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SUMMARY

The motion of a collisionless plasma is described by the Vlasov–Poisson (VP) system, or in the presence of
large velocities, the relativistic VP system. Both systems are considered in one space and one momentum
dimension, with two species of oppositely charged particles. A new identity is derived for both systems
and is used to study the behavior of solutions for large times. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider the Vlasov–Poisson system (VP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�t f +v�x f +E(t, x)�v f =0

�t g+ v

m
�x g−E(t, x)�vg=0

�(t, x)=
∫

( f (t, x,v)−g(t, x,v))dv

E(t, x)= 1

2

(∫ x

−∞
�(t, y)dy−

∫ ∞

x
�(t, y)dy

)
(1)

where t�0 is time, x ∈R is position, v∈R is momentum, f is the number density in phase space
of particles with mass one and positive unit charge, and g is the number density of particles with
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mass m>0 and negative unit charge. The effect of collisions is neglected. The initial conditions

f (0, x,v)= f0(x,v)�0

and

g(0, x,v)=g0(x,v)�0

for (x,v)∈R2 are given where it is assumed that f0,g0∈C1(R2) are nonnegative, compactly
supported, and satisfy the neutrality condition∫ ∫

f0 dv dx=
∫ ∫

g0 dv dx (2)

Using the notation

v̂m = v√
m2+v2

the relativistic Vlasov–Poisson system (RVP) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�t f + v̂1�x f +E�v f =0

�t g+ v̂m�x g−E�vg=0

�(t, x)=
∫

( f −g)dv

E(t, x)= 1

2

(∫ x

−∞
� dy−

∫ ∞

x
�dy

)
(3)

It is well known that solutions to (1) and (3) remain smooth for all t�0 with f (t, ·, ·) and
g(t, ·, ·) compactly supported for all t�0. In fact, this is known for the three-dimensional version
of (1) [1, 2], but not for the three-dimensional version of (3). The literature regarding large time
behavior of solutions is quite limited. Some time decay is known for the three-dimensional analog
of (1) [3–5]. Also, there are time decay results for (1) (in dimension 1) when the plasma is
monocharged (set g≡0) [6–8]. In the work that follows, two species of particles with opposite
charge are considered, thus the methods used in [6–8] do not apply. References [9–11] are
also mentioned as they deal with time-dependent rescalings and time decay for other kinetic
equations.

In the following section an identity is derived for (1) that shows certain positive quantities are
integrable in t on the interval [0,∞). The identity is modified to address (3) also, but the results
are weaker. These identities seem to be linked to the one-dimensional situation and do not readily
generalize to higher dimension. Additionally, it is not clear if there is an extension that allows for
more than two species of particles. However, as this model allows for attractive forces between
ions of differing species, it is sensible to expect that additional species of ions will only strengthen
repulsive forces and cause solutions to decay faster in time. In Section 3, the L4 integrability of
both the positive and negative charge is derived and used to show time decay of the local charge.
Finally, in Section 4, the main identity and L4 integrability will be used to show decay in time of
the electric field for both (1) and (3).
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2. THE IDENTITY

The basic identities for (1) and (3) will be derived in this section. The following theorem lists
their main consequences:

Theorem 2.1
Assume that f0 and g0 are nonnegative, compactly supported, C1, and satisfy (2). Then, for a
solution to (1), there exists C>0 depending only on f0,g0, and m such that

∫ ∞

0

∫ ∫ ∫
f (t, x,w) f (t, x,v)(w−v)2 dwdv dx dt �C

∫ ∞

0

∫ ∫ ∫
g(t, x,w)g(t, x,v)(w−v)2 dwdv dx dt �C

and ∫ ∞

0

∫
E2
∫

( f +g)dv dx dt�C

For a solution to (3) there is C>0 depending only on f0,g0, and m such that

∫ ∞

0

∫ ∫ ∫
f (t, x,w) f (t, x,v)(w−v)(ŵ1− v̂1)dwdv dx dt �C

∫ ∞

0

∫ ∫ ∫
g(t, x,w)g(t, x,v)(w−v)(ŵm− v̂m)dwdv dx dt �C

and ∫ ∞

0

∫
E2
∫

( f +g)dv dx dt�C

Moreover, (w−v)(ŵm− v̂m)�0 for all w,v∈R, m>0.

