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a b s t r a c t 

The problem of a spatially discontinuous diffusion coefficient ( D ( x )) is one that may be encountered in hydrogeo- 

logic systems due to natural geological features or as a consequence of numerical discretization of flow properties. 

To date, mass-transfer particle-tracking (MTPT) methods, a family of Lagrangian methods in which diffusion is 

jointly simulated by random walk and diffusive mass transfers, have been unable to solve this problem. This 

manuscript presents a new mass-transfer (MT) algorithm that enables MTPT methods to accurately solve the 

problem of discontinuous D ( x ). To achieve this, we derive a semi-analytical solution to the discontinuous D ( x ) 

problem by employing a predictor-corrector approach, and we use this semi-analytical solution as the weighting 

function in a reformulated MT algorithm. This semi-analytical solution is generalized for cases with multiple 1D 

interfaces as well as for 2D cases, including a 2 × 2 tiling of 4 subdomains that corresponds to a numerically- 

generated diffusion field. The solutions generated by this new mass-transfer algorithm closely agree with an 

analytical 1D solution or, in more complicated cases, trusted numerical results, demonstrating the success of our 

proposed approach. 
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. Introduction 

Simulating diffusive transport under the condition of a spatially dis-

ontinuous diffusion coefficient is a challenging problem that is fre-

uently encountered in hydrogeological contexts ( Uffink, 1983; LaBolle

t al., 2000; Appuhamillage et al., 2010; Semra et al., 1970; Oukili et al.,

019 ). Physically, this can occur wherever there is an abrupt change in

he material properties of a medium, like the sharp interfaces between

ifferent depositional units. Sharp discontinuities can also be seen in, for

xample: fractured or composite media, local compaction zones, or at

he interface between a saturated and unsaturated zone. From a numer-

cal perspective, any non-constant hydraulic conductivity field that is

iscretized will generate a diffusion/dispersion field containing numer-

us discontinuities. Interpolation or averaging methods have been used

n the past to smooth these discontinuities, and these can be effective as

ong as the differences in magnitude of the parameter(s) across the in-

erface is sufficiently small (in general, less than an order of magnitude).

owever, when the difference in diffusion coefficients between cells, or

egions of a domain, becomes sufficiently large, the simplest versions of

hese methods can fail, and overcoming this challenge requires a more

uanced approach. 
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Random-walk particle-tracking (RWPT) methods are a class of

tochastic Lagrangian (mesh-free or gridless) methods that are com-

only used to simulate advective-diffusive transport. These meth-

ds were originally formulated in the context of conservative (non-

hemically reactive) transport or cases of simple, linear reactions, such

s sorbing solutes or first-order decay ( LaBolle et al., 1996; Salamon

t al., 2006 ). They are popular because they introduce no numerical dif-

usion into the simulation of the advection (hyperbolic) operator, and

hey also escape the burden imposed by restrictive stability conditions

n Eulerian (grid-based) methods, resulting in lower run times than cor-

esponding Eulerian methods ( Benson et al., 2017 ). Further, because

WPT is a stochastic algorithm, statistics of concentrations can be read-

ly generated instead of expected values (point estimates). In this con-

ext, the problem of discontinuous diffusion coefficients has received

uch attention, resulting in various methods for overcoming the diffi-

ulties of simulating such a system (e.g., Uffink, 1983 ; Appuhamillage

t al., 2010; Semra et al., 1970; Hoteit et al., 2002; Bechtold et al., 2011;

ukili et al., 2019; Bagtzoglou et al., 1992; LaBolle et al., 1996 ; 2000) ,

ach with their own merits and drawbacks. 

One of the major advantages of classical RWPT is its speed, due to

he fact that every particle is completely independent of its neighbors.
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c  
owever, this also means that complex reactions cannot be simulated

ince particle interactions are not allowed. Recent developments in

he field of RWPT have enabled methods to simulate complex and

onlinear chemical reactions in the presence of transport using either

ollision-based reactions between particles of opposite species ( Benson

nd Meerschaert, 2008; Paster et al., 2014; Bolster et al., 2016; Schmidt

t al., 2017; Sole-Mari et al., 2017; Sole-Mari and Fernàndez-Garcia,

018 ), or by treating individual particles as reaction volumes that com-

unicate via diffusive mass transfers ( Benson and Bolster, 2016 ). The

atter, referred to as mass-transfer particle-tracking (MTPT) algorithms,

ffer the increased flexibility of being able to model arbitrarily complex

hemical reactions at relatively low computational cost ( Engdahl et al.,

017; Schmidt et al., 2019b ), including generalized “reactions ” such

s the aging of water parcels ( Benson et al., 2019b ). The mass-transfer

MT) portion of these MTPT methods has been demonstrated to solve

he diffusion equation to  (Δ𝑡 ) ( Schmidt et al., 2018 ) and exhibit

uperlinear convergence as particle numbers grow large ( Schmidt et al.,

019a ). Additionally, a method for parallelizing the MTPT method

ia domain decomposition has recently been developed and achieves

inear speedup up to hundreds of computational cores/subdomains

 Engdahl et al., 2019 ). MTPT methods have also been shown to be

elated to smoothed-particle hydrodynamics (SPH) methods (e.g.,

errera et al., 2009 ; Herrera and Beckie, 2013; Gingold and Monaghan,

977 ; Monaghan, 2012) under specific modeling choices, including

he use of a Gaussian spatial kernel ( Sole-Mari et al., 2019b ). Despite

hese advances, past work on MTPT methods has neither addressed the

mpact of a discrete parameter field on the mass transfer operations nor

ccounted for the possible errors that may be incurred. 

All previously-mentioned random-walk methods may be employed

or diffusion coefficients with spatial discontinuities because they are

apable of simulating small-scale mixing and non-mixed spreading of

olute separately ( Benson et al., 2019a ). In other words, spreading may

e simulated by a random walk and mixing as a mass transfer. However,

ccuracy of the mass-transfer step is only preserved for a smoothly vary-

ng field (i.e., one in which interpolation may be reasonably performed),

nd the current MTPT schemes incur error when there is a sharp dis-

ontinuity. This is similar to the problems identified by LaBolle et al.

2000) for classical RWPT. MTPT has clear applications for highly ac-

urate simulations of mixing-limited reactive transport, but this issue

ndermines its accuracy. Thus, the purpose of the current paper is to

ddress this deficiency and ensure that MTPT methods remain accurate

ven in such a case. 

In Section 2 , we outline the specific mathematical problem on which

e will focus, and introduce the methods used to solve the problem in

ection 3 . In Section 3.1 , we provide a brief overview of RWPT methods

nd discuss how the problem of discontinuous diffusion coefficients is

ypically handled, with specific focus on a particular predictor-corrector

echnique ( LaBolle et al., 2000 ) that we extend to MTPT. In Section 3.2 ,

e outline our approach to solving the discontinuous diffusion coeffi-

ient problem with an MTPT method by employing an alternative mass-

ransfer kernel. Section 4 is devoted to discussing the results of apply-

ng the new MTPT method. Finally, Section 5 presents the conclusions

rawn from our work. 

. Analytic model 

We consider a chemically-conservative, single species, purely dif-

usive system that may be described by the (heterogeneous) diffusion

quation 

𝜕𝐶 

𝜕𝑡 
= ∇ ⋅ ( 𝐷( 𝒙 )∇ 𝐶 ) , 𝒙 ∈ Ω ⊆ ℝ 

𝑑 , 𝑡 > 0 , (1)

here C ( t , x ) [ mol L − 𝑑 ] is the concentration of the single species, D ( x )

 L 2 T 

−1 ] is the scalar diffusion coefficient, which, for our purposes, may

e a function of space. For this work, we concern ourselves with the con-

ition where D may be discontinuous. This case leads to infinite spatial
erivatives at all discontinuities, so the question is how best to numer-

cally evaluate the ∇ · D term within the chosen method to minimize

rtifacts of the discontinuity. The discontinuity we use for this study is

reated by partitioning the domain, Ω, into 𝑁 Ω subdomains such that

= Ω1 ∪ Ω2 ∪… ∪ Ω𝑁 Ω , where each subdomain has its own constant-

alued diffusion coefficient, 𝐷 𝑖 , 𝑖 = 1 , … , 𝑁 Ω, and the interface between

ubdomains i and j is denoted 𝛾 ij . 

