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Abstract. The Einstein-Vlasov-Fokker-Planck system describes the kinetic

diffusion dynamics of self-gravitating particles within the Einstein theory of

general relativity. We study the Cauchy problem for spatially homogeneous and
isotropic solutions and prove the existence of both global-in-time solutions and

solutions that blow-up in finite time depending on the size of certain functions

of the initial data. We also derive information on the large-time behavior
of global solutions and toward the singularity for solutions which blow-up in

finite time. Our results entail the existence of a phase of decelerated expansion

followed by a phase of accelerated expansion, in accordance with the physical
expectations in cosmology.

1. Introduction. The purpose of this paper is to study spatially homogeneous
and isotropic solutions of the Einstein-Vlasov-Fokker-Planck system. The model
describes the kinetic diffusion dynamics of self-gravitating particles within the Ein-
stein theory of general relativity. It is assumed that diffusion takes place in a cosmo-
logical scalar field, which can be identified with the dark energy source responsible
for the phase of accelerated expansion of the Universe.

When relativistic effects are neglected, the motion of self-gravitating kinetic par-
ticles undergoing diffusion is described by the frictionless Vlasov-Poisson-Fokker-
Planck system in the gravitational case, which is given by

∂tf + p · ∇xf −∇U · ∇pf = σ∆pf (1a)

∆U = 4πρ, ρ(t, x) =

∫
R3

f(t, x, p) dp. (1b)
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Here f(t, x, p) is the phase-space density of a system of unit mass particles, U(t, x) is
the Newtonian gravitational potential generated by the particle system, and σ > 0
is the diffusion constant; the remaining physical constants have been set to one.
The mathematical properties of the system (1) have been extensively studied in the
literature. In particular, it is known that the Vlasov-Poisson-Fokker-Planck system
admits a global unique solution for given initial data [4, 11], whose asymptotic
behavior for large times has been studied in [6]. The proof of both these results
makes use of the explicit form of the fundamental solution to the linear Fokker-
Planck equation. Similar results have also been obtained for the related Vlasov-
Maxwell-Fokker-Planck system [12, 13].

A relativistic generalization of the Vlasov-Poisson-Fokker-Planck system in the
gravitational case has been introduced recently in [5] and the purpose of this paper
is to initiate its mathematical study. When dealing with the relativistic model one
is faced with many new difficulties, including the hyperbolic and nonlinear character
of the Einstein field equations (compared to the linearity of the Poisson equation
in (1)), the non-uniform ellipticity of the diffusion operator, the time-dependence
of the diffusion matrix, and the absence of an explicit formula for the fundamental
solution to the linear relativistic Fokker-Planck equation. The further notorious
complexity of the Einstein equations suggests that one begins by studying solutions
with symmetries. In this paper we consider solutions which are spatially homo-
geneous and isotropic. Under these symmetry assumptions the Einstein equations
reduce to a system of nonlinear ordinary differential equations.

In the absence of diffusion, our model reduces to the Einstein-Vlasov system with
cosmological constant. The regularity and asymptotic behavior of spatially homoge-
neous solutions to the latter system have been studied in [8]. The generalization of
these results to spatially inhomogeneous solutions (with surface symmetry) is given
in [3]. When the cosmological constant is set to zero one obtains the Einstein-Vlasov
system. Some results available for this system are summarized in [2]. It has been
shown recently in [7, 9] that the Cauchy problem for the Einstein-Vlasov system is
globally well-posed for small data with no symmetry restrictions.

In [1] we have studied a similar problem when the Einstein equation is replaced
by a nonlinear wave equation for a scalar field. It turns out that for spatially
homogeneous and isotropic solutions, the Fokker-Planck equation considered in [1] is
the same as the one derived in the present paper, and thus the analysis of the matter
equation does not pose any new difficulty. Contrastingly, the Einstein equations
behave quite differently than the field equation considered in [1]

The remainder of the paper is organized as follows. In the next section we
derive the Einstein-Vlasov-Fokker-Planck system for spatially homogeneous and
isotropic solutions. In Section 3 we study the Cauchy problem and prove that,
depending on the size of certain functions of the the initial data, regular solutions
either exist globally or blow-up in finite time. In Section 4 we derive information on
the asymptotic behavior as t→∞ of global solutions and toward the singularity for
solutions which blow-up in finite time. We also show that for an open set of initial
data which describe an initially decelerating expanding Universe, global solutions
will eventually give rise to a phase of accelerated expansion, in agreement with the
expectations in Cosmology [14].

2. Derivation of the model. We begin with a short description of the general
relativistic kinetic theory of diffusion, see [5] for more details. In the following, Greek
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indices run from 0 to 3, while Latin indices run from 1 to 3. Moreover all indices
are raised and lowered with the matrix gµν and its inverse gµν := (g−1)µν , and the
Einstein summation rule is applied (e.g., gµνgνα = δµα), unless otherwise stated.
Let (M, g) be a spacetime. Let xµ denote local coordinates on M , with t = x0

being timelike, and let (xµ, pν) be the induced canonical local coordinates on the
tangent bundle of the spacetime. The mass-shell for particles with unit mass is the 7-
dimensional submanifold of the tangent bundle obtained by imposing gµνp

µpν = −1
and p0 > 0, so that (p0, p1, p2, p3) can be interpreted as the components of the four-
momentum of a unit mass particle. The mass-shell condition is used to express p0

in terms of the spatial components of the four-momentum, namely

p0 = −g−100

[
g0jp

j +
√

(g0jpj)2 − g00(1 + gijpipj)
]
. (2)

It follows that (xµ, pi) define a local system of coordinates on the mass-shell. The
particle distribution function f is defined on the mass-shell and is therefore a func-
tion of the coordinates (t, xi, pj). The Fokker-Planck equation for f is the PDE

Lf := p0∂tf + pi∂xif − Γiµνp
µpν∂pif = σDpf, (3)

where L is the Liouville (or Vlasov) operator, Γαµν denote the Christoffel symbols of
the metric g, σ is the (positive) diffusion constant, and Dp is the diffusion operator,
which is the Laplace-Beltrami operator associated to the Riemannian metric

h = hijdp
idpj , hij = gij + g00

pipj
(p0)2

− pi
p0
g0j −

pj
p0
g0i. (4)

We have

Dpf =
1√

deth
∂pi
(√

deth (h−1)ij∂pjf
)
,

where (h−1)ij is the inverse matrix of hij (i.e., (h−1)ijhjk = δik). From the par-
ticle distribution f we can construct the particle current density and the energy-
momentum tensor by

