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a b s t r a c t 

A modified, deterministic SEIR model is developed for the 2014 Ebola epidemic occurring 

in the West African nations of Guinea, Liberia, and Sierra Leone. The model describes the 

dynamical interaction of susceptible and infected populations, while accounting for the ef- 

fects of hospitalization and the spread of disease through interactions with deceased, but 

infectious, individuals. Using data from the World Health Organization (WHO), parameters 

within the model are fit to recent estimates of infected and deceased cases from each na- 

tion. The model is then analyzed using these parameter values. Finally, several metrics are 

proposed to determine which of these nations is in greatest need of additional resources 

to combat the spread of infection. These include local and global sensitivity metrics of 

both the infected population and the basic reproduction number with respect to rates of 

hospitalization and proper burial. 
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1. Introduction 

The most recent Ebola outbreak began in December 2013 and resulted in a devastating loss of life in Guinea, Liberia,

and Sierra Leone. This outbreak has been the deadliest in the history of the disease claiming more than 10,0 0 0 lives to

date [4,22] . The severity of the epidemic has prompted an international response to halt further spread of the disease. In

particular, efforts arising within the United States and China have provided additional relief to the region, but within 2014

this had not been enough to end the epidemic. 

Some basic facts about Ebola disease pathogenesis are well known. Those exposed to the virus experience an 8-to-10 day

average incubation period during which they remain noninfectious [4] , though the time between exposure and the onset

of symptoms ranges from 2 to 21 days [9] . Once a patient becomes symptomatic, the virus may be transferred to others

through direct contact with bodily fluids [10] , such as blood and vomit. One important epidemiological feature of Ebola is

that those who are killed by the disease can still transmit the virus to susceptible individuals. Unlike most pathogens, which
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cannot survive long on a deceased individual, Ebola does remain infectious after a person succumbs to the disease [9] . In

fact, the deceased are even more contagious than living Ebola patients as the virus can force a victim’s body to release

infectious fluids including blood, vomit, and fecal matter - especially in later stages of the disease [5] . This fluid release is

among the most visually harrowing symptoms of Ebola, present in some late-stage patients [9] . 

The spread of infection from deceased to susceptible individuals is a significant problem in Western Africa where local

burial rituals often require washing, touching, or kissing the body of the deceased. Among the traditional practices the WHO

cautions against with Ebola victims are family-led body preparation and religious rituals that require direct contact with the

corpse. Muslim tradition, for instance, requires that family members of the same gender wash the body themselves before

burial. Moreover, the lack of adequate health care within Guinea, Liberia, and Sierra Leone has perpetuated the disease, as

improper and unsafe burials place further individuals at risk. Widespread reports from Liberia in late 2014 described Ebola

victims laying on the streets for days, drastically increasing the risk of infection [20] . The WHO estimates that contact with

deceased individuals has caused at least 20% of all infections [21] . Hence, the bodies of deceased Ebola victims that have

not been properly disposed and burial ceremonies, in which mourners have direct contact with the body of the deceased,

can play a large role in the transmission of the virus, and these effects cannot be neglected within an informative model. 

Another important feature is the effect of hospitalization. Due to their frequent interaction with patients either under in-

vestigation or confirmed to have contracted the Ebola virus, healthcare personnel are particularly susceptible to the disease

[23] . In particular, they can be exposed to Ebola by coming in contact with a patient’s body fluids, contaminated medi-

cal supplies and equipment, or contaminated environmental surfaces. For these reasons transmission between infectious, 

hospitalized individuals and medical workers are non-negligible within a descriptive epidemic model. Additionally, hospi-

talization and subsequent treatment does improve an infected patient’s chances of recovery, though the difference in case

fatality rates between hospitalized patients and non-hospitalized cases is relatively small [19] , and an increase in the use of

medical facilities within a population can reduce the damage caused by the epidemic. 

While a previous study focused predominantly on the effects of contact tracing [18] , it has recently been determined

[13,15] that multiple aspects of disease pathogenesis, including hospitalization, case isolation, and further introduction of

sanitary funeral processes, must be better addressed in order to fully mitigate further spread of the disease. Hence, the ul-

timate goal of the current study is to construct a model for the most recent Ebola epidemic in Western African and identify

useful metrics to determine which of the affected countries would benefit most from the allocation of additional resources,

including new treatment facilities or greater manpower to ensure proper burials. To this end, a deterministic model for the

epidemic is constructed in the next section by accounting for the specific characteristics of the disease, including the incu-

bation period, increased risk of infection from deceased individuals, and the effects of hospitalization. Realistic parameter

values are determined by fitting to given data for each of the nations and a separate analysis of the respective reproduction

numbers is conducted. In Section 3 , we discuss local metrics other than direct computation of the basic reproduction num-

ber ( R 0 ) which may allow one to determine the optimal sites for resource allocation and inhibit the spread of the disease.

These metrics include fitted parameter values, the local sensitivity of the infectious population, and the local minimization

of R 0 with respect to parameter variation. Within Section 4 , we propose and explore a new method to compute the global

sensitivity of R 0 with respect to alterations in the most crucial parameter values. Ultimately, we find that of these three

troubled nations, it is Liberia that would benefit most from the introduction of additional medical resources. In general,

these tools – especially the proposed activity scores of Section 4 – can be used to analyze future outbreaks in addition to

the most recent crisis. Finally, the relevant details of computations are contained within the Appendix . 

