
PARTICLE SWARM OPTIMIZATION

FOR ENERGY MINIMIZATION OF

MOLECULAR SYSTEMS

by

David A. Hickman

A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of

Mines in partial fulfillment of the requirements for the degree of Masters of Science (Applied

Mathematics).

Golden, Colorado

Date

Signed:
David A. Hickman

Signed:
Dr. Stephen Pankavich

Thesis Advisor

Signed:
Dr. Jon Collis

Thesis Advisor

Golden, Colorado

Date

Signed:
Dr. William Hereman

Professor and Department Head
Department of Applied Mathematics and Statistics

ii

ABSTRACT

The minimization of a potential energy function can be used to provide insight into the

ground state configuration of a wide range of molecular systems. Optimization problems

of this type can be challenging for deterministic (e.g. line search) optimization algorithms

due to the size of the search space and the large number of local minima that are inherent

within molecular configuration problems. We describe how Particle Swarm Optimization, a

stochastic optimization algorithm inspired by flocking behavior, can be used to accurately

and efficiently solve energy minimization problems associated with molecular systems.

iii

TABLE OF CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vi

LIST OF TABLES . vii

LIST OF SYMBOLS . viii

CHAPTER 1 INTRODUCTION . 1

1.1 Optimization . 3

1.1.1 Deterministic Algorithms . 5

1.1.2 Stochastic Algorithms . 5

CHAPTER 2 PARTICLE SWARM OPTIMIZATION 7

2.1 Swarm Intelligence . 7

2.2 Particle Swarm Optimization . 10

2.2.1 Global Best PSO . 10

2.2.2 Local Best PSO . 12

2.3 PSO Characteristics . 13

2.3.1 Velocity Clamping . 13

2.3.2 Parameters . 14

2.3.3 Social Network Structures . 16

2.3.4 Termination Conditions . 18

CHAPTER 3 NONLINEAR MOLECULAR MODEL 21

3.1 Bond Potential . 21

iv

3.2 Angle Potential . 22

3.3 Van der Waals Potential . 23

CHAPTER 4 IMPLEMENTATION . 25

4.1 Serial Implementation . 25

4.2 Parallel Implementation . 26

CHAPTER 5 RESULTS . 28

5.1 Parameter Selection . 28

5.2 Minimal Energy Configuration . 32

5.3 Comparisons . 33

5.4 Conclusions . 36

5.5 Moving Forward . 36

REFERENCES CITED . 37

APPENDIX - FORTRAN CODE . 39

A.1 Potential Function . 39

A.2 Serial PSO . 42

A.3 Parallel PSO . 48

v

LIST OF FIGURES

Figure 1.1 Global and local minima . 4

Figure 2.1 Social Network Structures . 18

Figure 3.1 Bonded Atoms . 21

Figure 3.2 Bond Angle . 22

Figure 3.3 12-6 Lennard-Jones Potential . 23

Figure 3.4 Non-Bonded Potential . 24

Figure 3.5 Nonlinear Molecular System . 24

Figure 5.1 Energy Histogram with c2 = 0.90 . 30

Figure 5.2 Energy Histogram with c1 = 0.30 . 31

Figure 5.3 Minimal Energy Configuration . 32

Figure 5.4 Rastrigrin function in 2D . 34

vi

LIST OF TABLES

Table 4.1 PSO Settings . 26

Table 5.1 Parameter Sweep . 29

Table 5.2 Performance Measure . 29

Table 5.3 Optimization Method Comparison . 33

Table 5.4 Rastrigrin Comparison . 35

vii

LIST OF SYMBOLS

inertial parameter . ω

cognitive parameter . c1

social parameter . c2

uniformly distributed random variables . r1, r2

maximum velocity . Vmax

particle position . xi

personal best position . pi

global best position . g

local best position . gi

viii

CHAPTER 1

INTRODUCTION

Molecular structure has become an important area of research in a number of diverse

fields ranging from materials science to computational chemistry and has provide us with

insight into such phenomenon as protein folding, macromolecule dynamics, and cell-mediated

processes. Studies of molecular structure typically begin with a molecular model describing

the interactions between the atoms within the molecule. These interatomic interactions

can be formulated in terms of classical mechanics principles. Here the atoms interact via

conservative forces which can be expressed in terms of a potential energy function V. There

are several applications one can pursue using this Newtonian formalism. One application is

the so-called atomic conformation problem. The aim here is to find the lowest energy state

of the molecule so as to determine its most likely configuration in the absence of external

forces. In nature, isolated systems tend towards the minimum energy state, so finding the

global minimum of the potential energy should provided insight into the molecular structure.

Hence, the atomic conformation problem can be reformulated in terms of an optimization

problem and is often referred to as the energy minimization problem.

Energy minimization techniques are often used in conjunction with other molecular mod-

eling applications; for example, consider the molecular dynamics (MD) simulations. This

application begins by assuming the form of a potential energy function V and using it to

define a Hamiltonian

H =
N∑
i=1

p2i
2mi

+ V (q1,q2, . . . ,qN), (1.1)

where N is the number of atoms in the molecule and mi, qi, and pi are the mass, position,

and momentum of atom i, respectively.

1

The Hamiltonian can then be used to generate a system of ODE’s given by

ṗi = −∂H
∂qi

q̇i =
∂H

∂pi.

 Hamilton’s equations (1.2)

Often, such large dimensional systems of ODE’s can be solved numerically, using a finite

difference method for example, for the motion of the atoms within the molecule of interest.

This approach allows one to view the pathway to energy minimization from a given initial

configuration. The initial configuration is of the utmost importance because for large systems

an MD simulation can become computationally intractable and can only simulate the dy-

namics for a few nanoseconds. The initial configuration used is commonly determined using

experimental techniques such as x-ray crystallography. However, there can be interactions

between the molecule of interest and the surrounding crystal which lead to distortions of the

recorded molecular configuration. These distortions can lead to unphysical energy changes

during the simulation. To overcome this an energy minimization is performed on the initial

configuration before the simulation is run. Hence, energy minimization is an important step

before running MD simulations. Alternatively, if one is interested in determining only molec-

ular structure, and not the pathway to energy minimization MD simulations are unnecessary

and one can utilize an optimization method instead.

The main focus of this work will demonstrate how the Particle Swarm Optimization

algorithm can be used to determine a molecule’s structure so that the potential energy

is minimized. Section 1.1 provides a formal definition of the optimization problem. In

Chapter 2 we give a detailed account of the Particle Swarm Optimization algorithm. The

representative molecular model under consideration is described in Chapter 3, and in Chapter

4 we give details on how PSO is implemented. Finally, in Chapter 5 we report our results

are reported and comparisons are made with other optimization methods.

2

1.1 Optimization

In applied mathematics optimization refers to the procedures used to find a “best” solu-

tion - amongst a set of candidate solutions - to a given problem. In general there are three

aspects that are common to all optimization problems: an objective function, a search space,

and constraints. The objective function is the quantity in which one wishes to optimize. The

search space S is the set containing the candidate solutions which are used to evaluate the

objective function. Constraints limit the search to candidate solutions contained within some

feasible space F ⊆ S. Constraints are often found in real world optimization problems where

time, money, and resources are limited.

Solutions to optimization problems are commonly referred to as global and local optima.

In the case of minimization, we have global and local minima which are defined below and

illustrated in Figure 1.1.

Definition 1.1 The solution x∗ ∈ F , is a global minimum of an objective function f , if

f(x∗) < f(x), ∀x ∈ F where F ⊆ S.

Definition 1.2 A solution x∗ ∈ N ⊆ F , is a local minimum of an objective function f , if

f(x∗) < f(x), ∀x ∈ N where N ⊆ F is a set of feasible solutions in the neighborhood of x∗.

With the above definitions, one might assume that the only way to determine if a point

was in fact a solution would be to test all the surrounding points to ensure none of them have a

smaller function value. However, if the objective function is twice continuously differentiable

then we have some analytical tools at our disposal to determine whether or not a point is

indeed a local minimum.

3

Our first two tools provide us with necessary conditions regarding local minima:

Theorem 1.1 If x∗is a local minimum and f is continuously differentiable in an open neigh-

borhood of x∗, then ∇f(x∗) = 0.

Theorem 1.2 If x∗is a local minimum of f and the Hessian matrix ∇2f exits and is con-

tinuous in an open neighborhood of x∗, then ∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite.

Our final tool provides us with sufficient conditions on the derivatives of the objective func-

tion that guarantee that x∗ is a local minimum:

Theorem 1.3 Suppose ∇2f is continuous in an open neighborhood of x∗and that ∇f(x∗) = 0

and ∇2f(x∗) is positive semidefinite, then x∗is a local minimum of f.

Figure 1.1: Global and local minima

These theoretical results provide the foundation upon which the majority of optimization

algorithms are built. For instance, most deterministic methods, in one form or another,

attempt to find a point x∗ where ∇f(x∗) = 0. In the following subsection we provide a brief

overview of the most common optimization paradigms, categorized into deterministic and

stochastic algorithms.