. Computational methods 

.1. Random-walk particle-tracking method 

The classical Lagrangian method for simulating the system of inter-

st is standard random-walk particle-tracking (RWPT) ( Thomson, 1987;

aBolle et al., 1996 ). In these methods, masses are divided among par-

icles that simulate diffusion via the Langevin equation (formulated for

omogeneous D ) 

 𝑖 ( 𝑡 + Δ𝑡 ) = 𝑿 𝑖 ( 𝑡 ) + 𝝃𝑖 

√
2 𝐷Δ𝑡 , (2)

here X i ( t ) is the position of particle i at time t , Δt is the chosen sim-

lated timestep, and 𝝃i is a d -dimensional vector of random numbers

rawn from a standard normal,  (0 , 1) , distribution. In this basic form,

WPT methods are unable to simulate the problem of discontinuous

iffusion coefficients ( D ( x )), described in Section 2 . Conceptually, the

roblem is that, during the course of a single-step random walk, a par-

icle may “see ” diffusion at the rates on both sides of the discontinuity

n D ( x ); however, there are well-documented strategies for overcoming

his. 

The first general group of strategies are reflection methods ( Uffink,

983; Appuhamillage et al., 2010; Semra et al., 1970; Hoteit et al.,

002 ), which may include a nonlinearly decomposed time step

 Bechtold et al., 2011 ), interpolation methods ( Bagtzoglou et al., 1992 ),

r a combination thereof ( LaBolle et al., 1996 ). A selection of these

re reviewed and compared in LaBolle et al. (1998) , and the conclu-

ion reached therein is that, among the methods considered, those of

ffink (1983) ; Semra et al. (1970) provide the best accuracy. A bench-

ark comparison of various methods is also conducted by Lejay and

ichot (2016) who distinguish between methods that preserve or lose

mportant physical and numerical properties, and recent work of the

ame authors presents a method that employs skew Brownian motion

ensities with exponential timestepping to capture the dynamics of the

iscontinuous D ( x ) problem ( Lejay et al., 2019 ). Another recent ap-

roach ( Oukili et al., 2019 ) employs negative-mass particles in a partial

eflection scheme, so as to keep the total mass in a system constant and

aintain particle independence. 

To demonstrate how discontinuous D ( x ) is handled with RWPT, and

ecause we later use this method to generate reference solutions, we

riefly discuss the work of LaBolle et al. (2000) . We consider this method

ecause it bears resemblance to the algorithm we present in Section 3.2 .

lso, it is relatively simple to implement, and the extension to greater

han one spatial dimension is straightforward, unlike some other ap-

roaches. This method may be thought of as a predictor-corrector ap-

roach, and is formulated as 

 𝑖 = 𝑿 𝑖 ( 𝑡 ) + 𝝃𝑖 
√
2 𝐷( 𝑿 𝑖 )Δ𝑡 . (3)

 𝑖 ( 𝑡 + Δ𝑡 ) = 𝑿 𝑖 ( 𝑡 ) + 𝝃𝑖 
√
2 𝐷(  𝑖 )Δ𝑡 , (4)

n words, a “predictor ” random walk is first taken from X i ( t ) to  𝑖 in

3) to determine the diffusion coefficient that is then used in the “cor-

ected ” random walk from X i ( t ) to 𝑿 𝑖 ( 𝑡 + Δ𝑡 ) in (4) . A subtle but impor-

ant point is that the same random number, 𝝃i must be used in (4) that

as generated for (3) . 

.2. Mass-transfer particle-tracking method 

Another family of Lagrangian methods that has gained attention re-

ently are the mass-transfer particle-tracking (MTPT) methods, which
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re the focus of this work ( Benson and Bolster 2016; Engdahl et al.,

017; Schmidt et al., 2018, 2019a, 2019b ). These methods are quite

imilar to RWPT methods in that diffusion is typically still simulated,

n part, by random walks. However, the important distinction is that

article masses are no longer fixed and can be transferred among par-

icles according to an algorithm that also simulates diffusion. The MT

lgorithm may be given as 

 𝑖 ( 𝑡 + Δ𝑡 ) = 𝑚 𝑖 ( 𝑡 ) + 

𝑁 ∑
𝑗=1 

 𝑖𝑗 

[
𝑚 𝑗 ( 𝑡 ) − 𝑚 𝑖 ( 𝑡 ) 

]
, (5)

here m i ( t ) is the mass carried by particle i at time t, N is the number

f particles, and 

 𝑖𝑗 ∶= 

𝑊 ( 𝑿 𝑖 , 𝑿 𝑗 ; ℎ ) 
𝜌𝑖𝑗 

. (6)

ote that this formulation is equivalent to choosing 𝛽 = 1 , in the context

f Sole-Mari et al. (2019b) . Above, W is a Gaussian weighting function

hat determines the amount of mass transferred from particle j to par-

icle i (or vice-versa because W , in this case, is symmetric with respect

o X i and X j ) and 𝜌ij is a normalizing constant that ensures conservation

f mass. We specify here that this normalization would not be required

n the limiting, infinite-particle case, but for any finite number of parti-

les, N samples from the weighting function W (which is necessarily a

ensity) will not sum to unity and thus not conserve mass. As such, we

ormalize our discretized density according to (6) . 

In the case of isotropic diffusion, we have 

 ( 𝑿 𝑖 , 𝑿 𝑗 ; ( 𝐷 𝑖 + 𝐷 𝑗 )Δ𝑡 ) = 

(
2 𝜋( 𝐷 𝑖 + 𝐷 𝑗 )Δ𝑡 

)− 𝑑∕2 exp [ 

− 

‖𝑿 𝑗 − 𝑿 𝑖 ‖2 
2( 𝐷 𝑖 + 𝐷 𝑗 )Δ𝑡 

] 

, 

(7) 

here 𝑑 = 1 , 2 , 3 , is the number of spatial dimensions, and D k ≔ D ( X k ).

he matrix-vector form of (5) is written as 

 ( 𝑡 + Δ𝑡 ) = 𝑻 𝒎 ( 𝑡 ) , (8)

n which 

 ∶= 𝑰 +  − diag (  𝟏 ) , (9)

here I is the N × N identity matrix, 1 is an N × 1 vector of ones,

nd diag ( 𝒙 ) is a square matrix with the entries of vector x on its main

iagonal. A popular choice for 𝜌ij that results in symmetric  (and thus

onservation of mass by the operator T ) is 

𝑖𝑗 ∶= 

[ 𝑾 𝟏 ] 𝑖 + [ 𝟏 𝑇 𝑾 ] 𝑗 
, (10)
2 

plit by the line 𝑥 = 𝛾, and the point-source initial condition is located at 

 1 , 
r, in words, 𝜌ij is the arithmetic mean of the sums of row i and column

 . 

