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a b s t r a c t 

Traditional probabilistic methods for the simulation of advection-diffusion equations (ADEs) often overlook the 

entropic contribution of the discretization, e.g., the number of particles, within associated numerical methods. 

Many times, the gain in accuracy of a highly discretized numerical model is outweighed by its associated com- 

putational costs or the noise within the data. We address the question of how many particles are needed in a 

simulation to best approximate and estimate parameters in one-dimensional advective-diffusive transport. To do 

so, we use the well-known Akaike Information Criterion (AIC) and a recently-developed correction called the 

Computational Information Criterion (COMIC) to guide the model selection process. Random-walk and mass- 

transfer particle tracking methods are employed to solve the model equations at various levels of discretization. 

Numerical results demonstrate that the COMIC provides an optimal number of particles that can describe a more 

efficient model in terms of parameter estimation and model prediction compared to the model selected by the 

AIC even when the data is sparse or noisy, the sampling volume is not uniform throughout the physical domain, 

or the error distribution of the data is non-IID Gaussian. 
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. Introduction 

Numerical methods of all sorts are used to approximate the solu-

ions of various model equations in hydrology. The independent vari-

bles in these models are discretized, and model coefficients are pop-

lated so as to faithfully reproduce some set of measured dependent

ariables (i.e., data). Of course, both the model solution and the mea-

ured data will contain errors; therefore, a perfect match of model to

ata is not necessarily desired. In fact, a perfect match will most of-

en reduce the ability of the model to predict new sets of data, because

he model is overfit to a single realization of noise (see the excellent

verview by Konishi and Kitagawa (2008) ). The bias between a model

hat is overfit and an underlying “true ” model was classically addressed

y Akaike ( Akaike, 1974 ) by considering approximate measures of the

ntropy of the probability distributions associated with the likelihood

hat data arises from a specific candidate model. In short, these mea-

ures introduce an entropic penalty to maximum likelihood estimates of

oodness of fit when the number of adjustable parameters or coefficients

ncreases. In a similar fashion, the computational entropy of a model is
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 bias against its fitness and needs to be accounted for when using a

odel in a predictive mode. 

For a few examples, consider first a particle-tracking model of con-

aminant transport. It is often visually pleasing to use a large number of

articles in order to obtain a smooth (i.e., low concentration variance)

istogram for comparison with data. However, if the noise in the data

ar exceeds the noise in the histogram, then the large number of particles

s superfluous from a model prediction perspective. Indeed, the model

moothness is not implied by the data and should not be included in a

rediction. In addition, if the model is used repetitively in a parameter

stimation procedure, then these extra calculations may also become

angibly burdensome. Another example is stochastic Monte Carlo mod-

ling of groundwater flow using an Eulerian (e.g., finite-difference) sim-

lator. Oftentimes the spatial and temporal discretizations are thought

o be a free modeling choice, and random realizations of hydraulic con-

uctivity are generated, yielding models with arbitrary degrees of free-

om. Subsequently, the models are weighted in relation to the good-

ess of fit (e.g., Beven and Binley (1992) ; Poeter and Anderson (2005) ;

e et al. (2004) ), but one must ask whether simpler models, in terms of
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oth discretization and parameterization, should be elevated because of

heir computational simplicity. 

Recently, Benson et al. (2020) showed that a computational entropy

enalty, called the Computational Information Criterion or COMIC, can

e easily used to address this issue for simple systems (i.e., those with

onstant discretization or particle numbers), but it has yet to be shown

hat those results can be generalized to more realistic modeling scenar-

os. Here, we show that measures of computational (entropy) penalty

ay be extended to less ideal cases. In the next section, we will review

oth the COMIC and the advection-dispersion (mixed hyperbolic and

arabolic) partial differential equation (PDE) model of interest, and then

iscuss associated Lagrangian numerical methods. Sections 3 and 4 are

evoted to understanding the effects of sparse and non-uniformly spaced

ata sets, respectively, on the information criterion and subsequent pa-

ameter estimation. Next, we reformulate the COMIC in Section 5 to

ccount for a non-uniform discretization volume and demonstrate its

quivalence (in terms of particle number selection) with the COMIC de-

ived from a uniform sampling volume. In Section 6 , we derive a more

eneral version of the COMIC for non-Gaussian errors and non-uniform

rror variance and test it on noisy data sets. Conclusions are discussed

nd summarized in the final section. 

