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Abstract: Amultispecies, collisionless plasma is modeled by the Vlasov–Poisson sys-
tem. Assuming that the electric field decays with sufficient rapidity as t → ∞, we show
that the velocity characteristics and spatial averages of the particle distributions converge
as time grows large. Using these limits we establish the precise asymptotic profile of the
electric field and its derivatives, as well as, the charge and current densities. Modified
spatial characteristics are then shown to converge using the limiting electric field. Fi-
nally, we establish amodified L∞ scattering result for each particle distribution function,
namely we show that they converge as t → ∞ along the modified spatial characteristics.
When the plasma is non-neutral, the estimates of these quantities are sharp, while in the
neutral case they may imply faster rates of decay.

1. Introduction

We consider a plasma comprised of a large number of charged particles. If there are
N distinct species of charge within the plasma, particles of the αth species (for α =
1, . . . , N ) have charge qα ∈ R, mass mα > 0, and are distributed in phase space at time
t ≥ 0 according to the function f α(t, x, v)where x ∈ R

3 represents particle position and
v ∈ R

3 particle velocity. Assuming that electrostatic forces dominate collisional effects,
the time evolution of the plasma is described by themultispecies Vlasov–Poisson system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t f
α + v · ∇x f

α +
qα

mα

E · ∇v f
α = 0, α = 1, . . . , N

ρ(t, x) =
N∑

α=1

qα

∫

R3
f α(t, x, v) dv

E(t, x) = ∇x (�x )
−1ρ(t, x) = 1

4π

∫

R3

x − y

|x − y|3 ρ(t, y) dy

(VP)
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with prescribed initial conditions f α(0, x, v) = f α
0 (x, v). Here, E(t, x) represents the

electric field induced by the charged particles, and ρ(t, x) is the associated density of
charge within the plasma. Additionally, the corresponding current density is defined by

j (t, x) =
N∑

α=1

qα

∫

v f α(t, x, v) dv.

For each species, the particle number and velocity are conserved, namely
∫∫

f α(t, x, v) dvdx =
∫∫

f α
0 (x, v) dvdx =: Mα

and
∫∫

v f α(t, x, v) dvdx =
∫∫

v f α
0 (x, v) dvdx =: J α,

for all t ≥ 0, with the overall net charge and total momentum given by

M =
N∑

α=1

qαMα and J =
N∑

α=1

mαJ α.

The total energy of the system is also conserved, i.e. for all t ≥ 0

N∑

α=1

∫∫
1

2
mα|v|2 f α(t, x, v) dx dv +

1

2

∫

|E(t, x)|2 dx

=
N∑

α=1

∫∫
1

2
mα|v|2 f α

0 (x, v) dx dv +
1

2

∫

|E(0, x)|2 dx =: EVP.

It is well-known that given smooth initial data with compact support in phase space
or finite moments, (VP) possesses a smooth global-in-time solution [19,25,27]. Such
global existence results often depend upon either the propagation of (spatial, velocity, or
transported)moments or precise estimates for the growth of the characteristics associated
to (VP), which are defined by

⎧
⎨

⎩

Ẋ α(t, τ, x, v) = Vα(t, τ, x, v)

V̇α(t, τ, x, v) = qα

mα

E(t,X α(t, τ, x, v))
(1)

with initial conditions X α(τ, τ, x, v) = x and Vα(τ, τ, x, v) = v. For additional back-
ground, we refer the reader to [8,26] as general references concerning (VP) and associ-
ated kinetic equations.

Though well-posedness has been intensely studied, the large time behavior of solu-
tions of (VP) is less understood. Partial results for the Cauchy problem are known in
some special cases, including small data [1,16,18,31], monocharged and spherically-
symmetric data [15,23], and lower-dimensional settings [2,9–11,30]. More recently, an
understanding of the intermediate asymptotic behavior was obtained in [4], namely that
there are solutions for which the L∞ norms of the charge density and electric field can
be made arbitrarily large at some later time regardless of their initial size. Due to the
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dispersive properties imparted upon the system by the transport operator ∂t + v · ∇x and
the velocity averaging inherent to the electric field and charge density, one expects that
these quantities decay to zero like t−2 and t−3, respectively, as t → ∞ for all smooth
solutions of (VP). In fact, both small data and spherically-symmetric solutions have
been shown to exhibit exactly this behavior, and it is known that the Cauchy problem
does not possess smooth steady states (cf., [12]).

As we will show, the dynamical behavior of the system depends crucially upon decay
of the electric field. To date, the best a priori rate of decay known [33] for the electric
field in (VP) is

‖E(t)‖∞ ≤ C(1 + t)−1/6,

and this is derived from precise estimates of the growth of the maximal velocity on the
support of f (t), from which the estimate of ‖E(t)‖∞ is deduced via Young’s inequality.
Unfortunately, this resulting estimate is far from optimal. Additionally, while maximal
velocity support estimates have been beneficial to improving the field decay rate [6,
22,28], even a sharp estimate (i.e, a uniform bound) on the support cannot allow one
to conclude a sharp decay rate of the field. So, it appears that we are quite far from
obtaining precise estimates of the field. Still, even when the field decays at a fast rate,
the dynamics of the remaining quantities in (VP) are not well-understood. Hence, the
goal of the current work is to establish the precise large-time dynamical behavior of
solutions to (VP) whenever the electric field is known to decay with sufficient rapidity.

1.1. Overview and organization. Due to the global existence theorem, all quantities
of interest are bounded for finite time; thus, we are only concerned with large time
estimates. Hence, we use the notation

A(t) � B(t)

to represent the statement that there is C > 0 such that A(t) ≤ CB(t) for t sufficiently
large. When necessary, C will denote a positive constant (independent of the solution)
that may change from line to line.

Throughout we let U ⊂ R
6 represent an arbitrary compact set, take f α

0 ∈ C2
c (R

6),
and let f α(t, x, v) denote the corresponding C2 solution of (VP). We assume that the
dispersion in the system induces strong decay of the electric field, namely there is

p ∈
(
5
3 , 2

]
such that

‖E(t)‖∞ � t−p. (A)

We note that this assumption is known to be satisfied for monocharged, spherically-
symmetric initial data [15,23] and for all previously constructed perturbative solutions
(e.g., [1]).

Though we will assume compactly-supported initial data, this may not be necessary
as velocity, spatial, and transported moments [5,6,19,21,22] have all be used in lieu of
this assumption to develop the existence theory. In addition, the regularity assumptions
on initial data may be weakened to arrive at similar convergence results in weaker
topologies (see [18]). The novelty herein is that a modified scattering result for classical
solutions of a multispecies plasma is established and the precise asymptotic profile
of the electric field, its derivatives, and the charge and current density are obtained.
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Additionally, as in [18], we further demonstrate the importance of the velocity-dependent
densityP(t, v), defined in Theorem 1.1, rather than the charge density, to understanding
the large time behavior of the system, and require only C2 initial data rather than many
higher derivatives in L2. Finally, our results apply directly to general conditions that
may be satisfied by any plasma and not merely to small data solutions. Furthermore, our
methods do not depend upon the sign of the force field, only its strength for large times,
and therefore the tools established herein also apply to solutions of the gravitational
Vlasov–Poisson system that satisfy (A).

1.2. Main results. For t ≥ 0 define the support of f α(t) by

Sα
f (t) = {

(x, v) ∈ R6 : f α(t, x, v) 
= 0
}
.

Our main results can now be stated precisely.

Theorem 1.1. Assume (A) holds. Then, we have the following:

(1) For every α = 1, . . . , N, τ ≥ 0 and (x, v) ∈ U the limiting function Vα∞ defined by

Vα∞(τ, x, v) := lim
t→∞Vα(t, τ, x, v)

exists and is C2 and bounded. Additionally, for τ ≥ 0 and (x, v) ∈ U ,
∣
∣Vα(t, τ, x, v) − Vα∞(τ, x, v)

∣
∣ � t−1.

(2) For every α = 1, . . . , N define

�α
v =

{
Vα∞(0, x, v) : (x, v) ∈ Sα

f (0)
}

.

Then, there exist Fα∞ ∈ C2
c (R

3) supported on �α
v such that the spatial average

Fα(t, v) =
∫

f α(t, x, v) dx

satisfies Fα(t, v) → Fα∞(v) uniformly as t → ∞, namely

‖Fα(t) − Fα∞‖∞ � t−1 ln4(t).

Moreover, the net density

P(t, v) =
N∑

α=1

qαF
α(t, v)

converges uniformly to the limit

P∞(v) =
N∑

α=1

qαF
α∞(v)

at the same rate, and satisfies
∫

P∞(v) dv = M. (2)
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(3) Define E∞(v) = ∇v(�v)
−1P∞(v). Then, we have the self-similar asymptotic pro-

files

sup
x∈R3

∣
∣
∣t2E(t, x) − E∞

( x

t

)∣
∣
∣ � t−1 ln4(t),

sup
x∈R3

∣
∣
∣t3∇x E(t, x) − ∇vE∞

( x

t

)∣
∣
∣ � t−1 ln6(t),

sup
x∈R3

∣
∣
∣t3ρ(t, x) − P∞

( x

t

)∣
∣
∣ � t−1 ln5(t),

sup
x∈R3

∣
∣
∣t3 j (t, x) − x

t
P∞

( x

t

)∣
∣
∣ � t−1 ln5(t).

(4) For any α = 1, . . . , N, τ, t ≥ 1 and (x, v) ∈ U , define
Zα(t, τ, x, v) = X α(t, τ, x, v) − tVα(t, τ, x, v) + qα ln(t)E∞(Vα(t, τ, x, v)).

Then, the limiting function Zα∞ given by

Zα∞(τ, x, v) := lim
t→∞Zα(t, τ, x, v)

exists and is C2 and bounded. Additionally, for any τ ≥ 0 and (x, v) ∈ U ,
|Zα(t, τ, x, v) − Zα∞(τ, x, v)| � t−1 ln4(t).

(5) For every α = 1, . . . , N define

�α
z =

{
Zα∞(1, x, v) : (x, v) ∈ Sα

f (1)
}

and �α = �α
z × �α

v . Then, there is f α∞ ∈ C2
c (R

6) supported on �α such that

f α

(

t, x + vt − qα

mα

ln(t)E∞(v), v

)

→ f α∞(x, v)

uniformly as t → ∞, namely we have the convergence estimate

sup
(x,v)∈R6

∣
∣
∣
∣ f

α

(

t, x + vt − qα

mα

ln(t)E∞(v), v

)

− f α∞(x, v)

∣
∣
∣
∣ � t−1 ln4(t).

In particular, f α∞ conserves particle number, velocity, and energy, i.e.
∫∫

f α∞(x, v) dvdx = Mα,

∫∫

v f α∞(x, v) dvdx = J α, and

N∑

α=1

∫∫
1

2
mα|v|2 f α∞(x, v) dvdx = EVP.

If the plasma is non-neutral, i.e.M 
= 0, thenP∞ 
≡ 0 due to (2) and these estimates
are sharp, up to a correction in the logarithmic powers of the error terms (see Sect. 6).
However, when the plasma is neutral, i.e.M = 0, it is possible that the limiting density
P∞ (and hence the limiting field E∞) is identically zero, which implies stronger decay
of these quantities. This could be related to the phenomenon of Landau Damping [20],
which can give rise to decay that is faster than the dispersive rates and has recently been
shown to occur for unconfined, but screened, neutral plasmas that are sufficiently close
to spatially-homogeneous equilibria [3,13].
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Theorem 1.2. IfM = 0 and P∞ ≡ 0, then the asymptotic behavior described above is
altered in the following manner:

(1) For any α = 1, . . . , N, τ ≥ 0 and (x, v) ∈ U , we have
∣
∣Vα(t, τ, x, v) − Vα∞(τ, x, v)

∣
∣ � t−2.

