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Several algorithms have been used for mass transfer between particles undergoing advective and macro-dispersive 

random walks. The mass transfer between particles is required for general reactions on, and among, particles. 

The mass transfer is shown to be diffusive, and may be simulated using implicit, explicit, or mixed methods. 

All algorithms investigated are accurate to  (Δ𝑡 ) . For N particles, the implicit and semi-implicit methods require 

inverse matrix solutions and  ( 𝑁 

3 ) calculations. The explicit methods use forward matrix solves and require only 

 ( 𝑁 

2 ) calculations. Practically, this means that naïve implementations with more than about 5000 particles run 

more reliably using explicit methods. 
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. Introduction 

The random-walk particle-tracking (RWPT) method was originally

eveloped to simulate advective and dispersive transport of conservative

r simply (linearly, instantaneously reversible) sorbing solutes ( Labolle

t al., 1996; Salamon et al., 2006 ). The method is attractive because it

oes not suffer from numerical dispersion or negative concentrations.

he method was extended ( Benson and Meerschaert, 2008 ) to nonlin-

arly interacting (bimolecular) chemical reactions by sequentially calcu-

ating the product of the probabilities of particle collision and thermody-

amic reaction. The actual reactions were then performed using Monte

arlo methods and particles were “born ” or “killed ” by a comparison of

eaction probability to randomly-generated numbers. The method was

riginally restricted to one, or a series of, bimolecular reactions ( Benson

t al., 2017; Bolster et al., 2016; Ding et al., 2012; Ding and Benson,

015; Ding et al., 2017; Paster et al., 2013; 2014 ), because any particle

as composed of only one chemical species. If the reaction is viewed as a

ixing process, which may be denoted 2 𝑝𝐴 + 2 𝑞𝐴 → ( 𝑝 + 𝑞) 𝐴 + ( 𝑝 + 𝑞) 𝐴,
hen particles can carry as many species as desired, and mass transfer

f all species occurs between particles ( Benson and Bolster, 2016 ). The

ass transfer still only occurs between particles with some probability

f collision, and these probabilities may be viewed as the weights

ssociated with mass transfer. Benson and Bolster (2016) suggested

hat this collision-weighted mass transfer process follows a diffusion

quation, although this was not shown rigorously. Furthermore, those

uthors chose a particular explicit mass transfer scheme, while later
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tudies used an implicit scheme ( Engdahl et al., 2017 ). Because both

xplicit and implicit schemes appear to work, it is plausible that a

ombination of these, similar to the Crank–Nicolson (C-N) algorithm,

ay increase accuracy. The purpose of this paper is to first develop

 framework to investigate whether the “action ” of the mass-transfer

lgorithm proposed by Benson and Bolster (2016) is actually diffusive.

nce this diffusive nature is shown, the convergence rates of the several

lgorithms that immediately present themselves can be demonstrated. 

. Semi-implicit scheme 

Among a total of N particles located at positions x i , the collision-

eighted mass exchange over a time step Δt is written 

 

𝑘 +1 
𝑗 

− 𝑚 

𝑘 
𝑗 = 

𝑁 ∑
𝑖 =1 

1 
2 

(
𝑚 

𝑘 + 𝓁 
𝑖 

− 𝑚 

𝑘 + 𝓁 
𝑗 

)
𝑃 ( |𝑥 𝑖 − 𝑥 𝑗 |; Δ𝑡 ) , (1) 

here the superscript denotes timestep (i.e., 𝑚 

𝑘 
𝑗 
= 𝑚 𝑗 ( 𝑘 Δ𝑡 )) , 𝓁 = 0 , 1 ,

nd 𝑃 𝑖𝑗 = 𝑃 ( |𝑥 𝑖 − 𝑥 𝑗 |; Δ𝑡 ) is the probability of particle collision. This

ollision probability is shown to depend only upon the distance between

articles, though it may have a more complicated form if non-isotropic

r position dependent diffusion/dispersion paradigms are considered.

onetheless, while the functional form of P may change, the mass

ransfer algorithm would be unaltered. For particles undergoing Brow-

ian motion, this is the convolution of each particle’s Gaussian location

ensity, which is also Gaussian (see Benson and Meerschaert, 2008;

aster et al., 2014 ). If 𝓁 = 1 , the calculation is implicit, and if 𝓁 = 0 ,
R-1417145 and DMS-1614586 . 
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he calculation is explicit (which may take several forms, for example,

equentially calculated or simultaneously calculated). A semi-implicit

orm is reminiscent of the Crank–Nicolson scheme and uses equal

mounts of k and 𝑘 + 1 masses, so that we may write (1) as 

 