. Model and Methods 

To enable a complete analysis, we use an equation that does not

equire a numerical solution (i.e., an analytical solution is readily avail-

ble). This restriction is not required. The simplest case of the one-

imensional, constant-coefficient advection-diffusion equation (ADE) is

iven by 

𝜕𝑐 

𝜕𝑡 
= − 𝑣 

𝜕𝑐 

𝜕𝑥 
+ 𝐷 

𝜕 2 𝑐 

𝜕𝑥 2 
, (1)

here 𝑐( 𝑥, 𝑡 ) is the solution to the PDE, 𝑣 is the velocity, and 𝐷 is the

iffusion coefficient. As we are interested in particle methods, we will

estrict our attention to the initial condition 𝑐( 𝑥, 0) = 𝛿( 𝑥 0 ) so that 𝑐( 𝑥, 𝑡 )
s a probability density function (PDF). In practice, the solution to the

DE is approximated by the numerical method 𝑐 𝑛 ( 𝑥, 𝑡 ) , which is a func-

ion of a discretization parameter 𝑛, representing the number of particles

n a particle method or nodes in a finite-difference approximation. The

hoice of 𝑛 is arbitrary and we seek a systematic way to choose this

odeling parameter. 

The newly developed COMIC may be used to select models amongst

hese different levels of discretization ( Benson et al., 2020 ). This crite-

ion is a extension of Akaike’s “an information criterion ” (AIC) in which

here is a penalization of the usage of more information (in the form

f adjustable parameters) to describe the model. For completeness, we

ecall that the AIC is defined by 

IC = −2 ln (  ( ̂𝜃)) + 2 𝑝 (2)

here  ( ̂𝜃) is the likelihood function evaluated at the maximum like-

ihood estimate for the unknown parameters 𝜃, and 𝑝 is the number of

arameters. For a computational model, the number of nodes or parti-

les contributes to the entropy and must be accounted for when compar-

ng model predictive fitness. In short, the ( Kullback and Leibler, 1951 ;

ullback, 1968 ) relative entropy for a discretized model contributes an

xtra term to the AIC, and the COMIC takes the form 

OMIC = AIC − ∫ 𝑐( 𝑥, 𝑡 ) ln (Δ𝑉 ( 𝑥 )) 𝑑𝑥 (3)

here Δ𝑉 ( 𝑥 ) is the sampling volume, here given by the spacing between

he particles or nodes. In the case that Δ𝑉 ( 𝑥 ) = |Ω|∕ 𝑛 is constant where

Ω| represents the length of the spatial domain, then the COMIC will

erely reduce to 

OMIC = AIC + ln ( 𝑛 ) (4)

p to a constant. It is this quantity that should be minimized in or-

er to identify the best available predictive model Konishi and Kita-

awa (2008) ; Benson et al. (2020) . 
2 
For this study, we use two Lagrangian methods: random-walk

article-tracking (RWPT) and mass-transfer particle-tracking (MTPT).

oth methods are described in detail elsewhere ( Labolle et al., 1996 ;

alamon et al., 2006 ; Benson and Bolster, 2016 ; Schmidt et al., 2018 ),

o we only summarize here. In its simplest form, the RWPT method

laces a number of particles 𝑛 at the release position 𝑥 0 , each with con-

tant mass 1∕ 𝑛 . At every time step of duration Δ𝑡, each particle moves

ith mean 𝑣 Δ𝑡 and random deviation 
√
2 𝐷Δ𝑡 𝜉, where 𝜉 ∼  (0 , 1) is a

tandard Normal random variable. At any desired time, bins of size Δ𝑥 𝑖 ,
entered at points 𝑥 𝑖 are constructed and the particle count 𝑛 𝑖 in each

in is converted to concentration by 𝑐 𝑛 ( 𝑥 𝑖 , 𝑡 ) = 𝑛 𝑖 ∕( 𝑛 Δ𝑥 𝑖 ) . 
Contrastingly, the MTPT method typically allows a portion of the

ispersion to be performed by random walks as above, and the remain-

ng portion is performed by mass transfer between particles ( Benson

t al., 2019, 2020 ; Sole-Mari et al., 2020 ; Herrera et al., 2009 ; Engdahl

t al., 2017 ; Schmidt et al., 2019 ). The mass transfer between any and

ll particles is governed by the equation 

 𝑖 ( 𝑡 + Δ𝑡 ) = 𝑚 𝑖 ( 𝑡 ) − 

𝑛 ∑
𝑖 =1 

(
𝑚 𝑖 ( 𝑡 ) − 𝑚 𝑗 ( 𝑡 ) 