Tµν =
√
−det g

∫
f
pµpν

−p0
dp, Jµ =

√
−det g

∫
f
pµ

−p0
dp, (5)

where dp = dp1 ∧ dp2 ∧ dp3 and the integration is over the fibers of the mass-shell.
It can be shown that the tensors Tµν and Jµ verify

∇µTµν = 3σJν , ∇µJµ = 0. (6)

To close the system we require the metric g to solve the Einstein equations with
cosmological scalar field φ, which, in units 8πG = c = 1, is given by

Rµν −
1

2
gµνR+ φgµν = Tµν . (7)

By (6) and the Bianchi identity∇µ(Rµν− 1
2gµνR) = 0, we find that the cosmological

scalar field satisfies the equation

∇µφ = 3σJµ. (8)

In particular, φ satisfies the wave equation 2φ = ∇µ∇µφ = 3σ∇µJµ = 0 and

Jµ∇µφ = 3σJµJ
µ < 0,

where for the inequality we have used the fact that Jµ is timelike. Hence, the cos-
mological scalar field is decreasing along the matter flow, which can be interpreted
as energy being transferred from the scalar field to the particles by diffusion.
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Next, we specialize to spatially homogeneous and isotropic solutions. Under these
symmetry assumptions, the spacetime metric can be written as

gµνdx
µdxν = −dt2 +

a(t)2

K(r)2
δijdx

idxj , (9)

where

K(r) = 1 +
k

4
r2, r = |x|, k ∈ {−1, 0, 1}.

Here x = (x1, x2, x3) is a system of spatial isotropic coordinates on the hypersurfaces
t = const., t denotes the proper time along the normal geodesics, and | · | denotes
the standard Euclidean norm. The hypersurfaces of constant proper time have
zero/positive/negative constant curvature according to the values k = 0,+1,−1 of
the curvature parameter k. Equation (2) gives

p0 =

[
1 +

a(t)2

K(r)2
|p|2
]1/2

, p = (p1, p2, p3)

and p0 = −p0. The non-zero Christoffel symbols Γiµν of the metric (9) are given
by

Γii0 =
˙a(t)

a(t)
, Γiij = − kxj

2K(r)
, Γjii =

kxj

2K(r)
(i 6= j)

and by their symmetric symbols on the lower indexes; the index i is not summed in
the previous equations. It follows that the Liouville operator in the left hand side
of (3) is given by

Lf = p0∂tf + pi∂xif − 2
˙a(t)

a(t)
p0p · ∇pf −

k

K(r)
( 1
2 |p|

2x− (x · p)p) · ∇pf,

with w · z denoting the standard Euclidean scalar product of the vectors w, z ∈ R3.
The metric (4) now takes the form

hij =

(
a(t)2

K(r)2
δij −

pipj
(p0)2

)
.

It follows that

deth =
a(t)6

K(r)6(p0)2

(h−1)ij = gij + pipj =
K(r)2

a(t)2
δij + pipj .

Hence, the diffusion term in the right hand side of (3) ultimately takes the form

Dpf = p0∂pi

[(
gij + pipj

p0

)
∂pjf

]
= p0∂pi

 K(r)2a(t)2 δ
ij + pipj

p0

 ∂pjf

 .
Definition 2.1. A particle distribution f is said to be spatially homogeneous and

isotropic if there exists a function F̃ : R× [0,∞)→ [0,∞) such that

f(t, x, p) = F̃ (t, |v|)
∣∣∣∣
v = a(t)2

K(r)2 p
.
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It can be shown that this definition is equivalent to require that f is invariant
by the six-dimensional group of isometries of the metric (9), see [10]. It is now
convenient to define the function F : R× R3 → [0,∞) by

F (t, v) = F̃ (t, |v|), (10)

in terms of which the Fokker-Planck equation for spatially homogeneous and isotropic
distribution functions takes the final form

∂tF = σa(t)∂vi(D
ij∂vjF ), (11)

where the diffusion matrix D is

Dij =
a(t)2δij + vivj√
a(t)2 + |v|2

.

In terms of the function F , and recalling (10), the energy-momentum tensor and
current density (5) read

T00(t) =
1

a(t)4

∫
R3

F (t, v)
√
a(t)2 + |v|2 dv, (12)

T11(t) = T22(t) = T33(t) =
1

3a(t)2K(r)2

∫
R3

F (t, v)
|v|2√

a(t)2 + |v|2
, (13)

J0(t) =
1

a(t)3

∫
R3

F (t, v) dv, J i = 0, (14)

and T0i = Tij = 0, for i 6= j. Thus, equation (8) for the cosmological scalar field
φ = φ(t) becomes

φ̇ = −3
σ

a3
N,

where

N =

∫
R3

F dv (15)

is the total number of particles, which is conserved along solutions of (11).
Finally the non-zero components of the Einstein tensor Gµν = Rµν − 1

2gµνR are

G00 =
3(k + ȧ2)

a2
, G11 = G22 = G33 = −k + ȧ2 + 2aä

K(r)2
.

It follows that the Einstein equations (7) are

3(k + ȧ2)

a2
− φ =

1

a4

∫
R3

F
√
a2 + |v|2 dv,

−2
ä

a
−
(
ȧ

a

)2

− k

a2
+ φ =

1

3a4

∫
R3

F
|v|2√
a2 + |v|2

dv.

By introducing the Hubble function

H(t) =
ȧ(t)

a(t)
,

as well as the energy density ρ(t) and the pressure P(t) by

ρ(t) =
1

a(t)4

∫
R3

F
√
a(t)2 + |v|2 dv, P(t) =

1

3a(t)4

∫
R3

F
|v|2√

a(t)2 + |v|2
dv, (16)
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we can rewrite the Einstein equations in the form

H2 =
1

3
(ρ+ φ)− k

a2
, (17a)

Ḣ = −ρ+ P
2

+
k

a(t)2
. (17b)

We also have the following auxiliary equations, obtained by combining (17):

Ḣ = −1

6
(ρ+ 3P)−H2 +

1

3
φ. (18)

ρ̇ = −3H(ρ+ P)− φ̇. (19)

Note also the estimates

ρ ≥ N

a3
,

ρ

3
− N

3a3
≤ P ≤ ρ

3
, (20)

which follow straightforwardly by the definitions (15) and (16). The deceleration
parameter Q is defined as

Q = −aä
ȧ2

= −1− Ḣ

H2
.