𝑘 +1 
𝑗 

− 𝑚 

𝑘 
𝑗 = 𝛼

𝑁 ∑
𝑖 =1 

1 
2 

(
𝑚 

𝑘 +1 
𝑖 

− 𝑚 

𝑘 +1 
𝑗 

)
𝑃 𝑖𝑗 + (1 − 𝛼) 

𝑁 ∑
𝑖 =1 

1 
2 

(
𝑚 

𝑘 
𝑖 − 𝑚 

𝑘 
𝑗 

)
𝑃 𝑖𝑗 , (2)

hich uses 𝛼 = 1, 1/2, and 0 for implicit, semi-implicit, and explicit

ormulations respectively. Now denote the masses as a vector, i.e.,

 = [ 𝑚 1 , … , 𝑚 𝑁 

] 𝑇 , and if one constructs a matrix of particle collision

robabilities P with entries P ij , then (2) can be expressed as 

𝑰 + 

𝛼

2 
( diag ( 𝟏 𝑷 ) − 𝑷 ) 

]
𝒎 

𝑘 +1 = 

[
𝑰 − 

1 − 𝛼

2 
( diag ( 𝟏 𝑷 ) + 𝑷 ) 

]
𝒎 

𝑘 (3)

here 𝑨 = diag ( 𝒙 ) denotes a diagonal matrix, A with the entries of

ector x along the main diagonal and 1 is an 1 ×N vector of ones. 

. Explicit schemes 

Clearly, setting 𝛼 = 0 in (3) results in an explicit forward matrix

alculation. We call this matrix-explicit. All of the masses used to cal-

ulate the transfer magnitudes are from the beginning of the timestep.

nother method sequentially calculates (2) for 𝑗 = 1 , … , 𝑁 . After the

 

th particle is updated, its new mass can be used on the right side of

he equation for subsequent calculations. If the sum is calculated using

ne fixed value for m j , then we call this vector-explicit, calculated as

ollowed (employing pseudo-code, where ◦ denotes the entry-wise, or

adamard, product) 

or 𝑗 = 1 ∶ 𝑁 

𝚫𝒎 = 

1 
2 
(
𝒎 ( 𝑡 ) − 𝑚 𝑗 ( 𝑡 ) 

)
◦𝑷 (∶ ,𝑗) 

𝒎 ( 𝑡 + Δ𝑡 ) = 𝒎 ( 𝑡 ) − 𝚫𝒎 

𝑚 𝑗 ( 𝑡 + Δ𝑡 ) = 𝑚 𝑗 ( 𝑡 ) + 

∑
𝚫𝒎 

nd . (4)

Furthermore, if the sum is expanded, then each calculation may use

n updated m j accounting for all previous terms in the sum. We call

his explicit-sequential, and it is calculated as follows 

for 𝑖 = 1 ∶ 𝑁 

for 𝑗 = 1 ∶ 𝑁 

Δ𝑚 = 

1 
2 
(
𝑚 𝑖 ( 𝑡 ) − 𝑚 𝑗 ( 𝑡 ) 

)
𝑷 ( 𝑖,𝑗) 

𝑚 𝑖 ( 𝑡 + Δ𝑡 ) = 𝑚 𝑖 ( 𝑡 ) − Δ𝑚 

𝑚 𝑗 ( 𝑡 + Δ𝑡 ) = 𝑚 𝑗 ( 𝑡 ) + Δ𝑚 

end 

end . 

(5)

This method has a computational advantage in that there is no

atrix multiplication required (just two loops over particle numbers),

nd hence it can accommodate huge particle numbers. It turns out that

he vector-explicit algorithm is unstable for all ranges of parameters

ested here and will not be explored further. 