We see in the formulation outlined above that (7) is the analytical

olution to the diffusion equation over the interval [0, Δt ] as a function

f position X j , given a unit point source located at X i (or vice-versa, with

espect to X i and X j ). If we rewrite (7) as 

 ( 𝑿 𝑖 , 𝑿 𝑗 ; ( 𝐷 𝑖 + 𝐷 𝑗 )Δ𝑡 ) = 

(
2 𝜋( 𝐷 𝑖 + 𝐷 𝑗 )Δ𝑡 

)− 𝑑∕2 exp [ 

− 

‖𝑿 𝑗 − 𝑿 𝑖 ‖2 
2( 𝐷 𝑖 + 𝐷 𝑗 )Δ𝑡 

] 

= 

( 

4 𝜋
( 

𝐷 𝑖 + 𝐷 𝑗 

2 

) 

Δ𝑡 
) − 𝑑∕2 

exp 
⎡ ⎢ ⎢ ⎢ ⎣ − 

‖𝑿 𝑗 − 𝑿 𝑖 ‖2 
4 
(
𝐷 𝑖 + 𝐷 𝑗 

2 

)
Δ𝑡 

⎤ ⎥ ⎥ ⎥ ⎦ 
= 

(
4 𝜋𝐷̂ Δ𝑡 

)− 𝑑∕2 
exp 

[ 

− 

‖𝑿 𝑗 − 𝑿 𝑖 ‖2 
4 ̂𝐷 Δ𝑡 

] 

, (11) 

e see that his formulation computes an effective diffusion coefficient,
̂
 , as the arithmetic mean of the diffusion coefficients at particle lo-

ations X i and X j (or, equivalently, linearly interpolates the diffusion

oefficients between these two points and chooses the value located at

he midpoint). However, as discussed in LaBolle et al. (1996) , this lin-

ar interpolation fails in the case of discontinuous diffusion coefficients

ithout the inclusion of some sort of reflection scheme to account for

he infinite divergence in D at the interface. Put simply, this method

nly yields favorable results when D ( x ) can be reasonably approximated

ith a linear fit over distances on the order of 𝓁 ∶= 

√
( 𝐷 𝑖 + 𝐷 𝑗 )Δ𝑡 , and

learly a linear approximation of an infinitely steep gradient will not

uffice. We note here that if we employ a harmonic mean to compute 𝐷̂

n (11) we can obtain low-error results in 1D and in certain 2D cases,

ut this approximation is not reliable in general. As such, it would seem

hat we need a more flexible functional form for our weighting function

 , and the best possible choice would be the analytical solution to the

iffusion equation that accounts for discontinuities in D ( x ). 

.2.1. Analytical solution for mass-transfer weight function 
Carslaw and Jaeger (1959) present a relatively simple solution in 1D

or the problem of two subdomains. We generalize that solution here

or an instantaneous pulse of unit concentration at location 𝑥 = 𝑥 0 ∈
−∞, ∞) and time 𝑡 = 0 (i.e., 𝐶( 𝑡 = 0 , 𝑥 ) = 𝛿( 𝑥 − 𝑥 0 ) ). More specifically,

or a chosen 𝛾 ∈ (−∞, ∞) we define the subdomains to be Ω1 = (−∞, 𝛾]
nd Ω2 = ( 𝛾, ∞) , each with constant diffusion coefficients D 1 and D 2 ,

espectively. See Fig. 1 (a) for a conceptual depiction of this system. If

 0 ≥ 𝛾, we have 

 𝐴 ( 𝑡, 𝑥 ) = 𝐶 1 ( 𝑡, 𝑥 ; 𝐷 1 , 𝐷 2 ) 𝐼 Ω1 
( 𝑥 ) + 𝐶 2 ( 𝑡, 𝑥 ; 𝐷 1 , 𝐷 2 ) 𝐼 Ω2 

( 𝑥 ) , (12)
Fig. 1. Conceptual figures for the 

discontinuous diffusion coefficient 

problems we consider. (a) 1D prob- 

lem with 2 subdomains, Ω1 and 

Ω2 , with respective diffusion coeffi- 

cients D 1 and D 2 . The subdomains 

are split by the point 𝑥 = 𝛾, and the 

point-source initial condition is lo- 

cated at the point 𝑥 = 𝛾. (b) 2D 

problem with 2 subdomains, Ω1 and 

Ω2 , with respective diffusion coeffi- 

cients D 1 and D 2 . The subdomains are 

the point 𝒙 = ( 𝑥 0 , 𝑦 0 ) . (c) 2D problem with 4 subdomains, Ω1 , Ω2 , Ω3 , 

Ω4 , with respective diffusion coefficients 

D 2 , D 3 , D 4 . The subdomains are split by the 

lines 𝑥 = 𝛾𝑥 and 𝑦 = 𝛾𝑦 and the point-source 

initial condition is located at the point 

𝒙 = ( 𝑥 0 , 𝑦 0 ) . 
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Algorithm 1: Mass-transfer Algorithm for Non-symmetric Weight- 

ing Function 

Input : Particle positions, 𝑋 = 𝑿 ( 𝑡 ) , and particle masses 𝑚 = 𝒎 ( 𝑡 ) . 
Output : Updated particle masses, 𝑚 = 𝒎 ( 𝑡 + Δ𝑡 ) . 

⊳ Build weight matrix 
1 for i = 1 to N do 

2 for j = 1 to N do 

3 𝑊 ( 𝑖, 𝑗) = WtFunction( 𝑥 0 = 𝑋( 𝑗) , 𝑥 = 𝑋( 𝑖 ) , 𝛾, 𝐷 1 , 𝐷 2 , Δ𝑡 ) 
4 end 

5 end 

⊳ Normalize weight matrix 
6 for i = 1 to N do 

7 for j = 1 to N do 

8 𝑊 ( 𝑖, 𝑗) = 𝑊 ( 𝑖, 𝑗) ∕ ( Sum ( 𝑊 ( 𝑖, ∶)) + Sum ( 𝑊 (∶ , 𝑗)) ∕ 2) 
9 end 

10 end 

⊳ Build transfer matrix 
11 for i = 1 to N do 

12 for j = 1 to N do 

13 𝑇 ( 𝑖, 𝑗) = 1 + 𝑊 ( 𝑖, 𝑗) − Sum ( 𝑊 (∶ , 𝑖 )) ⊳ 𝑖 th column sum 
14 end 

15 end 

16 𝑚 = matMul ( 𝑇 , 𝑚 ) ⊳ Conduct mass transfers 
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here I A ( z ) is the indicator function on the set A , such that 

 𝐴 ( 𝑧 ) ∶= 

{ 

1 , 𝑧 ∈ 𝐴 
0 , 𝑧 ∉ 𝐴 , (13)

nd 

 1 ( 𝑡, 𝑥 ; 𝐷 1 , 𝐷 2 ) = 

𝐷 2 𝐷 1 ( 𝜋𝐷 1 𝐷 2 𝑡 ) −1∕2 

( 𝐷 2 
√
𝐷 1 + 𝐷 1 

√
𝐷 2 ) 

exp 
− 

|||𝑥 − 𝛾 − ( 𝑥 0 − 𝛾) 
√
𝐷 1 ∕ 𝐷 2 

|||2 
4 𝐷 1 𝑡 

, 

(14)

 2 ( 𝑡, 𝑥 ; 𝐷 1 , 𝐷 2 ) = 

1 
2 
√
𝜋𝐷 2 𝑡 

exp 
− |𝑥 − 𝑥 0 |2 

4 𝐷 2 𝑡 

+ 

𝐷 2 
√
𝐷 1 − 𝐷 1 

√
𝐷 2 

2( 𝐷 2 
√
𝐷 1 + 𝐷 1 

√
𝐷 2 ) 

√
𝜋𝐷 2 𝑡 

exp 
− |𝑥 + 𝑥 0 − 2 𝛾|2 

4 𝐷 2 𝑡 
, 

(15)

nd if x 0 < 𝛾, the complementary solution is 

 ̂𝐴 ( 𝑡, 𝑥 ) = 𝐶 2 ( 𝑡, 𝑥 ; 𝐷 2 , 𝐷 1 ) 𝐼 Ω1 
( 𝑥 ) + 𝐶 1 ( 𝑡, 𝑥 ; 𝐷 2 , 𝐷 1 ) 𝐼 Ω2 