(2) We have the faster decay estimates

‖Fα(t) − Fα∞‖∞ � t−2, ‖P(t)‖∞ � t−2,

‖E(t)‖∞ � t−3, ‖∇x E(t)‖∞ � t−4 ln(t),

‖ρ(t)‖∞ � t−4, ‖ j (t)‖∞ � t−4.

(3) For any α = 1, . . . , N, the spatial characteristics

Yα(t, τ, x, v) = X α(t, τ, x, v) − tVα(t, τ, x, v),

converge as t → ∞, and the limiting functions

Yα∞(τ, x, v) := lim
t→∞Yα(t, τ, x, v)

are C2 and bounded. Additionally, for any τ ≥ 0 and (x, v) ∈ U ,
|Yα(t, τ, x, v) − Yα∞(τ, x, v)| � t−1.

(4) For any α = 1, . . . , N define

�α
y =

{
Yα∞(0, x, v) : (x, v) ∈ Sα

f (0)
}

and �α = �α
y × �α

v . Then, there is f α∞ ∈ C2
c (R

6) supported on �α such that

f α(t, x + vt, v) → f α∞(x, v)

uniformly as t → ∞, namely we have the convergence estimate

sup
(x,v)∈R6

∣
∣ f α(t, x + vt, v) − f α∞(x, v)

∣
∣ � t−1

and again, the particle number, velocity, and energy are all conserved in the limit.

We note that solutions with a trivial electric field and charge density can be constructed
when M = 0, but not when M 
= 0, and this accounts for the contrasting asymptotic
behavior of the systems. In particular, considering the simplified regime in which only
electrons and a single species of ionswith opposite charge are considered, namely N = 2,
q1 = +1, and q2 = −1, one may take f 10 (x, v) = f 20 (x, v) ∈ C2

c (R
6). This implies

ρ(0, x) =
∫ (

f 10 (x, v) − f 20 (x, v)
)
dv = 0

for all x ∈ R
3, and thus M = 0 and E(0, x) ≡ 0. As the two distribution functions

then satisfy the same evolution equation (with zero electric field) and the same initial
data, uniqueness guarantees ρ(t, x) = E(t, x) = 0 for all t ≥ 0, x ∈ R

3. Hence,
P∞ ≡ E∞ ≡ 0, and this example demonstrates that the decay estimates provided by
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Theorem 1.2 need not be optimal in general. Such charge cancellation may also occur
in the limit rather than choosing the charge density and electric field to be identically
zero for all time.

Contrastingly, a neutral plasma may display the same asymptotic behavior as in the
case M 
= 0, whenever P∞ 
≡ 0. In particular, considering again N = 2, q1 = +1, and
q2 = −1, the initial distribution of positive ions and electrons can be widely separated
in space with sufficiently large velocities in opposing directions. Then, the field will be
sufficiently weak so that the plasma will behave like two non-interacting monocharged
species, and the asymptotic behavior will be analogous to the non-neutral case. Here,
the two spatial averages F1(t, v) and F2(t, v) can be structured to converge to different
limiting functions F1∞(v) 
= F2∞(v), and thus

P∞(v) = F1∞(v) − F2∞(v) 
≡ 0.

Remark 1.1. Rather than imposing (A), one may instead require a decay condition on
the charge density, namely ‖ρ(t)‖∞ � t−q for some q ∈ (2, 3], or a growth condition
on the spatial support of the translated distribution function defined in the next section,
i.e. μ(t) � tr for some r ∈ (0, 1

2

)
.

Remark 1.2. We note that our results can be extended to higher (d ≥ 4) dimensions, as
well, with the same decay assumption and methods.

1.3. Strategy of the proof. To establish the theorems we will use both Lagrangian and
Eulerian methods, as the latter allow us to prove sharp estimates and establish the ex-
istence of limits, while the former captures the properties of limiting functions. In the
Eulerian framework, we reformulate the original problem within a dispersive reference
frame that is co-moving with the particles. More specifically, let

gα(t, x, v) = f α(t, x + vt, v)

for α = 1, . . . , N and apply a change of variables (see the proof of Lemmas 4.1 and 4.3)
to the field and charge density so that (VP) becomes
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t g
α − qα

mα

t E(t, x + vt) · ∇x g
α +

qα

mα

E(t, x + vt) · ∇vg
α = 0, α = 1, . . . , N

E(t, x + vt) = 1

4π t2

N∑

α=1

qα

∫∫
ξ

|ξ |3 gα

(

t, w, v − ξ +
x − w

t

)

dwdξ

(VPg)

with

ρ(t, x + vt) = t−3
N∑

α=1

qα

∫

R3
gα

(

t, w, v +
x − w

t

)

dw

and the initial conditions gα(0, x, v) = f α
0 (x, v). Then, as we will show, gα possesses

nicer properties than the original distribution function f α . Indeed, the spatial support of
gα grows significantly slower than that of f α and, due to the cancellation of derivative
terms, the v-derivatives of gα can grow logarithmically in time (Lemma 2.8), while the
corresponding v-derivatives of f α grow linearly at best (Lemma 2.3). In particular, we



S. Pankavich

note that the convolution in the electric field is now in the velocity variable rather than
the spatial variable. Hence, as t → ∞ one expects

E(t, x + vt) ∼ 1

4π t2

N∑

α=1

qα

∫∫
ξ

|ξ |3 g
α(t, w, v − ξ) dwdξ = t−2∇v (�v)

−1 P(t, v)

locally in x . With this, it becomes clear that estimates of the spatial support of gα and
its velocity derivatives will be instrumental, while estimates of the velocity support may
be less important. Thus, our results may provide better tools to obtain a priori estimates
on the spatial growth (via either the support or moments) of gα and velocity derivatives
∇vgα , which are the two main ingredients in the theorems.

The general structure of the argument is as follows. From the decay of the electric
field provided by (A), it is straightforward to show that every velocity characteristic has
a limit as t → ∞. These limits are then used to identify the behavior of the spatial
average of each particle distribution as t → ∞. The corresponding limiting density P∞
further induces an ambient electric field, E∞, and these quantities are used to identify
the precise asymptotic behavior of the field, its derivatives, and the charge and current
densities. Furthermore, the limiting electric field enables us to identify the limiting
values of modified spatial characteristics. Finally, the behavior of characteristics is used
to identify the trajectories in phase space along which the particle distribution scatters
to a limit.

In the next section, we will establish some standard estimates of derivatives of the
untranslated distribution functions f α and their characteristics. Useful properties of the
translated distribution functions gα are also contained in Sect. 2. In Sect. 3 we show the
convergence of the velocity characteristics as t → ∞, prove some properties of these
limiting functions, then show the convergence of the spatial averages as t → ∞ and
use these to define a limiting net velocity density. Section 4 is dedicated to establishing
the precise asymptotic behavior of the field, its derivatives, and the associated densities.
The convergence of modified spatial characteristics and the modified scattering of the
distribution functions rely upon these terms and are contained within Sect. 5. The proofs
of Theorems 1.1 and 1.2 and a result demonstrating the sharpness of these estimates for
the non-neutral case are provided in Sect. 6.

2. Preliminaries

2.1. Estimates in the original reference frame. We begin by obtaining improved decay
rates that follow from the main assumption (A). First, we state a standard estimate on
the gradient of the inverse Laplace operator, which will be used throughout.

Lemma 2.1 (cf. [14], Lemma 4.5.4). For any φ ∈ L1(R3) ∩ L∞(R3), there is C > 0
such that

‖∇(�)−1φ‖∞ ≤ C‖φ‖1/31 ‖φ‖2/3∞ .

In particular, due to conservation of particle number, which implies ‖ρ(t)‖1 ≤ C for
all t ≥ 0, we have

‖E(t)‖∞ ≤ C‖ρ(t)‖2/3∞

for any t ≥ 0.
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This tool then allows us to address the rates of the field and density. In particular, we
will use the velocity support of f α(t) to estimate the charge density. Hence, we define

Sα
v (t, x) = {

v ∈ R3 : f α(t, x, v) 
= 0
}

for any fixed x ∈ R
3.

Lemma 2.2. Assume (A). Then, we have

‖ρ(t)‖∞ � t−3 and ‖E(t)‖∞ � t−2,

and for every α = 1, . . . , N, τ ≥ 0, and (x, v) ∈ U
∣
∣Vα(t, τ, x, v)

∣
∣ � 1 and

∣
∣X α(t, τ, x, v)

∣
∣ � t.

Furthermore, the velocity support of f α satisfies

sup
x∈R3

∣
∣Sα

v (t, x)
∣
∣ � t−3 ln3(t).

Proof. We begin by showing that Sα
v (t, x) ultimately lies in a ball of diameterO (t1−p

)

for any x ∈ R
3. Suppose (x, v1), (x, v2) ∈ Sα

f (t) at some time t ≥ 1. Integrating the
characteristic equations (1) and using the bounded support of f0 along with (A), we find

C ≥ ∣
∣X α(0, t, x, v1) − X α(0, t, x, v2)

∣
∣

=
∣
∣
∣
∣(v1 − v2)t +

qα

mα

∫ t

0

∫ t

s

(

E(τ,X α(τ, t, x, v1)) − E(τ,X α(τ, t, x, v2))

)

dτds

∣
∣
∣
∣

≥ |v1 − v2| t − C
∫ t

0

∫ t

s
‖E(τ )‖∞ dτds

≥ |v1 − v2| t − C(1 + t)2−p

for t ≥ 1. Rearranging the inequality produces

|v1 − v2| ≤ Ct−1(1 + (1 + t)2−p) ≤ C(1 + t)1−p

for t ≥ 2. Hence, for any t ≥ 2 and x ∈ R
3 there are v0 ∈ R

3 and C > 0 such that

Sα
v (t, x) ⊆

{
v ∈ R

3 : |v − v0| ≤ C(1 + t)1−p
}

,

and thus

sup
x∈R3

∣
∣Sα

v (t, x)
∣
∣ ≤ C(1 + t)3(1−p)

for any α = 1, . . . , N and t ≥ 2. Therefore, we find

‖ρ(t)‖∞ � sup
x∈R3

N∑

α=1

∣
∣
∣
∣

∫

f α(t, x, v) dv

∣
∣
∣
∣ �

N∑

α=1

‖ f α
0 ‖∞ sup

x∈R3

∣
∣Sα

v (t, x)
∣
∣ � t3(1−p),

where 3(1− p) < −2 as p > 5/3. Next, we apply a recent result of Schaeffer to obtain
the stated decay rate of the charge density:
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Theorem (Schaeffer [29]). Assume there is q ∈ (2, 3] such that

‖ρ(t)‖∞ � t−q .

Then, we have

‖ρ(t)‖∞ � t−3.

With this, we also obtain an improved decay estimate on the field, namely

‖E(t)‖∞ � t−2,

which follows fromLemma 2.1. The estimate on velocity characteristics follows directly
from this as

∣
∣Vα(t, τ, x, v)

∣
∣ =

∣
∣
∣
∣v +

qα

mα

∫ t

τ

E(s,X α(s, τ, x, v))ds

∣
∣
∣
∣ � 1 +

∫ t

τ

(1 + s)−2 ds � 1

for τ ≥ 0 and (x, v) ∈ U , and the improved decay rate for the field is merely inserted into
the previous argument to deduce the claimed behavior of the velocity support. Finally,
the estimate on the spatial characteristics of f α follows by merely integrating (1) and
using the velocity bound. ��

In addition, the decay of the field and charge density lead directly to estimates of
field derivatives and derivatives of untranslated distribution functions.