Proof
Suppose

�t a+�(v)�xa+B(t, x)�va=0 (4)

where a(t, x,v),�(v), B(t, x) are C1, and a(t, ·, ·) is compactly supported for each t�0. Let

A(t, x)=
∫

a dv

and

A(t, x)=
∫ x

−∞
A(t, y)dy
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Note that �xA= A and

�tA= −
∫ x

−∞

∫
(�(v)�ya(t, y,v)+B(t, y)�va(t, y,v))dy dv

= −
∫

�(v)a(t, x,v)dv

By (4) it follows that

0 = A(t, x)
∫

v(�t a+�(v)�xa+B(t, x)�va)dv

=: I +II+III (5)

Then,

I = �t

(
A

∫
av dv

)
−(�tA)

∫
av dv

= �t

(
A

∫
av dv

)
+
(∫

av dv

)(∫
a�(v)dv

)
(6)

II = �x

(
A

∫
av�(v)dv

)
−A

∫
av�(v)dv (7)

and

III = −AB
∫

a dv

= −ABA

= −B�x

(
1

2
A2

)

= −�x

(
1

2
A2B

)
+ 1

2
A2�x B (8)

Using (6), (7), and (8) in (5) we obtain

0= �t

(
A

∫
av dv

)
+�x

(
A

∫
av�(v)dv− 1

2
A2B

)

+
(∫

av dv

)(∫
a�(v)dv

)
−A

∫
av�(v)dv+ 1

2
A2�x B (9)

Next consider (1) and let

F(t, x) :=
∫

f dv, G(t, x) :=
∫

gdv

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:2115–2132
DOI: 10.1002/mma



DECAY IN TIME FOR A ONE-DIMENSIONAL TWO-COMPONENT PLASMA 2119

and

F(t, x) :=
∫ x

−∞
F(t, y)dy, G :=

∫ x

−∞
G(t, y)dy

Applying (9) twice, once with a= f , �(v)=v, and B=E , and once with a=g, �(v)=v/m, and
B=−E , and adding the results we find

0= �t

(
F

∫
f v dv+G

∫
gv dv

)
+�x

(
F

∫
f v2 dv+m−1G

∫
gv2 dv

)

−�x

(
1

2
F2E− 1

2
G2E

)
+
(∫

f v dv

)2

+m−1
(∫

gv dv

)2

−F
∫

f v2 dv−m−1G
∫

gv2 dv+ 1

2
F2�− 1

2
G2� (10)

It follows directly from (1) and (2) that∫
�(t, x)dx=

∫
�(0, x)dx=0

and hence that E→0 as |x |→∞. In addition,

E=F−G

Hence ∫
(F2−G2)�dx =

∫
(F+G)E�x E dx

= −1

2

∫
�x (F+G)E2 dx

= −1

2

∫
(F+G)E2 dx

Integration of (10) in x yields

0= d

dt

(∫
F

∫
f v dv dx+

∫
G

∫
gv dv dx

)

+
∫ [(∫

f v dv

)2

−F
∫

f v2 dv+m−1

((∫
gv dv

)2

−G
∫

gv2 dv

)]
dx

−1

4

∫
(F+G)E2 dx (11)

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:2115–2132
DOI: 10.1002/mma



2120 R. GLASSEY, S. PANKAVICH AND J. SCHAEFFER

Note that exchanging w and v we can express

−
(∫

f v dv

)2

+F
∫

f v2 dv =
(∫

f (t, x,w)dw

)(∫
f (t, x,v)v2 dv

)

−
(∫

f (t, x,w)wdw

)(∫
f (t, x,v)v dv

)

=
∫ ∫

f (t, x,w) f (t, x,v)

(
1

2
w2+ 1

2
v2−wv

)
dwdv

= 1

2

∫ ∫
f (t, x,w) f (t, x,v)(w−v)2 dwdv

and similarly for g. Thus, (11) yields

d

dt

(∫
F

∫
f v dv dx+

∫
G

∫
gv dv dx

)
= 1

2

∫ ∫ ∫
f (t, x,w) f (t, x,v)(w−v)2 dwdv dx

+1

2
m−1

∫ ∫ ∫
g(t, x,w)g(t, x,v)(w−v)2 dwdv dx

+1

4

∫
(F+G)E2 dx

� 0 (12)

Consider the energy ∫ ∫
( f +m−1g)v2 dv dx+

∫
E2 dx

Note that due to (2), E(t, ·) is compactly supported and
∫
E2 dx is finite (this would fail without (2)).