( 𝑥 ) . (16)

or the sake of compact notation, we may combine (12) and (16) into 

 𝐴 ( 𝑡, 𝑥 ) ∶= 𝐶 𝐴 ( 𝑡, 𝑥 ; 𝑥 0 ) 𝐼 Ω1 
( 𝑥 0 ) + 𝐶 𝐴 ( 𝑡, 𝑥 ; 𝑥 0 ) 𝐼 Ω2 

( 𝑥 0 ) . (17)

We note that the solution given in (17) is not symmetric with respect

o x and x 0 (this is seen most clearly in the numerator of the exponential

erm in (14) ); however, in application and due to the sharp decay in

he exponential, (17) is typically symmetric to the order of machine

recision. As our objective is to eliminate errors, including those from a

ack of symmetry, we alter the mass-transfer algorithm given in (5) such

hat 

 𝑖 ( 𝑡 + Δ𝑡 ) = 𝑚 𝑖 ( 𝑡 ) + 

𝑁 ∑
𝑗=1 

 𝑖𝑗 𝑚 𝑗 ( 𝑡 ) − 

𝑁 ∑
𝑗=1 

 𝑗𝑖 𝑚 𝑖 ( 𝑡 ) , (18)

n which the mass of particle i at time 𝑡 + Δ𝑡 is its mass at time t plus the

um of all the incoming mass-transfers, minus the sum of all outgoing

ass-transfers. Also, because  𝑖𝑗 ≠  𝑗𝑖 , we now strictly define  𝑖𝑗 to

e the normalized weight for the mass transfer from particle j to parti-

le i (the converse is no longer true). Eq. (18) may be rewritten in an

nalogous form to (8) , with 

 ∶= 𝑰 +  − diag 
(
𝟏 𝑇  

)
. (19)

f we use (17) as our weighting function in (19) , again employing the

ymmetric normalization given in (10) to form  (because W is al-

ost certainly symmetric to machine precision), then we obtain a mass-

ransfer method that generates very little error in simulating this system.

he algorithm for conducting a single mass transfer (within a timestep

f length Δt ) according to this method is given in Algorithm 1 , in which

tFunction() is defined to be (17) . 

A major drawback of this method is that we must possess an ana-

ytic solution to the system of interest. Granted, for small Δt , this so-

ution is still relatively flexible; for example, we can still use this so-

ution in the case of a 1D domain with three subdomains (considered

n Section 4 ), provided that the time step is sufficiently small or the

agnitude of diffusion in the center domain is low enough that mass-

ransfers do not “see ” two subdomain boundaries at the same time.

alculating an analytical solution is a non-trivial enterprise in spatial

imensions greater than one, particularly if we have a more compli-

ated interface (for instance a 2 × 2 tiling of 4 subdomains in 2D, which

e consider in Section 4 ). In fact, even for the relatively “simple ” 2D

roblem of two half-planes, split by the line 𝑥 = 𝛾 (as considered in

ection 4.2 ), the analytical solution is quite complex and likely infeasi-

le as a mass-transfer kernel (see Shendeleva, 2001) . As such, we seek

 semi-analytical solution to the discontinuous D ( x ) problem, valid for

mall Δt , that will be flexible enough that it may be applied, by exten-

ion, to higher-dimensional problems. We discuss this approach in the

ollowing section. 
.2.2. Semi-analytical solution for mass-transfer weight function 

In order to formulate our semi-analytical solution to the problem of

 discontinuous diffusion coefficient, we take a predictor-corrector ap-

roach, much like that described in Section 3.1 ( LaBolle et al., 2000 ).

e consider the same 1D problem setup outlined in Section 3.2.1 ; how-

ver, for x 0 ≥ 𝛾, our semi-analytical solution shall have the form 

 𝑆 ( 𝑡, 𝑥 ) = 𝐶 𝑟 ( 𝑥 ; 𝐷 1 , Δ𝑡 ) 𝐼 (−∞,𝑥 𝑐 ] ( 𝑥 ) + 𝐶 𝑘 ( 𝑥 ; 𝐷 2 , Δ𝑡 ) 𝐼 Ω2 
( 𝑥 ) , (20)

here the subscript k stands for “keep ” because this represents the

mount of solute that is kept in the domain where it started (and is

istributed according to a diffusion coefficient of D 2 ), and the subscript

 stands for “redistribute ” because this represents the mass that is re-

istributed according to a diffusion coefficient of D 1 , and x c is some

corrected ” x -value that alters the support of the C r solution so that

20) conserves mass. Also, we make the distinction that C k and C r are

arameterized by the necessarily small time step, Δt , rather than being

unctions of t , because this solution is only valid for short time. In (20) ,

e define 

 𝑘 ( 𝑥 ; 𝐷 2 , Δ𝑡 ) ∶= 

1 √
4 𝜋𝐷 2 Δ𝑡 

exp 
[ 
− 

|𝑥 − 𝑥 0 |2 
4 𝐷 2 Δ𝑡 

] 
, (21)

 𝑟 ( 𝑥 ; 𝐷 1 , Δ𝑡 ) ∶= 

1 √
4 𝜋𝐷 1 Δ𝑡 

exp 
[ 
− 

|𝑥 − 𝑥 0 |2 
4 𝐷 1 Δ𝑡 

] 
. (22)

ntegrating each of these expressions over their respective support, in

rder to compute the total mass in each branch of the total solution,

ives 

 𝑘 = ∫
∞

𝛾

𝐶 𝑘 ( 𝑥 ) 𝑑𝑥 = 

1 
2 

[ 

1 − erf 

( 

𝛾 − 𝑥 0 √
4 𝐷 2 Δ𝑡 

) ] 

, (23)

 𝑟 = ∫
𝑥 𝑐 

−∞
𝐶 𝑟 ( 𝑥 ) 𝑑𝑥 = 

1 
2 

[ 

1 − erf 

( 

𝑥 0 − 𝑥 𝑐 √
4 𝐷 1 Δ𝑡 

) ] 

, (24)

here erf ( ⋅) is the error function. Setting 𝑚 total = 1 = 𝑚 𝑘 + 𝑚 𝑟 and solv-

ng for x c yields 

 𝑐 = 𝑥 0 − ( 𝑥 0 − 𝛾) 

√ 

𝐷 1 
𝐷 2 
, (25)
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Fig. 2. 1D purely-diffusive simulation for two 

subdomains with diffusion coefficients D 1 and 

D 2 (shown for 3 different values of D 2 ). The 

MTPT method employs the semi-analytical so- 

lution given in (28) using Algorithm 1 , and 

is compared to the predictor-corrector RWPT 

method of LaBolle et al. (2000) and the analyt- 

ical solution given in Section 3.2.1 . Results are 

shown for a simulation with 5000 MT particles, 

10 6 RW particles, Δ𝑡 = 10 −2 , and total simula- 

tion time 𝑇 = 6 . All dimensioned quantities are 

unitless. Note the oscillation that occurs near 

the subdomain boundary ( 𝑥 = 𝛾) for the 𝐷 2 = 
0 . 05 case (yellow plot). This is attributable to 

applying Algorithm (1) (symmetric normaliza- 

tion) rather than Algorithm 2 (Sinkhorn-Knopp 

normalization) (For interpretation of the refer- 

ences to color in this figure legend, the reader 

is referred to the web version of this article.). 
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nd we may repeat the calculations above for x 0 < 𝛾, with the solution

 ̂𝑆 ( 𝑡, 𝑥 ) = 𝐶 𝑘 ( 𝑥 ; 𝐷 1 , Δ𝑡 ) 𝐼 Ω1 
( 𝑥 ) + 𝐶 𝑟 ( 𝑥 ; 𝐷 2 , Δ𝑡 ) 𝐼 ( 𝑥 𝑐 , ∞) ( 𝑥 ) , (26)

o find 

 𝑐 = 𝑥 0 − ( 𝑥 0 − 𝛾) 

√ 

𝐷 2 
𝐷 1 
. (27)

s in Section 3.2.1 , we may combine (20) and (26) into one general

olution, namely 

 𝑆 ( 𝑡, 𝑥 ) ∶= 𝐶 𝑆 (Δ𝑡, 𝑥 ; 𝑥 0 ) 𝐼 Ω1 
( 𝑥 0 ) + 𝐶 𝑆 (Δ𝑡, 𝑥 ; 𝑥 0 ) 𝐼 Ω2 

( 𝑥 0 ) . (28)

Unfortunately, if we use W S as the WtFunction() in Algorithm 1 ,

e obtain solutions that display a troubling amount of oscillation near

he subdomain boundary (see Fig. 2 ). 