Lemma 2.3. For any α = 1, . . . , N we have

‖∇x E(t)‖∞ � t−3 ln(t), ‖∇x f
α(t)‖∞ � 1, and ‖∇v f

α(t)‖∞ � t.

Proof. We will utilize a standard estimate (cf. [8, pp. 122–123]) on the gradient of the
field, namely

‖∇x E(t)‖∞ �
(

1 + ln∗
(

‖∇xρ(t)‖∞
‖ρ(t)‖4/3∞

))

‖ρ(t)‖∞ (3)

where

ln∗(s) =
{
0, if s ≤ 1
ln(s), if s ≥ 1.

Wenote that this bound is increasing in the contribution of ‖ρ(t)‖∞ and usingLemma2.2
in (3) yields

‖∇x E(t)‖∞ �
(
1 + ln∗ (t4‖∇xρ(t)‖∞

))
t−3.

Due to Lemma 2.2, the velocity support of f α is uniformly bounded so that

|∇xρ(t, x)| �
N∑

α=1

∫
∣
∣∇x f

α(t, x, v)
∣
∣ dv � max

α=1,...,N
‖∇x f

α(t)‖∞,

and thus

‖∇x E(t)‖∞ ≤ C

(

1 + ln∗
(

max
α=1,...,N

‖∇x f
α(t)‖∞(1 + t)4

))

(1 + t)−3 (4)
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for t ≥ 0. This further yields

‖∇x E(t)‖∞ ≤ C

(

1 + ln∗
(

max
α=1,...,N

‖∇x f
α(t)‖∞

))

(1 + t)−p (5)

for t ≥ 0 and any p ∈ (2, 3) where p can be taken as close to 3 as desired.
Next, we estimate derivatives of f α in order to close the argument. Taking derivatives

in the Vlasov equation, we find

∂vk f
α(t, x, v) = ∂vk f

α
0 (X α(0),Vα(0)) −

∫ t

0
∂xk f

α(s,X α(s),Vα(s)) ds,

∂xk f
α(t, x, v) = ∂xk f

α
0 (X α(0),Vα(0))

−
∫ t

0
∂xk E(s,X α(s)) · ∇v f

α(s,X α(s),Vα(s)) ds.

The first equation implies

‖∂vk f
α(t)‖∞ ≤ ‖∂vk f

α
0 ‖∞ + t‖∂xk f α(t)‖∞ ≤ (1 + t)D(t)

for k = 1, 2, 3 where

D(t) = e2 + max
α=1,...,N

‖∇v f
α
0 ‖∞ + sup

s∈[0,t]
max

α=1,...,N
‖∇x f

α(s)‖∞.

Using (5) and this estimate, the second equation yields for k = 1, 2, 3

‖∂xk f α(t)‖∞ ≤ ‖∂xk f α
0 ‖∞ +

∫ t

0
‖∇x E(s)‖∞‖∇v f

α(s)‖∞ ds

≤ C + C
∫ t

0

(

1 + ln∗
(

max
α=1,...,N

‖∇x f
α(s)‖∞

))

(1 + s)−p‖∇v f
α(s)‖∞ ds

≤ C + C
∫ t

0
(1 + s)1−p (1 + ln(D(s)))D(s) ds.

Summing over k and taking the maximum over α and the supremum in t ultimately
provides

D(t) ≤ C + C
∫ t

0
(1 + s)1−p (1 + ln(D(s)))D(s) ds.

Invoking a variant of Gronwall’s inequality then yields

D(t) ≤ C exp

(

exp

(∫ t

0
(1 + s)1−p ds

))

≤ C

for all t ≥ 0 as p > 2. As D(t) is bounded, we find

‖∇x f
α(t)‖∞ � 1 and ‖∇v f

α(t)‖∞ ≤ (1 + t)D(t) � t,

and the final two conclusions follow. Additionally, the first conclusion is obtained upon
using the bound on ‖∇x f α(t)‖∞ in (4). ��

Estimates on the behavior of the derivatives of characteristics follow, as well.
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Lemma 2.4. For α = 1, . . . , N, τ sufficiently large, t ≥ τ , and (x, v) ∈ U , we have
∣
∣
∣
∣
∂X α

∂v
(t, τ, x, v)

∣
∣
∣
∣ � t,

∣
∣
∣
∣
∂Vα

∂v
(t, τ, x, v)

∣
∣
∣
∣ � 1,

∣
∣
∣
∣
∂X α

∂x
(t, τ, x, v)

∣
∣
∣
∣ � t,

∣
∣
∣
∣
∂Vα

∂x
(t, τ, x, v)

∣
∣
∣
∣ � 1.

Proof. Taking a v derivative in (1) yields
⎧
⎪⎪⎨

⎪⎪⎩

∂Ẍ α

∂v
(t) = qα

mα

∇x E(t,X α(t))
∂X α

∂v
(t),

∂X α

∂v
(τ) = 0,

∂Ẋ α

∂v
(τ) = I.

Upon integrating, we can rewrite the solution of this differential equation as

∂X α

∂v
(t) = (t − τ)I +

qα

mα

∫ t

τ

(t − s)∇x E(s,X α(s))
∂X α

∂v
(s)ds

so that by Lemma 2.3 we have for any p ∈ (2, 3)
∣
∣
∣
∣
∂X α

∂v
(t)

∣
∣
∣
∣ ≤ t − τ + C

∫ t

τ

t − s

(1 + s)p

∣
∣
∣
∣
∂X α

∂v
(s)

∣
∣
∣
∣ ds.

Now, we fix some δ ∈ [4, 6] and define

T0(τ ) = sup

{

T ≥ τ :
∣
∣
∣
∣
∂X α

∂v
(s)

∣
∣
∣
∣ ≤ δ(s − τ) for all s ∈ [τ, T ]

}

.

Note that T0 > τ due to the initial conditions. Then, estimating for t ∈ [τ, T0), we have
∣
∣
∣
∣
∂X α

∂v
(t)

∣
∣
∣
∣ ≤ t − τ + Cδ

∫ t

τ

(t − s)(s − τ)

(1 + s)p
ds.

Integrating by parts twice, we find
∣
∣
∣
∣
∂X α

∂v
(t)

∣
∣
∣
∣

≤ t − τ +Cδ(1 + τ)2−p(t − τ) ≤(1+C(1 + τ)2−p)(t−τ) ≤ 2(t − τ)≤ 1

2
δ(t − τ)

for τ sufficiently large. Hence, we find T0 = ∞ and the first estimate on v-derivatives
follows. The second estimate is directly implied by the first as

∂V̇α

∂v
(t) = qα

mα

∇x E(t,X α(t))
∂X α

∂v
(t).

Hence, for τ sufficiently large
∣
∣
∣
∣
∂Vα

∂v
(t)

∣
∣
∣
∣ � 1 +

∫ t

τ

(1 + s)−p(s − τ) ds � 1

for any p ∈ (2, 3) by Lemma 2.3.
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We estimate x derivatives similarly noting that only the initial conditions change so
that ⎧

⎪⎪⎨

⎪⎪⎩

∂Ẍ α

∂x
(t) = qα

mα

∇x E(t,X α(t))
∂X α

∂x
(t),

∂X α

∂x
(τ ) = I,

∂Ẋ α

∂x
(τ ) = 0.

As before, we can rewrite the solution as

∂X α

∂x
(t) = I +

qα

mα

∫ t

τ

(t − s)∇x E(s,X α(s))
∂X α

∂x
(s)ds

with

∂Vα

∂x
(t) = qα

mα

∫ t

τ

∇x E(s,X α(s))
∂X α

∂x
(s)ds.

Applying analogous tools will yield the stated results. Indeed, fixing δ ∈ [4, 6] as before
and defining

T1(τ ) = sup

{

T ≥ τ :
∣
∣
∣
∣
∂X α

∂x
(s)

∣
∣
∣
∣ ≤ 1 + δ(1 + s) for all s ∈ [τ, T ]

}

,

we estimate for t ∈ [τ, T1) and integrate by parts to find
∣
∣
∣
∣
∂X α

∂x
(t)

∣
∣
∣
∣ ≤ 1 + C

∫ t

τ

t − s

(1 + s)p
(1 + δ(1 + s)) ds

≤ 1 + C(1 + τ)2−p(t − τ)
(
(1 + τ)−1 + δ

)

≤ 1 + Cδ(1 + τ)2−p(t − τ)

≤ 1 +
1

2
δ(1 + t)

for τ sufficiently large as p > 2. It follows that T1 = ∞, which further implies the
linear growth rate of ∂X α

∂x (t). Using this within the equation for ∂Vα

∂x (t) then provides
the stated uniform-in-time bound as before. ��

2.2. Properties of translated distribution functions. Prior to stating the lemmas, we first
introduce some notation relating to the translated distribution functions. As mentioned
in the introduction, we let

gα(t, x, v) = f α(t, x + vt, v)

and because the translation alters the spatial characteristics of this system, we further
define

Yα(t, τ, x, v) = X α(t, τ, x, v) − tVα(t, τ, x, v) (6)

so that
Ẏα(t) = − qα

mα

t E(t,Yα(t) + tVα(t)) (7)
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with Yα(τ ) = x − vτ . In addition, note that ‖gα(t)‖∞ ≤ ‖ f α
0 ‖∞ for all t ≥ 0. For

t ≥ 0 define the support of gα(t) by

Sα
g (t) = {

(x, v) ∈ R6 : gα(t, x, v) 
= 0
}
.

We note that the measure of the velocity support of gα remains uniformly bounded due
to Lemma 2.2, i.e.

sup
x∈R3

∣
∣Sα

v (t, x)
∣
∣ � 1.

As our approach relies heavily upon the growth of the spatial support and velocity
derivatives of gα , we further define the set

Sα
x (t, v) = {

x ∈ R3 : gα(t, x, v) 
= 0
}

for any fixed v ∈ R
3 and the useful quantities

μ(t) = max

{

1, max
α=1,...,N

sup
v∈R3

∣
∣Sα

x (t, v)
∣
∣

}

and

G(t) = max

{

1, max
α=1,...,N

‖∇vg
α(t)‖∞

}

.

With suitable decay of the field and its derivatives, we now study the behavior of the
translated characteristics and establish a measure-preserving property as for the charac-
teristics of (VP).

Lemma 2.5. For every α = 1, . . . , N and t ≥ 0, the mapping (x, v) �→ (Yα(t),Vα(t))
defined by the characteristics satisfying

⎧
⎪⎨

⎪⎩

Ẏα(t) = − qα

mα

t E(t,Yα(t) + tVα(t))

V̇α(t) = qα

mα

E(t,Yα(t) + tVα(t))
(8)

with initial conditions Yα(τ, τ, x, v) = x − vτ and Vα(τ, τ, x, v) = v, is a measure-
preserving diffeomorphism. Hence, |Sα

g (t)| = |Sα
g (0)| for every α = 1, . . . , N and

t ≥ 0.

Proof. Because the system (VPg) is generated by a divergence-free vector field, namely
it is of the form

∂t g
α + �(t, x, v) · ∇(x,v)g

α(t, x, v) = 0

where

�(t, x, v) = qα

mα

(−t E(t, x + vt), E(t, x + vt))

satisfies ∇(x,v) · � = 0, the measure-preserving property of characteristics in phase
space is merely a consequence of the classical Liouville Theorem [32, pp. 63–65] from
statistical mechanics. Additionally, the proof is analogous to that for the characteristics
of the untranslated Hamiltonian system (VP). We direct the reader to [8, pp. 118–120]
for further details. ��
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Next, we establish a bound on the growth of the spatial support of the translated
distribution functions, which will be instrumental within subsequent sections.

