∥2
2

+
∥∥∥vγ+1/2

0 ∂x∇k+2
v f(t)

∥∥∥2
2


−(1− ε)

∥∥∥vγ−1/20 ∇k+1
v f(t)

∥∥∥2
2

which proves the first result.
Next, we turn to the second result. Let ∂2v be any second-order v-derivative. We

compute

1

2

d

dt
‖v1/20 ∂2v∂xf(t)‖22 =

∫∫
v0∂

2
v∂xf

[
−∂2v (v̂1∂xxf)− ∂2v∂x (K · ∇vf)

+∂2v (∇v · (D∇v∂xf))

]
dvdx

= I + II + III.

As usual, one of the terms in I vanishes. So, we integrate by parts in the latter
term below and use Cauchy’s inequality with ε > 0 to find

I = −
∫∫

v0∂
2
v∂xf

[
R−2(v)∂xxf + 2R−1(v)∂v∂xxf

]
dvdx

≤ C

(
‖∂2v∂xf(t)‖22 +

(
1 +

1

ε

)
‖∂xxf(t)‖22 + ε‖∂3v∂xf(t)‖22

)
.

We note that for ε sufficiently small, the last term can be controlled by the final
term arising in III below. To estimate II, we integrate by parts in the third and
last terms below, use the control of field and field derivative terms guaranteed by
Lemmas 2.3 and 2.5, and utilize Cauchy’s inequality so that

II = −
∫∫

v0∂
2
v∂xf

[
R−2(v)∇vf + 2R−1(v)∇v∂vf +R0(v)∇v∂2vf

+ R−2(v)∇v∂xf + 2R−1(v)∇v∂v∂xf +K · ∇v∂2v∂xf
]
dvdx

≤ CT

(
‖v1/20 ∇2

v∂xf(t)‖22 + ‖∇vf(t)‖22 + ‖∇v∂xf(t)‖22
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+

(
1 +

1

ε

)
‖v0∇v∂vf(t)‖22 + ε‖∇v∂2v∂xf(t)‖22

)
.

Again, for ε sufficiently small, the last term can be controlled by the final term
arising in III below. We integrate by parts, then use aforementioned properties of
D and Cauchy’s inequality with ε > 0 in III to find

III = −
∫∫ [

v̂∂2v∂xf + v0∇v∂2v∂xf
]

×
(
∂2vD∇v∂xf + 2∂vD∇v∂v∂xf +D∇v∂2v∂xf

)
dvdx

= −
∫∫ [

v̂∂2v∂xf + v0∇v∂2v∂xf
]

×
(
R−1(v)∇v∂xf +R0(v)∇v∂v∂xf +D∇v∂2v∂xf

)
dvdx

≤ C

(
‖∂2v∂xf(t)‖22 +

(
1 +

1

ε

)
‖∇v∂xf(t)‖22 + ‖∇v∂v∂xf(t)‖22

)
−(1− ε)‖∇v∂2v∂xf(t)‖22.

Finally, we collect these estimates, so that

I + II + III ≤ CT

(
‖∂2v∂xf(t)‖22 + ‖∂xxf(t)‖22 + ‖v1/20 ∇2

v∂xf(t)‖22 + ‖∇vf(t)‖22

+‖∇v∂vf(t)‖22 + ‖∇v∂xf(t)‖22 + ‖∂2v∂xf(t)‖22
)

−(1− CT ε)‖∇v∂2v∂xf(t)‖22.

Then, we use ‖∂2v∂xf(t)‖22 ≤ ‖∇2
v∂xf(t)‖22, sum over all v-derivatives to arrive at

an estimate on d
dt‖v

1/2
0 ∇2

v∂xf(t)‖22, and the claim then follows. As for Lemma 3.4
we have rescaled ε > 0 by a factor of CT > 0 where necessary.

Our final lemma removes the need for smoothness of the initial density in v in
order to obtain derivative bounds. Hence, solutions achieve a gain in regularity
so that for t > 0, the quantities f(t, x, v) and ∂xf(t, x, v) are smooth in v even
for initial data which are not. To accomplish this we adapt a method previously
established by the authors to study solutions of uniformly parabolic equations [16].

Lemma 3.6. Assume the hypotheses of Lemma 3.3 hold. Then for all t ∈ (0, T ),

4∑
k=0

tk

2kk!

∥∥∥v(4−k)/20 ∇kvf(t)
∥∥∥2
2

+

2∑
k=0

tk

2kk!

∥∥∥v(3−k)/20 ∇kv∂xf(t)
∥∥∥2
2
≤ CT .