2. A mathematical model for Ebola 

Our first objective is to develop a mathematical model for the spread of Ebola in Western Africa by accounting for the

specific characteristics of the disease. SEIR models are often implemented when studying the spread of infectious diseases

that possess significant incubation periods [1,11,15,16,18] . To describe the spread of Ebola, a traditional SEIR model is aug-

mented with additional compartments based on the following assumptions. First, as the number of susceptibles is large,

we neglect stochastic effects and formulate a deterministic model. Additionally, though the current epidemic has lasted

for over a year, we assume that the outbreak is not sustained by the introduction of new susceptible individuals. Hence,

national populations are near equilibrium and both births and deaths are neglected amongst the total population. We fur-

ther assume that infected individuals can move to three different removed compartments: removed and infectious (i.e. not

properly buried), removed and properly buried, and removed and recovered. This distinction is introduced to allow for the

scenario in which individuals who have died from the disease, but have not been properly buried, may continue to infect

susceptible individuals whom they contact. 

We assume that those who recover from the disease are no longer susceptible, as survivors of Ebola are thought to

be immune to the strain of the virus that infected them [5] . Once hospitalized, infected individuals can still spread the

disease to members of the susceptible population. However, we assume that patients who die within a hospital receive an

immediate proper burial, and thus cannot infect others once deceased. Finally, we assume that hospitalized individuals have

a greater chance of survival than infected, non-hospitalized individuals [9] . This is consistent with estimates of the general

Ebola fatality rate around 70% and the hospitalized fatality rate near 64% [19] . 
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Fig. 1. A graph representing the states ( S , E , I , R B , R I , R R , and H ) and transition pathways (arrows) in the Ebola model (1) . Table 1 further describes the 

model parameters included above. 

Table 1 

Parameters in the Ebola dynamics model. 

Parameter Description 

β1 Transmission rate between infected and susceptible 

β2 Transmission rate between removed but still infectious and susceptible 

β3 Transmission rate between hospitalized and susceptible 

δ (Incubation period) −1 

γ 1 (Average time with disease for unhospitalized individuals) −1 

γ 2 (Average time with disease for hospitalized individuals) −1 

ψ (Average time for infected to become hospitalized) −1 

ρ1 Proportion of infected who die of the disease and are not hospitalized 

ρ2 Proportion of infected who die of the disease and are hospitalized 

ω (Average time until a deceased individual is properly buried) −1 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. A modified SEIR model 

With the aforementioned assumptions identified, we formulate a modified SEIR model to account for the dynamics of the

disease within a population. The model consists of the following seven states, each a function of time t : (i) the susceptible

proportion of the population S ( t ), (ii) the exposed proportion (i.e., infected but asymptomatic) E ( t ), (iii) the infectious and

symptomatic proportion I ( t ), (iv) the infectious and hospitalized proportion H ( t ), (v) the removed but infectious proportion

(i.e., those who died from the disease but have not been sanitarily buried) R I ( t ), (vi) the removed and buried proportion

R B ( t ), and (vii) the removed and recovered proportion R R ( t ). 

There are several ways in which the populations may be altered. First, susceptibles transfer to the exposed population

after coming into contact with either an infectious individual (including those who are hospitalized) or a body which is

not yet buried. After the viral incubation period, all exposed individuals move to the infectious population. The infectious

move to one of three populations: hospitalized, removed and infectious, or removed and recovered. Note that infectious

individuals cannot move immediately to a removed and buried state since we assume that some time is needed to bury

an individual not receiving medical care at death. However, a proportion of removed and infectious individuals transfer to

removed and buried. Hospitalized individuals move to either removed and buried or removed and recovered. Finally, all

transmission terms are assumed to be of standard incidence form. Fig. 1 summarizes these transition pathways between

populations, while Table 1 summarizes model parameters—all of which are nonnegative. 
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The coupled system of differential equations for S ( t ), E ( t ), I ( t ), H ( t ), and R I ( t ) is given by 

dS 

dt 
= −β1 SI − β2 SR I − β3 SH 

dE 

dt 
= β1 SI + β2 SR I + β3 SH − δE 

dI 

dt 
= δE − γ1 I − ψ I 

dH 

dt 
= ψ I − γ2 H 

dR I 

dt 
= ρ1 γ1 I − ωR I . 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(1) 

The R B and R R proportions decouple from the system above as their values are determined once the others are known. Their

respective time evolution is given by 

dR B 

dt 
= ωR I + ρ2 γ2 H 

dR R 

dt 
= (1 − ρ1 ) γ1 I + (1 − ρ2 ) γ2 H. 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(2) 

With R B and R R accounted for, the model is conservative, and compartments here have been rescaled so that each upper-

case variable represents the proportion of a specific population with respect to the total population. For example, letting

lowercase variables ( s ( t ), e ( t ), ...) denote total population counts within each compartment and denoting the total population

constant by N = s + e + i + h + r i + r b + r r , we see that dN 
dt 

= 0 . Hence, we can express the proportion of susceptible individ-

uals as S(t) = 

s (t) 
N with analogous representations for the other dependent variables, and the model (1)–(2) follows. We note

that this model is similar to a stochastic SEIR model derived in [11] to explain previous outbreaks in Uganda, Gabon, Sudan,

and the Democratic Republic of the Congo. However, we employ a deterministic model herein and specifically assume that,

due to current public health intervention, any individuals who die while hospitalized are properly buried. Additionally, the

removed population within our model is separated into deceased (and noninfectious) and recovered individuals in order to

provide more reasonable estimates of the impact of the disease. 

2.2. Parameter fitting 

We begin our analysis of the model by identifying values of model parameters that generate predictions matching avail-

able data for Guinea, Liberia, and Sierra Leone. We obtained time-series data for each nation from WHO Situation re-

ports [22] and the Network Dynamics and Simulation Science Laboratory at Virginia Tech [14] . The data sets contain cu-

mulative values of infections and deaths from each nation. However, the data are incomplete and/or irregularly reported;

hence, we remove outliers and time periods without sufficient reporting. The remaining number of data points are 36, 90,

and 61 for Liberia, Guinea, and Sierra Leone, respectively. 