)
𝑊 𝑖𝑗 , (5)

here for each particle pair denoted 𝑖, 𝑗, 

 𝑖𝑗 = 

(1∕ 
√
4 𝜋𝐷Δ𝑡 ) exp (− 𝑠 2 

𝑖𝑗 
∕4 𝐷Δ𝑡 ) 

𝜌𝑖𝑗 
(6)

s the normalized kernel that determines the weight of mass transfer

etween particles 𝑖 and 𝑗 ( Benson and Bolster, 2016 ), 𝜌𝑖𝑗 is a normalizing

onstant that ensures conservation of mass and is typically taken to be

he particle density ( Sole-Mari et al., 2019; Schmidt et al., 2020 ), and 𝑠 𝑖𝑗 
s the distance between particles 𝑖 and 𝑗. We note that the choice of the

aussian kernel’s bandwidth is a free parameter. In this case we choose

t to be 
√
2 𝐷Δ𝑡 , making 𝑊 a normalized version of the fundamental

olution to the diffusion equation, and this is equivalent to choosing 𝛽 =
 within the convention of Sole-Mari et al. (2019) . Because the particles

ontinually change mass, they are typically pre-distributed throughout

he domain with zero mass. One particle at the release point is given unit

ass. For this study, when we employ an MTPT method all dispersion

s modeled by mass transfer, i.e., the particles move only by their mean

elocity with no random motion (in contrast to the RWPT simulations

hat only simulate dispersion via random-walk, with no mass transfer). 

In subsequent sections we perform a variety of numerical simulations

sing the COMIC to select the optimal number of particles in a model

nd perform parameter estimation. All numerical simulations were con-

ucted in MATLAB using a desktop computer with a 3.5 GHz Intel Core

7 processor and 16 GB of RAM. The code used to generate the re-

ults in this section is available at https://github.com/nhatthanhtran/

ntropy2020 ( Tran, 2020b ). 

. Sparsity of Data 

One problem that may arise when collecting data is a limited number

f accessible locations. The sparsity of data could change the number of

articles needed to fit a given data set (and subsequently predict others).

e presume that this will also affect the optimal number of particles

redicted by the COMIC. Thus, instead of assuming a large collection of

ata (e.g., ≥ 30 points), we will also consider relatively small data sets

 ≤ 10 points) within the domain, to assess the degree to which param-

ter estimates are affected by less data and to what extent the optimal

umber of particles changes in order to achieve more precise estimates.

ecause we are relying on smaller collections of data, modification to

he AIC is necessary ( Cavanaugh, 1997 ). This corrected fitness metric is

ften denoted as the AICc and defined by Hurvich and Tsai (1989) 

ICc = AIC + 

2 𝑝 2 + 2 𝑝 
𝑘 − 𝑝 − 1 

, (7)

here 𝑘 is the number of data points and 𝑝 is the number of parameters

n the model. This leads to the obvious modification of the COMIC with

https://github.com/nhatthanhtran/entropy2020
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Fig. 1. Fitness metrics for uniformly spaced data using 𝑘 = 10, 30, and 200 data 

points: RWPT (top) and MTPT (bottom). 
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𝑉 = |Ω|∕ 𝑛 as 

OMICc = AICc + ln ( 𝑛 ) . (8)

uch a correction is relevant when we are attempting to compare differ-

nt models with various numbers of data points and parameters. Simu-

ations were conducted by setting the final time 𝑇 = 1 with 𝐷 = 1 , 𝑣 = 0
i.e., no adjustable model parameters) and selecting 𝑘 = 10 , 30, or 200

sample ” data points ̂𝑐 1 , ..., ̂𝑐 𝑘 from exact values of the analytic solution

f the ADE (1) on the interval Ω = [−5 , 5] with uniform spacing. We cal-

ulate the AICc and COMICc with different particle numbers for both

he random walk and mass transfer methods. For the former, the opti-

al number of particles as given by the COMICc appears to increase for

he sparse ( 𝑘 = 10 ) data case to more than 𝑛 = 10 4 . 3 ≈ 20,000 particles

 Fig. 1 a). On the other hand, the MTPT simulations appear relatively sta-

le in terms of their COMIC fitness with an optimal number of particles

round 𝑛 = 3,000 ( Fig. 1 b). 