4

1.1.1 Deterministic Algorithms

Deterministic algorithms typically begin by requiring the user to specify some starting

point x0 and then the algorithm generates a sequence of points {xk}Nk=0 until it terminates

either because a solution is found within some specified tolerance or a maximum number

of iterations has been exceeded. The manner in which the sequence of points is generated

is what distinguishes one deterministic algorithm from another. Some of the more common

deterministic algorithms are the so-called line search methods. These approaches begin by

selecting a search direction zk and then they generate a new candidate xk+1 = xk + γpk,

where γ > 0 is referred to as the step size. The optimal step can be determined by solving

the one-dimensional optimization problem

min φ(γ) = f(xk + γpk). (1.3)

Solving (1.3) exactly would derive the maximum benefit from the search direction pk, but

in many cases is computationally expensive. Thus, line search methods typically generate

a set of trial step sizes until an approximate solution to (1.3) is found. At the new point

xk+1 a new search direction is determined and the procedure is repeated N times. As one

might expect, the steepest descent direction pk = −∇f(xk)/||∇f(xk)|| is the most widely

used search direction. Two algorithms that use the gradient of the objective function to

determine the search direction are the gradient descent and conjugate gradient algorithms.

We will investigate the use of the conjugate gradient method in an energy minimization

problem in section 5.2

1.1.2 Stochastic Algorithms

Stochastic algorithms, as the name suggests, introduce some form of randomness into the

search for a solution to the optimization problem. The manner in which randomness is used

depends on the specific algorithm. For example, consider the evolutionary algorithm (EA).

This algorithm utilizes mechanisms inspired by Darwin’s theory of natural selection. These

mechanisms include selection, reproduction, and mutation. Candidate solutions are repre-

5

sented by members of a population. The objective function serves as the selection process

by determining the quality of a candidate solution. If a candidate solution satisfies a certain

criteria it is allowed to reproduce with other members who have met the criteria. Candi-

date solutions who are not selected die off. The offspring of the fittest individuals are then

subject to a random mutation and become the next generation of candidate solutions. The

process is then repeated. The stochastic element is introduce in the (EA) through randomly

distributing the population throughout the search space and in the mutation operator.

Algorithm 1 Evolutionary Algorithm [2]

Let t = 0 be a generation counter;
Initialize a population P (0) in an N-dimensional search space
repeat

Evaluate the objective function, f(xi), of each individual, xi, in the population, P (t);
Perform reproduction to produce offspring;
Perform mutation on offspring;
Select population P (t+ 1) of new generation;
Advance to the new generation, i.e. t = t+ 1;

until termination condition is satisfied;

There are many stochastic algorithms that have been developed. In general, they perform

well for global optimization problems since their search is not based on the derivatives of

the objective function, which makes these algorithms less likely to become trapped in local

minima. Particle Swarm Optimization (PSO) is one such algorithm which is the main focus

of this work. PSO’s inner workings and characteristics are described in detail in the next

chapter.

6

CHAPTER 2

PARTICLE SWARM OPTIMIZATION

Since its inception Particle Swarm Optimization has been used on a variety of different

optimization problems ranging from neural network training, linear antenna arrays, and

power/voltage control for utility companies [3, 7, 8]. PSO is rooted in a branch of artificial

intelligence called swarm intelligence. Before we begin an in-depth discussion on how PSO

executes an optimization procedure, we present some background on swarm intelligence and

how it inspired the development of PSO.

2.1 Swarm Intelligence

The term Swarm Intelligence or SI was first introduced by Beni and Wang in 1993 as a

way to describe the “intelligent” behavior of cellar robotic systems [1]. Since then SI has been

used to describe the property of a system, natural or artificial, whereby the collective behav-

iors of (unsophisticated) entities interacting locally with their environment cause coherent

functional global patterns to emerge [11]. There are many examples in nature where SI has

been observed. Termite mounds, that are riddled with a complex system of interconnected

tunnels, have been recorded to reach 30 meters in diameter. The foraging behavior of ants

that emerges from the release of pheromones is another example. Flocks of birds and schools

of fish organize themselves in dynamically intricate spatial patterns to throw off predators.

These examples, and others like them, result from the interactions between members of the

swarm. The actions of a single member of the swarm is not necessarily complex, but taken

collectively, these actions produce complex structures that are not readily deduced from the

actions of the individual.

In recent decades attempts at modeling SI, and in particular flocking behavior, has at-

tracted the interest of computer scientists and mathematicians alike. C.W. Reynolds was

able to demonstrate through visual simulations that flocking is an emergent behavior that

7

arose from the individual birds following three simple rules: collision avoidance, velocity

matching, and flock centering [12]. Collision avoidance was implemented so that members

of the flock will maintain some degree of spatial separation. Similar to collision avoidance,

velocity matching ensures that members of the flock have similar trajectories to their closest

neighbors. Finally, flock centering was implemented so that nearest neighbors would remain

close to one another as the flock moves.

The simulations of Reynolds motivated two researchers, Eberhart and Kennedy, to de-

velop a simplified social model based on nearest neighbors and velocity matching. Their

motivation, much like Reynolds, was to graphically simulate the graceful but unpredictable

choreography of a bird flock [5]. Within Eberhart and Kennedy’s model, the position of

each bird was randomly distributed on a torus pixel grid. Each bird also performed velocity

matching of its nearest neighbor. The end result was synchronized movement that rapidly

faded to the flock flying in one direction. Random adjustments to velocities, which Eber-

hart and Kennedy dubbed “craziness”, were added in an attempt to circumvent this. Their

model was expanded further with the addition of the “cornfield” which was a 2-dimensional

plane that the birds were flown through. After each iteration of the simulation, each bird

would evaluate an objective function based on its position in the “cornfield”. Each bird

kept track of the best position it had encountered based upon function evaluations using

its coordinates in the “cornfield”; this position was referred to as pBest which is short for

personal best position. Eberhart and Kennedy also include memory of the best position

that the entire flock as a whole had encountered. This location they labeled the global best

position or simply gBest. pBest and gBest were used to dynamically update the location

of the birds, and after a few iterations the flock would come to rest in the global best po-

sition of the “cornfield” which, as it so happened, was the global minimum of the objective

function. Eberhart and Kennedy had unknowingly created an optimization algorithm which

they called Particle Swarm Optimization. Individuals were referred to as particles because

they had zero mass and volume despite the fact that each individual had a position and

8

velocity vector. The term swarm was used because the algorithm adheres to the following

principles of SI as defined by Millonas [9]:

• Proximity principle: the group of individuals should be able to carry out simple

space and time computations

• Quality principle: the group of individuals should be able to respond to quality

factors of the environment

• Principle of diverse response: the group of individuals should not commit its

activities along excessively narrow channels

• Principle of stability: the group of individuals should not change its mode of be-

havior every time the environment changes

• Principle of adaptability: the group of individuals must be able to change its

behavior mode when it is worth the computational cost

The particles evaluate the objective function, over a series of time steps, using their

positions within an n-dimensional search space which meets the criteria of the proximity

principle. The quality principle is implemented through the use of the pBest and gBest

locations. Allocation of responses between pBest and gBest ensure a diversity of response.

Furthermore the state of the swarm changes only after pBest and gBest change thus providing

stability. Finally, the state of the swarm changes only when pBest and gBest change which

implies adaptability.

9

2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population based stochastic search optimization

algorithm. The population or swarm consists of a number of particles N that explore a n-

dimensional search space where the location of each particle within the space is adjusted

based on its own experience and that of its neighbors.

Let xi(t),vi(t) ∈ Rn for i = 1, . . . , N be the position and velocity of the ith particle,

respectively. Here t ∈ N denotes a discrete time step. The position of the ith particle is

adjusted by adding the velocity to the current position, that is

xi(t+ 1) = xi(t) + vi(t+ 1). (2.1)

In practice, the initial positions are confined within some boundary i.e.

xmin ≤ xi(0) ≤ xmax.

There are two main variations of the PSO algorithm, namely the global best PSO and the

local best PSO, which differ only in the size of their neighborhoods. The social intercon-

nectivity of the swarm is often referred to as the neighborhood topology or social network

structure. These two variants of PSO will be described in detail in the following sections

2.2.1 Global Best PSO

In the global best PSO, or simply gbest PSO, the neighborhood of each particle is the

entire swarm. The neighborhood topology of gbest PSO is a star topology depicted in

Figure 2.1(a). Every particle experiences an attraction towards its personal best value pBest

and the best position encountered by any particle which we call the global best or simply

gBest. Let the personal best position of particle i, in a n-dimensional search space be given

by

pi = [pi1, pi2, . . . , pin],

and let the global best position be given by

g = [g1, g2, . . . , gn].

10

After each iteration t the velocity of the ith particle is updated using the following equation:

vij(t+ 1) = ωvij(t) + r1c1(pij − xij(t)) + r2c2(gj − xij(t)), (2.2)

where r1 and r2 are random numbers uniformly distributed between 0 and 1, pij and gj are

the jth component of pBest and gBest, respectively, c1 (cognitive parameter) and c2 (social

parameter) are weights that scale the attraction towards pij and gj, while ω is referred to

as the inertial parameter. The particle positions are updated using (2.1) then each particle

evaluates the objective function f using its current position i.e. fi = f(xi(t + 1)) and the

vectors pi and g are updated in the following way:

pi(t+ 1) =

{
pi(t) if f(xi(t+ 1)) ≥ f(pi(t))
xi(t+ 1) if f(xi(t+ 1)) < f(pi(t))

(2.3)

g = pi(t+ 1) s.t. f(pi(t+ 1)) ≤ f(pj(t+ 1)) for j = 1, . . . , N. (2.4)

Algorithm 2 Global Best PSO

Step I Initialize the swarm
Here we choose the swarm size S, that is we choose how many particles will be created.
The particles are then randomly distributed throughout the search space subject to the
boundaries xmin and xmax.