Since the data represent cumulative quantities, but the model describes instantaneous proportions of active infections,

and differing compartments are employed in our model for deaths, a direct fit is not immediately possible. Instead, to

generate cumulative quantities, the time-integrated infected population was fit to the cumulative infected data. Also, our

model includes three deceased states, while the data do not differentiate among differing death compartments. Thus, we

assume reported deaths in the data correspond to the properly buried population R B , and not the deceased but infectious

population R I , as the latter are likely unknown to data collectors. 

To fit the model parameters, an unconstrained nonlinear optimization was performed using MATLAB’s fminsearch 
function, which utilizes a Nelder–Mead direct search method. Within this solver nonlinear parameter constraints were en-

forced by using a barrier function to ensure positive, realistic parameter values. The objective function, D ( p ), where p rep-

resents the vector of parameters listed in Table 1 , is defined as 

D (p ) := 

∑ 

t∈T 
[ R data (t) − N · R B (t; p )] 2 + 

[
C data (t) − N · δ

∫ t 

0 

E(s ; p ) ds 

]2 

(3) 

where T is the discrete set of times at which the data is available, N is the total population for a given nation, R data ( t ) is

the recorded number of cumulative deceased individuals, and C data ( t ) is the recorded number of cumulative infections. The

initial conditions are the proportions as of March 22, 2014. For example, the total estimated population of Liberia is N = 4 . 29

million, while the number of reported infections on this date was 9, and hence I(0) = 9 / (4 . 29 × 10 6 ) = 2 . 1 × 10 −6 . 

Table 2 displays the fitted parameter values for each independent country. Estimates of the incubation period range

between 8 and 10 days, so the daily probability of transition from the exposed state to the infected state was assumed to

be δ = 

1 
9 for simplicity. Fig. 2 displays model trajectories with fitted parameters compared to the available data for Guinea,

Liberia, and Sierra Leone. 
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Table 2 

Fitted parameter values for each country. All parameters have the units of (days) −1 , with the exception of ρ1 and 

ρ2 , which are dimensionless. The parameter δ was not fit, but taken directly from [9] , while initial guesses for ρ1 

and ρ2 were motivated by Dixon et al. [9] . 

Parameter Guinea Liberia Sierra Leone Source 

β1 0.315 0.376 0.251 Fit 

β2 0.16 0.135 0.395 Fit 

β3 0.0165 0.163 0.079 Fit 

δ 1 
9 

1 
9 

1 
9 

[9] 

γ 1 0.295 0.0542 0.051 Fit 

γ 2 0.016 0.174 0.0833 Fit 

ψ 0.500 0.500 0.442 Fit 

ρ1 0.98 0.98 0.76 Fit 

ρ2 0.93 0.88 0.74 Fit 

ω 0.300 0.325 0.370 Fit 
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Fig. 2. Comparisons of fitted models to available date for Guinea, Liberia, and Sierra Leone. 

 

 

 

With parameter values established, the basic reproduction number (i.e., the average number of secondary infections

generated by a representative primary case within an entirely susceptible population) can be computed for each nation.

Using the next generation matrix method (see Appendix ), this quantity is found to be 

R 0 = 

β1 + 

β2 ρ1 γ1 

ω + 

β3 

γ2 
ψ 

γ1 + ψ 

. (4)



146 P. Diaz et al. / Applied Mathematics and Computation 324 (2018) 141–155 

Table 3 

Basic reproduction numbers obtained from fit parameters. 

Reproduction numbers 

Country Guinea Liberia Sierra Leone 

R 0 1.241 1.563 1.445 

Table 4 

Relevant parameter values in determining hospital placement. Here, the fatality rates from Ref. [19] have been 

used to compute these values, namely Liberia – 72.3% (unhospitalized), 67% (hospitalized) and Sierra Leone – 69% 

(unhospitalized) and 61.4% (hospitalized). Furthermore, these computed values are very similar to those determined 

by previous studies of Ebola epidemics [15,19] . 

Description Liberia Sierra Leone 

Time to hospitalization 1.2 days 1.2 days 

Time from hospitalization to death 4.38 days 10.09 days 

Time from hospitalization to recovery 15.80 days 17.16 days 

Time from symptom onset to death, unhospitalized 7.5 days 7.6 days 

Time from symptom onset to recovery, unhospitalized 9.34 days 8.45 days 

Time to proper burial 3.08 days 2.70 days 

Proportion of hospitalized cases 0.57 0.60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computation of R 0 can be broken into three distinct components that represent the respective contributions of the general

community ( 
β1 

γ1 + ψ 

), as well as transmissions arising from burial ( 
β2 ρ1 γ1 

ω(γ1 + ψ) 
) and hospitalization ( 

β3 ψ 

γ2 (γ1 + ψ) 
), and each of these

terms can be further understood as the ratio of time to recovery to time to contact with respect to the aforementioned

mode of transmission. We note that this quantity is independent of the parameters δ and ρ2 since neither the length of the

incubation period nor the death rate of hospitalized patients affects the generation of secondary infected cases. Additionally,

the following result shows that the epidemic must decline rapidly whenever R 0 < 1, regardless of its initial state. 

Theorem 1. If R 0 < 1 the point P = (1 , 0 , 0 , 0 , 0) , which denotes the unique disease-free equilibrium of the proportion model (1) ,

is globally asymptotically stable. 