Lemma 2.6. For every α = 1, . . . , N, τ ≥ 0, and (x, v) ∈ U we have

∣
∣Yα(t, τ, x, v) − (x − vτ)

∣
∣ �

∫ t

τ

s‖E(s)‖∞ ds

and

μ(t) �
(

1 +
∫ t

0
s‖E(s)‖∞ ds

)3

.

In particular, Lemma 2.2 implies

∣
∣Yα(t, τ, x, v)

∣
∣ � ln(t) and μ(t) � ln3(t).

Proof. Using (7) we immediately find

∣
∣Ẏα(t)

∣
∣ ≤ Ct‖E(t)‖∞,

and thus

∣
∣Yα(t, τ, x, v) − (x − vτ)

∣
∣ ≤

∫ t

τ

∣
∣Ẏα(s, τ, x, v)

∣
∣ ds �

∫ t

τ

s‖E(s)‖∞ ds.

for fixed τ ≥ 0 and (x, v) ∈ U . Furthermore, this implies

∣
∣Yα(t, 0, x, v)

∣
∣ � |x | +

∫ t

τ

s‖E(s)‖∞ ds � 1 +
∫ t

τ

s‖E(s)‖∞ ds

for (x, v) ∈ Sα
g (0). The estimate on the spatial support then follows as

μ(t) �
(

max
α=1,...,N

sup
(x,v)∈Sα

g (0)

∣
∣Yα(t, 0, x, v)

∣
∣

)3

�
(

1 +
∫ t

τ

s‖E(s)‖∞ ds

)3

.

��
Additionally, we estimate the derivatives of these spatial characteristics using the

behavior of the untranslated characteristics established in Lemma 2.4.

Lemma 2.7. For every α = 1, . . . , N, τ sufficiently large, t ≥ τ , and (x, v) ∈ U , we
have

∣
∣
∣
∣
∂Yα

∂x
(t, τ, x, v) − I

∣
∣
∣
∣ �

∫ t

τ

s2‖∇x E(s)‖∞ds and

∣
∣
∣
∣
∂Yα

∂v
(t, τ, x, v) + τ I

∣
∣
∣
∣

�
∫ t

τ

s2‖∇x E(s)‖∞ds.
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Proof. Using (6) and (7) we write

Yα(t, τ, x, v) = x − vτ − qα

mα

∫ t

τ

sE(s,X α(s)) ds,

and taking an x derivative yields

∂Yα

∂x
(t) = I − qα

mα

∫ t

τ

s∇x E(s,X α(s))
∂X α

∂x
(s) ds.

Using Lemma 2.4, we find
∣
∣
∣
∣
∂Yα

∂x
(t) − I

∣
∣
∣
∣ �

∫ t

τ

s2‖∇x E(s)‖∞ds

for τ sufficiently large. Proceeding similarly for v-derivatives, we have

∂Yα

∂v
(t) = −τ I − qα

mα

∫ t

τ

s∇x E(s,X α(s))
∂X α

∂v
(s) ds.

Again using Lemma 2.4, for τ sufficiently large we find
∣
∣
∣
∣
∂Yα

∂v
(t) + τ I

∣
∣
∣
∣ �

∫ t

τ

s2‖∇x E(s)‖∞ds.

��
Finally, we show that velocity derivatives of gα grow more slowly than those of f α ,

which are established by Lemma 2.3.

Lemma 2.8. We have

G(t) � 1 +
∫ t

0
s2‖∇x E(s)‖∞ ds,

and thus by Lemma 2.3

G(t) � ln2(t).

Proof. To establish the result we estimate

∂vk g
α(t, x, v) = (

t∂xk f
α + ∂vk f

α
)
(t, x + vt, v).

Applying the Vlasov operator to the untranslated version of this quantity yields

d

dt

(

t∂xk f
α(t,X α(t),Vα(t)) + ∂vk f

α(t,X α(t),Vα(t))

)

= − qα

mα

t∂xk E(t,X α(t)) · ∇v f
α(t,X α(t),Vα(t)),

and inverting gives
(
t∂xk f

α + ∂vk f
α
)
(t, x, v)

= ∂vk f
α
0 (X α(0),Vα(0)) − qα

mα

∫ t

0
s∂xk E(s,X α(s)) · ∇v f

α(s,X α(s),Vα(s)) ds
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for k = 1, 2, 3. From the estimates of Lemma 2.3, this implies

∣
∣t∂xk f

α(t, x, v) + ∂vk f
α(t, x, v)

∣
∣ ≤ ‖∂vk f

α
0 ‖∞ +

∫ t

0
s‖∇x E(s)‖∞‖∇v f

α(s)‖∞ ds

� 1 +
∫ t

0
s2‖∇x E(s)‖∞ds

for k = 1, 2, 3. Hence, we find

‖∇vg
α(t)‖∞ � 1 +

∫ t

0
s2‖∇x E(s)‖∞ds

for all α = 1, . . . , N , which completes the lemma upon taking the maximum in α. ��

3. Velocity Limits and Convergence of the Spatial Average

Because the field decays rapidly in time, we can immediately establish the limiting
behavior of the velocity characteristics.

Lemma 3.1. For any τ ≥ 0, (x, v) ∈ U , and α = 1, . . . , N the limiting velocities Vα∞
defined by

Vα∞(τ, x, v) := lim
t→∞Vα(t, τ, x, v) = v +

qα

mα

∫ ∞

τ

E(s,X α(s, τ, x, v))ds.

exist, and are C2, bounded, and invariant under the characteristic flow, namely Vα∞
satisfies

Vα∞(t,X α(t, τ, x, v),Vα(t, τ, x, v)) = Vα∞(τ, x, v)

for any t ≥ 0. Finally, we have the convergence estimate

|Vα(t, τ, x, v) − Vα∞(τ, x, v)| �
∫ ∞

t
‖E(s)‖∞ ds,

which further yields
|Vα(t, τ, x, v) − Vα∞(τ, x, v)| � t−1. (9)

Proof. For any (x, v) ∈ U , we find from the characteristic equations

Vα(t, τ, x, v) = v +
qα

mα

∫ t

τ

E(s,X α(s, τ, x, v))ds.

Thus, define

Vα∞(τ, x, v) = v +
qα

mα

∫ ∞

τ

E(s,X α(s, τ, x, v))ds

for every τ ≥ 0 and (x, v) ∈ U . From Lemma 2.2 we find

|Vα∞(τ )| � |v| +
∫ ∞

τ

‖E(s)‖∞ ds � 1 + τ−1 � 1.
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Additionally, the convergence estimate

|Vα(t) − Vα∞| �
∫ ∞

t
‖E(s)‖∞ds � t−1.

follows immediately. Thus, the limit exists and is uniformly bounded for every τ ≥ 0
and (x, v) ∈ U . Finally, Vα∞ is C2 due to the regularity of the electric field and spatial
characteristics and invariant under the flow due to the time-reversibility of (1). ��

Next, we control the growth in derivatives of these limits and show that they are
invertible functions of v for sufficiently large τ . This property will be useful later to
perform a change of variables and establish limits of spatial averages.

Lemma 3.2. For every α = 1, . . . , N and (x, v) ∈ U we have
∣
∣
∣
∣
∂Vα∞
∂x

(τ, x, v)

∣
∣
∣
∣ � τ−2 ln(τ ) and

∣
∣
∣
∣
∂Vα∞
∂v

(τ, x, v) − I

∣
∣
∣
∣ � τ−1 ln(τ ).

Thus, there is T1 > 0 such that for all τ ≥ T1 and (x, v) ∈ U , we have
∣
∣
∣
∣det

(
∂Vα∞
∂v

(τ, x, v)

)∣
∣
∣
∣ ≥ 1

2
.

Consequently, for τ ≥ T1 and (x, v) ∈ U , the C2 mapping v �→ Vα∞(τ, x, v) is injective
and invertible.

Proof. First, note that the limiting velocities given by Lemma 3.1 satisfy

∂Vα∞
∂v

(τ, x, v) = I +
qα

mα

∫ ∞

τ

∇x E(s,X α(s))
∂X α

∂v
(s) ds.

Due to Lemmas 2.3 and 2.4, we find for (x, v) ∈ U
∣
∣
∣
∣
∂Vα∞
∂v

(τ) − I

∣
∣
∣
∣ �

∫ ∞

τ

s‖∇x E(s)‖∞ds � τ−1 ln(τ ).

Therefore, by the continuity of the mapping A �→ det(A), there is T1 > 0 such that for
all τ ≥ T1 and (x, v) ∈ U , we have

∣
∣
∣
∣det

(
∂Vα∞
∂v

(τ, x, v)

)∣
∣
∣
∣ ≥ 1

2
.

Finally, we obtain the estimate on x-derivatives in the same manner so that

∂Vα∞
∂x

(τ, x, v) = qα

mα

∫ ∞

τ

∇x E(s,X α(s))
∂X α

∂x
(s) ds,

and using Lemma 2.4, this implies
∣
∣
∣
∣
∂Vα∞
∂x

(τ, x, v)

∣
∣
∣
∣ �

∫ ∞

τ

‖∇x E(s)‖∞ ds � τ−2 ln(τ ).

��
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Next, we define the collection of all limiting velocities on Sα
f (t), which will serve as

the support of the limiting spatial average. First notice that due to its invariance under
the flow defined by (1), we have

{
Vα∞(τ, x, v) : (x, v) ∈ Sα

f (τ )
}

=
{
Vα∞(0, x, v) : (x, v) ∈ Sα

f (0)
}

for all τ ≥ 0. Hence, for any α = 1, . . . , N define

�α
v :=

{
Vα∞(0, x, v) : (x, v) ∈ Sα

f (0)
}

.

AsVα∞(0, x, v) is continuous due to Lemma 3.1, its range�α
v on the compact setSα

f (0) is
also compact. With the behavior of velocity characteristics well-understood as t → ∞,
we wish to understand the distribution of particle velocities in this same limit, and this
will be given by the limiting behavior of spatial averages. In particular, we remind
the reader that applying Lemma 2.2 and the field derivative estimate of Lemma 2.3 to
Lemmas 2.6 and 2.8 implies

μ(t) � ln3(t) (10)

and
G(t) � ln2(t), (11)

which will be significant to establishing the uniform convergence of the spatial average.

Lemma 3.3. For every α = 1, . . . , N there exists Fα∞ ∈ C2
c (R

3) with supp(Fα∞) = �α
v

such that

Fα(t, v) =
∫

f α(t, x, v) dx

satisfies Fα(t, v) → Fα∞(v) uniformly as t → ∞ with

‖Fα(t) − Fα∞‖∞ �
∫ ∞

t
(s‖ρ(s)‖∞ + ‖E(s)‖∞μ(s)G(s)) ds,

and thus

‖Fα(t) − Fα∞‖∞ � t−1 ln5(t).

In particular, the limit preserves particle number, velocity, and energy, i.e.
∫

Fα∞(v) dv = Mα,

∫

vFα∞(v) dv = J α, and

N∑

α=1

∫
1

2
mα|v|2Fα∞(v) dv = EVP.

Proof. Upon integrating the Vlasov equation of (VPg) in x and integrating by parts, we
find
∣
∣
∣
∣∂t

∫

gα(t, x, v) dx

∣
∣
∣
∣ =

∣
∣
∣
∣
qα

mα

∫

E(t, x + vt) · (t∇x − ∇v)g
α(t, x, v) dx

∣
∣
∣
∣

=
∣
∣
∣
∣
qα

mα

t
∫

ρ(t, x + vt)gα(t, x, v) dx +
qα

mα

∫

E(t, x + vt) · ∇vg
α(t, x, v) dx

∣
∣
∣
∣
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� t‖ρ(t)‖∞Fα(t, v) + ‖E(t)‖∞μ(t)‖∇vg
α(t)‖∞.

