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Traditional random-walk particle-tracking (PT) models of advection and dispersion do not track entropy, be- 

cause particle masses remain constant. However, newer mass-transfer particle tracking (MTPT) models have the 

ability to do so because masses of all compounds may change along trajectories. Additionally, the probability 

mass functions (PMF) of these MTPT models may be compared to continuous solutions with probability density 

functions, when a consistent definition of entropy (or similarly, the dilution index) is constructed. This defini- 

tion reveals that every discretized numerical model incurs a computational entropy. Similar to Akaike’s (1974, 

1992) entropic penalty for larger numbers of adjustable parameters, the computational complexity of a model 

(e.g., number of nodes or particles) adds to the entropy and, as such, must be penalized. Application of a new 

computational information criterion reveals that increased accuracy is not always justified relative to increased 

computational complexity. The MTPT method can use a particle-collision based kernel or an adaptive kernel 

derived from smoothed-particle hydrodynamics (SPH). The latter is more representative of a locally well-mixed 

system (i.e., one in which the dispersion tensor equally represents mixing and solute spreading), while the former 

better represents the separate processes of mixing versus spreading. We use computational means to demonstrate 

the fitness of each of these methods for simulating 1-D advective-dispersive transport with uniform coefficients. 

1

 

a  

a  

m  

s  

d  

c  

h  

f  

d  

o  

t  

t  

t  

b  

p  

i  

b  

t  

s  

p  

(  

f
 

w  

m  

n  

b  

b  

p  

r  

I  

a  

p  

i  

A  

2  

d  

(  

fi  

h

R

A

0

. Introduction 

Entropy is a fundamental property possessed by any random vari-
ble or process, including a plume moving through natural media. From
 thermodynamic viewpoint, an increase in entropy is an increase in
ixing (dilution for a conservative solute). But entropy is also a mea-

ure of the information required to describe a system composed of ran-
om variables, so that the entropy of a computer simulation of a plume
an be readily quantified. The entropy of a discrete random variable
as been defined in a straightforward way by Shannon (1948) . Un-
ortunately there is not a well-defined counterpart for continuous ran-
om variables. In fact, a commonly-used “definition ” of the entropy
f a continuous random variable (RV) can take on unphysical nega-
ive values. As such, the Kullback-Leibler divergence (or relative en-
ropy), which is a measure of the relative difference between two con-
inuous RVs, is often used instead ( Kullback and Leibler, 1951; Kull-
ack, 1968 ). Similarly, this quantity is also used to derive the entropic
enalty of over-parameterization of models by Akaike (1974) —where it
s assumed that any two random variables have similar measures (i.e.,
oth discrete or continuous). When applied to numerical simulations,
he Kullback-Leibler divergence assumes that different models use the
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ame discretization length, which then cancels within the resulting ex-
ression. If differing discretizations are used, then the different entropies
information) associated with those discretizations must be accounted
or. 

This observation also applies to the Akaike information criterion,
hich is widely used to assess model fitness. Akaike’s original infor-
ation criterion (the AIC) simply penalizes different models for their
umber of adjustable parameters, which means that gains in accuracy
etween a model and a single realization of data may be counteracted
y over-parameterization. In this paper, we show that the information
enalty for highly discretized models means that minor gains in accu-
acy may be overwhelmed by losses due to computational complexity.
n other words, a modeler knows intuitively that a good model is 1)
ccurate, 2) parsimonious, and 3) computationally efficient. The first
oint has been investigated thoroughly via convergence analysis, max-
mum likelihood estimation, etc. The second point was addressed by
kaike (1974) and later extensions of the AIC ( Konishi and Kitagawa,
008 ). The last point has lacked a theoretical foundation, so we ad-
ress it herein. We also investigate, using the simplest setting possible
a 1-D diffusion problem), whether both particle-tracking and Eulerian
nite-difference solutions display an optimal discretization where small
uary 2020 
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ccuracy gains are unsupported by larger computational expenditures
i.e., information requirements). 