. Accuracy as a function of repeated operation 

In general, the particle positions change due to non-uniform and

otentially unsteady mean velocity. The particles are also typically

iven a random component to represent diffusion and hydrodynamic

ispersion; therefore, each simulation in an ensemble has subtle dif-

erences ( Labolle et al., 1996 ). This is one advantage of the method:

he evolving particle spacings (controlled by the number of particles)

nd masses represent the heterogeneity of concentrations —as defined
116 
y evolving auto- and cross-correlation functions —and the resulting

ixing process ( Benson et al., 2017; Bolster et al., 2016; Paster et al.,

014 ). However, in order to check accuracy and convergence in this

aper, we must artificially remove the randomness of simulations. This

s done by eliminating the random movements of particles and spacing

hem evenly on the interval (0,1), where the number of particles

ictates the size of the constant spacing. This also allows us to construct

he classical Eulerian implicit finite-difference (FD) approximation of

iffusion using a 3-point space stencil for comparison. (We stress that

ur particle collision method may not be the most efficient way to sim-

late diffusion on a fixed grid of points, but the method will continue

o work no matter how “mixed-up ” the particle positions become.) 

We track errors over time as functions of N, Δt [T], and total

ime k Δt . In all simulations we choose a diffusion coefficient 𝐷 = 10 −3 
L 2 T 

−1 ] and a total simulation time of 10 s (unless specified otherwise).

or an initial condition (IC) we choose a Heaviside function to represent

he most unmixed (and error-inducing) possible state. We also choose

 Gaussian IC to determine if errors remain more stable over time. Our

easure of error between simulations and analytic solutions uses the

oot-mean-square error (RMSE), 

MSE ( 𝒔 − 𝒂 ) = 

( 

1 
𝑁 

𝑁 ∑
𝑗=1 

( 𝑠 𝑗 − 𝑎 𝑗 ) 2 
) 1∕2 

, 

here s j and a j denote simulated and analytic solutions at spatial point

 . We also utilized the infinity norm, max 𝑗 ( |𝑠 𝑗 − 𝑎 𝑗 |) , which showed

imilar scaling and is not shown here for brevity. 

To illustrate the motivation for this technical note, for 𝑁 = 50 we

ee that all solutions appear diffusive by visual inspection of the plots

f 𝑚 ( 𝑥, 𝑡 = 10) ( Fig. 1 (a)). On the other hand, considering the various

olution methods after one time step (here Δ𝑡 = 0 . 1 ), it is clear that

he methods differ significantly in their “one-step ” approximation of

iffusion. To isolate error incurred by time discretization, we first fix

𝑡 = 0 . 1 and vary the number of particles ( Fig. 2 ). The errors are similar

or 𝑁 = 500 , 1000 , and 5000, indicating that, as long as a sufficient,

inimum number of particles is used, increasing particle number

oes not appreciably decrease error. In subsequent simulations we

se 𝑁 = 1000 for consistency. All methods achieve their greatest error

t the beginning of the simulation, due to the unmixed, or infinite

radient, IC. Repeated applications of the operators result in reduced

rror. In other words, repeated application of the matrix operations

onverges to a true diffusive operator. This is discussed further in

ection 6 . Also evident on the plot is the relatively poor performance of

oth implicit and semi-implicit particle methods, relative to the explicit

atrix particle method that tends to converge quickly to the accuracy

f the Eulerian finite-difference solution to which we compare. 

. Accuracy as a function of 𝚫t 

For a given number of particles (here 𝑁 = 1000 ), the overall errors

f all methods decrease over repeated application. However, we note

hat the mass-transfer algorithm, investigated here, is only one compo-

ent of a particle-tracking simulation that may involve other processes

ike diffusive random walks, advective motion, and chemical reaction.

f these other processes are included, it may negate this property.

ne might expect that, similar to the Crank–Nicolson time-stencil in

n FD implementation, the semi-implicit solutions would improve as

t decreases, relative to the explicit and implicit methods, but this

s not the case. All methods tested here have errors approximately

roportional to Δt ( Fig. 1 (b)). 

To better understand the relation between error and Δt , we wish to

nd the power p such that  𝐴 ∶= RMSE ( 𝒔 − 𝒂 ) < 𝑐(Δ𝑡 ) 𝑝 =  (Δ𝑡 𝑝 ) , given

he simulated and analytic solution vectors ( s and a ) and some constant

 . Conducting a convergence analysis for a one-second simulation and

efining Δt by successive halves, we compute an experimental value of
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Fig. 1. (a) Numerical approximations via particle mass-transfer and finite-difference (symbols) versus analytic solution (solid curve) at 𝑡 = 0 . 1 and 𝑡 = 10 with 

Δ𝑡 = 0 . 1 , 𝐷 = 10 −3 and Heaviside IC. (b) RMSE from various methods over time for different values of Δt with Heaviside IC. 

Fig. 2. RMSE from various methods over time for different number of particles (or spatial discretization) with Heaviside IC. 