Thus, we use Lemma 2.2, (10), and (11) to find
∣
∣∂t F

α(t, v)
∣
∣ � t−2Fα(t, v) + t−2 ln5(t).

As Fα(0) ∈ L∞(R3) and the latter term above is integrable in time, we find

Fα(t, v) ≤ Fα(0, v) +
∫ t

0

∣
∣∂t F

α(s, v)
∣
∣ ds ≤ C + C

∫ t

0
(1 + s)−2Fα(s, v) ds,

and after taking the supremum and invoking Gronwall’s inequality, this yields

‖Fα(t)‖∞ ≤ C exp

(

C
∫ t

0
(1 + s)−2 ds

)

≤ C (12)

for all t ≥ 0. Returning to the estimate of ∂t Fα , we use the uniform bound on ‖Fα(t)‖∞
to find

∣
∣∂t F

α(t, v)
∣
∣ � t‖ρ(t)‖∞ + ‖E(t)‖∞μ(t)G(t),

and thus
∣
∣∂t F

α(t, v)
∣
∣ � t−2 ln5(t),

which implies that ‖∂t Fα(t)‖∞ is integrable. This bound then establishes the estimate
for s ≥ t

‖Fα(t) − Fα(s)‖∞ =
∥
∥
∥
∥

∫ t

s
∂t F

α(τ ) dτ

∥
∥
∥
∥∞

≤
∫ s

t
‖∂t Fα(τ )‖∞ dτ � t−1 ln5(t),

and taking s → ∞ establishes the limit. More precisely, as Fα(t, v) is continuous and
the limit is uniform, there is Fα∞ ∈ C(R3) such that

‖Fα(t) − Fα∞‖∞ � t−1 ln5(t).

Next, we verify the properties of the limiting spatial average. Due to the uniform con-
vergence, we further conclude weak convergence of Fα(t, v) as a measure, namely

lim
t→∞

∫

ψ(v)Fα(t, v)dv =
∫

ψ(v)Fα∞(v)dv (13)

for every ψ ∈ Cb
(
R
3
)
. In this direction, let ψ ∈ Cb(R

3) be given and fix any T ≥ T1
from Lemma 3.2 and α = 1, . . . , N . Then, we apply the measure-preserving change of
variables (x̃, ṽ) = (X α(T, t, x, v),Vα(T, t, x, v)), so that

lim
t→∞

∫

ψ(v)Fα(t, v) dv = lim
t→∞

∫∫

ψ(v) f α(t, x, v) dvdx

= lim
t→∞

∫∫

Sα
f (t)

ψ(v) f α(T,X α(T, t, x, v),Vα(T, t, x, v)) dvdx

= lim
t→∞

∫∫

Sα
f (T )

ψ(Vα(t, T, x̃, ṽ)) f α(T, x̃, ṽ) d ṽdx̃
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=
∫∫

Sα
f (T )

ψ(Vα∞(T, x̃, ṽ)) f α(T, x̃, ṽ) d ṽdx̃

by Lebesgue’s Dominated Convergence Theorem. Now, by Lemma 3.2 for any (x̃, ṽ) ∈
Sα

f (T ), the mapping ṽ �→ Vα∞(T, x̃, ṽ) is C2 with
∣
∣
∣
∣det

(
∂Vα∞
∂v

(T, x̃, ṽ)

)∣
∣
∣
∣ ≥ 1

2
,

and thus bijective from Sα
v (T, x̃) to �v . Hence, letting u = Vα∞(T, x̃, ṽ), we perform a

change of variables and drop the tilde notation to find

lim
t→∞

∫

ψ(v)Fα(t, v)dv =
∫∫

ψ(u) f α(T, x, V (u))
1�α

v
(u)

∣
∣
∣det

(
∂Vα∞
∂v

(T, x, V (u))
)∣
∣
∣
dudx

where for fixed x , the C2 function V : �α
v → Sα

v (T, x) is given by

V (u) = (Vα∞
)−1

(T, x, u).

Therefore, by uniqueness of the weak limit we find from (13)

Fα∞(u) =
∫

f α(T, x, V (u))1�α
v
(u)

∣
∣
∣
∣det

(
∂Vα∞
∂v

(T, x, V (u))

)∣
∣
∣
∣

−1

dx .

for any u ∈ R
3, and thus Fα∞ ∈ C2

c (R
3). Notice further that due to the compact support

and regularity of Fα(t) and Fα∞, it is sufficient to take ψ ∈ C(U), where U ∈ R
3 is

compact, for this equality to hold.
Next,we show that the conservation laws aremaintained in the limit. In particular, par-

ticle number and velocity conservation for each species is obtained by merely choosing
ψ(v) = 1 and ψ(v) = v, respectively, within (13) and using the time-independence of
these quantities. Similarly, to establish the energy identity we first note that the potential
energy is known a priori to decay [17,24], namely

‖E(t)‖2 � t−1/2.

With this, we use energy conservation and (13) withψ(v) = 1
2 |v|2 for each α = 1, .., N

to find

EVP = lim
t→∞

(
N∑

α=1

∫∫
1

2
mα|v|2 f α(t, x, v) dvdx +

1

2

∫

|E(t, x)|2 dx
)

= lim
t→∞

N∑

α=1

∫∫
1

2
mα|v|2 f α(t, x, v) dvdx

=
N∑

α=1

lim
t→∞

∫
1

2
mα|v|2Fα(t, v)dv

=
N∑

α=1

∫
1

2
mα|v|2Fα∞(v) dv.

��



S. Pankavich

Corollary 3.4. Define the net velocity density

P(t, v) =
N∑

α=1

qαF
α(t, v)

and �v =
N⋃

α=1
�α

v . Then, the limiting density

P∞(v) =
N∑

α=1

qαF
α∞(v)

satisfies P∞ ∈ C2
c (R

3) with supp(P∞) = �v and P(t, v) → P∞(v) uniformly as
t → ∞ with

‖P(t) − P∞‖∞ �
∫ ∞

t
[s‖ρ(s)‖∞ + ‖E(s)‖∞μ(s)G(s)] ds,

and thus

‖P(t) − P∞‖∞ � t−1 ln5(t).

In particular, we have
∫ P∞(v) dv = M.

4. Convergence of the Field and Macroscopic Densities

Now that the spatial averages are known to converge, we next establish the precise
asymptotic profile of the field, its derivatives, and the charge and current densities.
Given the limiting density P∞(v) established by Corollary 3.4, we define its induced
electric field by

E∞(v) = ∇v(�v)
−1P∞(v) = 1

4π

∫
ξ

|ξ |3P∞(v − ξ) dξ

for every v ∈ R
3. Such an induced field was first identified in [18] to identify the

correction exhibitedby thebehavior of translated spatial trajectories as t → ∞. To ensure
the necessary regularity of the limiting field we note that due to Lemma 2.1 ‖∂kx j E∞‖∞
is finite for j = 1, 2, 3 and k = 0, 1, 2, as ∂kx jP∞ ∈ Cc(R

3) ⊆ L1(R3)∩ L∞(R3). With
this, we establish a refined estimate of the electric field.

Lemma 4.1. We have

sup
x∈R3

∣
∣
∣t2E(t, x) − E∞

( x

t

)∣
∣
∣ � ‖P(t) − P∞‖∞ + t−1μ(t)G(t),

Alternatively, assume that there is β : [0,∞) → [0,∞) such that |x | ≤ β(t). Then, we
have

sup
v∈R3

∣
∣
∣t2E(t, x + vt) − E∞(v)

∣
∣
∣ � ‖P(t) − P∞‖∞ + t−1μ(t)2/3G(t)

(
μ(t)1/3 + β(t)

)
.
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Proof. We begin by proving the latter result, and note that the former will follow with
minor alterations. In order to properly decompose the difference of these quantities, we
first compute the translated field. In particular, we have

E(t, x + vt) =
N∑

α=1

qα

4π

∫∫
x + vt − y

|x + vt − y|3 gα(t, y − ut, u) dudy,

which, upon performing the change of variables

ξ = x + vt − y

t

with respect to y and

w = x + (v − u − ξ)t

with respect to u, gives

E(t, x + vt) = 1

4π t2

N∑

α=1

qα

∫∫
ξ

|ξ |3 gα

(

t, w, v − ξ +
x − w

t

)

dwdξ.

Therefore, due to the convolution structure of E∞ we have

t2E(t, x + vt) − E∞(v)

= 1

4π

∫
ξ

|ξ |3
N∑

α=1

qα

(∫

gα

(

t, w, v − ξ +
x − w

t

)

dw − Fα∞(v − ξ)

)

dξ.

(14)

Next, we split the ξ -integrand so that

N∑

α=1

qα

(∫

gα

(

t, w, v − ξ +
x − w

t

)

dw − Fα∞(v − ξ)

)

=: A1(t, v − ξ) +A2(t, x, v − ξ)

where

A1(t, v) =
N∑

α=1

qα

(∫

gα(t, w, v)dw − Fα∞(v)

)

= P(t, v) − P∞(v) (15)

and

A2(t, x, v) =
N∑

α=1

qα

∫ (

gα

(

t, w, v +
x − w

t

)

− gα(t, w, v)

)

dw. (16)

Using this decomposition in (14), we have

sup
v∈R3

∣
∣
∣t2E(t, x + vt) − E∞(v)

∣
∣
∣ ≤

∥
∥
∥∇v(�v)

−1A1(t)
∥
∥
∥
L∞

v

+
∥
∥
∥∇v(�v)

−1A2(t, x)
∥
∥
∥
L∞

v

.

To estimate the convolution terms on the right side of the inequality, we will use
Lemma 2.1.
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Now, to estimate the A1 term we find

‖A1(t)‖L1
v

=
∫

|P(t, ξ) − P∞(ξ)| dξ � ‖P(t) − P∞‖∞

as the integral in ξ is over a compact subset of R3 even as t → ∞ due to Lemma 2.2.
Of course, we also have

‖A1(t)‖L∞
v

= ‖P(t) − P∞‖∞.

Using these estimates with Lemma 2.1 yields

‖∇v(�v)
−1A1(t)‖L∞

v
� ‖P(t) − P∞‖∞. (17)

To control the A2 term, we use the spatial support of gα and velocity derivatives,
which yields

‖A2(t, x)‖L∞
v

= sup
v∈R3

∣
∣
∣
∣
∣

N∑

α=1

qα

∫ [

gα

(

t, w, v +
x − w

t

)

− gα(t, w, v)

]

dw

∣
∣
∣
∣
∣

� sup
v∈R3

N∑

α=1

∫ ∣
∣
∣
∣

∫ 1

0

d

dθ

(

gα

(

t, w, v + θ
x − w

t

))

dθ

∣
∣
∣
∣ dw

� t−1 sup
v∈R3

N∑

α=1

∫ 1

0

∫

|x − w|
∣
∣
∣
∣∇vg

α

(

t, w, v + θ
x − w

t

)∣
∣
∣
∣ dwdθ

� t−1
N∑

α=1

‖∇vg
α(t)‖∞

∫

{gα 
=0}
(|x | + |w|) dw

� t−1μ(t)G(t)
(
μ(t)1/3 + β(t)

)
.

In order to estimate ‖A2(t, x)‖L1
v
, we proceed similarly but use Lemma 2.5 so that

|Sα
g (t)| = |Sα

g (0)| and

‖A2(t, x)‖L1
v

�
N∑

α=1

∫∫ ∣
∣
∣
∣g

α

(

t, w, v +
x − w

t

)

− gα(t, w, v)

∣
∣
∣
∣ dwdv

� t−1
N∑

α=1

∫ 1

0

∫∫

|x − w|
∣
∣
∣
∣∇vg

α

(

t, w, v + θ
x − w

t

)∣
∣
∣
∣ dvdwdθ

� t−1
N∑

α=1

(
μ(t)1/3 + β(t)

) ∫∫

Sα
g (t)

∣
∣∇vg

α (t, w, u)
∣
∣ dudw

� t−1G(t)
(
μ(t)1/3 + β(t)

)
.