We begin by reviewing the definitions of entropy and defining one
hat is consistent amongst discrete and continuous RVs. Our definition
ncludes a discretization variable that is similar to the sampling volume
f Kitanidis (1994a) for moving plumes. We then review the classical
article-tracking algorithm (e.g., Labolle et al., 1996) , which does not
irectly track entropy because particles do not exchange mass. In this
ase the entropy can only be calculated after a continuous interpolation
f concentration is performed, which is shown to have an effect on the
ntropy calculation. This is in contrast to newer particle-tracking algo-
ithms that do exchange mass between particles during each timestep
 Benson and Bolster, 2016; Sole-Mari et al., 2019 ). Because of the mass
ransfer, entropy automatically and continuously changes during a sim-
lation. We investigate the entropy evolution represented by two types
f inter-particle mass-transfer algorithms: 1) smoothed particle hydro-
ynamics ( Gingold and Monaghan, 1977; Monaghan, 2012 ) and 2) a
article-collision-based algorithm ( Benson and Bolster, 2016 ). The first
ethod seeks to optimally solve a given deterministic PDE using parti-

les, while the second implements a local physics-based set of equations
or particle behavior. Typically, on the global scale, this method solves
 stochastically perturbed equation of transport ( Benson et al., 2019 ).
ecause of the subtle differences and similarities of the two methods,
e investigate the growth of entropy simulated by both for a highly

implified problem: one-dimensional diffusion. 
We wish to track entropy in the particle-tracking algorithms because

t is a direct measure of mixing between dissimilar waters. Additionally,
ixing is often the primary control on chemical reactions. In previous

tudies ( Benson et al., 2017, 2019 ), we were forced to track the creation
nd destruction of chemical species (i.e., reaction rates) to compare nu-
erical methods or upscaling techniques. With entropy consistently de-
ned, the mixing performance of numerical and analytic techniques can
e directly measured. 

. Mathematical background 

The classical particle-tracking (PT) method is a way to eliminate nu-
erical dispersion in the simulation of the advection-dispersion equa-

ion (ADE) given by 

𝜕𝑐 

𝜕𝑡 
= −∇ ⋅ ( 𝐯 𝑐 ) + ∇ ⋅ ( 𝐃 ∇ 𝑐 ) . (1)

ecause the dispersion tensor may have spatial variability and resides
nside a spatial derivative, one chooses specific values of the drift and
ure diffusion terms in a numerical implementation of the associated

tô equation of particle motion Δ𝑋 = ( 𝐯 + ∇ ⋅ 𝐃 )Δ𝑡 + 𝐁 

√
2Δ𝑡 𝜁, where X

s a particle position vector in d spatial dimensions, v ( X ) is a known
elocity vector and D ( X ) is the local dispersion tensor at the position X
t the beginning of the timestep, 𝐁𝐁 

𝐓 = 𝐃 is a Cholesky decomposition
f the known diffusion tensor, and 𝜁 is a d -dimensional vector of inde-
endent standard normal random variables ( Kitanidis, 1994b; Labolle
t al., 1996; Lichtner et al., 2002; Øksendal, 2003; Gardiner, 2004 ). 

To approximate the solutions of Eq. (1) , a large number of indepen-
ent particles are transported according to the numerical Itô equation,
nd the histogram (or other interpolation) of these particles is used to
ecreate the function c ( x, t ). If all N particles begin at the same location,
hen c ( x, t ) is a density function and an approximation of the Green’s
unction generated by Eq. (1) . Because of the random dispersive motions
f particles, the PT method accurately simulates the spread of a plume
ollowing the ADE. However, in its raw form (prior to creating the func-
ion c ( x, t )), the PT method does not correctly simulate the mixing of
issimilar waters, or dilution of a conservative plume, because particles
aintain constant mass. 

Mixing and dilution can only be taken into account with post-
rocessing of particle positions. Mixing and/or dilution are commonly
easured by borrowing the definition of the entropy H of a discrete
D 
andom variable X (see the seminal paper by Kitanidis (1994a) and re-
ent extensions and applications by Chiogna et al. (2012) ; Chiogna and
olle (2017) ; Sund et al. (2017) ). Entropy is the expectation of the
information ” contained within the probability mass function of that
andom variable. The information I ( p ) is a non-negative function of an
vent’s probability p that is defined as additive for independent events,
.e., 𝐼( 𝑝 1 ) + 𝐼( 𝑝 2 ) = 𝐼( 𝑝 1 𝑝 2 ) . Because of this axiom, the functional form
f information must be 𝐼( 𝑝 ) ∝ − ln ( 𝑝 ) , so that the expected information
s also strictly non-negative and defined by 