This is because we no longer have a symmetric weight matrix (even

umerically), due to W S lacking symmetry with respect to x and x 0 , and,

s a result, it also no longer makes sense to apply the symmetric nor-

alization given in (10) . In order for the mass-transfer method to both

onserve mass and generate solutions with low error, we must make the

ollowing changes: 

1. We normalize the weight matrix and form ̂ by employing the

Sinkhorn-Knopp (SK) algorithm ( Knight, 2008 ), a computationally-

efficient iterative method for obtaining a doubly-stochastic matrix

that is mathematically equivalent to alternately normalizing the

rows and the columns of a matrix to sum to unity. In order to con-

serve mass, the columns must be normalized last and must sum to

unity with high precision. We find that for all of the cases we con-

sidered, 1000 iterations produced satisfactory results. 

2. We employ a weight matrix that is the transpose of that used in

Algorithm 1 ; i.e., 

𝑊 𝑖𝑗 ∶= 𝑊 𝑆 (Δ𝑡, 𝑥 = 𝑋 𝑗 ; 𝑥 0 = 𝑋 𝑖 ) . 

To contrast, note that if we use (28) in Algorithm 1 , we have 

𝑊 𝑖𝑗 ∶= 𝑊 𝑆 (Δ𝑡, 𝑥 = 𝑋 𝑖 ; 𝑥 0 = 𝑋 𝑗 ) . 

This is done purely for numerical convenience, as applying the SK

algorithm to 𝑾 converges more reliably to the desired stochastic

matrix ̂ than applying SK to W . In fact, starting with W leads to

solutions that display a “kink ” near the boundary, and much greater

resolution in both time and space is required to generate acceptable
solutions. s  
Written in the sum form of (5) and (18) , after normalizing 𝑾 via SK

o form ̂ , the above amounts to 

 𝑖 ( 𝑡 + Δ𝑡 ) = 𝑚 𝑖 ( 𝑡 ) + 

𝑁 ∑
𝑗=1 

̂ 𝑖𝑗 𝑚 𝑗 ( 𝑡 ) − 

𝑁 ∑
𝑗=1 

̂ 𝑗𝑖 𝑚 𝑖 ( 𝑡 ) 

= 𝑚 𝑖 ( 𝑡 ) + 

𝑁 ∑
𝑗=1 

̂ 𝑖𝑗 𝑚 𝑗 ( 𝑡 ) − 𝑚 𝑖 ( 𝑡 ) 
�

�
���

1 
𝑁 ∑
𝑗=1 

̂ 𝑗𝑖 

= 

𝑁 ∑
𝑗=1 

̂ 𝑖𝑗 𝑚 𝑗 ( 𝑡 ) , (29) 

or in matrix-vector form we have 

 ( 𝑡 + Δ𝑡 ) = ̂ 𝒎 ( 𝑡 ) . (30)

he algorithm for conducting mass-transfers (within a timestep of length

t ), according to this modified method is presented in pseudocode in

lgorithm 2 , in which WtFunction() is defined to be (28) . 

Algorithm 2: Modified Mass-transfer Algorithm for Semi- 

analytical Weighting Function 

Input : Particle positions, 𝑋 = 𝑿 ( 𝑡 ) , and particle masses 𝑚 = 𝒎 ( 𝑡 ) . 
Output : Updated particle masses, 𝑚 = 𝒎 ( 𝑡 + Δ𝑡 ) . 

⊳ Build weight matrix 
1 for i = 1 to N do 

2 for j = 1 to N do 

3 𝑊 ( 𝑖, 𝑗) = WtFunction( 𝑥 0 = 𝑋( 𝑖 ) , 𝑥 = 𝑋( 𝑗) , 𝛾, 𝐷 1 , 𝐷 2 , Δ𝑡 ) 
4 end 

5 end 

⊳ Normalize weight matrix 
6 for i = 1 to normCount do 

7 𝑊 = rowNormalize( W ) ⊳ Normalize the rows of 𝑊 

8 𝑊 = colNormalize( W ) ⊳ Normalize the columns of 𝑊 

9 end 

10 𝑚 = matMul ( 𝑊 , 𝑚 ) ⊳ Conduct mass transfers 

We note that the normalization, conducted at lines 6–9 in

lgorithm 2 , is not strictly the SK algorithm, but is instead meant to

e demonstrative, rather than computationally efficient. 

Extension to 2D 

A major advantage of our semi-analytical solution is that it is

traightforward to extend to 2D by applying the same strategy as used
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n 1D. Let us first consider the case of 2 subdomains that are split by

he line 𝑥 = 𝛾, Ω1 = {(−∞, 𝛾] ×ℝ } and Ω2 = {( 𝛾, ∞) ×ℝ } with respec-

ive constant diffusion coefficients D 1 , D 2 . The initial condition is again

he instantaneous point source 𝐶( 𝑡 = 0 , 𝒙 ) = 𝛿( 𝒙 − 𝒙 0 ) , and 𝒙 0 = ( 𝑥 0 , 𝑦 0 ) .
ee Fig. 1 (b) for a conceptual depiction of this system. In this case, our

eneral solution is nearly identical to the 1D case, namely 

 𝑆 ( 𝑡, 𝒙 ) ∶= 𝐶 𝑆 (Δ𝑡, 𝒙 ; 𝒙 0 ) 𝐼 Ω1 
( 𝒙 0 ) + 𝐶 𝑆 (Δ𝑡, 𝒙 ; 𝒙 0 ) 𝐼 Ω2 

( 𝒙 0 ) , (31)

here C S and 𝐶 𝑆 are the same as in (20) and (26) , and the form of C k 

nd C r are merely altered to contain 2D Gaussian functions; i.e., 

 

2D 
𝑖 ( 𝒙 ;  , Δ𝑡 ) ∶= 

1 
4 𝜋 Δ𝑡 

exp 
[ 
− 

‖𝒙 − 𝒙 0 ‖2 
4  Δ𝑡 

] 
, 𝑖 = 𝑘, 𝑟,  = 𝐷 1 , 𝐷 2 . 