The solution is said to be expanding with acceleration if Q < 0 and H > 0 and
expanding with deceleration if Q > 0 and H > 0. From (18), this occurs at time t
if and only if H(t) > 0 and

q(t) = 6H2(t)Q(t) = ρ(t) + 3P(t)− 2φ(t)

is negative, respectively positive.

3. Existence of regular solutions. In this section we study the existence of
regular solutions to the initial value problem for the spatially homogeneous and
isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. The
system, derived in the previous section, is given by

∂tF = σa(t)∂vi

(
a(t)2δij + vivj√
a(t)2 + |v|2

∂vjF

)
, (21a)

ȧ = Ha (21b)

Ḣ = −ρ+ P
2

+
k

a2
(21c)

φ̇ = −3σN

a3
, (21d)

H2 =
1

3
(ρ+ φ)− k

a2
, (21e)

where ρ(t),P(t) are given by (16) and k is either 0,+1, or −1. Initial data for the
system (21) consist of a quadruple (F0, a0, H0, φ0), where F0 : R3 → [0,∞) such

that F0(v) = F̃0(|v|), for some F̃0 : R→ [0,∞), and

a0 > 0, H0 > 0, φ0 > 0.

We assume that F0 is not identically zero and belongs to the space X = L1 ∩H1,
where, for γ > 0,

Lγ = {g : R3 → R : g ∈ L1 ∩ L2, and v → |v|γg ∈ L1}.
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Moreover, the initial data are assumed to satisfy (21e) at time t = 0, namely

H2
0 =

1

3
(ρ0 + φ0)− k

a20
. (22)

Given T > 0, a quadruple (F (t, v), a(t), H(t), φ(t)) will be referred to as a regular
solution of the system (21) on the interval [0, T ) and with initial data (F0, a0, H0, φ0)
if

F ∈ C0((0, T );X), 0 < a ∈ C1((0, T )), H ∈ C1((0, T )), φ ∈ C1((0, T )),

F ≥ 0 a.e, (a0, H0, φ0) = lim
t→0+

(a(t), H(t), φ(t)), lim
t→0+

‖F (t, ·)− F0‖L1 = 0,

and (21) is satisfied in the domain (t, v) ∈ (0, T )×R3. Note that for regular solutions
the functions ρ,P are continuous and hence the Einstein equations are satisfied in
the pointwise, classical sense. However the Fokker-Planck equation need only be
verified in the weak sense.

Proving existence and uniqueness of local regular solutions is a simple general-
ization of the argument presented in [1]. The main tool is the following set of a
priori estimates on the solution of the Fokker-Planck equation.

Proposition 1. Let Tmax > 0 be the maximal time of existence of a regular solution.
The following estimates on F hold for all t ∈ [0, Tmax):

(i) N = ‖F (t)‖L1 = ‖F0‖L1 (conservation of the total number of particles) and
‖F (t)‖L2 ≤ ‖F0‖L2 (dissipation estimate).

(ii) Propagation of moments: if F0 ∈ Lγ , then F (t, ·) ∈ Lγ and∫
R3

(a(t)2 + |v|2)γ/2F (t, v) dv ≤ e
C

(
αt+

∫ t
0
(H)+(s) ds

) ∫
R3

(a20 + |v|2)γ/2F0(v) dv,

where α = α(σ) > 0, with α(0) = 0, and C > 0 are constants depending on γ
and (y)+ denotes the positive part of y.

(iii) Propagation of derivative moments: if |v|γ/2∇vF0 ∈ L2 then∫
R3

(a(t)2 + |v|2)γ/2|∇vF (t, v)|2 dv ≤ Ce
C

(
αt+

∫ t
0
(H)+(s) ds

)
.

Proof. The proof is very similar to the proof of Prop. 2.2 in [1], hence we limit
ourself to formally derive the estimate in (ii). We compute

d

dt

∫
R3

(a(t)2 + |v|2)γ/2F dv = γa(t)ȧ(t)

∫
R3

(a(t)2 + |v|2)γ/2−1F dv

+ σa(t)

∫
R3

(a(t)2 + |v|2)γ/2∂vi(D
ij∂vjF ) dv

= γH(t)a(t)2
∫
R3

(a(t)2 + |v|2)γ/2−1F dv

− σγa(t)

∫
R3

(a(t)2 + |v|2)γ/2−1viD
ij∂vjF dv

≤ γ(H)+(t)

∫
R3

(a(t)2 + |v|2)γ/2F dv

+ σγa(t)

∫
R3

∂vj [(a(t)2 + |v|2)γ/2−1viD
ij ]F dv.
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In the last integral we use the brief calculation

∂vj [. . . ] = 3(a(t)2 + |v|2)γ/2−1/2 + (γ − 1) (a(t)2 + |v|2)γ/2−3/2|v|2

≤ C(a(t)2 + |v|2)γ/2−1/2.

Hence, we have

d

dt

∫
R3

(a(t)2 + |v|2)γ/2F dv ≤ C(α+ (H)+(t))

∫
R3

(a(t)2 + |v|2)γ/2F dv

and Grönwall’s Lemma concludes the proof of (ii).

The following lemma provides a characterization of ρ(t) that will be useful in
subsequent results.

Lemma 3.1. For any t ∈ [0, Tmax), we have

ρ(t) = a(t)−3
(
ρ0a

3
0 + 3σNt− 3

∫ t

0

H(s)a(s)3P(s) ds

)
.

In particular, if H(t) ≥ 0 for all t ∈ [0, Tmax), then

ρ(t) ≤ (ρ0a
3
0 + 3σNt)a(t)−3

for t ∈ [0, Tmax).

Proof. Using (19) we find

ρ̇+ 3Hρ = −3HP − φ̇,

and thus using the integrating factor exp(
∫ t
0

3H(s) ds) =
(
a(t)
a0

)3
, we find

d

dt

(
ρ(t)

(
a(t)

a0

)3
)

= (−3H(t)P(t)− φ̇(t))

(
a(t)

a0

)3

.

Integrating over [0, t] and using (21d), this becomes

ρ(t)a(t)3 − ρ0a30 = 3

∫ t

0

(
−H(s)a(s)3P(s) + σN

)
ds

and the conclusion follows.

In order to determine whether a regular solution exists globally or blows-up
in finite time, we shall often apply the following simple result within subsequent
sections.

Lemma 3.2. Let t1 ∈ R be given and assume there is t2 > t1 with I ∈ C1(t1, t2)
satisfying I1 := I(t1) < 0 and

İ(t) ≤ −I(t)2

for all t ∈ (t1, t2).