 𝐷 ( 𝑋) = 𝔼 [ 𝐼( 𝑃 ( 𝑋))] = − 

𝑁 ∑
𝑖 =1 

𝑝 ( 𝑥 𝑖 ) ln ( 𝑝 ( 𝑥 𝑖 )) , (2)

or a discrete random variable (RV) with probability mass function p ( x )
aking non-zero values at points { 𝑥 1 , … , 𝑥 𝑁 

} . 
By analogy, the expected information for a continuous RV is some-

imes listed as 

 𝐼 ( 𝑋) = − ∫𝑓 ( 𝑥 ) > 0 
𝑓 ( 𝑥 ) ln ( 𝑓 ( 𝑥 )) 𝑑𝑥 (3)

here the PDF of the continuous random variable X is f ( x ) [L − ]. Of
ourse f ( x ) is not a probability, and thus the argument of ln () is not a
imensionless quantity. For these reasons Eq. (3) is not well defined on
ts own. In addition, because f ( x ) may often be greater than unity, this
sage for a continuous RV can violate the notion of entropy by assuming
egative values; therefore, we use the subscript on H I to represent “in-
onsistent ” entropy. This definition is not without its utility; however,
ero entropy means perfect order (zero mixing) and negative entropy
as no physical meaning. In other words, this definition (3) for a con-
inuous RV is only a loose analogy (see Appendix A ). It does not follow
rom a Riemann-integral representation of Eq. (2) , meaning 

𝑓 ( 𝑥 ) > 0 
𝑓 ( 𝑥 ) ln ( 𝑓 ( 𝑥 )) 𝑑𝑥 ≠ lim 

Δ𝑥 →0 

[ 𝑁 ∑
𝑖 =1 

𝑓 ( 𝑥 𝑖 )Δ𝑥 ln ( 𝑓 ( 𝑥 𝑖 )Δ𝑥 ) 
] 

(4)

here { 𝑥 1 , … , 𝑥 𝑁 

} is a set of values at which f ( x i ) > 0 for 𝑖 = 1 , … , 𝑁,

nd the grid spacing Δ𝑥 = 𝑥 𝑖 +1 − 𝑥 𝑖 is uniform for every 𝑖 = 1 , … , 𝑁 − 1 .
n fact, the limit on the right side does not converge for any valid PDF.
n practice, the evaluation of the entropy of some arbitrary continuous
unction f ( x ) (like a plume moving through heterogeneous material) that
oes not have a convenient hand-integrable form, must impose a sam-
ling interval ΔV . We use this new variable to conform with the usage
n Kitanidis (1994a) . With this finite sampling, an entropy H C may be
efined that is consistent with H D in Eq. (2) by using the approximation
hat for small ΔV , 

 ( 𝑥 − Δ𝑉 ∕2 < 𝑋 < 𝑥 + Δ𝑉 ∕2) ≈ 𝑓 ( 𝑥 )Δ𝑉 , (5)

o that the argument of the logarithm in Eq. (3) is once again a dimen-
ionless probability directly related to the sampling interval ΔV : 

 𝐶 ( 𝑋) = − ∫𝑓 ( 𝑥 ) > 0 
𝑓 ( 𝑥 ) ln ( 𝑓 ( 𝑥 )Δ𝑉 ) 𝑑𝑥 

= − ln (Δ𝑉 ) + 𝐻 𝐼 . (6) 

dditionally, to construct a discrete approximation of the consistent en-
ropy, we can merely approximate the integral in H I so that 

 𝐶 ( 𝑋) ≈ − ln (Δ𝑉 ) − 

𝑁 ∑
𝑖 =1 

𝑓 ( 𝑥 𝑖 )Δ𝑥 ln 
(
𝑓 ( 𝑥 𝑖 ) 

)
. (7)

ow we may identify this sampling volume ΔV as identical to the vol-
me invoked by Kitanidis (1994a) to relate the discrete and continuous
efinitions of entropy, so that H D ≈ H C . Most commonly, one would let
𝑉 = Δ𝑥 in the sum of Eq. (7) , but in estimation theory, this discretiza-

ion may represent different things ( Appendix A ). Clearly, the choice of
ampling interval ΔV both allows for a direct comparison of continu-
us to discrete processes and imposes some restrictions on how entropy
s calculated, as we show later. Kitanidis (1994a) also defines the dilu-
ion index E as the product of the sampling volume and the exponential