Combining this with the bound on ‖A2(t, x)‖L∞
v
within Lemma 2.1 gives

‖∇v(�v)
−1A2(t, x)‖L∞

v
� t−1μ(t)2/3G(t)

(
μ(t)1/3 + β(t)

)
. (18)
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Finally, collecting (17) and (18) we conclude

sup
v∈R3

∣
∣
∣t2E(t, x + vt) − E∞(v)

∣
∣
∣ � ‖P(t) − P∞‖∞ + t−1μ(t)2/3G(t)

(
μ(t)1/3 + β(t)

)
.

Next, we prove the first conclusion. In particular, the field is decomposed using the
same change of variables so that

t2E(t, x) − E∞
( x

t

)
= 1

4π

∫
ξ

|ξ |3
N∑

α=1

qα

(∫

gα

(

t, w,
x − w

t
− ξ

)

dw

−Fα∞
( x

t
− ξ

))
dξ

= 1

4π

∫
ξ

|ξ |3
[
A1

(
t,

x

t
− ξ

)
+ Ã2

(
t,

x

t
− ξ

)]
dξ

where A1(t, v) is given by (15) and

Ã2(t, v) =
N∑

α=1

qα

∫ (
gα
(
t, w, v − w

t

)
− gα(t, w, v)

)
dw. (19)

We use the same strategy as before, invoking Lemma 2.1 to estimate the terms on the
right side of

sup
x∈R3

∣
∣
∣t2E(t, x) − E∞

( x

t

)∣
∣
∣ ≤

∥
∥
∥∇v(�v)

−1A1(t)
∥
∥
∥
L∞

v

+
∥
∥
∥∇v(�v)

−1Ã2(t)
∥
∥
∥
L∞

v

.

The estimates of ‖A1(t)‖L1
v
and ‖A1(t)‖L∞

v
are unchanged, while the estimates of

‖Ã2(t)‖L1
v
and‖Ã2(t)‖L∞

v
are analogous to those ofA2. Indeed, using the sameapproach

we find

‖Ã2(t)‖L∞
v

= sup
v∈R3

∣
∣
∣
∣
∣

N∑

α=1

qα

∫ (
gα
(
t, w, v − w

t

)
− gα(t, w, v)

)
dw

∣
∣
∣
∣
∣

� t−1
N∑

α=1

‖∇vg
α(t)‖∞

∫

{gα 
=0}
|w|dw

� t−1μ(t)4/3G(t)

and

‖Ã2(t, x)‖L1
v

�
N∑

α=1

∫∫ ∣
∣
∣gα

(
t, w, v − w

t

)
− gα(t, w, v)

∣
∣
∣ dwdv

� t−1μ(t)1/3G(t).

Ultimately, the result is

sup
x∈R3

∣
∣
∣t2E(t, x) − E∞

( x

t

)∣
∣
∣ � ‖P(t) − P∞‖∞ + t−1μ(t)G(t).

��
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Remark 4.1. The dependence on G(t) can be removed from the field estimate by trans-
ferring a derivative from gα onto the fundamental solution, similar to the forthcoming
proof of Lemma 4.2, but one incurs an extra logarithmic factor and greater powers of
μ(t). In particular, the estimate becomes

sup
x∈R3

∣
∣
∣t2E(t, x) − E∞

( x

t

)∣
∣
∣ � ‖P(t) − P∞‖∞ + t−1 ln(t)μ(t)4/3.

Next, we can estimate derivatives of the field and the charge density using the same
tools.

Lemma 4.2. We have

sup
x∈R3

∣
∣
∣t3∇x E(t, x) − ∇vE∞

( x

t

)∣
∣
∣ � ln(t)

(
‖P(t) − P∞‖∞ + t−1μ(t)4/3G(t)

)
,

Alternatively, assume that there is β : [0,∞) → [0,∞) such that |x | ≤ β(t). Then, we
have

sup
v∈R3

∣
∣
∣t3∇x E(t, x + vt) − ∇vE∞(v)

∣
∣
∣

� ln(t)
(
‖P(t) − P∞‖∞ + t−1μ(t)G(t)

(
μ(t)1/3 + β(t)

))
.

Proof. As for the previous result, we first prove the latter conclusion, as it is more
complicated. We begin by taking the vk-derivative of the j th component of (14) so that

t3∂xk E
j (t, x + vt) − ∂vk E

j∞(v)

= 1

4π

∫
ξ j

|ξ |3
N∑

α=1

qα

(∫

∂vk g
α

(

t, w, v − ξ +
x − w

t

)

dw − ∂vk F
α∞(v − ξ)

)

dξ

= 1

4π

∫
ξ j

|ξ |3
(
∂vkA1(t, v − ξ) + ∂vkA2(t, x, v − ξ)

)
dξ

where A1(t, v) and A2(t, x, v) are defined by (15) and (16), respectively. From these
definitions we first note that

‖∂vkA1(t) + ∂vkA2(t, x)‖L∞
v

� ‖∂vkP∞‖∞ + ‖∂vkP(t)‖∞ + μ(t)
N∑

α=1

‖∂vk g
α(t)‖∞

� μ(t)G(t), (20)

while using the estimates established by the proof of Lemma 4.1, we have

‖A1(t)‖L∞
v
+ ‖A2(t, x)‖L∞

v
� ‖P(t) − P∞‖∞ + t−1μ(t)G(t)

(
μ(t)1/3 + β(t)

)
(21)

and

‖A1(t)‖L1
v
+ ‖A2(t, x)‖L1

v
� ‖P(t) − P∞‖∞ + t−1G(t)

(
μ(t)1/3 + β(t)

)
. (22)

Then, decomposing the difference of derivatives and using ∂vkAi = −∂ξkAi with an
integration by parts away from the singularity, we find

∣
∣
∣t3∂xk E

j (t, x + vt) − ∂vk E
j∞(v)

∣
∣
∣
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≤
∣
∣
∣
∣

∫

|ξ |<d

ξ j

|ξ |3
(
∂vkA1(t, v − ξ) + ∂vkA2(t, x, v − ξ)

)
dξ

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

|ξ |=d

ξ jξk

|ξ |4 (A1(t, v − ξ) +A2(t, x, v − ξ)) dSξ

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

d<|ξ |<R
∂ξk

(
ξ j

|ξ |3
)

(A1(t, v − ξ) +A2(t, x, v − ξ)) dξ

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

|ξ |>R
∂ξk

(
ξ j

|ξ |3
)

(A1(t, v − ξ) +A2(t, x, v − ξ)) dξ

∣
∣
∣
∣

=: I + I I + I I I + I V .

The estimate of I merely uses (20) so that

I � μ(t)G(t)d.

We use (21) to estimate I I , which yields

I I � ‖A1(t) +A2(t, x)‖L∞
v

(∫

|ξ |=d
|ξ |−2dSξ

)

� ‖P(t) − P∞‖∞

+ t−1μ(t)G(t)
(
μ(t)1/3 + β(t)

)
.

Similarly, (21) is used to estimate I I I as

I I I �
∫

d<|ξ |<R
|ξ |−3 |A1(t, v − ξ) +A2(t, x, v − ξ)| dξ

� ‖A1(t) +A2(t, x)‖L∞
v
ln

(
R

d

)

� ln

(
R

d

)(
‖P(t) − P∞‖∞ + t−1μ(t)G(t)

(
μ(t)1/3 + β(t)

))
.

Finally, we use (22) to estimate I V so that

I V �
∫

|ξ |>R
|ξ |−3 |A1(t, v − ξ) +A2(t, x, v − ξ)| dξ

� R−3‖A1(t) +A2(t, x)‖L1
v

� R−3
(
‖P(t) − P∞‖∞ + t−1G(t)

(
μ(t)1/3 + β(t)

))
.

Collecting these estimates and choosing d = t−1 with R−3 = ln(t) implies ln
( R
d

)
�

ln(t) and yields
∣
∣
∣t3∂xk E

j (t, x + vt) − ∂vk E
j∞(v)

∣
∣
∣

� ln(t)
(
‖P(t) − P∞‖∞ + t−1μ(t)G(t)

(
μ(t)1/3 + β(t)

))
.

Finally, the first conclusion follows by making straightforward changes analogous to
the previous lemma. More specifically, the derivatives are decomposed into

t3∂xk E
j (t, x) − ∂vk E

j∞
( x

t

)
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= 1

4π

∫
ξ j

|ξ |3
N∑

α=1

qα

(∫

∂vk g
α

(

t, w,
x − w

t
− ξ

)

dw − ∂vk F
α∞
( x

t
− ξ

))

dξ

= 1

4π

∫
ξ j

|ξ |3
[
∂vkA1

(
t,

x

t
− ξ

)
+ ∂vk Ã2

(
t,

x

t
− ξ

)]
dξ

whereA1(t, v) and Ã2(t, v) are defined by (15) and (19), respectively. We then use the
estimates ofA1 and Ã2 presented in Lemma 4.1. Otherwise, the proof is identical to the
latter conclusion. ��
Lemma 4.3. We have

sup
x∈R3

∣
∣
∣t3ρ(t, x) − P∞

( x

t

)∣
∣
∣ � ‖P(t) − P∞‖∞ + t−1μ(t)4/3G(t).

Proof. As for the field, we must rewrite this difference in terms of the translated distri-
bution functions. To this end, we have

ρ(t, x) =
N∑

α=1

qα

∫

gα(t, x − ut, u) du,

and, upon performing the change of variables

y = x − ut

with respect to u, we find

ρ(t, x) = 1

t3

N∑

α=1

qα

∫

g

(

t, y,
x − y

t

)

dy.

Hence, the difference of the densities can be split into two terms as

∣
∣
∣t3ρ(t, x) − P∞

( x

t

)∣
∣
∣ ≤

∣
∣
∣
∣
∣

N∑

α=1

qα

∫ [

g

(

t, y,
x − y

t

)

− g
(
t, y,

x

t

)]

dy

∣
∣
∣
∣
∣

+
∣
∣
∣P
(
t,

x

t

)
− P∞

( x

t

)∣
∣
∣

=: I + I I.

Using methods similar to the previous two lemmas, the first term satisfies

I � t−1
N∑

α=1

‖∇vg
α(t)‖∞

∫

{g 
=0}
|y| dy � t−1μ(t)4/3G(t),

while the second term is straightforward, namely

I I ≤ ‖P(t) − P∞‖∞.

Combining these estimates then yields the stated result. ��
Finally, we estimate the current density in a similar fashion.
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Lemma 4.4. We have

sup
x∈R3

∣
∣
∣t3 j (t, x) − x

t
P∞

( x

t

)∣
∣
∣ � ‖P(t) − P∞‖∞ + t−1μ(t)4/3G(t).

Proof. First, we note that due to Lemma 2.2 and the compact support of P∞, for t
sufficiently large there is C > 0 such that j (t, x) = P∞

( x
t

) = 0 when |x | ≥ Ct .
Hence, it suffices to take |x | � t throughout. Next, we perform the same change of
variables as in Lemma 4.3 to arrive at

j (t, x) = 1

t3

N∑

α=1

qα

∫ (
x − y

t

)

gα

(

t, y,
x − y

t

)

dy.