117 
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Table 1 

Convergence analysis of mass-transfer algorithms to analytic solution, Heaviside IC. 

Expl. Seq. Semi-Impl. Expl. Mat. Full-Impl. 

Δt  𝐴 EOC  𝐴 EOC  𝐴 EOC  𝐴 EOC 

1 0.0338 0.0327 0.0222 0.0408 

1/2 0.0146 1.2058 0.0141 1.2122 0.0076 1.5483 0.0203 1.0059 

1/4 0.0067 1.1265 0.0054 1.3719 0.0028 1.4365 0.0082 1.2975 

1/8 0.0036 0.8821 0.0025 1.1030 0.0013 1.1064 0.0037 1.1259 

1/16 0.0022 0.6939 0.0012 1.0339 0.0006 1.0463 0.0018 1.0333 

Fig. 3. (a) RMSE vs. 1/ Δt showing first-order error decay in Δt with Heaviside IC. (b) Plot of Gaussian IC and final simulated solutions (Δ𝑡 = 0 . 5) for explicit matrix 

method and discretized diffusion operator. 
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a

N  
 , the estimated order of convergence (EOC) such that 

OC ∶= 

log  old 

log  new 

Δ𝑡 old 

Δ𝑡 new 

= 

(1 
2 

) log  old 

log  new 

. 

For the Heaviside IC case, we see, in Table 1 , demonstrated first-

rder convergence in Δt for all the discussed matrix methods. A plot

f these errors is shown in Fig. 3 (a) with a reference line showing Δt .

s well, we see in Table 1 that the explicit sequential method suffers

n accuracy for small Δt and does not attain asymptotic convergence of

 (Δ𝑡 ) ; this is visually depicted in Fig. 1 (b) for Δ𝑡 = 0 . 01 . 

. Convergence to a diffusive process 

In an infinite 1-D domain, the solution to the diffusion equation at

ime T is 

 ( 𝑥, 𝑇 ) = ( 𝐺 ⋆ 𝑚 )( 𝑥, 𝑇 ) 

= ∫ℝ 𝐺( 𝑥 − 𝑥 0 , 𝑇 ) 𝑚 ( 𝑥 0 , 0) 𝑑𝑥 0 , (6)

here 𝐺( 𝑥, 𝑡 ) = (4 𝜋𝐷 𝑡 ) −1∕2 exp [− 𝑥 2 ∕(4 𝐷 𝑡 )] is the Green’s function for

he diffusion equation, and ⋆ denotes convolution. For time-discretized

imulations, this convolution operation may be applied to the initial

ondition 𝑘 = 𝑇 ∕Δ𝑡 times using G ( x, Δt ) to generate m ( x, T ). In a

pace-discretized particle case where our initial condition is composed

f N Dirac deltas, each with position x i and mass m i , this may be

enoted 𝒎 ( 𝑡 = 𝑇 ) = [ 𝑫 ] 𝑘 𝒎 (0) , where [ D ] n is an n -fold matrix product,
̃
 𝑖𝑗 = 𝐺( |𝑥 𝑖 − 𝑥 𝑗 |, Δ𝑡 ) and D , our diffusion operator, is the result of

ormalizing the columns of 𝑫̃ , in order to preserve mass. For suitable

C, the diffusion operator is virtually error-free, as compared to the
118 
nalytic solution, and error can be driven to machine precision with

 sufficient level of discretization (sufficiently large N , in the particle

ase). However, the Green’s function used to generate D assumes an

nfinite domain, and as a result is highly sensitive to boundary effects,

s compared to the various mass-transfer algorithms developed in

ection 2 that naturally handle any boundary conditions since there

re no particles to interact with outside the boundary. 

While none of the typical numerical approximations (e.g., finite-

ifference, finite-element) are exactly diffusive, in that their matrix

perator is exactly equivalent to D , it suffices to show that, after k

pplications of their matrix operator to m (0), the differences in m ( T )

re small. In other words, if some process 𝒎 ( 𝑇 ) = 𝑨 

𝑘 
𝒎 (0) is “diffusive ”,

hen repeated applications have  𝐷 ∶= RMSE ( 𝑨 

𝑘 
𝒎 (0) − 𝑫 

𝑘 
𝒎 (0)) < 𝜖 for

ome level of error, 𝜖 > 0. 