It is standard to show that the energy is constant in t . Similarly,
∫∫

f dv dx=∫∫ gdv dx is constant
and f,g�0. Hence,∣∣∣∣

∫
F

∫
f v dv dx

∣∣∣∣�C
∫ ∫

f |v|dv dx

�C

(∫ ∫
f dv dx

)1/2(∫ ∫
f v2 dv dx

)1/2

�C

and similarly for g. Now it follows from (12) that∫ ∞

0

∫ ∫ ∫
( f (t, x,w) f (t, x,v)+g(t, x,w)g(t, x,v))(w−v)2 dwdv dx dt�C (13)

and ∫ ∞

0

∫
(F+G)E2 dx dt�C (14)
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Next consider (3). Applying (9) twice, once with a= f , �(v)= v̂1, B=E and once with a=g,
�(v)= v̂m , B=−E , and adding the results we obtain

0= �t

(
F

∫
f v dv+G

∫
gv dv

)
+�x

(
F

∫
f vv̂1 dv+G

∫
gvv̂m dv

)

−�x

(
1

2
F2E− 1

2
G2E

)
+
(∫

f v dv

)(∫
f v̂1 dv

)
+
(∫

gv dv

)(∫
gv̂m dv

)

−F
∫

f vv̂1 dv−G
∫

gvv̂m dv+ 1

2
F2�− 1

2
G2�

Proceeding as before we obtain the result

0= d

dt

(∫
F

∫
f v dv dx+

∫
G

∫
gv dv dx

)

+
∫ [(∫

f v dv

)(∫
f v̂1 dv

)
−F

∫
f vv̂1 dv

+
(∫

gv dv

)(∫
gv̂m dv

)
−G

∫
gvv̂m dv

]
dx

−1

4

∫
(F+G)E2 dx (15)

Note that

−
(∫

f v dv

)(∫
f v̂1 dv

)
+F

∫
f vv̂1 dv

=
(∫

f (t, x,w)dw

)(∫
f (t, x,v)vv̂1 dv

)
−
(∫

f (t, x,w)wdw

)(∫
f (t, x,v)v̂1 dv

)

= 1

2

∫ ∫
f (t, x,w) f (t, x,v)(vv̂1+wŵ1−wv̂1−vŵ1)dwdv

= 1

2

∫ ∫
f (t, x,w) f (t, x,v)(w−v)(ŵ1− v̂1)dwdv

By the mean value theorem for any w and v, there is � between them such that

ŵ1− v̂1=(1+�2)−3/2(w−v)

and hence

(w−v)(ŵ1− v̂1)=(1+�2)−3/2(w−v)2�0 (16)

Similar results hold for g. For solutions to (3)∫ ∫
( f
√
1+|v|2+g

√
m2+|v|2)dv dx+ 1

2

∫
E2 dx=const
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and mass is conserved so∣∣∣∣
∫

F

∫
f v dv dx+

∫
G

∫
gv dv dx

∣∣∣∣�C
∫ ∫

f |v|dv dx+C
∫ ∫

g|v|dv dx

�C

Hence, it follows by integrating (15) in t that∫ ∞

0

∫ ∫ ∫
f (t, x,w) f (t, x,v)(w−v)(ŵ1− v̂1)dwdv dx dt �C

∫ ∞

0

∫ ∫ ∫
g(t, x,w)g(t, x,v)(w−v)(ŵm− v̂m)dwdv dx dt �C

and ∫ ∞

0

∫
(F+G)E2 dx dt�C

Theorem 2.1 now follows. �

3. DECAY ESTIMATES

In this section we will derive some consequences of the identity from the previous section. We
begin by taking m=1 and defining v̂ := v̂m = v̂1. Consider solutions to either system (1) or system
(3), and define as above

F(t, x)=
∫

f (t, x,v)dv, G(t, x)=
∫

g(t, x,v)dv

Theorem 3.1
Let f,g satisfy the VP system (1). Assume that the data functions f0,g0 satisfy the hypotheses of
Theorem 2.1. Then ∫ ∞

0

∫
F4(t, x)dx dt<∞

and ∫ ∞

0

∫
G4(t, x)dx dt<∞

When f,g satisfy the RVP system (3) and the data functions f0,g0 satisfy the hypotheses of
Theorem 2.1 we have ∫ ∞

0

(∫
F(t, x)7/4 dx

)4

dt<∞

with the same result valid for G.