The gain in regularity achieved from the momentum argument is generally ex-
pected from the diffusive term. Additionally, it is possible that the solution gains
regularity in its spatial argument as well, but this feature of the system remains un-
known. Precedent exists for this possibility, however, as analogous work of Herau
[9] and Villani [24] has determined that this does, in fact, occur for the linear,
non-relativistic Fokker-Planck equation as long as the given potential is sufficiently
smooth.

Proof of Lemma 3.6. We will prove the result in a hierarchical fashion by building
pairs of consecutive terms and adding higher-order derivatives as we go. To begin
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the proof, we consider t ∈ (0, T ) and define

M1(t) = ‖v20f(t)‖22 +
1

2
t‖v3/20 ∇vf(t)‖22 +

1

8
t2‖v0∇2

vf(t)‖22

and differentiate to find

M ′1(t) =
d

dt
‖v20f(t)‖22 +

1

2
t
d

dt
‖v3/20 ∇vf(t)‖22 +

1

8
t2
d

dt
‖v0∇2

vf(t)‖22

+
1

2
‖v3/20 ∇vf(t)‖22 +

1

4
t‖v0∇2

vf(t)‖22

Using Lemma 3.4, we find

d

dt
‖v20f(t)‖22 ≤ CT ‖v20f(t)‖22 − ‖v

3/2
0 ∇vf(t)‖22

and

d

dt
‖v3/20 ∇vf(t)‖22 ≤ CT

(
‖v3/20 ∇vf(t)‖22 + ‖v0∂xf(t)‖22

)
− ‖v0∇2

vf(t)‖22.

Additionally, applying the first result of Lemma 3.5 for γ = 1, k = 2 we find for
any ε > 0 sufficiently small

d

dt
‖v0∇2

vf(t)‖22 ≤ CT

(
‖v0∇2

vf(t)‖22 + ‖v3/20 ∇vf(t)‖22 + ‖v3/20 ∂xf(t)‖22
)

−(1− ε)‖v1/20 ∇3
vf(t)‖22.

We combine these results, use the bounds on x-derivatives of the particle distribu-
tion (Lemma 3.2), and choose ε < 1 to find

M ′1(t) ≤ CT

(
M1(t) + ‖v3/20 ∂xf(t)‖22

)
− 1

2
‖v3/20 ∇vf(t)‖22

−1

4
t‖v0∇2

vf(t)‖22 −
(1− ε)

8
t2‖v1/20 ∇3

vf(t)‖22
≤ CT (1 +M1(t))

Thus, by Gronwall’s inequality, we conclude

M1(t) ≤ CTM1(0) = CT ‖v20f0‖22
Hence, for t ∈ (0, T )

‖v3/20 ∇vf(t)‖22 ≤
CT
t

(25)

and

‖v0∇2
vf(t)‖22 ≤

CT
t2
. (26)

Next, define

M2(t) = ‖v3/20 ∂xf(t)‖22 +
1

2
t‖v0∇v∂xf(t)‖22

and differentiate to find

M ′2(t) =
d

dt
‖v3/20 ∂xf(t)‖22 +

1

2
t
d

dt
‖v0∇v∂xf(t)‖22 +

1

2
‖v0∇v∂xf(t)‖22

Using Lemma 3.4, we find

d

dt
‖v3/20 ∂xf(t)‖22 ≤ CT

(
‖v3/20 ∂xf(t)‖22 + ‖v20f(t)‖22

)
− (1− ε)‖v0∇v∂xf(t)‖22
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and
d

dt
‖v0∇v∂xf(t)‖22 ≤ CT

(
‖v0∇v∂xf(t)‖22 + ‖∂xxf(t)‖22 + ‖v3/20 ∇vf(t)‖22

)
−(1− ε)‖v1/20 ∇2

v∂xf(t)‖22.
Combining these results while using the L2-bounds on second x-derivatives of the
density (Lemma 3.3) and (25), we find

M ′2(t) ≤ CT

(
M2(t) + ‖v20f(t)‖22 + t‖v3/20 ∇vf(t)‖22 + ‖∂xxf(t)‖22

)
−
(

1

2
− ε
)
‖v0∇v∂xf(t)‖22 −

1

2
(1− ε) t‖v1/20 ∇2

v∂xf(t)‖22

≤ CT (1 +M2(t))

Thus, for ε < 1/2, we use Gronwall’s inequality to conclude

M2(t) ≤ CTM2(0) = CT ‖v3/20 ∂xf
0‖22

Hence, for t ∈ (0, T )

‖v0∇v∂xf(t)‖22 ≤
CT
t
. (27)

Building onto previous terms, we next define

M3(t) = M1(t) +
1

48
t3‖v1/20 ∇3

vf(t)‖22.