Step II Initialize pi and g
Typically we set pi = xi(0) since at t = 0 a particle’s starting position and its previous best
position coincide. Next we set g = xi(0) such that f(xi(0)) ≤ f(xj(0)) for j = 1, . . . , S.

Step III While termination conditions are not met

1. Update vi using (2.2)

2. Update xi using (2.1)

3. Update pi and g using (2.3) and (2.4)

11

2.2.2 Local Best PSO

In the local best PSO (lbest PSO) the neighbor topology is the ring structure depicted

in Figure 2.1(b). Here the particles share their experiences within a smaller neighborhood

rather than communicating their knowledge with the entire swarm. The neighborhood of

particle i is defined as

Ni = {xi−k, . . . ,xi−1,xi,xi+1, . . . ,xi+k} (2.5)

where k is the size of the neighborhood. Neighborhoods are based on index only and not on

the spatial separation between particles. There are two primary reasons why neighborhoods

based on particle index are preferred [2]:

1. Basing neighborhoods on particle separation would require the calculation of the Eu-

clidean distance between all the particles in the swarm. Evaluating the objective func-

tion may already be computationally expensive. Calculating the Euclidean distance

would add additional complexity.

2. Neighborhoods based on particle index support the spread of information regarding

promising regions to all particles regardless of their current location within the search

space.

Not surprisingly, for this variant of PSO we have a local best rather than a global best

position which we define as

gi(t+ 1) ∈ {Ni| f(gi(t+ 1)) ≤ f(x), ∀x ∈ Ni}. (2.6)

The velocity is updated by substituting gi for g into equation (2.2). Particle position and

personal best positions in lbest PSO are updated in exactly the same way for gbest PSO.

12

Regarding convergence towards the global minimum, research has revealed two main differ-

ence between gbest and lbest PSO [6]:

• Because particles share information with the entire swarm, gbest PSO tends to converge

faster than lbest PSO but can potentially get trapped in local minimum.

• lbest PSO promotes a larger swarm diversity since particles only have local knowledge

of their neighborhood. This makes the particles less likely to get trapped within local

minimum but at the cost of slower convergence. The swarm will eventually converge

on a single point within the search space since particle neighborhoods overlap.

2.3 PSO Characteristics

The previous section introduced two variations of PSO namely the global best PSO and

local best PSO. In what follows we will discuss their various characteristics. Section 2.3.1 will

introduce velocity clamping and why it is necessary. In section 2.3.2 we explore the param-

eters ω, c1, and c2 and their effects on the velocity equation. Section 2.3.3 expands further

on the concept of neighborhood topologies and describes several social network structures.

Finally in section 2.3.4 we consider typical termination conditions.

2.3.1 Velocity Clamping

During the early stages of development, PSO suffered from swarm explosion, that is

the unabated increase of the particle velocities which resulted in swarm divergence. The

deficiency was corrected by placing upper and lower bounds on the velocity equation (add

citation). Typically, the upper and lower bounds on (1.2) are set to be some fraction of the

domain for each dimension in the search space i.e.

Vmax,j = δ(xmax,j − xmin,j),

where δ ∈ (0, 1] and xmax,j and xmin,j are the maximum and minimum values for x(t) in

dimension j.

13

Vmax,j is used to adjust particle velocities in the following way:

vij(t+ 1) =

{
vij(t+ 1) if |vij(t+ 1)| < Vmax,j
Vmax,j if |vij(t+ 1)| ≥ Vmax,j.

(2.7)

Here, Vmax,j controls the magnitude of vi(t+ 1). Large values of Vmax,j allow the particles to

explore farther reaches of the search space while smaller values of Vmax,j allow for exploitation,

which is the ability of the algorithm to refine the search around promising areas. The are

two important factors concerning velocity clamping of which one should be aware of:

1. Velocity clamping not only places an upper bound on ||vi(t+1)||2 but it also influences

the orientation of vi(t+ 1).

2. It is possible that over the course of several time steps all velocities could become

equal to Vmax,j and eventually all particles would be pressed against the boundary

of the search space. In order to overcome this difficulty, researchers introduced the

inertial parameter ω.

We will discuss ω, and the other parameters, in the next section.

2.3.2 Parameters

The addition of velocity clamping solved the issue of swarm explosion, however, it was

soon observed after its introduction that the particles were unable to converge towards the

global minimum. Instead of convergence the particles would oscillate on wide trajectories

around their best positions. Research revealed that convergence failure was due to the

inability to control particle velocities; if the previous velocity term of a particle is to large,

then the particle will fly by the best position and it will never settle down. Thus the

previous velocity term needed to decrease each time step, and so the inertial parameter ω

was introduced [13]. The inertial parameter, as one might expect, plays a crucial role in the

algorithm’s ability to converge on a good solution. If we set ω ≥ 1 then particle velocities

increase over time and will eventually reach Vmax,j resulting in swarm divergence. If one

were to set ω < 1, then particle velocities will eventually tend to zero and the particles will

14

stop moving. Large values of ω allow for exploration of the search space while smaller values

of ω allow for convergences onto promising solutions. Care must be taken, however, because

if the inertial parameter is too small then particles have very little momentum meaning

their directions can change dramatically, and the end result being that they can be quickly

dragged into local minima. In practice the inertia parameter is set to a value slightly large

than 1, typically 1.2, then it is decreased at each time step t. A common scheme used to

dynamically adjust ω is given below:

ω(t) = (ω(0)− ω(T))
(T − t)
T

+ ω(T), (2.8)

where T is the maximum number of iterations, ω(0) and ω(T), are the initial and final values,

respectively. This scheme is particularly effective at balancing exploration during the initial

search and exploitation near the final time steps. Alternatively, random adjustments and

nonlinear decreasing schemes have been used to dynamically adjust the inertial parameter.

The cognitive and social components direct the particles towards their own personal

best positions pi and the global best position g in the case of gbest PSO and local best

position gi in the case of lbest PSO. During the search, the cognitive and social parameters,

c1 and c2, greatly impact the exploration capabilities of the PSO algorithm. For example,

setting c1 < c2, the particles are attracted more towards the global best position rather than

their individual best positions while setting c1 > c2, the particles are biased towards their

respective best positions. Setting these parameters to relatively small values (typically less

than 1) results in smooth particle trajectories, that is to say that the position of the particles

do not change rapidly during the search. Setting c1 and c2 to values larger than 1, however,

tends to produce more abrupt changes in particle positions. Along with the trajectories

the particles take, the cognitive and social parameters affect the depth of the search in the

domain space since these parameters scale the velocity equation.

The selection of the parameters ω, c1, and c2 dramatically impacts the performance of the

PSO. Parameter choice depends heavily on the problem and its dimensionality. Determining

15

the optimal parameters for a given problem is known in the literature as meta-optimization.

There has been an attempt by Miessner et al. [8] to find the optimal parameters by using

another instance of the PSO as a meta-optimizer. More typical methods used to find the

optimal parameters involve running the algorithm several times for a given set of parameters

and recording if the algorithm managed to locate the global minimum and if it did also

recording the number of function evaluation the PSO had to perform to reach the global

minimum. An average is computed and the process is repeated again for another set of

parameters. Thus through comparison, a reliable set of parameters is found. Naturally, the

parameters will differ depending on the problem to be optimized.

2.3.3 Social Network Structures

The social network structure or neighborhood topology describes the way in which infor-

mation flows throughout the swarm. A social network structure is composed of overlapping

neighborhoods in which particles only share information with those in their neighborhood.

Particles tend to be drawn to the most “successful” member of their group which is analogous

to many biological systems where the most successful individuals have a greater influence

on those around them. In terms of PSO, the most successful particle becomes the local best

position gi.

Performance is heavily influenced by the social network structure. There are three aspects

of the social network structure that effect how information flows through out the swarm:

1. The interconnectivity of the nodes (particles) of the network.

2. The degree of clustering (clustering occurs when a nodes neighbors are also neighbors

with one another).

3. The average shortest distance between nodes.

Information that is shared with most of the swarm represents a highly interconnected

social structure. In this environment, the perceived best particle is quickly disseminated

16

throughout the swarm which typically leads to faster convergence compared to less con-

nected social structures. There is a tradeoff however, because faster convergence can lead

to suboptimal solutions i.e. local minima. Less interconnected structures tend to provide

better coverage through out the search space.

Some of the most widely studied social network structures are listed below:

• The star topology, depicted in Figure 2.1(a), is where all the particles are connected

to one another. This is the topology used the gbest PSO described earlier. This

topology is best suited for unimodal problems, that is, the objective function has only

one minimum.