(a) If t2 ≥ t1 − 1
I1

, then t2 = t1 − 1
I1

and limt→t−2
I(t) = −∞ with the estimate

I(t) ≤ − 1

t2 − t
for all t ∈ [t1, t2).

(b) If t2 ≤ t1 − 1
I1

and limt→t−2
I(t) = −∞, then

I(t) ≥ − 1

t2 − t
for t ∈ [t1, t2).
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Proof. Since İ(t) ≤ 0 on (t1, t2) and I1 < 0, it follows that I(t) < 0 on the same
interval and we divide by −I(t)2 so that the differential inequality becomes

d

dt

(
I(t)−1

)
≥ 1, (23)

for all t ∈ (t1, t2). Integrating over [t1, τ ] for τ ∈ (t1, t2) yields

1

I(τ)
≥ τ −

(
t1 −

1

I1

)
and for τ ∈

[
t1, t1 − 1

I1

)
, this can be inverted to find

I(τ) ≤ 1

τ −
(
t1 − 1

I1

) .
Taking the limit as τ →

(
t1 − 1

I1

)−
implies I(τ) → −∞ at this time. Finally,

since the differential inequality cannot be satisfied after the blow-up time t1 − 1
I1

,

it follows that t2 = t1 − 1
I1

. The resulting estimate then follows by making this
replacement in the above inequality.

In the second case, we first note that the limit condition implies limt→t−2
I(t)−1 =

0. Integrating (23) over [τ, t2) for τ ∈ (t1, t2), we find

− 1

I(τ)
≥ t2 − τ

and thus the lower bound

I(τ) ≥ − 1

t2 − τ
for τ ∈ [t1, t2).

3.1. Characterization of the maximal time of existence. Next, we focus on
proving a series of criteria for the existence of global regular solutions, or their
finite-time blowup. We begin by showing that as long as a(t) remains bounded
away from zero, the solution remains regular.

Lemma 3.3.
α := inf

t∈[0,Tmax)
a(t) > 0⇒ Tmax = +∞. (24)

Proof. We limit ourselves to showing that, under the assumption within (24), the
solution cannot blow-up in finite time. Assume Tmax < ∞. Using a(t) ≥ α > 0
in (21d) and (21c) gives φ ∈W 1,∞([0, Tmax)) and H(t) ≤ H0 +Ct. From the latter
inequality and Proposition 1 (with γ = 1) we conclude that the integral∫

R3

√
a(t)2 + |v|2F (t, v) dv

is bounded. In particular F ∈ L∞([0, Tmax), X). Moreover using a(t) ≥ α > 0
in (16) we find that ρ,P ∈ L∞([0, Tmax)). By (21e) and (21c) we obtain H ∈
W 1,∞([0, Tmax)). As H = ȧ/a we also have a ∈ W 1,∞([0, Tmax)) and the proof is
complete.

Theorem 3.4. Let Tmax > 0 be the maximal time of existence of a regular solution.
Then, for k = 0,−1 the following are equivalent:

(a) lim
t→T−max

φ(t) ≥ 0
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(b) H(t) > 0, for all t ∈ [0, Tmax)
(c) Tmax = +∞.

For k = 1, we can only prove the weaker statements

Tmax = +∞⇒ lim
t→T−max

φ(t) ≥ 0, and

lim
t→T−max

φ(t) ≥ min

{
4

N2
,

9

4ρ0a40

}
⇒ Tmax = +∞ and H(t) > 0 for all t ≥ 0.

Proof. We first prove the equivalence of the statements (a), (b), (c) in the cases
k = 0,−1.

(a)⇒(b): Assuming (a) and using the fact that φ(t) is strictly decreasing on
[0, Tmax), we have φ(t) > 0 for all t ∈ [0, Tmax). Hence (21e) gives H(t) > 0, for all
t ∈ [0, Tmax) when k = 0,−1.

(b)⇒(c): As H(t) is strictly positive for t ∈ [0, Tmax), then a(t) is increasing
and so a(t) ≥ a0 for all t ∈ [0, Tmax). Statement (c) then follows immediately by
Lemma 3.3.

Next, we prove (c)⇒(a), as well as the analogous statement for k = 1. We do so
by using the contrapositive ∼(a) ⇒∼(c), i.e. by showing that negative values of φ
imply finite-time blow-up of solutions for k = −1, 0, 1. Assume limt→T−max

φ(t) < 0.

Then, since φ̇(t) < 0 there is T0 ∈ (0, Tmax) such that φ(t) < 0 for all t ∈ [T0, Tmax).
With this, (18) implies

Ḣ(t) ≤ −H(t)2

for all t ∈ [T0, Tmax). Again using (18), we have

Ḣ(t) ≤ 1

3
φ(t) ≤ 1

3
φ(T0)

for all t ∈ [T0, Tmax). Integrating over [T0, t], we have

H(t) ≤ H(T0) +
1

3
φ(T0)(t− T0) (25)

for t ∈ [T0, Tmax). Finally, because φ(T0) < 0, if Tmax = ∞ we may take t large

enough in (25) so that H(T1) < 0 where T1 > max
{
T0, T0 − 3H(T0)

φ(T0)

}
. Applying

Lemma 3.2 at t = T1, this implies Tmax <∞ contradicting the assumption Tmax =
∞. Thus, in all cases we find Tmax <∞.

Finally, we complete the proof by showing that either positive lower bound on φ
in the case k = 1 implies global existence. First, assume

lim
t→T−max

φ(t) ≥ 4

N2
.

As before, since φ is decreasing, we have φ(t) > 4
N2 for all t ∈ [0, Tmax). Using the

lower bound ρ(t) ≥ N/a(t)3 in (21e) we obtain

H(t)2 >
1

3

(
N

a(t)3
+

4

N2

)
− 1

a(t)2
.

Defining the function

g(x) =
1

3

(
N

x3
+

4

N2

)
− 1

x2

for all x > 0, we find

g′(x) =
−N + 2x

x4
.
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Therefore, g′(x) = 0 only at x = N
2 , and g is minimized at this point. Thus,

H(t)2 > g(a(t)) ≥ g
(
N

2

)
= 0.

This implies that H does not change sign and thus H(t) > 0 on [0, Tmax). Hence,
ȧ(t) > 0, which implies a(t) ≥ a0 for all t ∈ [0, Tmax), and Tmax = ∞ follows from
Lemma 3.3.