As a consequence of this theorem, values of the basic reproduction number that are less than one imply that the E , I ,

H , and R I compartments must tend to zero as t → ∞ . Hence, the total infected proportion of the population must vanish,

thereby causing the disease to die out. As with many global stability theorems, the proof of this result relies on Lyapunov’s

direct method. For brevity, we postpone the proof until the Appendix . 

Utilizing fitted parameter values the basic reproduction number for each nation was computed, as expressed within

Table 3 . Liberia appears to be experiencing the greatest detrimental effects of the epidemic, as evidenced by this metric, but

the corresponding value for Sierra Leone is nearly as large, while Guinea does not differ too dramatically from the others.

Without further intervention and new allocation of resources to fight the disease, our model predicts that the epidemic

would continue to spread as of December 2014, generating a large number of new cases each day – 23 in Guinea, 119 in

Sierra Leone, and 736 in Liberia. These figures predict an epidemic that is very close in size and scale to the true values

compiled by the WHO and CDC [2,3] . 

3. Local metrics for resource allocation 

Given the limited amount of resources available to these West African nations and the diminishing availability of exter-

nal aid from charitable organizations around the world, a natural question to investigate is which of the nations currently

experiencing an epidemic would benefit most from additional hospitalization and treatment resources. Thus, another major

goal of this work is to study different metrics by which such decisions can be accurately established. Certainly, one way to

answer this question is to compare the computed basic reproduction numbers for each region and allocate new resources

to the one whose R 0 value is largest. However, this single value may not always capture a necessary level of detail within

infection dynamics and doesn’t account for parameter variation due to intervention. Hence, in this section we investigate

both changes to R 0 and a few other possible metrics to determine the placement and allocation of new resources. 

3.1. Fitted parameter values 

Computing some of the specific mean times and probabilities (see Table 4 ) can provide a preliminary understanding of

the epidemic. These quantities were derived directly from estimates of fatality rates provided by [19] and the parameter

values ( Table 2 ) fit to the data. For instance, the average time from patient hospitalization to death was computed using

the parameters ρ2 and γ 2 . Namely, if t HD represents this average time, and the fatality rate of all hospitalized cases in

Liberia is 67%, as reported in [19] , then the term ρ γ within (1) can be represented as the product of the probability that
2 2 
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Table 5 

Changes in ϒR 0 (ψ, ω) at fitted values. 

Sensitivities of reproduction number 

Country Liberia Sierra Leone 

ϒR 0 
ψ 

(ψ 0 , ω 0 ) −0 . 3616 −0 . 3074 

ϒR 0 
ω (ψ 0 , ω 0 ) −0 . 0255 −0 . 0585 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a hospitalized patient dies and the average rate at which a patient exits the hospitalized population due to death, or 

ρ2 γ2 = 0 . 67 · 1 

t HD 

. 

Using the fitted values of ρ2 and γ 2 in Liberia, one can uniquely determine t HD . In the same way, the fit parameters ρ1 ,

γ 1 , ψ , and ω were used to determine the remaining stated mean times for Liberia and Sierra Leone. These rates were not

computed for Guinea as the behavior of the epidemic in this nation differs dramatically from the others, as noted in [15] .

Because of this difference and the comparatively small value of R 0 , we will disregard the spread of the disease within Guinea

for the remainder of the paper. 

Notice that Sierra Leone was determined to possess the longest average time from hospitalization to recovery and a larger

percentage of hospitalized cases, while Liberia experiences the longer wait for proper burials on average. The two nations

experience similar wait times for hospitalization. We further note that neither possesses uniformly larger infection rates, as

transmission from the infected and hospitalized populations is largest in Liberia, but transmissions from deceased individ-

uals is greatest in Sierra Leone. In addition, the number of infectious individuals and the rate of growth of the deceased

population is largest within Liberia ( Fig. 2 ). Other quantities, such as the proportion of the total population stricken with

the disease, could also be considered. In general, parameter values alone, even when determined directly from the infected

and deceased data sets, likely cannot determine the country most in need of additional resources. 

3.2. Greatest reduction in R 0 

Since an analysis of the basic reproduction number is a traditional metric to characterize the spread of disease, it is a

natural quantity to consider reducing through intervention. In Section 2 , values of R 0 were computed for each of the three

nations. As a function of parameters within the model, the basic reproduction number is expressed by Eq. (4) . 

Until new pharmaceutical and enhanced medical treatments are developed, it appears that the parameters ρ1 , ρ2 , γ 1 ,

and γ 2 cannot be greatly altered by the allocation of additional resources. Similar statements hold true for the infection

parameters ( β1 , β1 , β3 ) and incubation period ( δ), which are determined inherently by population interactions and the

disease itself, though infection rates can be altered by changes in human behavior. The parameters over which one has

the greatest immediate control and are most strongly altered by the addition of human resources are the hospitalization

parameter ψ and rate of proper burial ω. Hence, we may fix the other parameters in the system and view R 0 as a function

of ψ and ω. Then, the local rate of change of R 0 with respect to these parameters should provide insight into the efficacy

of an increase in either resource. Using Eq. (4) , we compute 

∂R 0 

∂ψ 

= 

−β1 − β2 
ρ1 γ1 

ω + β3 
γ1 

γ2 

(γ1 + ψ) 2 

and note that this quantity is negative if the numerator is negative. With parameter values from Table 2 , the derivative is

negative for each of the three nations, as one would expect a boost in the hospitalization rate ψ to lower the reproduction

number. Similarly, we find 

∂R 0 

∂ω 

= − β2 ρ1 γ1 

(γ1 + ψ) ω 

2 
, 

and because all parameters are positive, this quantity must be negative as well. At this point, we may use these partial

derivatives to gauge the local sensitivity of R 0 , but a more descriptive quantity is the normalized forward sensitivity index