• The ring topology depicted in Figure 2.1(b). In this structure the particles only com-

municate with their nearest neighbors on the ring. A particle’s neighbors form its

neighborhood as defined by (5). Information flows slower in this structure compared

to the star topology, but larger areas of the search space are explored. With regards

to multimodal problems where many minima exist, the ring topology often provides

better solutions than those obtained using the star topology.

• The Von Neumann topology depicted in Figure 2.1(c). Here particles are connected

in a grid like structure. Several investigations have shown that the Von Neumann

structure outperforms other structures in a large number of problems [6, 10].

• The four clusters topology depicted in Figure 2.1(d). This structure is composed of

four clusters where a single cluster is connected to two others. Within each cluster are

five interconnected neighbors.

As is so often the case, the optimal network topology is problem dependent. Unimodal

problems are best served using highly interconnected structures like the star while multi-

modal environments are often best treated using structures that are less interconnected. In

our use of PSO to solve an energy minimization problem (Chapter 3), the star topology is

utilized.

17

Figure 2.1: Social Network Structures

2.3.4 Termination Conditions

Termination conditions are an important aspect of the PSO algorithm. Commonly used

termination conditions are given below:

• Terminate when the algorithm has exceeded a maximum number of iterations. Care

must be taken when choosing a maximum number of iterations since choosing to few

iterations and the algorithm will terminate prematurely before an optimal solution can

be found.

• Terminate when an acceptable solution has been found. Suppose x̂ is the global mini-

mum of an objective function f and let ε > 0 be given. Then x is an acceptable solution

if |f(x̂)− f(x)| < ε. This termination requires the solution to be known a priori and is

widely used as method to test an algorithm using benchmarks like Rastigrin’s function.

18

• Terminate if no improvement has been made after a set number of iterations. There

are several ways in which to measure improvement. For example, one could monitor

the position of g. If this positions does not change for a given number of iterations

then the algorithm can be terminated. Another measure of improvement is monitor the

average particle velocity. If the average velocity is relatively small then the algorithm

has little chance for improvement since the particles are barely moving.

• Terminate when the swarm radius has collapsed. Let the center of the swarm be defined

as

ρ =
1

S

S∑
i=1

xi, (2.9)

where S is the number of particles in the swarm. Then the swarm radius is given by

r = ||xi − ρ|| s.t. ||xi − ρ|| ≥ ||xj − ρ|| for j = 1, . . . , S. (2.10)

The algorithm will be terminated when r < ε. If ε is to large then the algorithm

will terminate prematurely before a good solution can be found. If ε is to small,

however, then the algorithm may perform unnecessary iterations without any sign of

improvement.

• Terminate when the slope of the objective function f is approximately zero. Considering

the expression

f
′
(t) =

f(g(t))− f(g(t− 1))

f(g(t))
(2.11)

as a means of approximating the slope of the objective function. If f < ε for a

consecutive number of time steps, then this implies that the swarm has converged onto

g(t). This termination condition is considered to be superior to the other methods

above because the termination criteria is based the search space itself. It does, however,

have the shortcoming that the search can be prematurely terminated if some of the

particles get trapped into local minima while the rest of the swarm is still exploring the

19

search space. This can be overcome by combining this condition with radius criteria

so that the whole swarm has converged on the same point before terminating the

algorithm. It should also be said that this condition also requires the algorithm to

evaluate f which does add additional complexity.

There are two important criteria to keep in mind when selecting termination conditions:

1. The condition should not terminate the search prematurely since only suboptimal

solutions may be found.

2. The condition should not add unnecessary computational complexity.

In most cases a combination of the above conditions are employed. In the following section

we demonstrate how PSO can be used to predict the structure of a 16-atom molecule by

minimizing a potential energy function.

20

CHAPTER 3

NONLINEAR MOLECULAR MODEL

As discussed in Chapter 1, molecular systems can be modeled using a classical Newtonian

framework. Here atoms within a molecule interact via conservative forces which can be

reformulated in terms of a potential energy function V. For our purposes, the potential

energy can be expressed as the sum of three terms, those arising from bonds between atoms,

those representing bond angles, and the Van der Waals potential:

V = Vbond + Vangle + VV an der Waals. (3.1)

Instead of studying the motion of the molecule using MD simulations, we will focus on

determining molecular structure only, and hence seek to minimize the potential energy V.

3.1 Bond Potential

Probably the most common potential used to model the attraction between two bonded

atoms within a molecule is the harmonic potential. Let ri and rj be the positions of two

bonded atoms (see Figure 3.1). Then the harmonic potential Vbond is given by

Vbond =
1

2

∑
i<j

kij(rij − r0)2, (3.2)

where rij = ||ri−rj||2 , kij is a spring constant which equals zero if the atoms are not bonded,

and r0 is the equilibrium distance.

Figure 3.1: Bonded Atoms

21

3.2 Angle Potential

Within a molecule it is often the case that two bonds can share a common atom as Fig-

ure 3.2 illustrates. In such a configuration one can define an angle between two atoms. Let

ri, rj, and rk be the positions of atoms i, j, and k, respectively. Furthermore, let

rij = ri − rj and rkj = rk − rj.

Then the angle θijk can be expressed in terms of a cosine

cos θijk =
rij · rkj
rijrkj

, (3.3)

where · denotes an inner product. One widely used angle potential in molecular dynamics

(MD) simulations is the cosine harmonic angle potential, Vangle, given by

Vangle = −
∑
i<j<k

Bijk
rij · rkj
rijrkj

, (3.4)

where B is a tensor of angle interaction strength parameters with entries Bijk that are

nonzero if and only if kij and kjk are both nonzero.

Figure 3.2: Bond Angle

22

3.3 Van der Waals Potential

The third term in the potential energy expression, VV an der Waals, accounts for the attractive

and repulsive forces between non-bonded atoms. Possibly the most widely employed po-

tential used to model the energy of Van der Waals interactions is the 12-6 Lennard-Jones

potential

VLJ = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

= ε

[(
rm
rij

)12

− 2

(
rm
rij

)6
]
, (3.5)

where ε is the depth of the potential well, σ is a finite distance where the potential tends

to zero, rm is the separation at which the potential is at a minimum, and rij is again the

distance between atoms i and j. The 12-6 Lennard-Jones potential tends to zero as the

atomic separation increases, but as the atomic separation decreases values of the potential

decrease until a minimum is reached, after which the potential increases asymptotically (see

Figure 3.3).

Figure 3.3: 12-6 Lennard-Jones Potential

As mentioned in Chapter 1, MD simulations are computationally expensive for large molec-

ular systems, so researchers have developed a method called “coarse graining” where an

N -body system is represented with a reduced number of degrees of freedom. Coarse grain-

ing has attracted much attention in the MD community. A recent study by Voth et al.

23

[4] showed how memory minimization can be used as an objective for coarse graining. To

demonstrate their idea Voth and his colleagues used a 16 atom molecule (depicted in Fig-

ure 3.5) whose energy they modeled using equations (3.2) and (3.4), but rather than using

the 12-6 Lennard-Jones potential to model the energy of non-bonded atoms they instead

used the following repulsive force :

− ∂Vr
∂r

=

{
−r−7

−0.2−3.5

for r ≥
√

0.2

otherwise
, (3.6)

where Vr is the potential resulting from the repulsion between all pairs of atoms (a graphical

representation is shown in Figure 3.4).

Figure 3.4: Non-Bonded Potential

Within the current study, the 16-atom molecule depicted in Figure 3.5 combined with the

energy terms (3.2), (3.4), and (3.6) are used to formulate the energy minimization problem.

In the next chapter we describe how PSO can be used to solve this problem.

Figure 3.5: Nonlinear Molecular System [4]

24

CHAPTER 4

IMPLEMENTATION

We begin by defining our search space S. For the problem at hand the search space is

simply the atomic configuration space. Since there are sixteen atoms in our molecule and

each atom requires three dimensions to describe its position it follows that there are forty

eight dimensions in our search space S. Hence, S = R48. Now, for notational purposes define

x = [x1,1, x1,2, x1,3, . . . , xi,j, . . . , x48,1, x48,2, x48,3] ∈ S,

where xi,j denotes atom i in dimension j. In terms of PSO, every particle represents an atomic

configuration x ∈ S, and the goal is to find x∗ ∈ S such that V (x∗) ≤ V (x) for all x ∈ S.

That is, PSO will attempt to find the atomic configuration x∗ that will minimize the potential

energy V.

4.1 Serial Implementation

The PSO algorithm was implemented in serial by allocating three 48 x P matrices for

particle position, velocity, and pBest, where P is the number of particles used. A good

heuristic when deciding on the number of particles to use is that the number should fall

some where between d and 10d, where d is the number of dimensions in the search space.

This gives a range between 48 and 480 particles for this particular problem. We decided to

use 240 particles in our search. The position of particle i is column i of the particle matrix.