Now, if we instead assume

lim
t→T−max

φ(t) ≥ 9

4ρ0a40
,

then define

T ∗ = sup {t ≥ 0 : H(s) > 0 for all s ∈ [0, t]} ,

and note that T ∗ > 0 because H0 > 0. For t ∈ [0, T ∗) we use (19) to find

ρ̇ = −3H(ρ+ P)− φ̇ ≥ −4Hρ,

and thus
d

dt

[
a(t)4ρ(t)

]
≥ 0.

Hence, a lower bound on ρ follows, namely

ρ(t) ≥ ρ0a40a(t)−4.

Thus, on the same time interval, we use (21e) to find

H(t)2 ≥ 1

3
φ(t) +

1

3
ρ0a

4
0a(t)−4 − a(t)−2.

Defining the function

h(x) =
1

3
ρ0a

4
0x
−4 − x−2

for x > 0, we find its minimum value occurs when x2 = 2
3ρ0a

4
0, and at this value

h(x) = − 3
4ρ0a40

. Thus, for every t ∈ [0, T ∗)

H(t)2 ≥ 1

3
φ(t) + h(a(t)) ≥ 1

3
φ(t)− 3

4ρ0a40
.

Using the above assumption on the strictly decreasing function φ(t), we see that
H(T ∗) remains positive, and as in the previous argument this implies T ∗ = Tmax =
∞.

3.2. Initial data for global existence and blowup. Our next goal is to prove
that for each k = 0,±1 there exist conditions on the initial data for which the
solution is global and conditions which imply finite time blow-up. There are many
ways to express these conditions; one is to write them in the form φ0 < · · · ⇒ blow-
up and φ0 > · · · ⇒ global existence, where the right hand side of the inequality
depends on N,H0, a0 and the given constants k and σ (but not on φ0). When
expressed in this form, it is straightforward to show that the conditions on the initial
data derived in the present section are compatible with the constraint equation (22).
We begin with the blow-up results.
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Theorem 3.5. Let k = 0,−1. Then for

φ0 <
σN

H0a30
, (26)

the regular solution blows-up in finite time, i.e., Tmax < ∞. If k = 1, then the
solution blows-up in finite time when

φ0 <
9σN2

4a30

√
π

2
Erfc(x)ex

2

, x =
9H0N

4
√

2
, (27)

where Erfc(z) denotes the complementary error-function.

Proof. First, suppose that (26) holds and assume Tmax = +∞. By (21c) we have
H(t) ≤ H0, and hence for all t ∈ [0, Tmax) it follows that a(t) ≤ a0e

H0t. Integrat-
ing (21d) we obtain

φ(t) = φ0 − 3σN

∫ t

0

ds

a(s)3
≤ φ0 +

σN

a30H0
(e−3H0t − 1)→ φ0 −

σN

a30H0
.

Hence under condition (26) we have limt→+∞ φ(t) < 0, and so, by Theorem 3.4,
Tmax <∞. This contradicts the original assumption and implies Tmax <∞ in the
cases k = 0,−1.

In the case k = 1, the bound on H is much weaker. Hence, let us suppose
that (27) holds and assume Tmax = +∞. We first notice that by (21d) and the
bound ρ(t) ≥ N/a(t)3,

Ḣ ≤ 1

a(t)2
− N

2a(t)3
≤ max

x>0

(
x−2 − N

2
x−3

)
=

16

27N2
.

Hence, H ≤ H0 + 16
27N2 t, which gives

a(t) ≤ a0 exp

(
H0t+

8

27N2
t2
)

= a0e
− 27

32H
2
0N

2

exp

(
1

N

√
8

27
t+

√
27

32
H0N

)2

.

Integrating (21d) we obtain

φ(t) ≤ φ0 −
3σN

a30
e

81
32H

2
0N

2

∫ t

0

exp

−3

(
1

N

√
8

27
s+

√
27

32
H0N

)2
 ds

→ φ0 −
9σN2

4a30

√
π

2
Erfc(x)ex

2

, x =
9H0N

4
√

2
,

as t → ∞. Thus, under condition (27) we have limt→+∞ φ(t) < 0, and by Theo-
rem 3.4 we reach a contradiction.

With this, we turn to initial data which launch a global-in-time solution.

Theorem 3.6. Let k = −1, 0. Then for

φ0 ≥ 3
σN

H0a30
, (28)

the regular solution is global, i.e., Tmax =∞ and

lim
t→∞

φ(t) ≥ φ0 − 3
σN

H0a30
.
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Proof. To show global existence under condition (28), we define

T ∗ = sup {t ≥ 0 : φ(τ) > 0 for all τ ∈ [0, t]} .

Note that Tmax ≥ T ∗ by Theorem 3.4. Moreover, (21e) implies that H(t) > 0 for
t ∈ [0, T ∗). By (18), (21e) and the bound P ≤ ρ/3 we have

Ḣ ≥ 1

3
φ− 1

3
ρ−H2 =

2

3
φ− k

a2
− 2H2 ≥ −2H2, t ∈ [0, T ∗).

Integrating and using the fact that H(t) > 0 on [0, T ∗) we obtain

H(t) ≥ H0

1 + 2H0t
, for t ∈ [0, T ∗)

and so

a(t) ≥ a0(1 + 2H0t)
1/2, for t ∈ [0, T ∗).

Using (21d) we get

φ(t) ≥ φ0 −
3σN

a30

∫ t

0

ds

(1 + 2H0s)3/2
> φ0 −

3σN

a30H0
. (29)

Hence, under condition (28), if T ∗ < Tmax we would have φ(T ∗) > 0, which contra-
dicts the maximality of T ∗. It follows that T ∗ = Tmax = +∞. The lower bound on
the limit of φ(t) follows by letting t→∞ in (29).

Notice that the last two results suggest a particular quantity involving initial
data that can predict the finite or infinite lifespan of the smooth solution in the

cases of k = −1, 0. More specifically, if
φ0H0a

3
0

σN is large enough then the solution
must be global, while if this quantity is made too small, then solutions must blow-up
in finite time. As before, the situation for k = 1 is more complicated, and the next
result establishes conditions on initial data that guarantee global existence in this
case.