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:2115–2132
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Proof
Consider the classical case (1). By Theorem 2.1 we know that

k(t, x) :=
∫ ∫

(w−v)2 f (t, x,v) f (t, x,w)dv dw

is integrable over all x, t . Next we partition the set of integration

F(t, x)2=
∫ ∫

f (t, x,v) f (t, x,w)dv dw=
∫

|v−w|<R
+
∫

|v−w|>R
=: I1+ I2

Clearly, we have I2�R−2k(t, x). In the integral for I1 we express∫
|v−w|<R

f (t, x,w)dw=
∫ v+R

v−R
f (t, x,w)dw�2‖ f0‖∞R

Thus

I1�c ·R ·F
Set RF= R−2k or R=k1/3F−1/3. Then F4(t, x)�ck(t, x); hence, F4(t, x) is integrable over all
x, t . The result for G is exactly the same.

Now we will find by a similar process the corresponding estimate for solutions to the relativistic
version (3). To derive it we will use the estimate from (16), which implies that for 1+|v|+|w|�S,
there is a constant c>0 such that

(v−w)(v̂−ŵ)�cS−3|v−w|2

From Theorem 2.1 with m=1 we know that

kr (t, x) :=
∫ ∫

(v−w)(v̂−ŵ) f (t, x,v) f (t, x,w)dv dw

is integrable over all x, t . Now express

F(t, x)2=
∫ ∫

f (t, x,v) f (t, x,w)dv dw=
∫

(v−w)(v̂−ŵ)<R
+
∫

(v−w)(v̂−ŵ)>R
=: I1+ I2

Clearly, I2�R−1kr (t, x). To estimate I1 we partition it as

I1=
∫ ∫

(v−w)(v̂−ŵ)<R
1+|v|+|w|<S

f (t, x,v) f (t, x,w)dv dw+
∫ ∫

(v−w)(v̂−ŵ)<R
1+|v|+|w|>S

f (t, x,v) f (t, x,w)dv dw=: I ′
1+ I ′′

1

On I ′
1 we have by the above estimate

R�(v−w)(v̂−ŵ)�c|v−w|2S−3

Therefore, on I ′
1 we have |v−w|<cR1/2S3/2 so that

I ′
1�c

∫
f (t, x,v)

∫ v+cR1/2S3/2

v−cR1/2S3/2
f (t, x,w)dwdv�c ·F(t, x) ·R1/2S3/2
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I ′′
1 is more troublesome. By the energy and mass bounds,

I ′′
1 �S−1

∫ ∫
(1+|v|+|w|) f (t, x,v) f (t, x,w)dv dw�cS−1e(t, x)F(t, x)

where e(t, x)=∫ √
1+v2 f (t, x,v)dv. Find S first by setting

F(t, x) ·R1/2S3/2= S−1e(t, x)F(t, x)

that is,

S=e(t, x)2/5R−1/5

Thus, we obtain for I1 the bound

I1�cS−1e(t, x)F(t, x)=cF(t, x)R1/5e(t, x)3/5

Above we had I2�R−1kr (t, x). Therefore, now set

F(t, x)R1/5e(t, x)3/5= R−1kr (t, x)

to find R. The result is

R=kr (t, x)
5/6F(t, x)−5/6e(t, x)−1/2

Finally, then

F(t, x)2�cR−1kr (t, x)=ckr (t, x)
1/6F(t, x)5/6e(t, x)1/2

which is the same as F(t, x)7/e(t, x)3�ckr (t, x). At this point we may integrate in time to produce
the result ∫ ∞

0

∫
(
∫
f (t, x,v)dv)7

(
∫ √

1+v2 f (t, x,v)dv)3
dx dt<∞ (17)

Alternatively, we can isolate F(t, x)7 on the left-hand side to find F(t, x)7�ckr (t, x)e(t, x)3. Then
raise both sides to the 1

4 th power, integrate in x and use Hölder’s inequality. Hence, we obtain the
bound ∫

F(t, x)7/4 dx�
(∫

kr (t, x)dx

)1/4(∫
e(t, x)dx

)3/4

We use the time-independent bound on
∫
e(t, x)dx from conservation of energy to obtain the

estimate ∫
F(t, x)7/4 dx�C

(∫
kr (t, x)dx

)1/4

Finally, we raise both sides to the fourth power and integrate in time to produce the result∫ ∞

0

(∫
F(t, x)7/4 dx

)4

dt<∞ (18)

This is the corresponding estimate for solutions to (3). �
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DECAY IN TIME FOR A ONE-DIMENSIONAL TWO-COMPONENT PLASMA 2125

Now we will use these estimates to show that the local charges tend to 0 as t→∞ for solutions
to both sets of equations.