We now use these results to fix the COMIC-optimal number of par-

icles in simulations (20,000 for RWPT and 3,000 for MTPT) that now

eek to estimate the parameters within the ADE. We choose data points

rom the analytic solution using 𝑣 = 𝐷 = 1 and use MATLAB’s built-in

minsearch function to minimize the AIC with initial guesses for

oth coefficients of 0.5. Because the particles do not move in the MTPT

lgorithm, the solutions are the same if run multiple times (i.e., non-

tochastic results). For 30 data points, the estimated values of 𝐷 and 𝑣

n the MTPT are within 10 −6 of their true value 1. On the other hand,
3 
he RWPT method gives a different result for each realization because

f the random walks, so we show a box/whisker plot for those results

n Fig. 2 . 

For even fewer data points (say, 𝑘 = 6 ), the random walk method

equires significantly more particles to achieve a sufficient balance be-

ween goodness of fit and computational complexity. The qualitative

ehavior and shape of the AIC and COMIC for differing particle num-

ers are similar to Fig. 1 , and hence are not shown. The mass transfer

ethod displays similar behavior to other simulations - the COMIC op-

imal number of particles occurs at 𝑛 COMIC ≈ 3,000 and the estimated

alues of 𝐷 and 𝑣 are both within 10 −6 of their true value of 1. Hence,

he MTPT is significantly more robust with respect to the size of the

ata. Finally, we briefly mention that simulations were performed for

very chosen particle number in which parameter values were first es-

imated and then used to compute the fitness metric. Again, the convex

hape of the AIC and COMIC for the RWPT method were nearly iden-

ical to Fig. 1 , though the new optimal number of particles implied by

he COMIC for the MTPT is 𝑛 COMIC ≈ 500 . One reason for this decrease in

ptimal particle number is that the MTPT estimates are very close to the

xact solution, so that any noise in the parameter estimation dominates

he overall error. Fig. 3 displays the fitness metrics from MTPT simula-

ions with 30 data points. Using this new optimal particle number, we

stimated the values of 𝐷 and 𝑣 to be within 10 −5 of their true values,

nd these are similar to the parameter estimates obtained using 3,000

articles. 

. Non-uniformly Spaced Data 

Another issue that may arise under less ideal data collection circum-

tances is that observations from a field site may not be constrained to

 certain grid, meaning that the data may not exist at uniformly-spaced

ridpoints. Therefore, we examine the effects of such spatial hetero-

eneity on the COMIC and elucidate how this will affect parameter esti-

ation. To generate non-uniform data, we randomly select data points

ithin the domain of interest. More specifically, we perform simulations

or 𝑘 = 10 and 𝑘 = 30 data points, with 𝐷 = 1 , 𝑣 = 1 , 𝑥 0 = 0 and 𝑇 = 1 .
dditionally, the numerical spacing Δ𝑉 = 10∕ 𝑛 remains constant. Calcu-

ations of the COMIC for random data display similar results to the case

f equally-spaced data, so we will use the optimal number of particles

rom the previous section, as well. For the RWPT method, we perform

imulations with 5,000 particles for 30 data points and 20,000 particles

or 10 data points. For the MTPT method both simulations use 3,000 par-

icles. The initial guess for both parameters is 0.5 within all simulations.

ue to the added randomness in the spacing of the data, we might an-

icipate that the parameter estimates would vary more than in the case

f uniformly-spaced data; however, the results for these random walk

arameter-estimation simulations are similar in both the magnitude and

he variability of the estimates of both 𝐷 and 𝑣 ( Fig. 2 ). For the MTPT

ethod, a simulation with 30 data points yields estimates of 𝐷 and 𝑣

ithin 10 −5 of their true values. Similarly, a simulation with 10 data

oints provides estimates of 𝐷 and 𝑣 within 10 −4 of their true values.

rom these simulations, we conclude that the COMIC provides a useful

nd informative guide for the choice of particle number and parame-

er estimation even when the data is not uniformly spaced. Next, we

ill consider alterations to the COMIC in order to address non-constant

ampling volumes. 

. Non-Uniform Numerical Discretization Volume 

In the original calculation of the COMIC, the spatial volume Δ𝑉 ( 𝑥 )
long which the solution is calculated is assumed to be a constant, and

his results in Eq. (4) representing the computational fitness metric.

owever, in performing certain simulations, this assumption may not

old as either the binning of RWPT particles — or positions of MTPT

articles — may not be evenly distributed throughout the physical do-

ain. In contrast to the previous section, this issue only arises due to
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Fig. 2. Estimates of 𝐷 and 𝑣 using RWPT with 

different data spacings schemes, numbers, and 

distributional qualities. 