For this analysis, we will only consider the explicit matrix algorithm

i.e., Eq. (3) with 𝛼 = 0 ), as it consistently shows the lowest error

f all described methods, and all matrix algorithms are consistently

 (Δ𝑡 ) . Additionally, in order to avoid undesirable boundary effects

xperienced by the diffusion operator, a domain-centered Gaussian

C was used in favor of the Heaviside IC employed previously. A plot

f the initial condition and final solutions for the explicit matrix and

iffusion operator algorithms is shown in Fig. 3 (b) for Δ𝑡 = 0 . 5 and one

econd of simulation time. Again, performing a convergence analysis

s in Section 5 , we see first-order convergence in Δt of our algorithm

o the discretized diffusion operator, as shown in Table 2 . 

. Discussion and summary 

In this technical note we show that the inter-particle mass transfer

lgorithm can be simulated in implicit, semi-implicit (pseudo-Crank–

icolson), and several explicit methods. All have error that scales with
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Table 2 

Convergence analysis of explicit matrix algorithm to diffusion operator, Gaus- 

sian IC. 

Δt  𝐷 EOC 

1 0.0362 

1/2 0.0178 1.0241 

1/4 0.0088 1.0097 

1/8 0.0044 0.9941 

1/16 0.0022 1.0064 
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 (Δ𝑡 ) . The matrix-explicit algorithm has the best performance in terms

f both error magnitude and computational requirement, only requiring

 matrix-vector multiplication (as opposed to matrix inversion for the

mplicit and semi-implicit methods) of  ( 𝑁 

2 ) operations. Additionally,

his computational cost can be lowered further if sparse linear algebra

ethods are employed, because, in practice, co-location probability is

ften considered to be zero for particles separated by distances greater

han a few standard deviations of the diffusion process. We also show

hat, for an infinite domain, a simple convolution with the diffusion

ernel has low error and effort of  ( 𝑁 

2 ) . However, this method suffers

rror if natural boundaries exist, because the kernel changes shape

specially near the boundaries. For the sake of brevity, only 1D results

ave been presented in this text. However, 2D results for an analogous

ass transfer algorithm are discussed in Schmidt et al. (2018) . 

This technical note has at least one important theoretical impli-

ation. Benson and Bolster (2016) suggested that the reactive-RWPT

ethod, when combined with this mass transfer method, could partition

he diffusion/dispersion process in any way that the physics demand.

magine two systems with total molecular diffusion plus hydrody-

amic dispersion of 𝐷 𝑚𝑜𝑙 + 𝐷 𝐻 

= 10 −3 . One system with 𝐷 𝑚𝑜𝑙 = 10 −6 
ould have more mass transfer between nearby particles, and greater

verall reaction rates, than a system with 𝐷 𝑚𝑜𝑙 = 10 −9 , even though

he hydrodynamic dispersion 𝐷 𝐻 

≈ 10 −3 would spread the species in

early exactly the same way. In fact, as D mol →0, a simulation would

evert to unreactive, conservative components. So, if the dispersion

ensor is thought of as a combination of velocity contrasts that promote

preading but not mixing, on top of smaller-scale mixing processes,

hen the reactive-RWPT method can very simply and separately

erform true mixing (by mass transfer shown here) and macro-scale

preading via random walks. In this way the reactive-RWPT method is

olving a different equation than any Eulerian method. Those methods

annot distinguish between the various components of the dispersion

ensor D . To be more specific, the dispersion tensor is often assumed

o follow Bear (1972) 𝑫 = ( 𝐷 mol + 𝛼𝑇 ‖𝒗 ‖) 𝑰 + ( 𝛼𝐿 − 𝛼𝑇 ) 
𝒗 𝒗 

𝑇 ‖𝒗 ‖ , where

 mol is molecular diffusion, 𝛼T < 𝛼L are transverse and longitudinal

ispersivity, and v is a velocity column vector. Cirpka et al. (1999) and

erth et al. (2006) reinforce the view of Gelhar et al. (1979) and

elhar and Axness (1983) , who suggested that the first term (isotropic

olecular diffusion plus smaller-scale transverse dispersion) truly

epresents a mixing process, while the addition of longitudinal dis-

ersion accounts for velocity variations (hence a spreading process).
119 
ur method can separately simulate the smaller-scale mixing between

articles (the first term) by the mass transfer algorithms shown here.

article separation, as by sub-grid velocity variations, can be separately

andled by random walks. 

upplementary material 

Supplementary material associated with this article can be found,

n the online version, at 10.1016/j.advwatres.2018.05.003 
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