(32)

The extension to a more complicated subdomain interface is also

traightforward. In this case, we consider a 2 × 2 tiling of 4 sub-

omains in 2D, and this condition captures the challenges presented

y a highly heterogeneous diffusion (velocity) field that is discretized

n a grid, perhaps generated by a finite-difference method. Specif-

cally, the challenge is that mass originating in a given quadrant

an end up in any or all of the three neighboring quadrants, with

he most complicated path being the diagonal one across the origin.

or this problem the full domain Ω is split along the lines 𝑥 = 𝛾𝑥 
nd 𝑦 = 𝛾𝑦 . Thus, we have Ω1 = {( 𝛾𝑥 , ∞] × ( 𝛾𝑦 , ∞)} , Ω2 = {(−∞, 𝛾𝑥 ] ×
 𝛾𝑦 , ∞)} , Ω3 = {(−∞, 𝛾𝑥 ] × (−∞, 𝛾𝑦 ]} , Ω4 = {( 𝛾𝑥 , ∞) × (−∞, 𝛾𝑦 ]} with re-

pective constant diffusion coefficients D 1 , D 2 , D 3 , D 4 . Once again, the

nitial condition has the form 𝐶( 𝑡 = 0 , 𝒙 ) = 𝛿( 𝒙 − 𝒙 0 ) , with 𝒙 0 = ( 𝑥 0 , 𝑦 0 ) .
ee Fig. 1 (c) for a conceptual depiction of this system. The general so-

ution may be written 

 𝑆 ( 𝑡, 𝒙 ) ∶ = 𝐶 1 
𝑆 
(Δ𝑡, 𝒙 ; 𝒙 0 ) 𝐼 Ω1 

( 𝒙 0 ) + 𝐶 2 
𝑆 
(Δ𝑡, 𝒙 ; 𝒙 0 ) 𝐼 Ω2 

( 𝒙 0 ) 

+ 𝐶 3 
𝑆 
(Δ𝑡, 𝒙 ; 𝒙 0 ) 𝐼 Ω3 

( 𝒙 0 ) + 𝐶 4 
𝑆 
(Δ𝑡, 𝒙 ; 𝒙 0 ) 𝐼 Ω4 

( 𝒙 0 ) . (33)

bove, the portion of the solution corresponding to x 0 ∈ Ω1 is composed

f the sum of four local solutions with the form of (32) , namely 

 

1 
𝑆 
( 𝑡, 𝒙 ) ∶ = 𝐶 2D 

𝑘 
( 𝒙 ; 𝐷 1 , Δ𝑡 ) 𝐼 Ω1 

( 𝒙 ) 

+ 𝐶 2D 
𝑟 ( 𝒙 ; 𝐷 2 , Δ𝑡 ) 𝐼 (−∞,𝑥 12 𝑐 ]×( 𝛾𝑦 , ∞) ( 𝒙 ) 

+ 𝐶 2D 
𝑟 ( 𝒙 ; 𝐷 3 , Δ𝑡 ) 𝐼 (−∞,𝑥 13 𝑐 )×(−∞,𝑦 13 𝑐 ) ( 𝒙 ) 

+ 𝐶 2D 
𝑟 ( 𝒙 ; 𝐷 4 , Δ𝑡 ) 𝐼 ( 𝛾𝑥 , ∞)×(−∞,𝑦 14 𝑐 ] 

( 𝒙 ) , (34)

here 𝑥 
𝑖𝑗 
𝑐 and 𝑦 

𝑖𝑗 
𝑐 are the x and/or y corrections for the mass-transfers

rom subdomain Ωi to Ωj and are calculated so as to ensure conservation

f mass. Similar to the 1D problem, we have 

 

12 
𝑐 = 𝑥 0 − ( 𝑥 0 − 𝛾𝑥 ) 

√ 

𝐷 2 
𝐷 1 
, 

 

13 
𝑐 = 𝑥 0 − ( 𝑥 0 − 𝛾𝑥 ) 

√ 

𝐷 3 
𝐷 1 
, 

 

13 
𝑐 = 𝑦 0 − ( 𝑦 0 − 𝛾𝑦 ) 

√ 

𝐷 3 
𝐷 1 
, 

 

14 
𝑐 = 𝑦 0 − ( 𝑦 0 − 𝛾𝑦 ) 

√ 

𝐷 4 
𝐷 1 
, 

(35)

nd the calculations are analogous for the portions of (33) corresponding

o the other subdomains. 

As in the 1D case, the solutions given in (31) and (33) do not con-

erve mass if they are used as the WtFunction() in Algorithm 1 , but

hey do conserve mass and generate minimal error if they are used in

lgorithm 2 . 

. Results 

In this section, we consider the results of applying the MTPT al-

orithm described in Section 3.2 to solve a series of increasingly-

omplicated test problems involving discontinuous D ( x ). To do this we
onstrain our tests to only the mass-transfer (MT) portion of the MTPT

lgorithm (i.e., stationary particles that do not random-walk), and we

ompare the results of our simulation to known solutions. In the simple

D case of 2 subdomains, we compare our MTPT results to an analytical

olution, and in all other cases, we use the established RWPT predictor-

orrector method of LaBolle et al. (2000) as our baseline for comparison.

We note that the idealized case of stationary, evenly-spaced parti-

les we consider does not appear to bear much resemblance to an actual

agrangian, or particle-tracking, method in which particles are stochas-

ically positioned due to random walk diffusion. However, even when

articles random-walk, the MT algorithm is fully deterministic within

ach timestep, and, in fact, is conceptually a finite difference scheme

ith a stochastic stencil. In previous work, the evenly-spaced, stationary

ondition is shown to bear more similarity to the random-walking par-

icle case than it does to a randomly-spaced, stationary condition ( Sole-

ari et al., 2019b ). The reason for this is that when particles random-

alk, they are “on average ” equally-spaced at any given time; whereas,

andomly-spaced, stationary particles inevitably contain persistent gaps

etween particles that degrade solution accuracy. As a result, in order

o isolate the performance of the MT algorithm and analyze its accu-

acy, we choose to simulate the algorithm on evenly-spaced, stationary

articles. 

From an algorithmic standpoint, we generate the MTPT results ac-

ording to Algorithm 2 , and we use the appropriate semi-analytical so-

ution as WtFunction() . For the MTPT case, we model the initial

ondition by assigning the mass corresponding to unit mass to the parti-

le located at x 0 , and in the RWPT case, we place all particles at location

 0 , each with mass 1/ N . We then simulate a purely diffusive system with

iscontinuous D ( x ) up to final time T . For MTPT, constructing the nu-

erical solution at final time is as simple as plotting the concentration

n each particle versus its position; however, in the case of RWPT, par-

icles must first be binned to construct concentrations (equal length in

D and equal-area squares in 2D), and the number of bins was chosen in

ach case so as to balance between low resolution and noisiness. Lastly,

or simplicity, all dimensioned quantities are unitless. 

All numerical simulations were conducted in MATLAB, using a Mac-

ook Pro with a 2.9 GHz Intel Core i5 processor and 8 GB of RAM.

he code used to generate the results in this section is available at

ttp://doi.org/10.5281/zenodo.3706926 ( Schmidt, 2020 ). 

.1. 1D Results 

We begin with the simplest case of a 1D domain with two subdo-

ains, as described in Sections 3.2.1 and 3.2.2 , and we hold 𝐷 1 = 5 . 0
onstant while we test 3 values of D 2 ranging from half the magnitude

f D 1 to two orders of magnitude smaller. In the simulations, we em-

loy 5000 particles for the MTPT simulations and 1 million particles in

he RWPT simulations (grouped into 100 bins for plotting). We choose

 timestep of length Δ𝑡 = 10 −2 with a total simulation time 𝑇 = 6 . 
We first examine what occurs when we apply the original MTPT

ethod that our proposed algorithm is based upon (i.e., using (7) as

he weighting function in (9) ) ( Benson and Bolster, 2016; Schmidt et al.,

018; Benson et al., 2020 ). These results are shown in Fig. 3 , and we see

hat the original MT algorithm holds up for a small magnitude differ-

nce in the diffusion coefficient, as when ( 𝐷 1 , 𝐷 2 ) = (5 , 2 . 5) . However,

hen the disparity becomes larger, the accuracy deteriorates, and the

TPT solution is quite poor for ( 𝐷 1 , 𝐷 2 ) = (5 , 0 . 05) , as compared to the

nalytical solution and the RWPT results. The results of applying our

ew MT algorithm (i.e., the semi-analytical solution given in (28) used

ithin Algorithm (2) ) are depicted in Fig. 4 . Comparing MTPT results

oth to the analytical solution, given in (17) , and the RWPT results, we

ee very close agreement between all solutions, indicating that our pro-

osed approach is successful here and that we may move on to more

omplicated cases. 