Fig. 3. Mass transfer fitness metrics determined by estimating the parameters 

𝐷 and 𝑣 for various particle numbers. 
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he computational method rather than the collected data. In such a case,

𝑉 ( 𝑥 ) will vary with 𝑥, and the calculation of the COMIC must instead

se Eq. (3) . One immediate drawback from this formulation is that the

alue of the true concentration 𝑐( 𝑥, 𝑡 ) at any point is unknown. Still, the

umerical approximation 𝑐 𝑛 ( 𝑥, 𝑡 ) can be used to estimate this function

ithin the COMIC, which becomes 

OMIC = AIC − ∫ 𝑐 𝑛 ( 𝑥, 𝑡 ) ln (Δ𝑉 ( 𝑥 )) 𝑑𝑥. (9)

In this direction, we perform MTPT simulations in which the parti-

les are initially placed randomly within the domain, and the random

pacing between particles will determine the sampling volume Δ𝑉 ( 𝑥 ) at

ach of the 𝑛 particle locations. 

This is performed with varying particle numbers, and the resulting

OMIC of Eq. (9) is computed for each simulation, once again using
4 
 = 30 data points generated from the analytic solution of the ADE. To

ccount for the randomness in the initial particle spacing, we compute

he ensemble average of 30 realizations ( Fig. 4 ). From these simulations,

wo key observations become apparent: 

1. The optimal number of MTPT particles given by the COMIC is

18,000, which is much larger than the 3,000 particles predicted

by simulations with constant Δ𝑉 - see Fig. 1 b. This can be ex-

plained by the the randomness of the particle spacing. For instance,

Schmidt et al. (2018) show that the MTPT algorithm incurs in-

creased error for randomly spaced, immobile particles because of

mass-transfer “gaps ” in areas of sparsely-distributed particles. The

fitness of the method drops sharply compared to the uniformly-

spaced scenario ( Fig. 1 ), especially when the number of particles

becomes small. This is clearly demonstrated by the AIC in Fig. 4 , as
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Fig. 5. Fitness metrics for non-Gaussian error processes - RWPT (top) and MTPT 

(bottom). Here, the COMIC is computed from Eq. (15) , and these curves can be 

directly compared with those of Fig. 1 with 𝑘 = 30 . 
this curve possesses a large negative slope between 100 and 18,000

particles and only plateaus after 18,000 particles. At this point the

particles are distributed tightly enough in the domain to maintain

the diffusion process regardless of the variability in their spacing. It

should be noted that partitioning a portion of the diffusion process

to random walks alleviates the problem of persistent mass-transfer

“gaps ” ( Benson et al., 2020 ). 

2. The exact COMIC calculation, which is performed by approximat-

ing the integral in (9) , and the uniformly-spaced COMIC, given by

Eq. (4) , have the same convex shape. For stationary particles, inte-

grating a nonuniform Δ𝑉 ( 𝑥 ) simply adds a constant value to com-

puting the COMIC for constant Δ𝑉 . Hence, the curve is simply

shifted vertically, without further influencing its shape or the po-

sition at which it attains its minimum value, and this property per-

sists throughout multiple simulations. Both fitness metrics provide

the identical optimal number of particles of 18,000. Thus, any calcu-

lation of the COMIC could use the Eq. (4) regardless of the sampling

volume. 

In addition to changes in the COMIC that arise from data collection

r choice of numerical method, we will also consider differing statistical

ssumptions that affect the information criterion, and this is performed

n the next section. 

. Non-IID/Non-Gaussian Error Processes 

The original study of the COMIC ( Benson et al., 2020 ) assumed that

he residual between the (unknown) true concentration 𝑐( 𝑥, 𝑡 ) and the

ata ̂𝑐 𝑖 for 𝑖 = 1 , ..., 𝑘 at each location was an independent and identically

istributed (IID) Normal random variable, so that 

( 𝑥 𝑖 , 𝑇 ) = ̂𝑐 𝑖 + 𝜖𝑖 (10)

or every 𝑖 = 1 , ..., 𝑘 where 𝜖𝑖 ∼  (0 , 𝜎2 ) and the variance 𝜎2 must be es-

imated from the data. This led to a log-likelihood function (hence AIC)

hat used the average sum of squared errors for the variance estimate

ithin the fitness metric. The assumption of IID Gaussian errors is not

enerally valid, and the properties of the error distribution are unknown

n most cases. Here, we exploit the fact that the computational solution

rises from a particle method in order to approximate the residuals. In

his scenario, Chakraborty et al ( Chakraborty et al., 2009 ) showed that

a) the concentration approximation generated by any particle method

s proportional to a binomial random variable that is only asymptoti-

ally Normal (as 𝑛 → ∞, Δ𝑥 → 0 , and 
√
𝑛 Δ𝑥 → ∞ where Δ𝑥 is the bin

ize of the method), and (b) individual concentration errors could be

reated as independent with variance proportional to the concentration,

.e. 𝜎2 
𝑖 
= 

𝑚 total 

𝑛 Δ𝑥 𝑐 𝑛 ( 𝑥 𝑖 , 𝑡 ) , where 𝑚 total is the total mass. Indeed, this can be

umerically verified using the RWPT and MTPT methods ( Tran, 2020a ).