Hence, using the estimate of M ′1(t) we find

M ′3(t) = M ′1(t) +
1

16
t2‖v1/20 ∇3

vf(t)‖22 +
1

48
t3
d

dt
‖v1/20 ∇3

vf(t)‖22

≤ CT (1 +M1(t)) +

(
1

16
− (1− ε)

8

)
t2‖v1/20 ∇3

vf(t)‖22

+
1

48
t3
d

dt
‖v1/20 ∇3

vf(t)‖22

≤ CT (1 +M1(t)) +
1

48
t3
d

dt
‖v1/20 ∇3

vf(t)‖22

for ε < 1/2. By the first result of Lemma 3.5 with γ = 1/2 and k = 3, we find for
any ε > 0 sufficiently small

d

dt
‖v1/20 ∇3

vf(t)‖22 ≤ CT
(
‖v1/20 ∇3

vf(t)‖22 + ‖v3/20 ∇vf(t)‖22 + ‖v0∇2
vf(t)‖22

+ ‖v0∇v∂xf(t)‖22
)
− (1− ε)‖∇4

vf(t)‖22

Therefore, using the previous bounds obtained from (25), (26), and (27), we have

M ′3(t) ≤ CT (1 +M3(t))− 1

48
(1− ε)t3‖∇4

vf(t)‖22.

Since ε < 1/2 Gronwall’s inequality implies

‖v1/20 ∇3
vf(t)‖22 ≤

CT
t3

(28)

for t ∈ (0, T ).
Again building onto previous terms, we next define

M4(t) = M2(t) +
1

8
t2‖v1/20 ∇2

v∂xf(t)‖22
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so that

M ′4(t) = M ′2(t) +
1

4
t‖v1/20 ∇2

v∂xf(t)‖22 +
1

8
t2
d

dt
‖v1/20 ∇2

v∂xf(t)‖22

Using the second result of Lemma 3.5 along with the bound on ‖∂xxf(t)‖22 from
Lemma 3.3 and the previous bounds obtained from (25), (26), and (27), we find for
ε > 0 sufficiently small

d

dt
‖v1/20 ∇2

v∂xf(t)‖22 ≤ CT

(
‖v1/20 ∇2

v∂xf(t)‖22 + ‖v0∇v∂xf(t)‖22

+

2∑
j=1

∥∥∥v 4−j
2

0 ∇jvf(t)
∥∥∥2
2

+ ‖∂xxf(t)‖22
)

−(1− ε)
∥∥∇3

v∂xf(t)
∥∥2
2

≤ CT

( 1

t2
+ ‖v1/20 ∇2

v∂xf(t)‖22
)
.

Hence, we incorporate this and use the estimate of M ′2(t) to find

M ′4(t) ≤ CT (1 +M4(t))−
(

1

4
− 1− ε

2

)
t‖v1/20 ∇2

v∂xf(t)‖22

≤ CT (1 +M4(t))

and upon choosing ε < 1/2 an application of Gronwall’s inequality yields the bound

‖v1/20 ∇2
v∂xf(t)‖22 ≤

CT
t2

(29)

for t ∈ (0, T ). Finally, to obtain bounds on fourth-order v-derivatives of the density,
we define

M5(t) = M3(t) +
1

244!
t4‖∇4

vf(t)‖22
so that

M ′5(t) = M ′3(t) +
1

96
t3‖∇4

vf(t)‖22 +
1

244!
t4
d

dt
‖∇4

vf(t)‖22.

Using Lemma 3.5 one final time with γ = 0 and k = 4 and utilizing the bounds
obtained from (25)-(29), we find

d

dt
‖∇4

vf(t)‖22 ≤ CT
(

1

t3
+ ‖∇4

vf(t)‖22
)
.

Applying this to M5(t) and using the estimate of M ′3(t), we see

M ′5(t) ≤ CT (1 +M5(t)) +

(
1

96
− (1− ε)

48

)
t3‖∇4

vf(t)‖22.

and choosing ε < 1/2 this implies

‖∇4
vf(t)‖22 ≤

CT
t4

for t ∈ (0, T ). Lastly, combining the estimates above, the proof of the lemma is
complete. We remark that this same argument can be applied to the eight term
power series expansion

4∑
k=0

tk

2kk!

∥∥∥v(4−k)/20 ∇kvf(t)
∥∥∥2
2

+

2∑
k=0

tk

2kk!