D.A. Benson, S. Pankavich and M.J. Schmidt et al. Advances in Water Resources 000 (2020) 103509 

o  

c

𝐸

A  

a  

𝑒

𝐸  

E  

n  

d  

t
 

a  

s  

a  

t  

𝑐

 

r

𝑐

w  

t  

𝛿  

X  

i  

h  

m  

n  

p  

k  

s  

b

𝜙  

w  

c
 

p  

a  

s  

k  

3  

t  

T  

F  

G  

i  

b  

l  

r  

d  

l  

u  

t  

t  

s  

m  

“  

d

3

 

c  

t  

𝑐  

s

𝐻  

N  

a  

(  

r  

p  

c  

s  

O  

t  

e
 

l  

i  

e

𝐻

T  

f  

𝐻

t  

t  

w  

i  

p  

f  

s  

i  

(  

t  

F  

b  

i  

r  

m  

n  

(  

m  

n  
f the entropy for discrete and continuous random variables. Using the
onsistent entropy provided by Eq. (7) , this can be written as 

 = Δ𝑉 𝑒 𝐻 𝐶 

≈ Δ𝑉 exp 
[
− ln (Δ𝑉 ) − 

𝑁 ∑
𝑖 =1 

𝑓 ( 𝑥 𝑖 )Δ𝑥 ln ( 𝑓 ( 𝑥 𝑖 )) 
]

≈ exp 
[
− 

𝑁 ∑
𝑖 =1 

𝑓 ( 𝑥 𝑖 )Δ𝑥 ln ( 𝑓 ( 𝑥 𝑖 )) 
]
. (8) 

s Δx → 0, this uses the classical inconsistent definition of entropy for
 continuous random variable, namely 𝐸 = exp [− ∫ 𝑓 ( 𝑥 ) ln ( 𝑓 ( 𝑥 )) 𝑑𝑥 ] =
 

𝐻 𝐼 . For a discrete random variable, this becomes 

 = Δ𝑉 𝑒 𝐻 𝐷 = Δ𝑉 exp 
( 

− 

𝑁 ∑
𝑖 =1 

𝑝 ( 𝑥 𝑖 ) ln ( 𝑝 ( 𝑥 𝑖 )) 
) 

. (9)

ach definition (8) and (9) has the same units as X , i.e., a volume in the
umber of dimensions of random travel X , and has a reasonably well-
efined physical meaning as the “size ” of the volume occupied by either
he ensemble of particles or the PDF f ( x ) ( Kitanidis, 1994a ). 

A real or simulated plume of conservative tracer is often idealized
s a PDF of travel distance, i.e., the Green’s function, when the spatial
ource is a normalized Dirac delta function 𝛿( x ). Without loss of gener-
lity, we will only consider plumes that have such a source function, so
hat we may use concentration as a PDF at any fixed time T , and thus
( 𝑥, 𝑇 ) = 𝑓 ( 𝑥 ) in Eq. (7) . 

The normalized concentration given by the classical PT method is
epresented as an interpolation of the N particles, namely 

 𝑁 

( 𝑥, 𝑡 ) = 

1 
𝑚 𝑡𝑜𝑡 

𝑁 ∑
𝑖 =1 

∫Ω 𝑚 𝑖 𝛿( 𝑧 − 𝑋 𝑖 ( 𝑡 )) 𝜙( 𝑥 − 𝑧 ) 𝑑𝑧 

= 

1 
𝑚 𝑡𝑜𝑡 

𝑁 ∑
𝑖 =1 

𝑚 𝑖 𝜙( 𝑥 − 𝑋 𝑖 ( 𝑡 )) , (10) 

here c N ( x, t ) [L −1 ] is a reconstructed concentration function, m tot is the
otal mass, Ω [L] is the physical domain, m i is the mass of the i th particle,
( 𝑥 − 𝑋 𝑖 ( 𝑡 )) is a Dirac delta function centered at each particle location
 i ( t ) for 𝑖 = 1 , … , 𝑁, and 𝜙( x ) [L −1 ] is a kernel function. The probabil-

ty of a particle’s whereabouts is simply 𝑝 ( 𝑋 𝑖 ) = 𝑚 𝑖 ∕ 𝑚 𝑡𝑜𝑡 . For simplicity
ere, we will use constant 𝑚 𝑖 = 𝑚 = 1∕ 𝑁, which means that each kernel
ust integrate to unity and 𝑚 𝑡𝑜𝑡 = 1 . In general, the kernel function is
ot known or specified in the PT method. A common choice uses sim-
le binning of arbitrary size Δx , which is identified with a generalized
ernel that depends not merely upon the distance between particle po-
itions and binning grid points, but each separately. In particular, the
inning kernel function 𝜙( x, X i ( t )) is defined by 