Hence, the difference can be split into three terms as

∣
∣
∣t3 j (t, x) − x

t
P∞

( x

t

)∣
∣
∣ ≤

∣
∣
∣
∣
∣

N∑

α=1

qα

∫
y

t
gα

(

t, y,
x − y

t

)

dy

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

N∑

α=1

qα

∫
x

t

[

gα

(

t, y,
x − y

t

)

− gα
(
t, y,

x

t

)]

dy

∣
∣
∣
∣
∣

+
∣
∣
∣
x

t

(
P
(
t,

x

t

)
− P∞

( x

t

))∣
∣
∣

=: I + I I + I I I.

The first term is estimated using the L∞ bound on gα so that

I � t−1
N∑

α=1

‖gα(t)‖∞
∫

{gα 
=0}
|y| dy � t−1μ(t)4/3.

The second term has similar structure, but involves derivatives of gα , and we find

I I � |x |t−2
N∑

α=1

‖∇vg
α(t)‖∞

∫

{gα 
=0}
|y| dy � t−1μ(t)4/3G(t).

Finally, the third term is straightforward and yields

I I I � |x |t−1‖P(t) − P∞‖∞ � ‖P(t) − P∞‖∞.

Combining these estimates then yields the stated result. ��

5. Spatial Limits and Modified Scattering

With the field and derivative estimates solidified, we prove that the distribution function
scatters to a limiting value as t → ∞ along a specific trajectory in phase space that may
differ from its linear profile, and this is known as “modified scattering”. Many of the
ideas in this direction arise from [18]. We also mention [7], which arrived at a modified
scattering result but without an explicit representation for the associated trajectories.
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First, we remind the reader that using the field estimate of Lemma 2.2 in Lemma 2.6
produces

|Yα(t)| � ln(t) (23)

for any α = 1, . . . , N , where the implicit constant in this inequality may depend upon
fixed τ ≥ 0 and (x, v) ∈ U . Thus, the characteristics of gα may grow unbounded in
time and require an additional logarithmic correction to construct spatial trajectories that
converge as t → ∞. To this point, we define for τ, t ≥ 1

Zα(t, τ, x, v) = Yα(t, τ, x, v) +
qα

mα

ln(t)E∞(Vα(t, τ, x, v))

= X α(t, τ, x, v) − tVα(t, τ, x, v) +
qα

mα

ln(t)E∞(Vα(t, τ, x, v)).

Then, we have the following result as t → ∞.

Lemma 5.1. For any α = 1, . . . , N, τ ≥ 1 and (x, v) ∈ U , the limiting modified spatial
characteristics Zα∞ defined by

Zα∞(τ, x, v) := lim
t→∞Zα(t, τ, x, v)

exist, and are C2, bounded, and invariant under the flow. Additionally, we have the
convergence estimates

|Zα(t, τ, x, v) − Zα∞(τ, x, v)| � t−1 ln5(t).

and
∣
∣
∣
∣Zα∞(τ, x, v) −

(

x − vτ +
qα

mα

ln(τ )E∞(v)

)∣
∣
∣
∣ � τ−1 ln5(τ ).

Furthermore, there is T2 > T1 such that for all τ ≥ T2 and (x, v) ∈ U , we have
∣
∣
∣
∣det

(
∂(Zα∞,Vα∞)

∂(x, v)
(τ, x, v)

)∣
∣
∣
∣ ≥ 1

2
.

Consequently, for τ ≥ T2 and (x, v) ∈ U , the C2 mapping (x, v) �→ (Zα∞,Vα∞)(τ, x, v)

is injective and invertible.

Proof. We begin by using (10), (11), (23), and Corollary 3.4 within Lemmas 4.1 and 4.2
(where β(t) = C ln(t)) to deduce

∣
∣
∣t2E

(
t,Yα(t) + tVα(t)

)− E∞(Vα(t))
∣
∣
∣ � t−1 ln5(t) (24)

and ∣
∣
∣t3∇x E

(
t,Yα(t) + tVα(t)

)− ∇vE∞(Vα(t))
∣
∣
∣ � t−1 ln7(t), (25)

respectively.
Now, to prove the convergence result, wemerely need to demonstrate the integrability

of |Żα(t)|. Indeed, we use Lemma 2.2 and (24) to arrive at

∣
∣Żα(t)

∣
∣ =

∣
∣
∣
∣−

qα

mα

t E
(
t,Yα(t) + tVα(t)

)
+

qα

mα

t−1E∞(Vα(t))
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+ ln(t)∇E∞(Vα(t))E(t,Yα(t) + tVα(t))

∣
∣
∣
∣

� t−1
∣
∣
∣t2E

(
t,Yα(t) + tVα(t)

)− E∞(Vα(t))
∣
∣
∣ + ln(t)‖∇E∞‖∞‖E(t)‖∞

� t−2 ln5(t).

Therefore, using the initial conditions, Zα(t, τ, x, v) converges to a function

Zα∞(τ, x, v) := x − vτ +
qα

mα

ln(τ )E∞(v) +
∫ ∞

τ

Żα(s, τ, x, v) ds

as t → ∞, and the stated error estimates follow immediately.
Estimates on derivatives of Zα∞ are analogous to that of Lemma 3.2. Using the

estimate of field derivatives from Lemma 2.3 within Lemma 2.7 produces

∣
∣
∣
∣
∂Yα

∂x
(t, τ, x, v)

∣
∣
∣
∣ � ln2(t) and

∣
∣
∣
∣
∂Yα

∂v
(t, τ, x, v)

∣
∣
∣
∣ � ln2(t). (26)

Therefore, taking an x derivative in the above expression for Żα(t), we use
Lemmas 2.2, 2.3, and 2.4, as well as (25) and (26) to find

∣
∣
∣
∣
∣

∂Żα

∂x
(t)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
qα

mα

t∇x E(t,Yα(t) + tVα(t))

(
∂Yα

∂x
(t) + t

∂Vα

∂x
(t)

)

− qα

mα

t−1∇vE∞(Vα(t))
∂Vα

∂x
(t)

∣
∣
∣
∣

+ ln(t)
∣
∣
∣∇2

v E∞(Vα(t))
∣
∣
∣
∣
∣E(t,Yα(t) + tVα(t))

∣
∣

∣
∣
∣
∣
∂Vα

∂x
(t)

∣
∣
∣
∣

+ ln(t)
∣
∣∇vE∞(Vα(t))

∣
∣
∣
∣∇x E(t,Yα(t) + tVα(t))

∣
∣

∣
∣
∣
∣
∂Yα

∂x
(t) + t

∂Vα

∂x
(t)

∣
∣
∣
∣

≤ Ct−1
∣
∣
∣t3∇x E

(
t,Yα(t) + tVα(t)

)− ∇vE∞(Vα(t))
∣
∣
∣

∣
∣
∣
∣
∂Vα

∂x
(t)

∣
∣
∣
∣ + Ct−2 ln3(t)

� t−2 ln7(t).

Integrating then yields

∣
∣
∣
∣
∂Zα∞
∂x

(τ, x, v) − I

∣
∣
∣
∣ ≤

∫ ∞

τ

∣
∣
∣
∣
∣

∂Żα

∂x
(s)

∣
∣
∣
∣
∣
ds � τ−1 ln7(τ ).

We repeat this argument for v derivatives using the second estimate of (26) to similarly
arrive at

∣
∣
∣
∣
∣

∂Żα

∂v
(t)

∣
∣
∣
∣
∣
� t−2 ln7(t),
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and thus
∣
∣
∣
∣
∂Zα∞
∂v

(τ, x, v) + τ I − qα

mα

ln(τ )∇E∞(v)

∣
∣
∣
∣ � τ−1 ln7(τ ).

This bound then implies
∣
∣
∣
∂Zα∞
∂v

(τ, x, v)

∣
∣
∣ � τ.

Finally, using these estimates and those of Lemma 3.2, we can prove the lower bound
on the determinant. In particular, due to the block structure of the matrix we have

J (τ ) := ∂(Zα∞,Vα∞)

∂(x, v)
(τ, x, v) =

⎡

⎢
⎣

∂Zα∞
∂x (τ, x, v)

∂Zα∞
∂v

(τ, x, v)

∂Vα∞
∂x (τ, x, v)

∂Vα∞
∂v

(τ, x, v)

⎤

⎥
⎦ =:

[
A(τ ) B(τ )

C(τ ) D(τ )

]

for τ ≥ 1 and (x, v) ∈ U . Due to Lemma 3.2, taking τ > T1 ensures that D(τ ) is
invertible, and as D(τ ) → I as τ → ∞, we have det(D) → 1 as τ → ∞ due to the
continuity of the determinant operator. Therefore, using the Schur complement we find

det(J ) = det(D) det
(
A − BD−1C

)

for τ > T1. Using the estimates on A(τ ) and B(τ ) given above and those of Lemma 3.2,
we have

|A(τ ) − I| � τ−1 ln7(τ ) and
∣
∣
∣BD−1C

∣
∣
∣ ≤ |B||D|−1|C | � τ−1 ln(τ ).

Thus, A − BD−1C → I as τ → ∞, which implies det(J ) → 1 as τ → ∞. Hence,
there is T2 > T1 such that

∣
∣
∣
∣det

(
∂(Zα∞,Vα∞)

∂(x, v)
(τ, x, v)

)∣
∣
∣
∣ ≥ 1

2

for all τ ≥ T2, and the regularity and invertibility of the map (x, v) �→ (Zα∞,Vα∞)

follows. ��
Analogous to the velocity limits, we next define the collection of all limiting positions

on Sα
f (t). Due to the invariance under the flow defined by (1), we have

{
Zα∞(τ, x, v) : (x, v) ∈ Sα

f (τ )
}

=
{
Zα∞(1, x, v) : (x, v) ∈ Sα

f (1)
}

for all τ ≥ 0. Hence, for any α = 1, . . . , N define

�α
z :=

{
Zα∞(1, x, v) : (x, v) ∈ Sα

f (1)
}

.

Additionally, as Zα∞(1, x, v) is continuous due to Lemma 5.1, its range �α
z on the

compact set Sα
f (1) is compact. Now that we have shown the convergence of modified

spatial characteristics, we can prove the convergence of the particle distribution functions
along these trajectories.
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Lemma 5.2. For every α = 1, . . . , N define�α = �α
z ×�α

v . There exists f α∞ ∈ C2
c (R

6)

with supp( f α∞) = �α such that

hα(t, x, v) = f α

(

t, x + vt − qα

mα

ln(t)E∞(v), v

)

satisfies

hα(t, x, v) → f α∞(x, v)

uniformly as t → ∞. Moreover, we have the convergence estimate

sup
(x,v)∈R6

∣
∣
∣
∣ f

α

(

t, x + vt − qα

mα

ln(t)E∞(v), v

)

− f α∞(x, v)

∣
∣
∣
∣ � t−1 ln5(t),

and the limiting distribution preserves the particle number, velocity, and energy of the
system, i.e.

∫∫

f α∞(x, v) dvdx = Mα,

∫∫

v f α∞(x, v) dvdx = J α, and

N∑

α=1

∫∫
1

2
mα|v|2 f α∞(x, v) dvdx = EVP.