∥∥∥v(3−k)/20 ∇kv∂xf(t)
∥∥∥2
2
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in order to arrive at an identical result. However, the above argument is perhaps
clearer. Also, estimates of higher derivatives can be obtained if one imposes addi-
tional spatial regularity on the density and field terms, as this requires control of
second-order field derivatives in L∞.

4. Main theorem. To conclude the paper, we utilize the previous lemmas to
sketch the proof of our main result.

Proof of Theorem 1.1. As is typical, the proof utilizes a standard iterative argu-
ment. We define a sequence of solutions to the corresponding linear equations and
show that it must converge to a solution of the nonlinear system (RVMFP). Define
the initial iterates in terms of the given initial data

f0(t, x, v) = f0(x, v),

E0
2(t, x) = E0

2(x)

B0(t, x) = B0(x).

Additionally, for every n ∈ N, given En1 , E
n
2 , B

n ∈ L∞([0,∞);H2(R)) we obtain
fn ∈ L∞([0,∞)× R3) by solving the linear initial value problems{

∂tf
n + v̂1∂xf

n +Kn−1 · ∇vfn = ∇v · (D∇vfn)

fn(0, x, v) = f0(x, v),
(30)

where

Kn = 〈En1 + v̂2B
n, En2 − v̂1Bn〉

and the fields satisfy

∂tE
n
2 + ∂xB

n = −jn2 , ∂tB
n + ∂xE

n
2 = 0

En1 =

∫ x

−∞

(∫
fn(t, y, v) dv − φ(y)

)
dy

En2 (0, x) = E2(0, x)

Bn(0, x) = B(0, x)

(31)

respectively. Let T > 0 be given and (fn, En, Bn) be a sequence of weak solutions to
the above linear system on [0, T ]. Using the assumptions on initial data, we apply
the estimates of Section 2 and find En2 and Bn converge (up to a subsequence)
weakly in L∞([0, T ];H1(R)) to functions E2 and B, respectively. Then, we proceed
by estimating successive differences of iterates (e.g., see [11]). First, we use (11)
and the linearity of the transport equation to find

‖Kn(t)−Kn−1(t)‖∞ ≤ Ct sup
s∈[0,t]

‖va0fn(s)− va0fn−1(s)‖∞.

Next, we write the Vlasov equation for the difference of consecutive iterates and
use (17) and Lemmas 2.1, 2.3, and 2.4 to conclude

‖va0fn+1(t)− va0fn(t)‖∞

≤ CT
∫ t

0

(
‖Kn(s)−Kn−1(s)‖∞ + ‖va0fn+1(s)− va0fn(s)‖∞

)
ds

and thus

‖va0fn+1(t)− va0fn(t)‖∞ ≤ CT
∫ t

0

sup
τ∈[0,s]

‖va0fn(τ)− va0fn−1(τ)‖∞ ds. (32)
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It follows from this estimate that fn converges strongly to a function f in L∞([0, T ]×
R3). Similar estimates can be used to show f ∈ L∞([0, T ];L1(R3)) as in [4]. It can
then be shown that these limiting functions satisfy (RVMFP) in the weak sense.
Applying the regularizing estimates, we find f ∈ L∞((0, T );H2

x(R;H4
v (R2))). By

the Sobolev Embedding Theorem, H2(R) ⊂ C1
b (R) and H4(R2) ⊂ C2

b (R2). Thus
we find f , E2, and B possess a continuous partial derivative in x, and f possesses
two continuous partial derivatives in either v component. Using the Vlasov and
transport equations, we see that ∂tB, ∂tE2, and ∂tf are continuous. Hence, we find
f ∈ C1((0, T )×R;C2(R2)) and E2, B ∈ C1((0, T )×R). Finally, from the regularity
of f we deduce E1 ∈ C1((0, T )×R) as well. Of course, with this additional regularity
we conclude that the triple (f,E2, B) is, in fact, a classical solution of (RVMFP).

The uniqueness of solutions follows from another standard argument. We con-
sider the difference of solutions

h(t, x, v) = va0 (f1(t, x, v)− f2(t, x, v))

where f1 and f2 are any two solutions of (RVMFP) which share the same initial
data, and we derive the same estimate (32) for h, namely

‖h(t)‖∞ ≤ CT
∫ t

0

sup
τ∈[0,s]

‖h(τ)‖∞ ds.

After an application of Gronwall’s inequality, it follows that f1 ≡ f2 and solutions
are unique. This completes the proof.

We finally remark that from the proof of this theorem and the previous lemmas,
additional classical regularity of solutions can be obtained by imposing that further
spatial derivatives of the initial data f0, E0

2 , and B0 belong to L2(R3).
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