Theorem 3.7. Let k = 1. Then, the solution is global under the conditions

3σ

H0
≤ 1 and ρ0a

2
0 <

3

2
(30)

or the conditions

3σ

H0
> 1 and ρ0a

2
0 ≤

3

2

(
H0

3σ

)
exp

(
1− H0

3σ

)
. (31)

Proof. First, note that under either condition (30) or (31), we have ρ0a
2
0 < 3/2;

hence from (20) and (21c), it follows that Ḣ(0) > 0. Define

T ∗ = sup

{
t ≥ 0 : H(s) ≥ NH0

ρ0a30
for all s ∈ [0, t]

}
and notice that T ∗ > 0 because ρ0 ≥ N

a30
and Ḣ(0) > 0. Then, for t ∈ [0, T ∗)

Lemma 3.1 yields

ρ(t) ≤ (ρ0a
3
0 + 3σNt)a(t)−3

and similarly, the lower bound

a(t) ≥ a0 exp

(
NH0

ρ0a30
t

)
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follows from the bound on H(t). Additionally, on the same time interval (20) and
(21c) then imply

Ḣ(t) ≥ −2

3
ρ(t) +

1

a(t)2

≥ a(t)−2
[
1− 2

3
(ρ0a

3
0 + 3σNt)a(t)−1

]
≥ a(t)−2

[
1− 2

3
(ρ0a

3
0 + 3σNt)a−10 exp

(
−NH0

ρ0a30
t

)]
.

Now, the function

g(t) = 1− 2

3
(ρ0a

3
0 + 3σNt)a−10 exp

(
−NH0

ρ0a30
t

)
is minimized at the point

t∗ =
ρ0a

3
0

3σN

(
3σ

H0
− 1

)
.

If 3σ
H0
≤ 1, then g(t) is increasing for all t ≥ 0 and the minimum for nonnegative

times occurs at t = 0. Therefore,

Ḣ(t) ≥ a(t)−2g(0) = a(t)−2
(

1− 2

3
ρ0a

2
0

)
> 0

assuming that (30) holds. Instead, if 3σ
H0

> 1 then t∗ > 0. Therefore,

Ḣ(t) ≥ a(t)−2g(t∗) = a(t)−2
[
1− 2σρ0a

2
0

H0
exp

(
H0

3σ
− 1

)]
> 0

assuming that (31) holds. In either case, Ḣ(t) > 0 for all t ∈ (0, T ∗), which implies
that H(t) > H0 on the same interval. Hence, the above lower bound on a(t)
continues on [0, T ∗), yielding a regular solution, and because H(T ∗) > H0 we find
T ∗ =∞.

Our final result in this section is meant to unify the treatment for all three cases.

Theorem 3.8. Let k = −1, 0, 1 and take β ∈ (0, 1). Then, denoting k+ =
max{k, 0}, the solution is global under the condition

φ0 ≥
3

β2a20

[
k+ + 3

(
σN

6

)2/3
]

(32)

and furthermore

lim
t→∞

φ(t) ≥ φ0 −
6

β2a20

(
σN

6

)2/3

.

Proof. Define

γ =
1

βa0

(
σN

6

)1/3

> 0

and suppose that (32) holds. After some algebra, we see that this inequality implies

1

3
φ0 −

σN

3β3a30γ
− k+
β2a20

≥ γ2.

Then, define

T ∗ = sup {t ∈ [0, Tmax) : a(τ) ≥ βa0eγτ for all τ ∈ [0, t]}
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and note that since β < 1, we have T ∗ > 0. Now, integrating (21d) for t ∈ [0, T ∗),
we find

φ(t) = φ0 − 3σN

∫ t

0

ds

a(s)3
≥ φ0 +

σN

γβ3a30
(e−3γt − 1) ≥ φ0 −

σN

γβ3a30
.

Hence, (21e) implies

H(t)2 ≥ 1

3
φ(t)− k+

a(t)2
≥ 1

3
φ0 −

σN

3β3a30γ
− k+
β2a20

≥ γ2

so that H(t) does not change sign on [0, T ∗) and H(t) ≥ γ. It follows that

a(t) ≥ a0eγt

for all t ∈ [0, T ∗). Since β < 1, this then implies T ∗ = Tmax. Finally, since γ > 0
we find

inf
t∈[0,Tmax)

a(t) = a0 > 0.

It follows by Lemma 3.3 that Tmax =∞, and the proof of the theorem is complete.

4. Asymptotic behavior of solutions. In this section we analyze the asymptotic
behavior as t→∞ of global solutions and as t→ T−max of solutions which blow-up
in finite time. We begin with the former solutions.

Theorem 4.1. Consider a global regular solution, i.e., Tmax = ∞, and let φ∞ :=
lim
t→∞

φ(t) ≥ 0. Then for k = 0,−1 the following holds:

(i) If φ∞ > 0, then there exist C1, C2 > 0 such that for all t ≥ 0√
φ∞
3
≤ H(t) ≤

√
φ∞
3

+ C2 exp

(
−
√
φ∞
3
t

)
,

φ∞ + C1σ exp

(
−3

√
φ∞
3
t

)
< φ(t) ≤ φ∞ + C2σ exp

(
−3

√
φ∞
3
t

)
,

a0 exp

(√
φ∞
3
t

)
≤ a(t) ≤ C2 exp

(√
φ∞
3
t

)
,

C1σ exp

(
−3

√
φ∞
3
t

)
≤ ρ(t) ≤ C2(1 + σt) exp

(
−3

√
φ∞
3
t

)
.

(ii) If φ∞ = 0, then there exist C1, C2 > 0 such that for all t ≥ 0

C1(1 + t)−1 ≤ H(t) ≤ C2(1 + t)−1/2
[
1 + σ(1 + t)1/4

]
,

0 < φ(t) ≤ C2(1 + t)−1/2,

C1(1 + t)1/2 ≤ a(t) ≤ C2 exp (t1/2[1 + σt1/4]),

C1 exp (−3t1/2[1 + σt1/4]) ≤ ρ(t) ≤ C2(1 + t)−3/2(1 + σt).