The next experiment we conduct focuses on a 1D problem with three

ubdomains, Ω1 , Ω2 , and Ω3 , with their own respective diffusion coef-

http://doi.org/10.5281/zenodo.3706926
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Fig. 3. Results for a 1D purely-diffusive simu- 

lation for two subdomains with diffusion coef- 

ficients D 1 and D 2 (shown for 3 different values 

of D 2 ). The MTPT method employs the orig- 

inal MTPT algorithm on which we base our 

work ( Benson and Bolster, 2016; Schmidt et al., 

2018; Benson et al., 2020 ), as compared to the 

predictor-corrector RWPT method of LaBolle 

et al. (2000) and the analytical solution given 

in Section 3.2.1 . RW particles are grouped into 

100 bins for plotting. Results are shown for 

a simulation with 5000 MT particles, 10 6 RW 

particles, Δ𝑡 = 10 −2 , and total simulation time 

𝑇 = 6 . All dimensioned quantities are unitless. 

Note that the original MTPT algorithm per- 

forms quite poorly when there is a large dis- 

parity between D 1 and D 2 . 

Fig. 4. Results for a 1D purely-diffusive sim- 

ulation for two subdomains with diffusion 

coefficients D 1 and D 2 (shown for 3 differ- 

ent values of D 2 ). The MTPT method em- 

ploys the semi-analytical solution given in 

(28) using Algorithm 2 , as compared to the 

predictor-corrector RWPT method of LaBolle 

et al. (2000) and the analytical solution given 

in Section 3.2.1 . RW particles are grouped into 

100 bins for plotting. Results are shown for 

a simulation with 5000 MT particles, 10 6 RW 

particles, Δ𝑡 = 10 −2 , and total simulation time 

𝑇 = 6 . All dimensioned quantities are unitless. 

fi  

h  

w  

I  

a  

f  

s  

F  

t  

t

4

 

t  

(  

0  

u  

s  

t  

a  

o  

F  

b  

t  

e  

R

 

s  

a  

w  

v  

D  

l  

s  

D  

s  

a  

s  

f  

s  

t  

a  

a  

s  

𝑇

 

w  
cients, representing diffusion in, for example, a layered system. We

old 𝐷 1 = 5 . 0 and 𝐷 3 = 0 . 05 , so as to span two orders of magnitude, and

e test three values of D 2 ∈ {2.5, 1.0, 0.5} in the central subdomain.

n the simulations, we employ 5000 particles for the MTPT simulations

nd 1 million particles in the RWPT simulations (grouped into 100 bins

or plotting), and we choose a timestep of length Δ𝑡 = 10 −2 with a total

imulation time of 𝑇 = 6 . The results of this experiment are displayed in

ig. 5 . Because this problem has no simple analytical solution, we take

he RWPT results as our baseline case and find very close agreement of

he MTPT results with the baseline. 

.2. 2D results 

Moving to 2D, we first consider the case of 2 subdomains split along

he line 𝑥 = 𝛾, corresponding to the semi-analytical solution given in

31) . For these simulations, we hold 𝐷 1 = 5 . 0 and test D 2 ∈ {2.5, 1.0,

.5}. In the simulations, we employ 10201 particles for the MTPT sim-

lations (101 × 101 equally-spaced particles, with the number chosen

o as to capture the integer-valued source location) and 10 million par-

icles in the RWPT simulations (grouped into 6400 bins for plotting)

nd choose a timestep of length Δ𝑡 = 10 −1 with a total simulation time

f 𝑇 = 6 . The results of this experiment are shown in Figs. 6 and 7 . In

ig. 6 , we see good visual agreement of the MTPT solutions to the RWPT

aseline, and this is verified by plotting the constant-concentration con-

b  
ours on the same axes in Fig. 7 where the match is seen to be nearly

xact, aside from the slight noise induced by the randomness in the

WPT simulation. 

The next problem we consider is the 2D example of 4 subdomains

plit along the lines 𝑥 = 𝛾𝑥 and 𝑦 = 𝛾𝑦 , corresponding to the semi-

nalytical solution given in (33) . For these simulations, the four cases

e consider, in terms of choices for 𝐷 𝑖 , 𝑖 = 1 , … , 4 , are: (1) 4 different

alues for D i , spanning an order of magnitude; and 3 equal values for

 i and one value that is an order of magnitude smaller, with (2) source

ocation in a subdomain laterally adjacent to the small value of D i , (3)

ource location in the subdomain containing the small value value of

 i , and (4) source location in a subdomain diagonally adjacent to the

mall value of D i . Of these four cases, case (4) is the least interesting,

s the majority of solute remains in the three subdomains with large D i ,

o we do not depict results of this simulation, though they were always

avorable. In the simulations, we employ 40 , 401 particles for the MTPT

imulations (201 × 201 equally-spaced particles) and 10 million par-

icles in the RWPT simulations (grouped into 6400 bins for plotting),

nd we choose a timestep of length Δ𝑡 = 10 −1 for the MTPT simulations

nd Δ𝑡 = 10 −2 for the RWPT simulations (this was required to generate

mooth enough results for comparison), with a total simulation time of

 = 3 . 
The results of this experiment are shown in Figs. 8 and 9 . In Fig. 8 ,

e see favorable visual agreement of the MTPT solutions to the RWPT

aseline, and this is confirmed by the overlaid constant-concentration
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Fig. 5. Results for a 1D purely-diffusive sim- 

ulation for three subdomains with diffusion 

coefficients D 1 , D 2 , and D 3 (shown for 3 dif- 

ferent values of D 2 ). The MTPT method em- 

ploys the semi-analytical solution given in 

(28) using Algorithm 2 , as compared to the 

predictor-corrector RWPT method of LaBolle 

et al. (2000) . RW particles are grouped into 

100 bins for plotting. Results are shown for 

a simulation with 5000 MT particles, 10 6 RW 

particles, Δ𝑡 = 10 −2 , and total simulation time 

𝑇 = 6 . All dimensioned quantities are unitless. 

Fig. 6. Concentration heatmap (magnitude given by the color bar on the righthand side) with constant-concentration contours (white curves) depicting results of a 

2D simulation for two subdomains with diffusion coefficients D 1 and D 2 (shown for 3 different values of D 2 ). The MTPT method employs the semi-analytical solution 

given in (31) using Algorithm 2 , as compared to the predictor-corrector RWPT method of LaBolle et al. (2000) . RW particles are grouped into 6400 bins for plotting. 

Results are shown for a simulation with 10201 MT particles, 10 7 RW particles, Δ𝑡 = 10 −1 , and total simulation time 𝑇 = 6 . All dimensioned quantities are unitless. 
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ontour plots depicted in Fig. 9 . We note that in the 2D experiments, we

nly consider a single order or magnitude difference between diffusion

oefficients. This was in favor of fast run times, as the required num-

er of particles for a MTPT simulation is dictated by the inter-particle

pacing, which must be on the order of 𝓁 ∶= 

√
2 ̃𝐷 Δ𝑡 , where 𝐷̃ is the

mallest diffusion coefficient in the system. However, there are no the-

retical barriers to considering larger disparities in D ( x ). 

s  
.3. Speed and accuracy 

Here, we address two measures of algorithmic performance for our

roposed MTPT method for discontinuous D ( x ). First, as to speed, run

imes for the MTPT method are consistently lower than those for cor-

esponding RWPT solutions. For example, to generate the 1D, 2 subdo-

ain results discussed in Section 4.1 and depicted in Fig. 4 , the MTPT

imulations run approximately 4.5 times faster than the RWPT simu-



M.J. Schmidt, N.B. Engdahl and S.D. Pankavich et al. Advances in Water Resources 140 (2020) 103577 

Fig. 7. Constant-concentration contours comparing results depicting results of a 2D simulation for two subdomains with diffusion coefficients D 1 and D 2 (shown 

for 3 different values of D 2 ). The MTPT method employs the semi-analytical solution given in (31) using Algorithm 2 , as compared to the predictor-corrector RWPT 

method of LaBolle et al. (2000) . RW particles are grouped into 6400 bins for plotting. Results are shown for a simulation with 10201 MT particles, 10 7 RW particles, 

Δ𝑡 = 10 −1 , and total simulation time 𝑇 = 6 . All dimensioned quantities are unitless. 