Similarly, the velocity and pBest of particle i is column i of the velocity and pBest matrices,

respectively. One 48 x 1 array was allocated for gBest and two 240 x 1 arrays for particle

and pBest energies (these last two arrays were used to minimize the number of function

evals which reduced run times by a factor of three). In each dimension the particle positions

and gBest were uniformly distributed between -4 and 4 while the particle velocities were

uniformly distributed between -2 and 2. The swarm radius and maximum iterations were

25

used as termination conditions. The algorithm was stopped if the swarm radius was less

than 10−9 or the number of iterations had exceeded 20,000. Once the algorithm began its

search the velocity matrix was updated using (2.2) above, then using the array functionality

of FORTRAN the particle matrix was updated with the loop

DO j = 1 , 240

particle(: , j) = particle(: , j) + velocity(: , j)

END DO

No position boundaries were implemented but we did, however, enforce a maximum velocity.

We set Vmax,i = 2.0 for i = 1, 48. The range of the initializations, number of particles used,

Vmax, and the termination conditions are summarized in Table 4.1. Additional simulations

with more particles, larger swarm radii, and different limits on the number of iterations were

also performed.

Table 4.1: PSO Settings

of Particles
Initializations

Vmax
Termination Conditions

particle gBest velocity Swarm Radius Max Iterations
240 U(−4, 4) U(−4, 4) U(−2, 2) 2.0 10−9 20,000

4.2 Parallel Implementation

The next chapter describes the methods we used to determine a set of good parameters

for PSO. Due to the inherent randomness of PSO, we were required to run a large number

trials using different sets of parameters as a way to compare performance. A typical run

could last any where between 6 and 12 seconds. This quickly became very time consuming, so

we set about parallelizing the algorithm using the Message Passing Interface (MPI) library.

The serial code was parallelized by having the first k−1 cores generate 240/k columns of the

particle, velocity, and pBest matrices, where k is the number of cores running in parallel. The

last core generated the remaining 240/k + MOD(240,k) columns of the particle, velocity,

26

and pBest matrices. Each core also allocated a 48 x 1 gBest local array and a 48 x k matrix

called gBest global. After each time step the MPI command allgather was used to collect all

the local gBest arrays into the gBest global matrix. Each core then evaluated the potential

energy function using every column of the gBest global matrix and updated gBest local

accordingly.

27

CHAPTER 5

RESULTS

The parameters ω, c1, and c2 are often problem dependent, and this problem proved to be

no exception. The default value ω(0) = 1.2 is widely accepted as a good starting value for

the inertial parameter, and this is what we used. The linearly decreasing scheme in equation

(2.8) was also employed with ω(T) = 0.0. The algorithm performance was very sensitive to

the values set for c1 and c2. Two scenarios were encountered when selecting initial values

for the cognitive and social parameters:

1. The swarm would never collapse and the algorithm would terminate because the max-

imum iterations had been exceeded, or

2. The swarm would collapse very quickly before a good solution had been found.

After some preliminary investigations it was found that with c1 = 0.3 and c2 = 0.9 the

algorithm would perform relatively well compared to other parameter choices. The algorithm

was not converging prematurely and was not exceeding the maximum number of iterations,

thereby demonstrating a good balance of exploration and exploitation. However it was

obvious that the cognitive and social parameters needed to be fine “tuned”.

5.1 Parameter Selection

The base line for these trials were the parameter values c1 = 0.3 and c2 = 0.9. We began

by fixing one of the parameters at the base line value and then altering the other parameter

by a small amount. Then, the algorithm used these parameters in 10,000 separate trials.

The final energies returned by PSO for these trials are displayed in Figure 5.1 and Figure 5.2

and were also ordered into percentiles which are given in Table 5.1.

28

Table 5.1: Parameter Sweep

c1 0.15 0.45 0.60 0.75 c2 0.45 1.35 1.80 2.25
Emin 0.2842 0.2842 0.2841 0.2842 Emin 0.2842 0.2842 0.2842 0.2841
E90 0.3424 0.2959 0.2975 0.3086 E90 0.3420 0.2993 0.2926 0.2871
E95 0.3727 0.3037 0.3060 0.3225 E95 0.3897 0.3065 0.2963 0.2890
E99 0.5071 0.3390 0.3459 0.3745 E99 0.7858 0.3308 0.3105 0.2929

(a) (b)

The tables above are meant to be read from left to right, so for example the entry in the

4th row and 3rd column of the Table 5.1(a) reports that, for parameters c1 = 0.60 and

c2 = 0.90, 95% of the trials end with energy values E such that

Emin = 0.2841 ≤ E ≤ 0.3060 = E95.

Alternatively, we can say that 95% trials returned energies that lie within 0.0219 of the

minimum energy found which is Emin = 0.2841. In fact this interpretation provides us

with a good measure of performance; the smaller the difference between a percentile and the

minimum energy found implies a smaller deviation from the minimum on average. Let ∆k be

the difference between Emin and the kth percentile. The performance measure is presented

in Table 5.2 using this notation.

Table 5.2: Performance Measure

c1 0.15 0.45 0.60 0.75 c2 0.45 1.35 1.80 2.25
∆90 0.0582 0.0117 0.0134 0.0244 ∆90 0.0578 0.0151 0.0084 0.0030
∆95 0.0885 0.0195 0.0219 0.0383 ∆95 0.1055 0.0223 0.0121 0.0049
∆99 0.2229 0.0548 0.0618 0.0903 ∆99 0.5016 0.0466 0.0263 0.0088

(a) (b)

One can clearly see from Table 5.2 that the parameters c1 = 0.45 and c2 = 2.25 out performed

all other parameter values.

29

The histograms shown in Figure 5.1 and Figure 5.2 were generated with 100 bins so that

the width of each bin accounts for one percent of the spread in returned energies.

(a) c1 = 0.15 (b) c1 = 0.45

(c) c1 = 0.60 (d) c1 = 0.75.

Figure 5.1: Energy Histogram with c2 = 0.90

30

(a) c2 = 0.45 (b) c2 = 1.35

(c) c2 = 1.80 (d) c2 = 2.25

Figure 5.2: Energy Histogram with c1 = 0.30

31

5.2 Minimal Energy Configuration

In the previous section, PSO reported that the minimal energy of the molecule under

investigation was Emin = 0.2841. Figure 5.3 depicts the 3-dimensional representation of this

minimal energy configuration.

Figure 5.3: Minimal Energy Configuration

32

5.3 Comparisons

According to the No Free Lunch Theorem (NFLT) [14], there is no single algorithm

that will out perform all other algorithms across all optimization problems. Therefore, we

compared PSO’s performance with several other optimization techniques to gauge its utility.

To begin the comparisons we ran PSO with the parameters c1 = 0.45 and c2 = 2.25, along

with the settings in Table 4.1 and recorded the minimum energy, number of function evals,

iterations, and run time. For our first comparison we used the so-called “brute force” method

where points in the search space were randomly selected and evaluated using the potential

energy function V. Each component was uniformly distributed between -4.0 and 4.0 which

was the same initialization scheme implemented for PSO in Table 4.1. Exactly 3,107,280

points were generated so that the number of function evaluations performed by both the

brute force method and PSO would be the same. The second comparison was done using

the conjugate gradient method (CG). CG requires an initial starting point x0, so we set

x0 = g(0), where g(0) was the initial gBest vector generated by PSO. The results of the

comparisons are reported in Table 5.3

Table 5.3: Optimization Method Comparison

Brute Force Conjugate Gradient PSO
min E 80.8174 0.2842 0.2842

function evals 3,107,280 34,050 3,107,280
iterations - 562 12,946
run time 22 sec 102 sec 40 sec

Not surprisingly, the brute force approach was unable to determine a minimizer for the

potential energy while PSO and the conjugate gradient method returned the same minimal

energy. PSO was significantly faster in terms of run time but required approximately 91

times more function evals than did the conjugate gradient method. Naturally in a much

higher dimensional search space, where one could be dealing with several hundred atoms,

PSO’s larger number of function evals could become computationally prohibitive. Bear in

33

mind though that using less particles would require less function evals, and in general the

number of function evaluations could be greater or lesser given PSO’s stochastic nature.

Since the conjugate gradient method’s ability to find a minimizer depends on the initial

starting point x0, it seemed natural to provide other starting points to observe whether or

not the algorithm determine the minimal energy configuration. Therefore, a set of random

points was generated and used to initialize the algorithm. In each case the conjugate gradient

method returned the same minimal energy, 0.2842. This seems to suggest the search space

has few local minima. To substantiate this claim, consider the Rastrigrin function

R(x) = 10n+
n∑
i=1

[x2i + 10cos(2πxi)], (5.1)

where xi ∈ [−5.12, 5.12]. The Rastrigrin function has a global minimum x∗ = 0 with

R(x∗) = 0 but has a large number of surrounding local minima as Figure 5.4 demonstrates.

Figure 5.4: Rastrigrin function in 2D

As one might suspect, the conjugate gradient method is only able to find the global

minimum if its starting position x0 is sufficiently close to the origin. For any other starting

position the method converges onto a local minimum. Because of this, and the fact that

this method was able to find the minimal energy configuration for several randomly chosen

34

starting points, suggests that our search space has little to no local minima.