Theorem 3.2
Let f,g be solutions to either the classical VP system (1) or to the RVP system (3) for which the
assumptions of Theorem 3.1 hold. Then for any fixed R>0 the local charges satisfy

lim
t→∞

∫
|x |<R

F(t, x)dx= lim
t→∞

∫
|x |<R

G(t, x)dx=0

Proof
We begin with solutions to the classical equation (1). From above we know that∫ ∞

0

∫
F4(t, x)dx dt<∞

By the Hölder inequality

∫
|x |<R

F(t, x)dx�
(∫

F4(t, x)dx

)1/4

(2R)3/4

and therefore ∫ ∞

0

[∫
|x |<R

F(t, x)dx

]4
dt<∞ (19)

Now by the Vlasov equation for f

Ft =−
∫

(v fx +E fv)dv=−�x
∫

v f dv

Integrate this formula in x over |x |<R

�t
∫

|x |<R
F(t, x)dx=−

∫
|x |<R

�x
∫

v f dv dx=−
∫

v f (t, R,v)dv+
∫

v f (t,−R,v)dv

Let

j f (t, x)=
∫

v f (t, x,v)dv

Then j f (t, x) is boundedly integrable over all x by the energy. Next we compute

�t

[∫
|x |<R

F(t, x)dx

]4
= 4

[∫
|x |<R

F(t, x)dx

]3 ∫
|x |<R

Ft (t, x)dx

= 4

[∫
|x |<R

F(t, x)dx

]3
[− j f (t, R)+ j f (t,−R)]

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:2115–2132
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2126 R. GLASSEY, S. PANKAVICH AND J. SCHAEFFER

For 0<R1<R2 integrate this in R over [R1, R2]

d

dt

∫ R2

R1

[∫
|x |<R

F(t, x)dx

]4
dR = 4

∫ R2

R1

[∫
|x |<R

F(t, x)dx

]3
[− j f (t, R)+ j f (t,−R)]dR

� 4

[∫
|x |<R2

F(t, x)dx

]3 ∫ R2

R1

|− j f (t, R)+ j f (t,−R)|dR

� c

[∫
|x |<R2

F(t, x)dx

]3

for some constant c depending only on the data. For t2>t1>1 multiply this by t− t1 and integrate
in t over [t1, t2]∫ t2

t1
(t− t1)�t

∫ R2

R1

[∫
|x |<R

F(t, x)dx

]4
dR dt�c

∫ t2

t1
(t− t1)

[∫
|x |<R2

F(t, x)dx

]3
dt

Integrating the left-hand side by parts we obtain

(t2− t1)
∫ R2

R1

[∫
|x |<R

F(t2, x)dx

]4
dR−

∫ t2

t1

∫ R2

R1

[∫
|x |<R

F(t, x)dx

]4
dR dt

Now take t2= t, t1= t−1. Then we have

∫ R2

R1

[∫
|x |<R

F(t, x)dx

]4
dR

�
∫ t

t−1

∫ R2

R1

[∫
|x |<R

F(t, x)dx

]4
dR dt+c

∫ t

t−1
(t− t1)

[∫
|x |<R2

F(t, x)dx

]3
dt

�
∫ t

t−1
(R2−R1)

[∫
|x |<R2

F(t, x)dx

]4
dt+c

∫ t

t−1

[∫
|x |<R2

F(t, x)dx

]3
dt (20)

Now take R2=2R1=2R say. Then the left-hand side of (20) is bounded below by

(R2−R1)

[∫
|x |<R1

F(t, x)dx

]4
= R

[∫
|x |<R

F(t, x)dx

]4

and we claim that the right-hand side tends to 0 as t→∞. This is clear for the first term on the
right-hand side of (20) by using (19). The second term goes to 0, as well, as

∫ t

t−1

[∫
|x |<R2

F(t, x)dx

]3
dt�

(∫ t

t−1

[∫
|x |<R2

F(t, x)dx

]4
dt

)3/4

·
(∫ t

t−1
dt

)1/4

The same computation establishes the estimate for G, and the result now follows in the
classical case.
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The proof for the relativistic case is similar. From above we know that∫ ∞