[6] , namely the ratio of the relative change in R 0 to the relative change in the parameter of interest, defined by 

ϒR 0 
p := 

∂R 0 

∂ p 
· p 

R 0 

where p ∈ { ψ , ω}. The quantities of interest for a nation are then the values of these normalized sensitivity indices, and we

are particularly interested in how such values differ from their baselines, i.e. ϒ
R 0 
p evaluated at the current values of ψ or ω,

which we denote by ψ 0 and ω 0 respectively. Computed values of these indices are displayed in Table 5 . Additionally, contour

plots of R 0 ( ψ , ω) for the two nations are displayed in Fig. 3 . They clearly demonstrate that the influence of ψ is much

greater than that of ω. Hence, an increase in the hospitalization of infected individuals would have a significantly greater

impact on the reproduction number than devoting more resources to ensuring quick and proper burials of the deceased.

Therefore, we reduce the problem to viewing R as a function of ψ alone and investigate the relative impact that an increase
0 
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Fig. 3. Contour plots of R 0 ( ψ , ω). Parameters were varied from one-half their fitted value to four times this number. The black square represents the fit 

parameter pair ( ψ 0 , ω 0 ). 

Table 6 

Changes in R 0 ( ψ) at differing ψ. 

Marginal change in R 0 

Country Liberia Sierra Leone 

R ′ 0 (ψ 0 ) −1 . 131 −1 . 005 

inf 
ψ 

R 0 (ψ) 0.937 0.948 

sup 
ψ 

R 0 (ψ) 7.344 5.740 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in ψ may have on R 0 . Hence, we fix ω = ω 0 and compute R ′ 0 (ψ 0 ) and for each country, the values of which are represented

within Table 6 . Of course, the values of ϒ
R 0 
ψ 

in Table 5 arise from those of R ′ 0 (ψ 0 ) in Table 6 . Since R ′ 0 (ψ) < 0 for all ψ ≥ 0,

the minimal value of R 0 is obtained by 

lim 

ψ→∞ 

R 0 (ψ) = 

β3 

γ2 

while the maximal value occurs when no medical intervention is present and is 

R 0 (0) = 

β1 

γ1 

+ 

β2 ρ1 

ω 

. 

These respective values are also provided within Table 6 . The information described by R 0 ( ψ) and ϒ
R 0 
ψ 

suggests that addi-

tional medical resources to boost the hospitalization parameter, and hence reduce the average time to hospitalization, will

significantly impact both Liberia and Sierra Leone, with a slightly greater benefit to the former nation in comparison to the

latter (as shown by Fig. 4 ). 

3.3. Local sensitivity of the infected population 

Another possible metric is the change in the infected population as a function of the hospitalization parameter ψ . As

mentioned within the previous section, this parameter appears to be one of the most controllable factors of the disease’s

progression, and as we will show in the next section, it is the most influential in terms of the value of R 0 . Hence, to conduct

a local sensitivity analysis of the infected population as a function of ψ only, we fix all model parameters to their fitted value

except for ψ . In particular, since this function I ( t ; ψ) is also time-dependent we must rely on simulations of the system to

approximate changes in this output over a period of time. This method was implemented with changes in ψ made at two

differing points in time for Liberia and Sierra Leone. In both implementations the parameter ψ is varied between one half

and twice its fitted value. 

The first implementation focuses on changes in I ( t ; ψ) arising from varying ψ at time t = 0 , the beginning of the out-

break. Fig. 5 depicts the results of this analysis. In both countries, we see that increased values of ψ correspond to de-

creases in I . However, increasing ψ in Liberia produces a greater decrease in the infected population compared to that of

Sierra Leone. This is evident due to the scales of the graphs in Fig. 5 . The second implementation focuses on changes in
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Fig. 5. Local sensitivity analysis of the infected population I ( t ) (on a log-scale) as a function of the hospitalization parameter ψ . This parameter was varied 

from one-half its fitted value to twice this number. Notice the difference in scales between the nations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I ( t ; ψ) arising from altering the hospitalization parameter at the final recorded time of the data set, thereby simulating the

implementation of new treatment strategies at the most recent time. The initial conditions used for future forecasting are

given by the last day of the data set. For each value of ψ we forecast the model fifty days into the future. Fig. 6 summarizes

the forecasting sensitivity analysis. Again, within both countries we see that increasing ψ reduces I ( t , ψ), but the reduc-

tion in Liberia is much greater than in Sierra Leone. In each of these cases, the local sensitivity of cumulative, rather than

instantaneous, infections was also investigated and yielded similar results. 

Hence, from this metric we conclude that variations in the hospitalization rate have a significant impact on the rate of

infection within both Sierra Leone and Liberia. However, the largest impact is in the country of Liberia. A 30 percent increase

in ψ leads to a nearly 10 0 0 fewer infectious individuals in Liberia by the end of the forecasting simulation, while the same

increase in Sierra Leone would result in a couple hundred fewer infectious individuals. 

4. Global metrics for resource allocation 

Though the local sensitivity analyses of the previous section were informative, none effectively captures the effects of

large variations in model parameters on the quantity of interest. This occurs because evaluation of the partial derivatives of

the reproduction number with respect to parameters must be performed at a specific point x in the input parameter space.