Another interesting observation is that PSO has no problem locating the global minimum

of the Rastrigrin function even in higher dimensions. Using Rastrigrin’s function, another

comparison was performed between PSO and CG. Again, CG requires an initial starting point

x0, so we set x0 = g(0), where g(0) was the initial gBest vector generated by PSO. Table 5.4

reports the number of dimensions (dim), the minimum function value found (Rmin), and the

number of function evaluations performed (# evals). Clearly, PSO outperformed CG in this

environment, which comes as no surprise since PSO does not use the gradient of a function to

find the global minimum. This makes PSO an ideal tool when solving optimization problems

in highly multimodal search spaces. This phenomenon of a wide variety of local minima

occurs extensively in the field of molecular modeling, as the difference between lesser energy

states is often quite small in comparison to the global energy values [15]. Hence, molecular

structure can often change from one local energy state to another with minimal variation

in the Hamiltonian especially if one considers the inclusion of external forces. Thus the

identification of global minimum values over a number of nearby local minima is of great

importance.

Table 5.4: Rastrigrin Comparison

PSO CG
dim Rmin # evals Rmin # evals

2 8.1774 x 10−9 1,832 3.9798 56
3 1.7716 x 10−6 11,862 17.3036 42
4 1.8518 x 10−10 12,712 32.8334 90
5 1.5656 x 10−6 5,205 25.8689 105
6 7.1054 x 10−14 93,540 47.7577 144

35

5.4 Conclusions

This work demonstrates that PSO can be a fast and efficient method for the use of

energy minimization of molecular systems. One simply needs to adjust the cognitive and

social parameters to the molecular system under investigation, and these adjustments can be

achieved by performing a simple parameter sweep like the one that was performed in section

5.1. Furthermore, if the molecular system under investigation has many local minima (stable

equilibrium) and one is interested in finding the ground state configuration, then PSO can

be the algorithm of choice since it does not use information regarding derivatives of the

potential energy function. Finally, for larger molecular systems where computational run

time can become an issue, the implementation described in sections 4.1 and 4.2 make the

parallelization of the algorithm a straight forward task.

5.5 Moving Forward

Throughout this work we have demonstrated how one might use PSO to solve an energy

minimization problem. Now we present how this approach can be used on a more complex

molecules like proteins. Consider globular actin (G-actin) which is a multifunctional protein

that is found in all eukaryotic cells and is involved in many important biological processes

including cell division, muscle contraction, and organelle movement. G-actin is composed of

375 Cα atoms which makes this a very challenging energy minimization problem due to the

1125 dimensional search space. To tackle this problem we would first need to model G-actin

with our potential energy function. Hence, we need to know where the chemical bonds are

located so that we can specify the entries kij in the spring constant matrix K. The bond sites

for G-actin can be found in the RCSB protein data bank (RCSB PDB) under 1J6Z. With

the K matrix in place, we can then specify the entries Bijk in the tensor of angle strength

interaction. After this, the potential energy function would be complete and ready for PSO.

36

REFERENCES CITED

[1] Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotic systems. In Robots
and Biological Systems: Towards a New Bionics?, pages 703–712. Springer, 1993.

[2] Andries P Engelbrecht. Fundamentals of computational swarm intelligence. John Wiley
& Sons, 2006.

[3] Yoshikazu Fukuyama and Hirotata Yoshida. A particle swarm optimization for reactive
power and voltage control in electric power systems. In Evolutionary Computation,
2001. Proceedings of the 2001 Congress on, volume 1, pages 87–93. IEEE, 2001.

[4] Nicholas Guttenberg, James F Dama, Marissa G Saunders, Gregory A Voth, Jonathan
Weare, and Aaron R Dinner. Minimizing memory as an objective for coarse-graining.
The Journal of chemical physics, 138(9):094111, 2013.

[5] J. Kennedy and R. Eberhart. Particle Swarm Optimization. Proceedings of the IEEE
International Joint Conference on Neural Networks, pages 1942-1948. IEEE Press, 1995.

[6] James Kennedy and Rui Mendes. Population structure and particle swarm performance.
2002.

[7] Majid M Khodier and Christos G Christodoulou. Linear array geometry synthesis with
minimum sidelobe level and null control using particle swarm optimization. Antennas
and Propagation, IEEE Transactions on, 53(8):2674–2679, 2005.

[8] Michael Meissner, Michael Schmuker, and Gisbert Schneider. Optimized particle swarm
optimization (opso) and its application to artificial neural network training. BMC bioin-
formatics, 7(1):125, 2006.

[9] Mark M Millonas. Swarms, phase transitions, and collective intelligence. arXiv preprint
adap-org/9306002, 1993.

[10] ES Peer, F van den Bergh, and AP Engelbrecht. Using neighborhoods with the guar-
anteed convergence pso, 2003.

[11] Vitorino Ramos, Carlos Fernandes, and Agostinho C Rosa. Social cognitive maps, swarm
perception and distributed search on dynamic landscapes. arXiv preprint nlin/0502057,
2005.

37

[12] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. ACM
SIGGRAPH Computer Graphics, 21(4):25–34, 1987.

[13] Yuhui Shi and Russell Eberhart. A modified particle swarm optimizer. In Evolutionary
Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence.,
The 1998 IEEE International Conference on, pages 69–73. IEEE, 1998.

[14] David H Wolpert and William G Macready. No free lunch theorems for optimization.
Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

[15] Robert Zwanzig. Nonequilibrium statistical mechanics. Oxford University Press, 2001.

38

APPENDIX - FORTRAN CODE

Presented below are the codes for the potential function, serial PSO, and the parallelized

PSO.

A.1 Potential Function

FUNCTION potential(particle,K,B,N)

! Purpose:

! To calculate the potential for the nonlinear molecular model presented

! in the Voth Paper

! Declaration Statement:

INTEGER,PARAMETER :: DBL=KIND(0.0d0)

INTEGER :: i,j,l

REAL(KIND=DBL),DIMENSION(3,N) :: r ! position of each atom

REAL(KIND=DBL) :: d ! atom seperation

REAL(KIND=DBL) :: U_a,U_b,U_r

REAL(KIND=DBL) :: potential

INTEGER,INTENT(IN) :: N ! Number of atoms in the molecule

REAL(KIND=DBL),INTENT(IN),DIMENSION(3*N) :: particle

REAL(KIND=DBL),INTENT(IN),DIMENSION(N,N) :: K

REAL(KIND=DBL),INTENT(IN),DIMENSION(N,N,N) :: B

r = RESHAPE(particle,(/3,N/))

! Calculate U_b

U_b = 0.0_DBL

DO i = 1,N-1

39

DO j = i+1,N

IF (K(i,j) /= 0.0) THEN

U_b = SUM((r(:,i)-r(:,j))**2) + U_b

END IF

END DO

END DO

U_b = 0.5_DBL*U_b

! Calculate U_a

U_a = 0.0_DBL

DO i = 1,N-2

DO j = i+1,N-1

DO l = j+1,N

IF(B(i,j,l)/=0.0)THEN

U_a=B(i,j,l)*SUM((r(:,i)-r(:,j))*(r(:,j)-r(:,l)))&

/(sqrt(SUM((r(:,i)-r(:,j))**2))*sqrt(SUM((r(:,j)-r(:,l))**2)))+U_a

END IF

END DO

END DO

END DO

U_a = -U_a

! Calculate U_r

U_r = 0.0_DBL

DO i = 1,N-1

DO j = i+1,N

d = sqrt(SUM((r(:,i)-r(:,j))**2))

40

IF(d>sqrt(0.2))THEN

U_r=REAL(1.0/6.0,DBL)*(1/(d**6))+U_r

ELSE

U_r = -(0.2_DBL)**(-7.0/2.0)*d + REAL(7.0/6.0,DBL)*(0.2_DBL)**(-3) + U_r

END IF

END DO

END DO

potential = U_a + U_b + U_r END FUNCTION

41

A.2 Serial PSO

PROGRAM PSO_Voth

IMPLICIT NONE

! Declaration Statement

INTEGER,PARAMETER :: DBL=KIND(0.0d0)

REAL(KIND=DBL),ALLOCATABLE,DIMENSION(:,:) :: particle,velocity,pBest

REAL(KIND=DBL),ALLOCATABLE,DIMENSION(:) :: gBest,particle_energy,pBest_energy

REAL(KIND=DBL),ALLOCATABLE,DIMENSION(:,:) :: pos

REAL(KIND=DBL),DIMENSION(16,16) :: K ! Matrix of spring constants

REAL(KIND=DBL),DIMENSION(16,16,16) :: B ! Tensor of angle interaction strength

REAL(KIND=DBL) :: gBest_energy

REAL(KIND=DBL) :: swarm_radius,d1

REAL(KIND=DBL),PARAMETER :: c1 = 0.45 ! cognitive parameter

REAL(KIND=DBL),PARAMETER :: c2 = 2.25 ! social parameter

REAL(KIND=DBL) :: omega_max = 1.147 ! initial inertial term

REAL(KIND=DBL) :: omega_min = 0.0 ! initial inertial term

REAL(KIND=DBL) :: omega ! iteration dependent inertial term

REAL(KIND=DBL) :: r1,r2 ! random numbers

REAL(KIND=DBL) :: potential ! Obective function

REAL :: start_time,end_time

INTEGER :: N,P ! number of atoms and particles, respectively

INTEGER :: i,j,l,iostatus ! loop indices INTEGER :: iterations ! counter

! Read in K matrix and B tensor

OPEN(Unit=1,FILE=’K_Matrix.txt’,STATUS=’OLD’,ACTION=’READ’,IOSTAT=iostatus)