n Chakraborty et al. (2009) , an alternative information criterion was

lso proposed for selecting a “best ” model over all parameter choices

ith the desirable property that the chosen parameter estimate ̂𝜃 serves

s a consistent estimator for the true parameter values 𝜃. More specifi-

ally, this criterion arises from an optimal fitting procedure that serves

o minimize the weighted mean square error function 

( 𝜃) = 

1 
𝑘 

𝑘 ∑
𝑖 =1 

𝑤 𝑖 |𝑐 𝑖 − 𝑐 𝑛 ( 𝑥 𝑖 , 𝑇 ; 𝜃) |2 (11)

here 𝜃 is the vector of unknown model parameters, the minimization

eights are 

 𝑖 = 

1 
𝑚 total ̂𝑐 𝑖 

, (12)

nd the estimator ̂𝜃 is given by 

̂= argmin θ∈ℝ p (θ) . (13)

or the ADE problem described in previous sections, we merely have

= [ 𝑣, 𝐷] 𝑇 . We note that in the case that errors are normally-distributed,
5 
inimizing (11) is equivalent to maximizing the log-likelihood function

or a multivariate Gaussian distribution with ̂𝜎2 
𝑖 
= 𝑚 total ̂𝑐 𝑖 for 𝑖 = 1 , … , 𝑁

see Appendix). 

As for the AIC, this information criterion does not account for the

dditional information incurred by taking large numbers of particles,

nd hence we augment it to create a new computational information

riterion. Therefore, in this case we the define the COMIC by 

OMIC = 2 ln 

( 

1 
𝑘 

𝑘 ∑
𝑖 =1 

1 
𝑚 total ̂𝑐 𝑖 

|𝑐 𝑖 − 𝑐 𝑛 ( 𝑥 𝑖 , 𝑇 ) |2 ) 

+ 2 𝑝 − ∫ 𝑐 𝑛 ( 𝑥, 𝑇 ) ln (Δ𝑉 ( 𝑥 )) 𝑑𝑥. (14) 

here 𝑐 𝑖 is the concentration data at location 𝑥 𝑖 and final time 𝑡 = 𝑇 .

rom the results of the previous section, it is beneficial to take Δ𝑉 con-

tant, which reduces this formulation to 

OMIC = 2 ln 

( 

1 
𝑘 

𝑘 ∑
𝑖 =1 

1 
𝑚 total ̂𝑐 𝑖 

( ̂𝑐 𝑖 − 𝑐 𝑛 ( 𝑥 𝑖 , 𝑇 )) 2 
) 

+ 2 𝑝 − ln (Δ𝑉 ) . (15)

sing this criterion, we perform simulations of the random walk and

ass transfer methods to compute the value of 2 ln ( ) and the COMIC.

he formulation and implementation of these methods is analogous to

hat of the previous section with 𝑘 = 30 randomly-spaced data points.

rom Fig. 5 , the optimal number of particles for the MTPT method
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Fig. 6. Fitness metrics for Non-Gaussian Error Processes with noisy data - RWPT 

(top) and MTPT (bottom). 
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s 3,000, while for the RWPT method, it ranges between 3,200 and

,400 particles. We take the midpoint of these and assume the opti-

al number of particles is about 5,000. Then, this predicted value is

ssentially the same as that stemming from IID Gaussian error simula-

ions ( Benson et al., 2020 ). Using the optimal number of particles to

erform parameter estimation provides MTPT estimates within 10 −4 of

he true values of 𝐷 = 1 and 𝑣 = 1 . Because the data is random, sim-

lation outcomes may vary, but multiple runs with different data dis-

lay similar qualitative behavior. Estimated values of 𝐷 and 𝑣 using the

WPT method are also similar - see Fig. 2 . The maximal absolute error

n the estimates of 𝐷 and 𝑣 are about 2 . 5% and 3% , respectively, which

re comparable to the parameter estimation performed for IID Gaus-

ian error simulations. Therefore, the COMIC demonstrates consistency

mong different error assumptions and estimators. In other words, op-

imal model discretization does not strongly depend on the weights in

he sum of squared errors. 