Fig. 8. Concentration heatmap (magnitude given by the color bar on the righthand side) with constant-concentration contours (white curves) depicting results of 

a 2D simulation for four subdomains with diffusion coefficients D 1 , D 2 , D 3 , and D 4 . The MTPT method employs the semi-analytical solution given in (33) using 

Algorithm 2 , as compared to the predictor-corrector RWPT method of LaBolle et al. (2000) . RW particles are grouped into 10201 bins for plotting. Results are shown 

for a simulation with 40401 MT particles, 10 7 RW particles, Δ𝑡 = 10 −2 , and total simulation time 𝑇 = 3 . All dimensioned quantities are unitless. 
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d  
ations to which the solutions are compared. For the 2D, 4 subdomain

ase, discussed in Section 4.2 and depicted in Figs. 6 and 9 , the MTPT

imulations run approximately 1.5 times faster than the RWPT simu-

ations. This speedup for MTPT can primarily be attributed to the fact

hat mass-transfer interactions only occur among nearest-neighbors, and

his allows for speedup via sparse linear algebra. Note, however, that

hese run time comparisons are for reference only, as both algorithms

an be optimized in various ways, and that was not the goal of this
ork. r  
As to accuracy, we perform a convergence analysis for the proposed

TPT algorithm to see how error is affected by the level of discretiza-

ion; i.e., refinements in time step length, Δt , or increase in particle num-

er, N . This convergence analysis considers the 1D, 2 subdomain case,

nd we compute error in comparison to the analytical solution given

n Section 3.2.1 . For each convergence analysis we employ all of the

ame parameters as were used to generate the results in Section 4.1 and

epicted in Fig. 4 , varying only Δt or N in successive refinements. The

esults for a convergence analysis in terms of Δt are depicted in Fig. 10 ,
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Fig. 9. Constant-concentration contours comparing results depicting results of a 2D simulation for four subdomains with diffusion coefficients D 1 , D 2 , D 3 , and D 4 . 

The MTPT method employs the semi-analytical solution given in (33) using Algorithm 2 , as compared to the predictor-corrector RWPT method of LaBolle et al. 

(2000) . RW particles are grouped into 10201 bins for plotting. Results are shown for a simulation with 40401 MT particles, 10 7 RW particles, Δ𝑡 = 10 −2 , and total 

simulation time 𝑇 = 3 . All dimensioned quantities are unitless. 

Fig. 10. Convergence analysis in terms of time step length, Δt , for the MTPT Algorithm 2 employing the semi-analytical solution given in (33) . These results are for 

the 1D, 2 subdomain problem for which we have an analytical solution (see Section 4.1 and Fig. 4 ). Each plot corresponds to a single value for D 2 . Error is computed 

in terms of the 𝓁 2 and 𝓁 ∞ norms and best-fit reference lines are shown to demonstrate the experimental order of convergence.  (Δ𝑡 1∕2 ) convergence appears most 

clearly in the 𝓁 ∞ norm. 

Fig. 11. Convergence analysis in terms of particle number, N , for the MTPT Algorithm 2 employing the semi-analytical solution given in (33) . These results are for 

the 1D, 2 subdomain problem for which we have an analytical solution (see Section 4.1 and Fig. 4 ). Each plot corresponds to a single value for D 2 . Error is computed 

in terms of the root-mean-squared error (RMSE) and 𝓁 ∞ norms. Depending on the value of D 2 being considered, rapid convergence is seen with increasing N , until 

leveling off at a minimal level. 
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nd therein we plot error, in terms of the 𝓁 ∞ and 𝓁 2 norms, as a function

f Δt for each of the three values of D 2 we consider in Section 4.1 ( Fig. 4 ).

or each of the error curves we also plot a reference  (Δ𝑡 𝑝 ) line of

est fit to obtain the order of convergence, p , and we see the general

rend of what appears to be 𝑝 = 1∕2 order of convergence, and this is

emonstrated most clearly in the 𝓁 ∞ norm. The results for a conver-

ence analysis in terms of N are depicted in Fig. 11 , and therein we plot

rror, in terms of the 𝓁 ∞ norm and root-mean-squared error (RMSE),

s a function of N for each of the three values of D 2 we consider in

ection 4.1 ( Fig. 4 ). We note that we employ RMSE here, as opposed

o the 𝓁 2 norm, to normalize for varying vector-length. In this case, we

ee a period of rapid convergence with increasing N , before error levels

ff to a minimal level that is controlled by the time discretization, and

his is the expected behavior that is commonly seen in MTPT methods

 Schmidt et al., 2018; 2019a ). 

. Conclusions 

Discontinuous diffusion coefficients arise naturally within simula-

ions of transport through heterogeneous porous media, but accurately

odeling diffusion across these interfaces has remained an outstanding

roblem for MTPT algorithms. Here, we have generalized MTPT algo-

ithms to addresses this deficiency, including for multi-dimensional sys-

ems. This is a significant advance both from a numerical perspective

nd in terms of improving the realism of such simulations. Addition-

lly, these results serve to eliminate one of the few remaining barriers

hat limit the capabilities of Lagrangian methods in comparison to their

ulerian counterparts. 

In particular, within the current work, we have: 

1. generalized the MT algorithm to incorporate non-symmetric mass-

transfer kernels; 

2. presented an MT algorithm that employs a relatively simple 1D an-

alytic solution to the discontinuous D ( x ) problem; 

3. derived a semi-analytical solution to the discontinuous D ( x ) prob-

lem that is straightforward to generalize to higher dimensions and

complicated subdomain interfaces; 

4. presented an MT algorithm that incorporates this semi-analytical so-

lution; 

5. applied this updated MTPT algorithm to a variety of test cases, in-

cluding a 2D problem that corresponds to a standard velocity grid

with order-of-magnitude differences in D ( x ); 

6. attained favorable results of this application of the new MTPT algo-

rithm. 

Additionally, while not considered in this work, it would be a sim-

le matter to handle moving subdomain interfaces with this algorithm.

his is because particle interactions occur pairwise, and to make the

elevant mass-transfer, the only required information is each particle’s

ass, position, and local diffusion coefficient, which are easy enough

o establish within a timestep, no matter the current orientation of a

ubdomain boundary. 

Open questions remain in this direction, however. For instance, what

ould be the effect of running a hybrid version of MTPT including dif-

usive random walks in the algorithm, and how would it affect the accu-

acy of solutions? Or, how might the solution be generalized to subdo-

ains that possess more complicated geometry; for example, boundaries

hat are not right angles, such as on a triangulated grid, or boundaries

hat are not straight lines at all (e.g. Sole-Mari et al., 2019a) . Addition-

lly, we have only considered the scalar, or isotropic, D ( x ) case because

t is common in the MTPT literature to simulate large-scale, anisotropic

preading by random walks and the micro-scale, isotropic mixing pro-

ess by mass transfers ( Schmidt et al., 2018; Benson et al., 2019a ). 

In summary, we have extended the capabilities of MTPT methods to

olve the problem of discontinuous diffusion coefficients, thus adding

exibility to a tool that already is able to: model arbitrarily complex
eactions, including fluid-solid interactions; separately simulate macro-

cale spreading and micro-scale mixing; capture arbitrarily fine resolu-

ion in mixing and concentration gradients; and achieve nearly linear

peedup when parallelized. 
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