OPEN(Unit=2,FILE=’B_Tensor.txt’,STATUS=’OLD’,ACTION=’READ’,IOSTAT=iostatus)

DO i = 1,16

DO j = 1,16

42

READ(1,*) K(i,j)

DO l = 1,16

READ(2,*) B(i,j,l)

END DO

END DO

END DO

CLOSE(Unit=1) C

CLOSE(UNIT=2)

! Get the number of particles and dimensions

WRITE(*,*)’Enter the number of particles and the number of atoms:’

READ(*,*) P,N

! Allocate memory

ALLOCATE(particle(3*N,P),velocity(3*N,P),pBest(3*N,P),&

gBest(3*N),particle_energy(P),pBest_energy(P),pos(3,N))

! Initialize random seed

CALL INIT_RANDOM_SEED()

! Initialize particle, velocity, and pBest arrays

velocity = 0.0_DBL

DO i = 1,3*N

DO j = 1,P

CALL RANDOM_NUMBER(r1)

CALL RANDOM_NUMBER(r2)

particle(i,j) = r1*(8.0_DBL)-4.0_DBL

END DO

END DO

pBest = particle ! pBest coincides with the particles position at initialization

! Compute particle and pBest energies

43

DO i = 1,P

particle_energy(i) = potential(particle(:,i),K,B,N)

END DO

pBest_energy = particle_energy

! Initialize gBest and gBest_energy

DO i = 1,3*N

CALL RANDOM_NUMBER(r1)

gBest(i) = r1*(8.0_DBL)-4.0_DBL

END DO

gBest_energy = potential(gBest,K,B,N)

! Determine gBest

DO i = 1,P

IF (pBest_energy(i) < gBest_energy) THEN

gBest = particle(:,i)

END IF

END DO

! Calculate the swarm radius

swarm_radius = SQRT(SUM((particle(:,1)-gBest)**2))

DO i = 2,P d1 = SQRT(SUM((particle(:,i)-gBest)**2))

IF (d1 > swarm_radius) THEN

swarm_radius = d1

END IF

END DO

! Initialize iterations iterations = 0

! Start Timer CALL CPU_TIME(start_time)

DO WHILE (swarm_radius > 1.0E-9.AND. iterations < 10000)

iterations = iterations + 1 ! counter

44

omega = omega_max-((omega_max-omega_min)*REAL(iterations,DBL))/REAL(10000,DBL)

! Update velocity

DO i = 1,3*N

DO j = 1,P

CALL RANDOM_NUMBER(r1)

CALL RANDOM_NUMBER(r2)

velocity(i,j) = omega*velocity(i,j) + r1*c1*(pBest(i,j) - particle(i,j))&

+ r2*c2*(gBest(i) - particle(i,j))

IF (velocity(i,j) > 4.0_DBL) THEN

velocity(i,j) = 4.0_DBL

ELSE IF (velocity(i,j) < -4.0_DBL) THEN

velocity(i,j) = -4.0_DBL

END IF

END DO

END DO

! Update position

DO i = 1,P

particle(:,i) = particle(:,i) + velocity(:,i)

END DO

! Update pBest and pBest_energy

DO i = 1,P

particle_energy(i) = potential(particle(:,i),K,B,N)

IF (particle_energy(i) < pBest_energy(i)) THEN

pBest(:,i) = particle(:,i)

pBest_energy(i) = particle_energy(i)

END IF

END DO

45

! Update gBest

DO i = 1,P

IF (pBest_energy(i) < gBest_energy) THEN

gBest = pBest(:,i)

gBest_energy = pBest_energy(i)

END IF

END DO

! Calculate Swarm Radius

swarm_radius = SQRT(SUM((particle(:,1)-gBest)**2))

DO i = 2,P d1 = SQRT(SUM((particle(:,i)-gBest)**2))

IF (d1 > swarm_radius) THEN

swarm_radius = d1

END IF

END DO

END DO

! Stop timer CALL CPU_TIME(end_time)

! Write position vector to file

pos=RESHAPE(gbest,(/3,N/))

OPEN(UNIT=1,FILE=’X.txt’,STATUS=’REPLACE’,ACTION=’WRITE’,IOSTAT=iostatus)

OPEN(UNIT=2,FILE=’Y.txt’,STATUS=’REPLACE’,ACTION=’WRITE’,IOSTAT=iostatus)

OPEN(UNIT=3,FILE=’Z.txt’,STATUS=’REPLACE’,ACTION=’WRITE’,IOSTAT=iostatus)

WRITE(1,*) pos(1,:)

WRITE(2,*) pos(2,:)

WRITE(3,*) pos(3,:)

CLOSE(UNIT=1)

CLOSE(UNIT=2)

CLOSE(UNIT=3)

46

! Display Results

WRITE(*,*)’Swarm Radius = ’,swarm_radius

WRITE(*,*)’Function eval at gBest = ’,gBest_energy

WRITE(*,*)’iterations = ’,iterations

WRITE(*,*)’T1 =’,end_time - start_time

! Deallocate memory DEALLOCATE(particle,velocity,pBest,gBest,pos)

END PROGRAM

47

A.3 Parallel PSO

PROGRAM PSO_Voth_parallel

USE MPI

IMPLICIT NONE

! Declaration Statement

INTEGER,PARAMETER :: DBL=KIND(0.0d0)

REAL(KIND=DBL),ALLOCATABLE,DIMENSION(:,:) :: particle,velocity,pBest,gBest_global,pos

REAL(KIND=DBL),ALLOCATABLE,DIMENSION(:) :: gBest_local,particle_energy,pBest_energy,&

gBest_global_energy

REAL(KIND=DBL) :: gBest_local_energy

REAL(KIND=DBL),PARAMETER :: c1 = 1.27 ! cognitive parameter

REAL(KIND=DBL),PARAMETER :: c2 = 1.54 ! social parameter

REAL(KIND=DBL),PARAMETER :: V_max = 1.0 ! maximum velocity

REAL(KIND=DBL) :: omega_max = 1.147 ! initial inertial term

REAL(KIND=DBL) :: omega_min = 0.0 ! initial inertial term

REAL(KIND=DBL) :: omega ! iteration dependent inertial term

REAL(KIND=DBL) :: r1,r2 ! random numbers

REAL(KIND=DBL) :: potential ! Obective function

REAL(KIND=DBL) :: local_radius, swarm_radius, d ! Swarm radius termination condition

REAL(KIND=DBL),DIMENSION(16,16) :: K ! Matrix of spring constants

REAL(KIND=DBL),DIMENSION(16,16,16) :: B ! Tensor of angle interaction strength

REAL :: start_time, end_time

INTEGER :: iostatus,ierror,my_rank,num_cores ! Mpi variables

INTEGER :: N=16,P=131 ! number of dimensions and particles, respectively

INTEGER :: i,j,l ! loop indices

INTEGER :: iterations ! counter

INTEGER :: max_iter = 20000 ! termination condition

48

! Initialize MPI

CALL MPI_INIT(ierror)

CALL MPI_Comm_rank(MPI_COMM_WORLD,my_rank,ierror)

CALL MPI_Comm_size(MPI_COMM_WORLD,num_cores,ierror)

! Read in K matrix and B tensor

OPEN(Unit=1,FILE=’K_Matrix.txt’,STATUS=’OLD’,ACTION=’READ’,IOSTAT=iostatus)

OPEN(Unit=2,FILE=’B_Tensor.txt’,STATUS=’OLD’,ACTION=’READ’,IOSTAT=iostatus)

DO i = 1,16

DO j = 1,16

READ(1,*) K(i,j)

DO l = 1,16

READ(2,*) B(i,j,l)

END DO

END DO

END DO

CLOSE(Unit=1)

CLOSE(UNIT=2)

! Allocate memory

IF (my_rank < num_cores-1) THEN

ALLOCATE(particle(3*N,1+my_rank*(P/num_cores):(my_rank+1)*(P/num_cores)),&

velocity(3*N,1+my_rank*(P/num_cores):(my_rank+1)*(P/num_cores)),&

pBest(3*N,1+my_rank*(P/num_cores):(my_rank+1)*(P/num_cores)),&

gBest_local(3*N),particle_energy(1+my_rank*(P/num_cores):(my_rank+1)*(P/num_cores)),&

pBest_energy(1+my_rank*(P/num_cores):(my_rank+1)*(P/num_cores)),&

gBest_global(3*N,num_cores),gBest_global_energy(num_cores))

ELSE

ALLOCATE(particle(3*N,1+my_rank*(P/num_cores):(my_rank+1)*(P/num_cores)&

49

+MOD(P,num_cores)),&

velocity(3*N,1+my_rank*(P/num_cores):(my_rank+1)*(P/num_cores)+MOD(P,num_cores)),&

pBest(3*N,1+my_rank*(P/num_cores):(my_rank+1)*(P/num_cores)+MOD(P,num_cores)),&

gBest_local(3*N),particle_energy(1+my_rank*(P/num_cores):(my_rank+1)*(P/num_cores)&