0

(∫
F(t, x)7/4 dx

)4

dt<∞

By the Hölder inequality ∫
|x |<R

F(t, x)dx�cR

(∫
F7/4(t, x)dx

)4/7

and therefore ∫ ∞

0

[∫
|x |<R

F(t, x)dx

]7
dt<∞

Using the Vlasov equation (3) for f we have

Ft =−
∫

(v̂ fx +E fv)dv=−�x
∫

v̂ f dv

Integrate this formula in x over |x |<R

�t
∫

|x |<R
F(t, x)dx=−

∫
|x |<R

�x
∫

v̂ f dv dx=−
∫

v̂ f (t, R,v)dv+
∫

v̂ f (t,−R,v)dv

Let

jrf (t, x)=
∫

v̂ f (t, x,v)dv

Then jrf (t, x) is boundedly integrable over all x by the mass bound. Next we compute

�t

[∫
|x |<R

F(t, x)dx

]7
= 7

[∫
|x |<R

F(t, x)dx

]6 ∫
|x |<R

Ft (t, x)dx

= 7

[∫
|x |<R

F(t, x)dx

]6
[− jrf (t, R)+ jrf (t,−R)]

The proof now concludes exactly as in the classical case. �

4. TIME DECAY OF ELECTRIC FIELD

We conclude this paper with results concerning the time integrability and decay of the electric
field for both the classical and relativistic systems, (1) and (3).

Theorem 4.1
Let the assumptions of Theorem 3.1 hold and consider solutions f,g to either (1) or (3). Then∫ ∞

0
‖E(t)‖3∞ dt<∞
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Proof
This will follow immediately from the result in Theorem 2.1 that

Q(t) :=
∫ ∞

−∞
E2(t, x) [F(t, x)+G(t, x)] dx

is integrable in time. Indeed by the equation Ex =�=∫ ( f −g)dv=F−G, we have

�
�x

E3=3E2�=3E2(F−G)

Integrate in x to obtain

E3(t, x)=
∫ x

−∞
3E2(F−G)dx

so that

|E(t, x)|3�
∫ ∞

−∞
3E2(F+G)dx=3Q(t) (21)

and the result follows as claimed. �

Our final results will show that for solutions to the classical VP system (1) and RVP system (3),
the electric field E tends to 0 in the maximum norm.

Theorem 4.2
Let the assumptions of Theorem 3.1 hold and consider solutions f,g to the classical VP system (1).
Then

lim
t→∞‖E(t)‖∞ =0

Proof
We will show that

lim
t→∞Q(t)=0

The conclusion will then follow from (21). As Q(t) is integrable over [0,∞), liminfQ(t)=0.
Therefore, there is a sequence tn tending to infinity such that Q(tn)→0 as n→∞. As above, we
denote

F(t, x)=
∫

f (t, x,v)dv, G(t, x)=
∫

g(t, x,v)dv

Using Ex =�=F−G and Et =− j =−∫ v( f −g)dv we first compute

dQ

dt
= −2

∫
j E(F+G)dx+

∫
E2�t (F+G)dx

= −2
∫

j E(F+G)dx−
∫

E2�x
∫

v( f +g)dv dx

= −2
∫

j E(F+G)dx+2
∫

�E
∫

v( f +g)dv dx
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Now, E is uniformly bounded because by definition in (1),

|E(t, x)|�
∫ x

−∞
(F+G)(t, x)dx�

∫ ∞

−∞
(F+G)(t, x)dx�const

where the last inequality follows by conservation of mass. Therefore∣∣∣∣dQdt
∣∣∣∣�c

∫
(F+G)

∫
|v|( f +g)dv dx

Define e to be the kinetic energy density

e(t, x) :=
∫

v2( f +g)dv

Then in the usual manner we obtain∫
|v|( f +g)dv =

∫
|v|<R

|v|( f +g)dv+
∫

|v|>R
|v|( f +g)dv

� ‖ f +g‖∞·R2+R−1e

� c(R2+R−1e)

Choosing R3=e we find that ∫
|v|( f +g)dv�ce2/3(t, x)

and therefore ∣∣∣∣dQdt
∣∣∣∣�c

∫
(F+G)e2/3 dx�c

(∫
(F+G)3 dx

)1/3

(22)

by the Hölder inequality and the bound on kinetic energy from Section 2. By interpolation, for
suitable functions w,