Lastly, we perform similar simulations with noisy data, i.e. data that

iffers from the analytic solution due to measurement error modeled by

ndependent random concentration noise at each spatial location. Fig. 6

hows the fitness metrics arising from simulated data that is normally

istributed with mean equal to the exact concentration from the ana-

ytic solution of eq. (1) and standard deviation given by 𝛼 = 1∕3 , 1∕9 ,
r 1∕81 of the exact concentration so that Var ( ̂𝑐 𝑖 ) = 𝛼2 𝑐( 𝑥 𝑖 , 𝑇 ) 2 . We note

hat any negative sample points are discarded, in order to guarantee
6 
on-negativity of the concentration data set. Of course, the exact value

f 𝛼 can be tuned to adjust for the noise in the data. 

There are several noteworthy features shown in a single realization

f the simulations (different simulations show similar results): 

1. For the RWPT simulations, the optimal number of particles is

strongly determined by the standard deviation of the independent

noise held within the data. In short, the noisier the data, the more

noise can be contained within the model solution (i.e., fewer parti-

cles should be used). 

2. For the MTPT solution, the optimal value of the COMIC occurs at

𝑛 = 100 particles, which is far fewer than the optimal number of par-

ticles when 𝛼 = 0 . In contrast to the RWPT solutions, the number

of particles is not strongly affected by the magnitude of noise in

the data. This can be explained by the formulation of the COMIC,

in which the dominant term in the calculation is the AIC, until 𝑛

becomes sufficiently large. The numerical simulation is converging

to the exact solution of the PDE, i.e. a normal distribution, and as

the number of particles nears 100, the approximate solution closely

agrees with the exact solution. However, assuming substantial noise

in the data, the exact solution is far from the expected normal dis-

tribution, which means that the AIC will remain large even as the

computational approximation converges. This can be seen by the

graph of 2 ln ( ) within Fig. 6 , which plateaus for simulations with

more than 100 particles. 

3. If a given data set is particularly noisy or fails to faithfully represent

the underlying solution of the PDE, one would actually do best to

use fewer particles in a simulation. When significant noise exists in

the data, a low-noise, high- 𝑛 solution is not expected to be a better

predictor because it is apt to be over-fit to peculiarities in a single

noisy data set. 

. Conclusions 

We have investigated the use of the COMIC to select parsimonious

nd robust computational models for simple advective-diffusive trans-

ort in a variety of realistic, data-driven scenarios, including noisy,

parse, and spatially-heterogeneous data sets, non-uniform sampling

olumes, and non-IID errors. In the case of non-uniform sampling vol-

mes, we have shown that the calculation of the COMIC can be further

implified using the average spacing between particles throughout the

omain, and this does not influence the particle number selected by the

lgorithm. The results of our simulations demonstrate that under any

f these conditions, the COMIC is a flexible criterion that allows the

ser to select an appropriate number of particles in a simulation so as

o guarantee the use of minimal computational information to construct

 descriptive model. In particular, we find that the use of large parti-

les numbers is often superfluous in these simulations and needlessly

ncreases the complexity of a model. This highlights the importance of

electing a suitably efficient computational model with minimal infor-

ation content to best make predictions based on a single given data

et. In particular, we find the following general rules regarding the op-

imal discretization for RWPT and MTPT simulations and/or parameter

stimation of advection and diffusion in 1-D: 

1. For “perfect ” (no noise) data that is uniformly spaced, the number

of data does not strongly effect the optimal number of particles. In

general, RWPT (with binning) required ≈ 20 , 000 particles, MTPT re-

quired ≈ 3 , 000 . 
2. For either solution technique, the parameters can be estimated quite

accurately. The optimal number of particles in the MTPT simulations

drops to ≈ 500 when estimating the velocity and diffusion parame-

ters. 

3. Non-uniformly spaced data does not change the ability to estimate

parameters. 
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4. Non-uniformly spaced particles in the MTPT technique significantly

increases the optimal number of particles because of increased error

in the simulations. 