For the case k = 1, if φ∞ > min
{

4
N2 ,

9
4ρ0a40

}
:= φm then the same conclusion as

in (i) holds with φ∞ replaced by φ∗ = φ∞ − φm.
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Proof. We first assume k = 0,−1. If φ∞ > 0, then, by (21e),

H(t)2 ≥ 1

3
φ(t) ≥ 1

3
φ∞ (33)

for all t ≥ 0. Thus H remains strictly positive for all time with H(t) ≥
√

φ∞
3 . It

follows that for all t ≥ 0

a(t) ≥ a0 exp

(√
φ∞
3
t

)
. (34)

Furthermore, due to (16) and using the positivity of H in Lemma 3.1 implies

Na(t)−3 ≤ ρ(t) ≤ (ρ0a
3
0 + 3σNt)a(t)−3

which yields the claimed behavior of ρ once the bounds on a(t) are established. To
arrive at a bound on φ, we integrate (21d) and use the lower bound on a to find

φ∞ − φ(t) = −3σN

∫ ∞
t

a(s)−3 ds

≥ −3σN

a30

∫ ∞
t

e−
√
3φ∞s ds

= −
√

3

φ∞

σN

a30
exp

(
−3

√
φ∞
3
t

)
for all t ≥ 0, which implies an upper bound on the behavior of φ. Using this in
(21e) with the upper bound on ρ and the lower bound on a implies for all t ≥ 0

H(t)2 ≤ 1

3
φ∞ + C(1 + σt) exp

(
−3

√
φ∞
3
t

)
+ a−20 exp

(
−2

√
φ∞
3
t

)
.

This further implies

H(t) ≤
√
φ∞
3

+ C exp

(
−
√
φ∞
3
t

)
,

and, in conjunction with (33), this inequality implies the claimed behavior of H.
Finally, this upper bound on H implies an analogous upper bound on a, so that

a(t) = a0 exp

(∫ t

0

H(s) ds

)
≤ C exp

(√
φ∞
3
t

)
.

Pairing this with (34) implies the bounds on a(t), and the upper bound on a(t)
further implies the lower bound on φ(t) using (21d).

Next, assume φ∞ = 0. As in the previous case, we find by (21e)

H(t)2 ≥ 1

3
φ(t) > 0

for all t ≥ 0, and thus H remains strictly positive for all time. As in the proof of
Theorem 3.6, we use (21e), (18), and the bound P ≤ ρ/3 to find

Ḣ ≥ 1

3
φ− 1

3
ρ−H2 =

2

3
φ− k

a2
− 2H2 ≥ −2H2

for t ≥ 0. Integrating and using the positivity of H(t) we obtain

H(t) ≥ H0

1 + 2H0t
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and the lower bound

a(t) ≥ a0(1 + 2H0t)
1/2 (35)

follows for t ≥ 0. Furthermore, the positivity of H implies the same upper bound
on ρ as in the previous case, and we again find for t ≥ 0

Na(t)−3 ≤ ρ(t) ≤ C(1 + σt)a(t)−3.

As before, this yields the claimed asymptotic behavior of ρ once the full behavior
of a is obtained. Integrating (21d) and using (35), we find

φ(t) = φ∞ + 3σN

∫ ∞
t

a(s)−3 ds ≤ 3σN

H0a30
(1 + 2H0t)

−1/2.

Next, we use (21e), the upper bounds on ρ and φ, and the lower bound on a so that

H(t)2 ≤ σN

H0a30
(1 + 2H0t)

−1/2 + C(1 + σt)a(t)−3 + a−20 (1 + 2H0t)
−1

≤ C(1 + t)−1
[
1 + σ(1 + t)1/2

]
and thus

H(t) ≤ C(1 + t)−1/2
[
1 + σ(1 + t)1/4

]
.

With this, an upper bound on a(t) follows, namely

a(t) ≤ C exp (t1/2[1 + σt1/4]).

The last claim for k = 1 follows by the same argument used to prove (i) and
the lower bounds on H attained for k = 1 within the proof of Theorem 3.4. For
example, assuming φ∞ ≥ 4

N2 the argument proceeds by using

H(t)2 ≥ 1

3

(
φ∞ −

4

N2

)
+

1

3

( N

a(t)3
+

4

N2

)
− 1

a(t)2
≥ φ∗

3

instead of (33). Similarly, assuming φ∞ ≥ 9
4ρ0a40

the argument proceeds by using

H(t)2 ≥ 1

3
φ(t)− 3

4ρ0a40
≥ φ∗

3

instead of (33).

We remark that sufficient conditions to guarantee φ∞ > 0 for k = 0,−1 and
φ∗ > 0 for k = 1 follow by the lower bounds on limt→∞ φ(t) derived in Theorems 3.6
and 3.8. Next, we provide some information on the behavior of solutions that blow-
up in finite time as they approach the singularity.

Theorem 4.2. Let k = 0,−1 and consider a regular solution that blows up in finite
time, i.e., Tmax <∞. Then, we have

lim
t→T−max

H(t) = lim
t→T−max

φ(t) = −∞, lim
t→T−max

ρ(t) =∞, and lim
t→T−max

a(t) = 0. (36)

Moreover, the singularity is a curvature singularity, and there exist C1, C2 > 0 such
that for t sufficiently close to Tmax
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− 1

Tmax − t
≤ H(t) ≤ − C2√

Tmax − t
,

− C1

(Tmax − t)2
≤ φ(t) ≤ − C2√

Tmax − t
,

C1(Tmax − t) ≤ a(t) ≤ C2

√
Tmax − t,

C1

(Tmax − t)3/2
≤ ρ(t) ≤ C2

(Tmax − t)2
.


(37)

For the case k = 1, if lim
t→T−max

φ(t) < 0 then the solution blows up in finite time and

the same asymptotic behavior follows with identical bounds.

Proof. By Theorem 3.4 the finite time blow-up of the solution in the cases k = 0,−1
implies H(t) ≤ 0 for some t ∈ (0, Tmax) and φ(t) must eventually attain negative
values. Without loss of generality, we can take T1 ∈ (0, Tmax) large enough so that

φ(t), H(t) < 0 for t ∈ [T1, Tmax), as φ is decreasing and φ(t) < 0 implies Ḣ(t) < 0
by (18). With this, we see that a(t) is strictly decreasing on (T1, Tmax), and by
Lemma 3.3 we find both a(t) > 0 for all t ∈ [0, Tmax) and

inf
t∈[0,Tmax)

a(t) = 0.

Thus, it follows that limt→T−max
a(t) = 0. The limits of H and ρ in (36) follow from

this behavior. Indeed, the limiting behavior of ρ follows directly from the lower
bound (20). Also, because φ(t) < 0 for t ∈ [T1, Tmax), we use (18) to arrive at

Ḣ(t) < −H(t)2 (38)

for t ∈ [T1, Tmax). Then, using the definition of H, we compute

Ḣ(t) =
d

dt

(
ȧ(t)

a(t)

)
=
ä(t)

a(t)
−H(t)2

so that

ä(t) =
(
Ḣ(t) +H(t)2

)
a(t) < 0

for t ∈ [T1, Tmax). Therefore, ȧ(t) < ȧ(T1) < 0 on [T1, Tmax), and

H(t) =
ȧ(t)

a(t)
<
ȧ(T1)

a(t)

for t ∈ [T1, Tmax) then implies H(t) → −∞ as t → T−max. The limiting behavior of
φ will be obtained from the upper bound established below.