+MOD(P,num_cores)),&

pBest_energy(1+my_rank*(P/num_cores):(my_rank+1)*(P/num_cores)+MOD(P,num_cores)),&

gBest_global(3*N,num_cores),gBest_global_energy(num_cores)) END IF

! Initialize random seed

CALL INIT_RANDOM_SEED(my_rank)

! Start Timer

IF (my_rank==0) THEN

CALL CPU_TIME(start_time)

END IF

! Initialize particle, velocity, and pBest arrays

velocity = 0.0_DBL

DO i = 1,3*N

IF (my_rank < num_cores-1) THEN

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)

CALL RANDOM_NUMBER(r1)

CALL RANDOM_NUMBER(r2)

particle(i,j) = r1*(4.0_DBL)-2.0_DBL

END DO

ELSE

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)+MOD(P,num_cores)

CALL RANDOM_NUMBER(r1)

CALL RANDOM_NUMBER(r2)

particle(i,j) = r1*(4.0_DBL)-2.0_DBL

50

END DO

END IF

END DO

pBest = particle ! pBest coincides with the particles position at initialization

! Initialize gBest_local and gBest_local_energy

DO i = 1,3*N

CALL RANDOM_NUMBER(r1)

gBest_local(i) = r1*(4.0_DBL)-2.0_DBL

END DO

gBest_local_energy = potential(gBest_local,K,B,N)

! Determine gBest_local and gBest_local_energy

IF (my_rank < num_cores-1) THEN

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)

particle_energy(j) = potential(particle(:,j),K,B,N)

pBest_energy(j) = particle_energy(j)

IF (pBest_energy(j) < gBest_local_energy) THEN

gBest_local = particle(:,j)

END IF

END DO

ELSE

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)+MOD(P,num_cores)

particle_energy(j) = potential(particle(:,j),K,B,N)

pBest_energy(j) = particle_energy(j)

IF (pBest_energy(j) < gBest_local_energy) THEN

gBest_local = particle(:,j)

END IF

END DO

51

END IF

!Gather all gBest_local and gBest_local_energy to determine gBest_global

CALL MPI_ALLGATHER(gBest_local,3*N,MPI_DOUBLE_PRECISION,gBest_global,3*N,

& MPI_DOUBLE_PRECISION,MPI_COMM_WORLD,ierror)

CALL MPI_ALLGATHER(gBest_local_energy,1,MPI_DOUBLE_PRECISION,gBest_global_energy,1,

& MPI_DOUBLE_PRECISION,MPI_COMM_WORLD,ierror)

DO j = 1,num_cores

IF (gBest_global_energy(j) < gBest_local_energy) THEN

gBest_local_energy = gBest_global_energy(j)

gBest_local = gBest_global(:,j)

END IF

END DO

! Calculate Swarm Radius

IF (my_rank < num_cores-1) THEN

local_radius = SQRT(SUM((particle(:,1+my_rank*(P/num_cores))-gBest_local)**2))

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)

d = SQRT(SUM((particle(:,j)-gBest_local)**2))

IF (d > local_radius) THEN

local_radius = d

END IF

END DO

ELSE

local_radius = SQRT(SUM((particle(:,1+my_rank*(P/num_cores))-gBest_local)**2))

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)+MOD(P,num_cores)

d = SQRT(SUM((particle(:,j)-gBest_local)**2))

IF (d > local_radius) THEN

local_radius = d

52

END IF

END DO

END IF

CALL MPI_ALLREDUCE(local_radius,swarm_radius,1,MPI_DOUBLE_PRECISION,MPI_MAX,

& MPI_COMM_WORLD,ierror)

! Initialize iterations iterations = 0

DO WHILE ((swarm_radius > 1E-09) .AND. (iterations < max_iter))

CALL INIT_RANDOM_SEED(my_rank)

iterations = iterations + 1 ! counter

omega = omega_max-((omega_max-omega_min)*REAL(iterations,DBL))/REAL(max_iter,DBL)

! Update velocity

DO i = 1,3*N

IF (my_rank < num_cores-1) THEN

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)

CALL RANDOM_NUMBER(r1)

CALL RANDOM_NUMBER(r2)

velocity(i,j) = omega*velocity(i,j) + r1*c1*(pBest(i,j) - particle(i,j))&

+ r2*c2*(gBest_local(i) - particle(i,j))

! Apply velocity boundaries

IF (velocity(i,j) > V_max) THEN

velocity(i,j) = V_max

ELSE IF (velocity(i,j) < -V_max) THEN

velocity(i,j) = -V_max

END IF

END DO

ELSE

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)+MOD(P,num_cores)

53

CALL RANDOM_NUMBER(r1)

CALL RANDOM_NUMBER(r2)

velocity(i,j) = omega*velocity(i,j) + r1*c1*(pBest(i,j) - particle(i,j))&

+ r2*c2*(gBest_local(i) - particle(i,j))

! Apply velocity boundaries

IF (velocity(i,j) > V_max) THEN

velocity(i,j) = V_max

ELSE IF (velocity(i,j) < -V_max) THEN

velocity(i,j) = -V_max

END IF

END DO

END IF

END DO

! Update position

IF (my_rank < num_cores-1) THEN

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)

particle(:,j) = particle(:,j) + velocity(:,j)

END DO

ELSE

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)+MOD(P,num_cores)

particle(:,j) = particle(:,j) + velocity(:,j)

END DO

END IF

! Update pBest

IF (my_rank < num_cores-1) THEN

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)

particle_energy(j) = potential(particle(:,j),K,B,N)

54

IF (particle_energy(j) < pBest_energy(j)) THEN

pBest(:,j) = particle(:,j)

pBest_energy(j) = particle_energy(j)

END IF

END DO

ELSE

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)+MOD(P,num_cores)

particle_energy(j) = potential(particle(:,j),K,B,N)

IF (particle_energy(j) < pBest_energy(j)) THEN

pBest(:,j) = particle(:,j)

pBest_energy(j) = particle_energy(j)

END IF

END DO

END IF

! Update gBest_local, gBest_local_energy, and gBest_global

IF (my_rank < num_cores-1) THEN

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)

IF (pBest_energy(j) < gBest_local_energy) THEN

gBest_local = pBest(:,j)

gBest_local_energy = pBest_energy(j)

END IF

END DO

ELSE

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)+MOD(P,num_cores)

IF (pBest_energy(j) < gBest_local_energy) THEN

gBest_local = pBest(:,j)

gBest_local_energy = pBest_energy(j)

55

END IF

END DO

END IF

CALL MPI_ALLGATHER(gBest_local,3*N,MPI_DOUBLE_PRECISION,gBest_global,3*N,

& MPI_DOUBLE_PRECISION,MPI_COMM_WORLD,ierror)

CALL MPI_ALLGATHER(gBest_local_energy,1,MPI_DOUBLE_PRECISION,gBest_global_energy,1,

& MPI_DOUBLE_PRECISION,MPI_COMM_WORLD,ierror)

DO j = 1,num_cores

IF (gBest_global_energy(j) < gBest_local_energy) THEN

gBest_local_energy = gBest_global_energy(j)

gBest_local = gBest_global(:,j)

END IF

END DO

! Calculate Swarm Radius

IF (my_rank < num_cores-1) THEN

local_radius = SQRT(SUM((particle(:,1+my_rank*(P/num_cores))-gBest_local)**2))

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)

d = SQRT(SUM((particle(:,j)-gBest_local)**2))

IF (d > local_radius) THEN

local_radius = d

END IF

END DO

ELSE

local_radius = SQRT(SUM((particle(:,1+my_rank*(P/num_cores))-gBest_local)**2))

DO j = 1+my_rank*(P/num_cores),(my_rank+1)*(P/num_cores)+MOD(P,num_cores)

d = SQRT(SUM((particle(:,j)-gBest_local)**2))

IF (d > local_radius) THEN

56

local_radius = d

END IF

END DO

END IF

CALL MPI_ALLREDUCE(local_radius,swarm_radius,1,MPI_DOUBLE_PRECISION,MPI_MAX,

& MPI_COMM_WORLD,ierror)

END DO

IF (my_rank==0) THEN

CALL CPU_TIME(end_time)

WRITE(*,*)’T = ’,end_time-start_time

WRITE(*,*)’iterations = ’,iterations

WRITE(*,*)’Final Energy = ’,gBest_local_energy

WRITE(*,*)’Swarm_Radius = ’,swarm_radius

END IF

! Deallocate memory

DEALLOCATE(particle,velocity,pBest,gBest_local,gBest_global,& particle_energy,&

pBest_energy,gBest_global_energy)

CALL MPI_FINALIZE(ierror)

END PROGRAM

57

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Optimization
	Deterministic Algorithms
	Stochastic Algorithms

	Particle Swarm Optimization
	Swarm Intelligence
	Particle Swarm Optimization
	Global Best PSO
	Local Best PSO

	PSO Characteristics
	Velocity Clamping
	Parameters
	Social Network Structures
	Termination Conditions

	Nonlinear Molecular Model
	Bond Potential
	Angle Potential
	Van der Waals Potential

	Implementation
	Serial Implementation
	Parallel Implementation

	Results
	Parameter Selection
	Minimal Energy Configuration
	Comparisons
	Conclusions
	Moving Forward

	References Cited
	FORTRAN Code
	Potential Function
	Serial PSO
	Parallel PSO