Within the context of the Ebola model, input parameters can be represented by x = (β1 , β2 , β3 , ρ1 , γ1 , γ2 , ω, ψ) ∈ R 

8 , while

the input parameter space 
 ⊂ R 

8 is defined by the ranges of each parameter in 

�
 x as summarized in Table 7 . Of course,

the previous methods measured local sensitivity because model input parameters were perturbed about a specific point

x ∈ 
 in order to understand their effect on variations in the model output, e.g. 
∂R 0 
∂ψ 

( � x ) . Contrastingly, global sensitivity

metrics account for parameter variation across the entire input space 
. Much like local measures of sensitivity, investigating



150 P. Diaz et al. / Applied Mathematics and Computation 324 (2018) 141–155 

190 200 210 220 230 240 250

t (Days)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

I(
t)

Liberia

(a) Liberia

210 220 230 240 250 260 270

t (Days)

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

I(
t)

Sierra Leone

(b) Sierra Leone

Fig. 6. Future sensitivity analysis of the infected population I ( t ) with multiplicative variation of the hospitalization parameter ψ . This parameter was varied 

from 0.5 ψ 0 to 2 ψ 0 in 0.1 ψ 0 increments, with the solid line representing the fitted value. The lines above the solid line, at the final time, represent smaller 

values, while the lines below represent larger values of ψ . 

Table 7 

Intervals of parameter values for Liberia and Sierra Leone. Each of these parameters define the dimensions of the 

input parameter space 
. Because this is a novel model, exact intervals for each parameter are neither known nor 

available. The intervals for the parameters β1 , β2 , β3 , and ω come from the constraints in the barrier method 

for fitting parameter values in Section 3.1 . We used data from Ref. [19] to construct estimates of the remaining 

parameter intervals. 

Parameter Liberia Sierra Leone 

β1 [0.1, 0.4] [0.1, 0.4] 

β2 [0.1, 0.4] [0.1, 0.4] 

β3 [0.05, 0.2] [0.05, 0.2] 

ρ1 [0.41, 1] [0.41, 1] 

γ 1 [0.0276, 0.1702] [0.0275, 0.1569] 

γ 2 [0.081, 0.2100] [0.1236, 0.3840] 

ω [0.25, 0.5] [0.25, 0.5] 

ψ [0.0833, 0.7] [0.0833, 0.7] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the global effects of input parameters can allow us to establish a relative notion of importance among the model inputs.

One class of global sensitivity methods, known as active subspace methods, are particularly useful for models with a scalar

quantity of interest [7,8] . As the scalar reproduction number R 0 is a particular quantity of interest in epidemiological models

and this metric is a strong indicator of the behavior of the disease, we will utilize active subspaces to perform a global

sensitivity analysis of R 0 ( � x ) . 

To simplify our calculations we first shift and scale the parameter space of dimension eight to the hypercube 
′ =
[ −1 , 1] 8 and equip it with a uniform probability density, ρ( � x ) = 2 −8 . The choice of a uniform density limits our assumptions

and details the lack of a priori knowledge of the most likely parameter values, as we are assigning equal likelihood to

all values within the given range. Of course, as additional statistical research is conducted concerning parameters in the

model (e.g., transmission, fatality, and recovery rates), a more comprehensive understanding of the distributions of these

parameters will be obtained, and ρ( � x ) can be easily altered to better describe our current knowledge of disease dynamics. 

Given the normalized parameter space and the associated density, active subspaces of the parameter space are defined

in terms of the eigenpairs of the 8 × 8 positive, semi-definite matrix 

C := 

∫ 

′ 

∇ R 0 ( � x ) ∇ R 

T 
0 ( � x ) ρ( � x ) d � x = W �W 

T , (5)

where W = [ � w 1 , . . . , � w 8 ] is the orthogonal matrix of normalized eigenvectors of C , � = diag (λ1 , . . . , λ8 ) is the corresponding

diagonal matrix of eigenvalues arranged in decreasing order, and ∇R 0 ( � x ) is the gradient expressed as a column vector. In

particular, the eigenpairs satisfy the relationship 

λi = 

∫ 
(∇R 

T 
0 � w i ) 

2 ρ d � x . (6) 

Notice that if λi = 0 for some i ∈ { 1 , . . . , 8 } , then R 0 is constant along the direction 

�
 w i , and therefore no change in this

model output occurs from variations along the �
 w i direction of the parameter input space. Such structure can be exploited

to reduce the dimension of the model. For instance, suppose λn +1 
 λn for some n < 7. Then, we partition the orthogonal
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Fig. 7. Magnitudes of the eigenvalues � from Eq. (5) on a logscale. The gap between the second and third eigenvalues for both Liberia and Sierra Leone 

suggests a two-dimensional active subspace, i.e., n = 2 . The computation of the matrix C = W �W 

T in (5) (and therefore the eigenvalues) is done via tensor 

product Gauss–Legendre quadrature on 8 8 points (eight per parameter dimension). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

decomposition of C into 

� = 

[
�1 

�2 

]
, W = 

[
W 1 W 2 

]
, (7)

where �1 is a diagonal matrix of the first n eigenvalues, and W 1 is the 8 × n matrix containing the first n eigenvectors. To

identify an active subspace for the basic reproductive number (i.e. a linear subspace of the parameter space defined by the

span of the directions of strongest variability in R 0 ), we must estimate the eigenpairs �, W and identify a gap amongst the

eigenvalues. Because the dimension of our parameter space is relatively small we use high order numerical integration rules

to estimate C in (5) . More specifically, we use tensor product Gauss–Legendre quadrature on 8 8 points (eight per parameter

dimension). 