‖w‖3�‖w‖�
1 ·‖w‖1−�

4

where

1

3
= �

1
+ 1−�

4

Therefore, �= 1
9 . Apply this to w=F+G and use the boundedness of F+G in L1 to obtain

‖F+G‖3�c‖F+G‖8/94

Using this above we conclude that ∣∣∣∣dQdt
∣∣∣∣�c‖F+G‖8/94
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From Theorem 3.1 we know that
∫
(F4+G4)dx is integrable in time. Thus, |dQ/dt |9/2 is integrable

in time. Now, for any 0<R1<R2 express

Q(R2)
16/9−Q(R1)

16/9= 16

9

∫ R2

R1

Q(t)7/9 Q̇(t)dt

By the Hölder inequality again, with p= 9
7 and q= 9

2 ,

|Q(R2)
16/9−Q(R1)

16/9|�c

(∫ R2

R1

Q(t)dt

)7/9

·
(∫ R2

R1

|Q̇(t)|9/2 dt
)2/9

→0

as R1, R2→∞. Therefore, the limit

lim
R→∞Q(R)16/9

exists and equals �, say. By taking R= tn and letting n→∞ we obtain that �=0. This concludes
the proof. �

Theorem 4.3
Let the assumptions of Theorem 2.1 hold and consider solutions f,g to the RVP system (3). Then,
also in this case

lim
t→∞‖E(t)‖∞ =0

Proof
As is to be expected, the proof is similar to that of Theorem 4.2. From Theorem 2.1 we have again
that Q(t) is integrable in time, where exactly as in the non-relativistic case

Q(t)=
∫ ∞

−∞
E2(t, x)[F(t, x)+G(t, x)]dx

In this situation, we have �=∫ ( f −g)dv and (with m=1) j =∫ v̂( f −g)dv where v̂=v/
√
1+v2

so that |v̂|<1. The computation of the derivative in time is now

dQ

dt
= −2

∫
j E(F+G)dx+

∫
E2�t (F+G)dx

= −2
∫

j E(F+G)dx−
∫

E2�x
∫

v̂( f +g)dv dx

= −2
∫

j E(F+G)dx+2
∫

�E
∫

v̂( f +g)dv dx

It follows that ∣∣∣∣dQdt
∣∣∣∣�c

∫
|E |(F+G)2 dx�c

∫
(F+G)2 dx
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because E is uniformly bounded. Let e be the relativistic kinetic energy density,

e(t, x)=
∫ √

1+v2( f +g)dv

Then as above

F+G =
∫

( f +g)dv

=
∫

|v|<R
( f +g)dv+

∫
|v|>R

( f +g)dv

� ‖ f +g‖∞·2R+R−1e

� c(R+R−1e)

Hence, with R2=e we find that F+G�ce1/2. Thus, we see that∣∣∣∣dQdt
∣∣∣∣�c

∫
edx�c

In view of Remark 1 then, Q(t)→0 as t→∞, which implies the result for E as in the classical
case. �

Remarks

1. Once Q(t) is integrable in time, the uniform boundedness of |dQ/dt | also implies that
Q(t)→0 as t→∞. Estimate (22) provides the desired bound in the classical case because
(F+G)3 is dominated by the energy integral in this situation.

2. For solutions to (1) or (3), using interpolation with Theorem 4.2 or Theorem 4.3, and the
bound on ‖E(t)‖2 from energy conservation we find that

lim
t→∞‖E(t)‖p =0

for any p>2.
3. We have been unable to find a rate of decay for the maximum norm of E . For solutions to

the classical VP system in three-space dimensions such a rate follows from differentiating in
time an expression essentially of the form∫ ∫

|x− tv|2( f +g)dv dx

(cf. [4, 5]). This estimate fails to imply time decay in the current one-dimensional case.
4. An identity similar to that in the proof of Theorem 2.1 holds for solutions to the ‘one-

and one-half-dimensional’ Vlasov–Maxwell system. However, we have been unable to show
that certain terms arising from the linear parts of the differential operators have the proper
sign.

5. As stated in the Introduction, such decay theorems should be true for several species under
the hypothesis of neutrality. However, we have been unable to achieve this generalization for
more than two species.

6. After suitable approximation, these results can be seen to be valid for weak solutions as
well.
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