Next, we turn to establishing the precise asymptotic behavior of these functions
at the blow-up time. Using (36) we find limt→T−max

H(t)−1 = 0, and because Tmax

is the blow-up time, it follows that Tmax ≤ T1 − 1
H(T1)

. Therefore, using (38) and

evoking Lemma 3.2 with t1 = T1 and t2 = Tmax, we find

H(t) ≥ − 1

Tmax − t
for t ∈ [T1, Tmax).

With this estimate on H we also find for τ ∈ [T1, Tmax)

ȧ(τ) ≥ − 1

Tmax − τ
a(τ),
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and upon dividing by a(τ) > 0 and integrating over [T1, t], the lower bound

a(t) ≥ a(T1)

Tmax − T1
(Tmax − t) ≥ C (Tmax − t)

follows for t ∈ [T1, Tmax).
The lower bound on φ(t) is obtained by using this estimate within (21d) so that

φ(t) ≥ φ(T1)− Cσ
∫ t

T1

ds

(Tmax − s)3

= φ(T1) +
Cσ

(Tmax − T1)2
− Cσ

(Tmax − t)2

≥ − C

(Tmax − t)2

for t sufficiently close to Tmax. Similarly, to derive the upper bound on ρ we first
use (21e) to find

ρ = 3

(
H2 +

k

a2

)
− φ ≤ 3H2 +

3

a2
− φ.

Then, the previously-obtained lower bound on H(t) for t ∈ [T1, Tmax) implies
|H(t)| ≤ 1

Tmax−t , and thus

H(t)2 ≤ 1

(Tmax − t)2

on the same time interval. Using this with the lower bounds on a and φ, we have

ρ(t) ≤ C

(Tmax − t)2

for t sufficiently close to Tmax.
Next, we establish bounds on these functions in the opposite directions. Since

we know a → 0 as t → T−max and H(T1), φ(T1) < 0 with each of these functions
decreasing on (T1, Tmax), we can find T2 ∈ [T1, Tmax) such that H(t), φ(t) < 0 and
a(t) < 1 for t ∈ [T2, Tmax). Then, using (19), (20), and (21d) we find

ρ̇(t) ≤ −4H(t)ρ(t) + 3σNa(t)−3 ≤ −4H(t)ρ(t) + 3σNa(t)−4

for t ∈ [T2, Tmax). Multiplying by a(t)4, we can rewrite the inequality as

d

dt

(
ρ(t)a(t)4

)
≤ 3σN

and integrating yields

ρ(t) ≤ a(t)−4
(
ρ(T2)a(T2)4 + 3σN(Tmax − T2)

)
≤ Ca(t)−4

for t ∈ [T2, Tmax). Using this estimate within (21e), we find

H(t)2 ≤ 1

3
ρ+ a(t)−2 ≤ C

(
a(t)−4 + a(t)−2

)
≤ Ca(t)−4

for t ∈ [T2, Tmax). Multiplying by a(t)4, this becomes

|a(t)ȧ(t)|2 ≤ C

which, because ȧ(t) < 0, further implies

−1

2

d

dt

(
a(t)2

)
≤ C.
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Integrating over [τ, Tmax) and using the limiting behavior of a as t→ T−max, we find

a(τ) ≤ C
√
Tmax − τ

for τ ∈ [T2, Tmax).
With the upper bound on a established, the lower bound on ρ follows directly

from (20) so that

ρ(t) ≥ Na(t)−3 ≥ C

(Tmax − t)3/2
for t ∈ [T2, Tmax). Additionally, the upper bound on φ follows exactly as before. In
particular, integrating (21d) over [T2, t] we find

φ(t) ≤ φ(T2)− C
∫ t

T2

ds

(Tmax − s)3/2
≤ − C√

Tmax − t
for t sufficiently close to Tmax. Furthermore, this estimate implies the limiting
behavior of φ within (36). Finally, the upper bound on H is obtained from (18) so
that

Ḣ(t) ≤ −1

6
ρ ≤ − C

(Tmax − t)3/2
for t ∈ [T2, Tmax). Integrating over [T2, τ ] then yields the result

H(τ) ≤ − C√
Tmax − τ

for τ sufficiently close to Tmax.
For the case k = 1 we merely repeat this argument under the assumption that

φ(t) < 0 for some t ∈ (0, Tmax) since this gives rise to negative values of H(t) as in

the proof of Theorem 3.4, as well as, the upper bound Ḣ(t) ≤ −H(t)2.
Finally the singularity at t → T−max is a curvature singularity, for the Einstein

equation (7) and the proven bounds imply

R = 4φ− (ρ+ 3P)→ −∞.

With these results in hand we can finally discuss the important question of the
existence of a phase of accelerated expansion of the Universe occurring after an orig-
inal phase of decelerated expansion. There is overwhelming experimental evidence
that the Universe is currently expanding with acceleration. Nonetheless, the stan-
dard cosmological models require the existence in the past of a phase of decelerated
expansion, during which the structures visible today (galaxies, clusters, etc.) have
formed. The following final result shows that the diffusion model studied in this
paper is able to reproduce this physical behavior.

Let us define the dimensionless constants:

Σ0 =
σ

H0
, Φ0 =

φ0
ρ0
.

Corollary 1. Let k = 0 or −1. Then for 3Σ0 < Φ0 <
1
2 the regular solution is

global and there exist 0 < t0 < t1 such that q(t) > 0 for t ∈ [0, t0), and q(t) < 0 for
t > t1.

Proof. As ρ0 ≥ N/a30, then Φ0 > 3Σ0 implies φ0 > 3 σN
H0a30

, hence the solution is

global by Theorem 3.6. Moreover

lim
t→∞

q(t) = lim
t→∞

[ρ(t) + 3P(t)− 2φ(t)] = −2φ∞ < 0,
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and therefore there exists t1 > 0 such that q(t) is negative for t > t1. Furthermore,
we find

q(0) = ρ0 + 3P0 − 2φ0 > ρ0 − 2φ0 = ρ0(1− 2Φ0) > 0.

Hence, Φ0 < 1/2 implies q(0) > 0, which further guarantees the existence of t0 > 0
such that q(t) > 0 for t ∈ [0, t0).
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