Next, define α ∈ R 

8 by 

α = α(n ) = 

n ∑ 

j=1 

λ j � w 

2 
j , (8)

where the exponent on the vector � w j denotes an elementwise exponentiation, i.e. within each component of � w j . The entries

of the vector α( n ) are referred to as the activity scores of C , and we use these numbers to rank the importance of the

input parameters for the quantity of interest R 0 . The active subspace’s construction provides insight into the interpretation

of the activity scores [7, Chapter 3] . Namely, the eigenvector �
 w 1 identifies the most important direction in the parameter

space in the following sense: perturbing � x along �
 w 1 changes R 0 more, on average, than perturbing � x orthogonal to �

 w 1 , as

demonstrated in (6) . The components of �
 w 1 measure the relative change in each component of � x along this most important

direction, so they impart significance to each component of � x . The second most important direction is the eigenvector �
 w 2 ,

and the relative importance of � w 2 is measured by the difference between the eigenvalues λ1 and λ2 . For example, if λ1 �λ2 ,

then R 0 ( � x ) possesses a dominant one-dimensional active subspace, and the importance of the components of � x is captured

by the components of �
 w 1 . Therefore, to construct this global sensitivity metric, it is reasonable to scale each eigenvector by

its corresponding eigenvalue. 

The results of computing the eigenvalues λi ( i = 1 , . . . , 8 ) and pertinent eigenvector � w 1 for C are presented in Figs. 7 and

8 , respectively. Notice that eigenvalues are displayed on a log scale, and thus a notable (nearly two orders of magnitude)

spectral gap occurs between λ1 and λ2 for each nation. Hence, �
 w 1 displays the parameters of greatest global importance

to R 0 , and we see that it is ψ which is responsible for the greatest decrease in this output variable within either country.

This further justifies the omission of variations in other parameters within the local analysis of previous sections since,

on average, they influence R 0 much less than ψ . As an additional benefit of the active subspace method, we note that

the computed activity score is actually independent of the values of parameters estimated from the data, e.g. ω 0 and ψ 0 .

Instead, we merely require a suitable range of parameter values in order to implement the method, and this can be much

easier to obtain than a realistic fit of parameters from case data which tracks infected and deceased individuals. As noted

within Table 7 the intervals for these parameter values are easily obtained as rate coefficients from compiled statistics [19] ,

such as the mean time from infection to recovery or infection to death. 

Revisiting Fig. 7 , a logical argument can be made that an even larger spectral gap occurs within λ2 and λ3 for each

nation. Thus, we have computed the corresponding activity scores α(2) for each country and the resulting vector is shown

in Fig. 9 . Here, we see that the activity score for ψ within both α(1) and α(2) is significantly greater within Sierra Leone
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than in Liberia. This result suggests that if resources can be allocated so that the hospitalization rate within either country

is altered enough to render its current (or fitted) value insignificant, then the basic reproduction number would experience

a greater decrease by increasing the hospitalization rate in Sierra Leone rather than Liberia. Thus, the benefit of the active

subspace method becomes clear – if large variations of model input parameters are realistic, then the global sensitivity

metric provided by this method serves as a better decision-making tool than a classical, derivative-based local sensitivity

approach. In particular, a local analysis suggests that allocating more resources for hospitalization within Liberia would have

a larger impact than doing so within Sierra Leone, while a global analysis suggests the opposite. 

5. Conclusions and future work 

To gain insight into the spread of the most recent Ebola epidemic within Western Africa, a modified SEIR model was

constructed that incorporates the effects of interaction amongst infectious individuals, including those who have succumb

to the disease, and the population of susceptible individuals. Upon creating the model, parameter values were fit to known

WHO case data [22] gathered between March and December 2014 for Guinea, Liberia, and Sierra Leone. Local metrics were

then proposed to determine the optimal allocation of additional medical resources, and the local analysis clearly estab-

lished that Liberia would most benefit, via a reduced R 0 , from an increase in the hospitalization rate. Finally, a novel global

sensitivity metric was proposed and explored to allow for a greater understanding of model output responses to changes
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within input parameters, which suggested that Sierra Leone, and not Liberia, would benefit most. All of the software used

to develop these tools has been compiled at 

https://github.com/PaulMDiaz/Ebola 

and is freely available to any parties wishing to further the results of the article. 

Given the results of the previous sections, one must conclude that the optimal placement for treatment facilities in

Western Africa depends largely on the amount of new resources that can be devoted to a specific country. If resources

are scarce and parameters cannot deviate significantly from their current values, then local metrics imply that Liberia will

experience the greatest benefit from additional resources. This can be seen in many ways, as Liberia possesses the larger

current value of R 0 , the smaller proportion of hospitalized cases, the greater rate of decrease in R 0 ( ψ), and the greatest

decrease in the infected population as ψ is varied. Contrastingly, if the introduction of new resources can drastically alter

parameters within the model, then the global activity scores are the pertinent metric, and they indicate that Sierra Leone

will derive the greater benefit. In either case, our methods have clearly demonstrated the importance of the hospitalization

rate amongst all other parameters which appear in the model. Namely, Figs. 8 and 9 show that the parameter ψ has the

largest impact on reducing R 0 in both Liberia and Sierra Leone. Furthermore, Fig. 9 confirms our initial finding that the

parameter ω, as well as β2 and γ 1 , has very little influence on the basic reproduction number R 0 . 

The conclusions drawn herein are further supported by the conclusion of the Ebola epidemic in Liberia in 2015. In De-

cember of 2014, The People’s Republic of China placed new treatment facilities within Liberia [12] ; subsequently, there was

a vast improvement in controlling the spread of the infection, and Liberia was declared Ebola-free on January 14, 2016.