Proof. Wefirst establish theweak convergence of the distribution function andproperties
of the associated limit. Letψ ∈ Cb(R

6) be given and fix any T > T2 > T1 fromLemmas
3.2 and 5.1. Then, we apply the well-known measure-preserving change of variables
(x̃, ṽ) = (X α(T, t, x, v),Vα(T, t, x, v)), so that

lim
t→∞

∫∫

ψ(x, v)hα(t, x, v) dvdx

= lim
t→∞

∫∫

ψ(x, v) f α

(

t, x + vt − qα

mα

ln(t)E∞(v), v

)

dvdx

= lim
t→∞

∫∫

Sα
f (t)

ψ

(

x − vt +
qα

mα

ln(t)E∞(v), v

)

f α(t, x, v) dvdx

= lim
t→∞

∫∫

Sα
f (t)

ψ

(

x − vt +
qα

mα

ln(t)E∞(v), v

)

f α(T,X α(T, t, x, v),Vα(T, t, x, v)) dvdx

= lim
t→∞

∫∫

Sα
f (T )

ψ(Zα(t, T, x̃, ṽ),Vα(t, T, x̃, ṽ)) f α(T, x̃, ṽ) d ṽdx̃

=
∫∫

Sα
f (T )

ψ(Zα∞(T, x̃, ṽ),Vα∞(T, x̃, ṽ)) f α(T, x̃, ṽ) d ṽdx̃
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by Lebesgue’s Dominated Convergence Theorem. Now, by Lemma 5.1 for any (x̃, ṽ) ∈
Sα

f (T ), the mapping

(x̃, ṽ) �→ (Zα∞(T, x̃, ṽ),Vα∞(T, x̃, ṽ)
)

is C2 with
∣
∣
∣
∣det

(
∂(Zα∞,Vα∞)

∂(x, v)

)

(T, x̃, ṽ)

∣
∣
∣
∣ ≥ 1

2
,

and thus bijective from Sα
f (T ) to �α . Hence, letting (y, u) = (Zα∞(T, x̃, ṽ),

Vα∞(T, x̃, ṽ)
)
, we perform a change of variables and drop the tilde notation to find

lim
t→∞

∫

ψ(x, v)hα(t, x, v) dvdx

=
∫∫

ψ(y, u) f α(T, Zα(y, u), V α(y, u))1�α(y, u)Dα(y, u) dudy

where

Dα(y, u) =
∣
∣
∣
∣det

(
∂(Zα∞,Vα∞)

∂(x, v)

)

(T, Zα(y, u), V α(y, u))

∣
∣
∣
∣

−1

and the C2 function (Zα, V α) : �α → Sα
f (T ) is given by the components

Zα(y, u) = (Zα∞
)−1

(T, y, u)

and

V α(y, u) = (Vα∞
)−1

(T, y, u),

respectively. Therefore, for any (y, u) ∈ R
6 define

f α∞(y, u) = f α(T, Zα(y, u), V α(y, u))1�α(y, u)Dα(y, u).

Thus, f α∞ ∈ C2
c (R

6) and satisfies

lim
t→∞

∫∫

ψ(x, v)hα(t, x, v)dvdx =
∫∫

ψ(y, u) f α∞(y, u)dudy. (27)

Notice further that due to the compact support and regularity of f α(t) and f α∞, it is
sufficient to takeψ ∈ C(U), where U ⊂ R

6 is compact, for this equality to hold. Finally,
the conservation laws are maintained in the limit by merely choosing ψ(x, v) = 1,
ψ(x, v) = v, and ψ(x, v) = 1

2mα|v|2 within (13). The arguments are analogous to
those of Lemma 3.3.

Next,we establish the uniformconvergence of this function using the compact support
of the limit. Fix α = 1, . . . , N and for brevity let

W(t, x, v) = x − qα

mα

ln(t)E∞(v)
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for every t ≥ 1 and x, v ∈ R
3 so that

hα(t, x, v) := f α

(

t, x + vt − qα

mα

ln(t)E∞(v), v

)

= gα(t,W(t, x, v), v).

Throughout, we will assume t ≥ 1 is suitably large. Due to (23) and the compact spatial
support of f α∞ established above,wenote that there isC>0 such that gα(t,W(t, x, v), v)

= f α∞(x, v) = 0 whenever |x | ≥ C ln(t). Hence, it suffices to take |x | � ln(t), and thus
|W(t, x, v)| � ln(t). Because gα satisfies (VPg), we deduce that hα satisfies

∂t h
α = qα

mα

t−1
(
t2E(t,W + vt) − E∞(v)

)
· ∇x g

α(t,W, v)

− qα

mα

E(t,W + vt) · ∇vg
α(t,W, v).

Similar to the proof of Lemma 3.3, we wish to show that ‖∂t hα(t)‖∞ is integrable in
order to establish the existence of a limiting function in this norm.

To this end, we decompose ∂t hα so that
∣
∣∂t h

α(t, x, v)
∣
∣ � I + I I

where

I = t−1
∣
∣
∣

(
t2E(t,W + vt) − E∞(v)

)
· ∇x g

α(t,W, v)

∣
∣
∣

and

I I = ∣
∣E(t,W + vt) · ∇vg

α(t,W, v)
∣
∣ .

The second term is well-behaved. Indeed, using Lemma 2.2 and (11) we find

I I ≤ ‖E(t)‖∞G(t) � t−2 ln2(t). (28)

Using Lemma 2.3 we find for every α = 1, . . . , N

‖∇x g
α(t)‖∞ = ‖∇x f

α(t)‖∞ � 1.

Thus, the latter term in I is uniformly bounded in time, which implies

I � t−1
∣
∣
∣t2E(t,W + vt) − E∞(v)

∣
∣
∣ .

Because |W(t, x, v)| � ln(t), we invoke Lemma 4.1 with β(t) = C ln(t) to conclude

I � t−2 ln5(t). (29)

Combining (28) and (29), we have

‖∂t hα(t)‖∞ � t−2 ln5(t).

As this bound is integrable in time, there is fα ∈ C(R6) such that

‖hα(t) − fα‖∞ � t−1 ln5(t).

Of course, the strong limit implies the weak limit, and we find fα = f α∞ by equivalence
of weak limits. ��
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6. Proofs of Theorems and Sharpness of Estimates

We begin this section by proving the first theorem.

Proof of Theorem 1.1. The theorem follows by merely collecting the estimates of the
previous sections. Indeed, beginning with the decay estimate of the field (A), we con-
clude the improved decay estimates of Lemma 2.2. Then, we invoke Lemmas 2.3, 2.6,
and 2.8 to produce (10) and (11). With this, the spatial average of each species converges
with the estimate provided in Sect. 3. Applying (10) and (11) to Lemmas 4.1, 4.2, 4.3,
and 4.4 provides the asymptotic behavior of the field, field derivatives, and spatial den-
sities. The estimates concerning the limits of modified spatial characteristics and the
modified scattering result are provided in Sect. 5. Additionally, Lemma 4.2 removes the
logarithmic factor from the original field derivative estimate of Lemma 2.3 so that

‖∇x E(t)‖∞ ≤ t−3‖E∞‖∞ + t−4 ln7(t) � t−3.

Using this in Lemma 2.8 then reduces the growth of velocity derivatives of gα by one
logarithmic power to

G(t) � ln(t)

instead of (11). This estimate is then applied within Lemma 3.3 and Corollary 3.4, as
well as, Lemmas 4.1, 4.2, 4.3, 4.4, 5.1, and 5.2, which provides the stated logarithmic
powers and completes the proof. ��

Next, notice that ifM 
= 0, then the estimates presented in Theorem 1.1 completely
characterize the asymptotic behavior of the field and associated densities. Indeed, (2)
yields

∫

P∞(v) dv = M 
= 0,

which implies P∞ 
≡ 0 and E∞ 
≡ 0. Hence, the decay estimates are sharp, up to a
a change in the logarithmic power. This can be further demonstrated by the following
result.

Lemma 6.1. IfM 
= 0, then

t−3 � ‖ρ(t)‖∞ and t−2 � ‖E(t)‖∞.

Proof. The results follow merely from the conservation of charge and the bound on
spatial characteristics provided by Lemma 2.2. Indeed, we have

|M| ≤
∫

|x |≤Ct
|ρ(t, x)| dx ≤ Ct3‖ρ(t)‖∞.

Due to the Divergence Theorem, the electric flux satisfies a similar estimate so that

|M| =
∣
∣
∣
∣

∫

|x |≤Ct
∇x · E(t, x) dx

∣
∣
∣
∣ ≤

∫

|x |=Ct
|E(t, x)| dSx ≤ Ct2‖E(t)‖∞.

Rearranging the inequalities and using M 
= 0 then yields the stated estimates. ��
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However, when the plasma is neutral, i.e. M = 0, it is possible that the limiting
density and field are identically zero, which implies stronger decay properties for these
quantities, as displayed in Theorem 1.2.

Proof of Theorem 1.2. Beginning with the decay estimate of the field (A), we can repeat
the argument as in the proof of Theorem 1.1 to arrive at the estimates stated therein.
However, because P∞ ≡ 0, and thus E∞ ≡ 0, the lemmas of Sect. 4 yield

‖E(t)‖∞ � t−3 ln4(t)

from Lemma 4.1,

‖∇x E(t)‖∞ � t−4 ln6(t)

from Lemma 4.2, and

‖ρ(t)‖∞ � t−4 ln5(t)

from Lemma 4.3. With these faster decay rates, Lemmas 2.6 and 2.8 provide uniform-
in-time bounds for the spatial support and velocity derivatives of gα so that

μ(t) � 1 and G(t) � 1. (30)

Lemma 3.3 then yields

‖Fα(t) − Fα∞‖∞ � t−2 ln5(t)

so that

‖P(t)‖∞ � t−2 ln5(t).

This estimate, used in conjunction with (30), then provides the stated decay rates of
‖E(t)‖∞, ‖∇x E(t)‖∞, ‖ρ(t)‖∞, and ‖ j (t)‖∞ by invoking Lemmas 4.1, 4.2, 4.3, and
4.4. In turn, using the resulting rates in Lemma 3.3 yields the stated estimates on
‖Fα(t) − Fα∞‖∞ and ‖P(t)‖∞. The improved rate of the field further produces the
faster convergence rate of the velocity characteristics from Lemma 3.1.

Finally, the convergence of the translated spatial characteristics follows by applying
the arguments of Sect. 5 to Yα(t) for every α = 1, . . . , N and using the improved decay
of the field and its derivatives. Indeed, from Lemma 2.6, we find

|Ẏα(t)| � t−2

so that Yα(t) tends to a limit defined by

Yα∞(τ, x, v) := x − vτ +
qα

mα

∫ ∞

τ

sE(s,X α(s, τ, x, v)) ds

with the convergence estimate
∣
∣Yα(t, τ, x, v) − Yα∞(τ, x, v)

∣
∣ � t−1

for all τ ≥ 0, (x, v) ∈ U . We can then define

�α
y :=

{
Yα∞(0, x, v) : (x, v) ∈ Sα

f (0)
}

.
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Using the methods of Lemma 2.7, estimates on derivatives follow immediately, namely
∣
∣
∣
∣
∂Yα∞
∂x

(τ, x, v) − I

∣
∣
∣
∣ �

∫ ∞

τ

s2‖∇x E(s)‖∞ds � τ−1 ln(τ )

and
∣
∣
∣
∣
∂Yα∞
∂v

(τ, x, v) + τ I

∣
∣
∣
∣ �

∫ ∞

τ

s2‖∇x E(s)‖∞ ds � τ−1 ln(τ )

so that
∣
∣
∣
∂Yα∞
∂v

(τ, x, v)

∣
∣
∣ � τ . With these estimates, the determinant of the mapping

(x, v) �→ (Yα∞(τ, x, v),Vα∞(τ, x, v)
)
is bounded away from zero for τ sufficiently

large using the Schur complement as in Lemma 5.1. Finally, the arguments proving
the convergence of the translated distribution function gα follow analogously to that of
Lemma 5.2. In particular, from the Vlasov equation in (VPg) we find

|∂t gα(t, x, v)| �
∣
∣t E(t, x + vt) · ∇x g

α − E(t, x + vt) · ∇vg
α
∣
∣

� t‖E(t)‖∞ + ‖E(t)‖∞G(t)

and thus

‖∂t gα(t)‖∞ � t−2

for every α = 1, . . . , N , which completes the proof. ��
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