5. Non-uniform numerical discretization adds a constant to the COMIC

but does not change the shape of the COMIC versus discretization

curve, hence the minimum is not shifted. This means that the com-

putational entropy penalty can be estimated by ln ( 𝑛 ) . 
6. The classical MLE fitness metric of average squared error, which

comes from an assumption of IID Normal errors, is a reasonably

good estimator for errors in which concentration variance is propor-

tional to concentration. However, as the noise in data increases, the

optimal number of RWPT particles decreases sharply. In short, the

error of the solution is directly tied to particle numbers, and hyper-

accurate solutions are not representative of the noisy data (and may

overfit the errors). The accuracy of the MTPT method is not tied to

particle numbers in the same way (once a minimum particle spacing

is achieved), and so the optimal particle number remains ≈ 100 for

all noise levels. 
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ppendix A. MLEs for non-IID Multivariate Gaussian Processes 

We first recall the process of obtaining maximum-likelihood param-

ter estimates 𝜃 under the assumption that the errors between model

nd observations are independent, zero-mean Gaussians. In this case

he likelihood function is given by 

 ( 𝑦 ; 𝜃) = 

[
(2 𝜋) 𝑘 |Σ( 𝜃) |]−1∕2 exp (− 

1 
2 
𝑦 𝑇 Σ( 𝜃) −1 𝑦 

)
, (A.1)

here 𝑘 is the number of observation points, Σ( 𝜃) is a diagonal (due to

ndependence) covariance matrix of errors, and 𝑦 is a vector of residuals

atisfying 𝑦 𝑖 = ̂𝑐 𝑖 − 𝑐( 𝑥 𝑖 , 𝑇 ) for 𝑖 = 1 , ..., 𝑘 . Now, if the errors are further

ssumed to be identically-distributed, then Σ is a constant multiple of the

dentity and depends only upon a single variance parameter. In this case,

= 𝜎2 𝕀 where 𝜎2 is the assumed variance of the error at each spatial data

oint 𝑥 𝑖 for 𝑖 = 1 , ..., 𝑘 . The log-likelihood function then becomes 

n ( 𝐿 ) = − 

𝑘 

2 
ln (2 𝜋) − 

𝑘 

2 
ln 𝜎2 − 

𝑘 

2 𝜎2 
SSE 
𝑘 

(A.2)

here SSE = y ⋅ y = |y|2 represents the sum of squared errors. Maximiz-

ng this function using standard tools provides an estimator of the ob-

ervation variance, namely 𝜎2 = SSE∕k. Removing any constant terms

hat do not change from one model to another, the corresponding log-

ikelihood evaluated at the MLE is 

n ( ̂𝐿 ) = − ln 
(SSE )

. (A.3)

𝑘 

7 
lternatively, if one does not assume that the errors are identically-

istributed, then Σ is not a constant multiple of the identity, but merely

iagonal, so that 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝜎2 1 0 ⋯ 0 
0 𝜎2 2 ⋯ 0 
0 0 ⋱ 0 
0 0 ⋯ 𝜎2 

𝑘 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
. 

ence, the error distribution at each spatial data point 𝑥 𝑖 possesses a

ifferent variance 𝜎2 
𝑖 
. In this case, the MLE can be generated using sim-

lar methods as above, and the resulting values of 𝜎2 
𝑖 

are given by the

ultivariate sum of squared errors 

̂2 𝑖 = 

1 
𝑁 

𝑁 ∑
𝓁=1 

|( 𝑦 𝓁 ) 𝑖 |2 
here 𝑦 1 , ..., 𝑦 𝑁 

is a collection of residual vectors with each 𝑦 𝓁 repre-

enting a single sample from all spatial points, namely 

 𝑦 𝓁 ) 𝑖 = ̂𝑐 𝑖 − 𝑐( 𝑥 𝑖 , 𝑇 ) 

or the 𝓁th sample with 𝑖 = 1 , ..., 𝑘 . Of course, if only one sample is col-

ected at each spatial gridpoint so that 𝑁 = 1 and 𝑦 represents the single

ata vector, then the variance estimator reduces to 𝜎2 
𝑖 
= 𝑦 2 

𝑖 
. Unfortu-

ately, this does not provide a sharp estimate, as the standard devia-

ion of the error distribution is merely equal to the data value at every

patial point. Therefore, to provide a realistic estimate of these values,

e would require multiple concentration measurements at each spa-

ial data point and at a fixed time 𝑇 . In the absence of this data or a

uitable approximation, the variance of the error distribution cannot

e accurately determined. Because of this difficulty, Chakraborty et al

 Chakraborty et al., 2009 ) proposed an alternative minimization cri-

erion, which uses a weighted mean square error as described within

ection 6 , and this is derived only under the assumption that the error

s approximately Gaussian. This criterion enables us to generate a con-

istent parameter estimate when only a single concentration sample is

vailable at each spatial location. 
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