Given a current and detailed data set, the tools developed within the current study, including the modified SEIR model, the

process for parameter estimation, and both local and global metrics for determining the need for hospital resources, could

all be used to identify optimal resource allocation strategies for future epidemics. 
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Appendix. Steady states, basic reproduction number, and stability 

To determine any non-zero steady state solutions, the rates of change for the S , E , I , H , and R I populations were set to

zero. As previously described, the equations for the removed-buried and removed-recovered populations decouple from the

model and thus were omitted. With this, we find 

dS 

dt 
= −S(β1 I + β2 R I + β3 H) = 0 

dE 

dt 
= β1 SI + β2 SR I + β3 SH − δE = 0 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(A.1)

and 

dI 

dt 
= δE − γ1 I − ψ I = 0 

dH 

dt 
= ψ I − γ2 H = 0 

dR I 

dt 
= ρ1 γ1 I − ωR I = 0 . 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

(A.2)

The three equations within (A.2) then imply 

E = 

γ1 + ψ 

δ
I , H = 

ψ 

γ2 

I , R I = 

ρ1 γ1 

ω 

I , 

so that substitution of these expressions into (A.1) yields 

SI 

(
β1 + 

β2 ρ1 γ

ω 

+ 

β3 ψ 

γ2 

)
= 0 

I 

[
−(γ1 + ψ) + S 

(
β1 + 

β2 ρ1 γ1 

ω 

+ 

β3 ψ 

γ2 

)]
= 0 . 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(A.3)

Notice that within (A.3) , S = 0 is one possible solution, which implies I = 0 and that all populations are zero. As we assume

throughout that the total population satisfies N > 0, this steady state is not possible. Instead, imposing I = 0 within (A.3) , we

see that S is arbitrary. However, to satisfy the total population constraint, we must have S = 1 . Hence, we find the unique

disease-free equilibrium ( ̄S , Ē , ̄I , H̄ , R̄ ) = (1 , 0 , 0 , 0 , 0) . 
I 

https://github.com/PaulMDiaz/Ebola
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To compute the basic reproduction number of the system with respect to this equilibrium, we employ the Next Genera-

tion Matrix method [17] . In particular, computing the gains and losses matrices associated with (1) , we find 

F = 

⎛ 

⎜ ⎝ 

0 β1 ̄S β3 ̄S β2 ̄S 
0 0 0 0 

0 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎠ 

and 

V = 

⎛ 

⎜ ⎝ 

δ 0 0 0 

−δ γ1 + ψ 0 0 

0 −ψ γ2 0 

0 −ρ1 γ1 0 ω 

⎞ 

⎟ ⎠ 

. 

Here, F has been evaluated at the equilibrium determined above. Inverting V yields 

V 

−1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 

δ
0 0 0 

1 

γ1 + ψ 

1 

γ1 + ψ 

0 0 

ψ 

γ2 (γ1 + ψ) 

ψ 

γ2 (γ1 + ψ) 

1 

γ2 

0 

ρ1 γ1 

ω(γ1 + ψ) 
ρ1 γ1 

ω(γ1 + ψ) 
0 

1 

ω 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

and, using S̄ = 1 , the resulting next generation matrix is 

F V 

−1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

β1 + 

β2 ρ1 γ1 

ω 

+ 

β3 

γ2 

ψ 

γ1 + ψ 

β1 + 

β2 ρ1 γ1 

ω 

+ 

β3 

γ2 

ψ 

γ1 + ψ 

β3 γ2 β2 ω 

0 0 0 0 

0 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

It is easy to see that the spectral radius of this matrix is exactly 
(
F V −1 

)
1 , 1 

as the remaining eigenvalues must be identi-

cally zero. Thus, we arrive at an explicit formula for the basic reproduction number, namely 

R 0 := ρ
(
F V 

−1 
)

= 

β1 + 

β2 ρ1 γ1 

ω + 

β3 

γ2 
ψ 

γ1 + ψ 

. 

Finally, we complete the Appendix with the proof of Theorem 1 . 

Proof. We first note that the assumption R 0 < 1 directly implies the condition 

β1 + β2 
ρ1 γ1 

ω 

+ β3 
ψ 

γ2 

− (γ1 + ψ) < 0 . (A.4) 

Next, define 

� := { (S, E, I, H, R I ) ∈ R 

5 
+ : 0 ≤ S + E + I + H + R I ≤ 1 } 

and note that this is an invariant set under the flow generated by Eq. (1) . Further denote the point P = (1 , 0 , 0 , 0 , 0) ∈ � and

define the function V ∈ C 1 (�) by 

V(S, E, I, H, R I ) = S − 1 − ln (S) + E + I + 

β3 

γ2 

H + 

β2 

ω 

R I . 

Notice that 

V(1 , 0 , 0 , 0 , 0) = 0 , 

and since S > 1 + ln (S) for all S ∈ (0, 1), it follows that 

V(x ) > 0 forall x ∈ � \ { P } . 
Finally, we compute the time derivative of V along trajectories in (1) and use (A.4) to find 

˙ V (S, E, I, H, R I ) = (S − 1) 
1 

S 

dS 

dt 
+ 

dE 

dt 
+ 

dI 

dt 
+ 

β3 

γ2 

dH 

dt 
+ 

β2 

ω 

dR I 

dt 

= (1 − S)(β1 I + β2 R I + β3 H) + S(β1 I + β2 R I + β3 H) 
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−(γ1 + ψ) I + 

β3 

γ2 

(ψ I − γ2 H) + 

β2 

ω 

(ρ1 γ1 I − ωR I ) 

= 

[
β1 + β2 

ρ1 γ1 

ω 

+ β3 
ψ 

γ2 

− (γ1 + ψ) 

]
I 

≤ 0 

for ( S , E , I , H , R I ) ∈ �. Because ˙ V = 0 if and only if I = 0 , we see that P is the maximal invariant set in { x ∈ � : ˙ V (x ) = 0 } .
Therefore, the global asymptotic stability of P follows from LaSalle’s invariance principle, and the proof is complete. �
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