( 𝑥, 𝑋 𝑖 ( 𝑡 )) = 

{ 

1 , if 𝑥 ∈ [ 𝑥 𝓁 , 𝑥 𝓁+1 ] 
0 , else 

(11)

here 𝓁 = ceil 
(

𝑋 𝑖 ( 𝑡 )− 𝑥 1 
Δ𝑥 

)
is the binning gridpoint to the left of the parti-

le position and ceil( x ) is the “ceiling ” function. 
More recent methods recognize that each particle is a random sam-

le with PDF that is the Green’s function, so that the kernel associ-
ted with each particle should have the same shape as c ( x, t ). This
hould be implemented as an iterative process, in which 1) a simple
ernel is assumed in Eq. (10) ; 2) an estimated 𝑐 ( 𝑥, 𝑡 ) is constructed;
) a new kernel is estimated 𝜙̂( 𝑥 ) ∝ 1 

ℎ 
𝑐 ( 𝑥 

ℎ 
, 𝑡 ) for some h > 0, which is

hen 4) re-used in Eq. (10) to re-estimate 𝑐 ( 𝑥, 𝑡 ) until closure is reached.
he closest approximation of this procedure was given by Pedretti and
ernàndez-Garcia (2013) , in which a specific functional form —typically
aussian —is chosen for 𝜙( x ), and the “size ” or bandwidth h of the kernel

s a weighted average of a constant, global bandwidth and an adaptive
andwidth based on a single-pass estimation of 𝑐 . The weighting is a
inear average of particle arrival time rank, pre-supposing that later ar-
ivals are less dense. This method would be difficult to apply for multi-
imensional (spatial) pdfs, so more recent methods directly calculate
ocal particle densities that are then used to estimate each particle’s
nique bandwidth ( Sole-Mari and Fernàndez-Garcia, 2018 ). Because of
he convolutional form in Eq. (10) it is easy to show that the interpola-
ion adds the variance of the kernel to the variance of particle positions,
o the bandwidth h of the kernel must be kept small to minimize nu-
erical dispersion from the interpolation process. It is unclear how the

pre-choice ” of kernel function changes estimates of the entropy, as we
iscuss in the following section. 

. Entropy calculation 

A problem with previous PT methods is that they do not automati-
ally track dilution. As particles move, they do so as Dirac delta func-
ions (i.e., the kernel itself is a Dirac delta), and the entropy is based on:

 𝑁 

( 𝑥, 𝑡 ) = 

1 
𝑚 𝑡𝑜𝑡 

𝑁 ∑
𝑖 =1 

𝑚 𝑖 𝛿( 𝑥 − 𝑋 𝑖 ( 𝑡 )) = 

𝑁 ∑
𝑖 =1 

1 
𝑁 

𝛿( 𝑥 − 𝑋 𝑖 ( 𝑡 )) (12)

o that 

 𝐷 ( 𝑋) = − 

𝑁 ∑
𝑖 =1 

𝑚 𝑖 

𝑚 𝑡𝑜𝑡 

ln 
( 

𝑚 𝑖 

𝑚 𝑡𝑜𝑡 

) 

= − 

𝑁 ∑
𝑖 =1 

1 
𝑁 

ln 
( 1 
𝑁 

)
= ln ( 𝑁) . (13)

ot only does the entropy depend on the number of particles, but it is
lso constant over all simulation times because m i and N do not change
although particle-splitting will unnaturally increase entropy). This also
eveals a key feature of particle-tracking algorithms: the use of more
articles implies greater entropy (mixing). This effect was shown in the
ontext of chemical reactions ( Benson and Meerschaert, 2008 ) and mea-
ured via concentration autocovariance functions ( Paster et al., 2014 ).
n the other hand, if each m i changes due to mass transfer between par-

icles, then H D will change. The question is: does it do so in a manner
xpected by physical principles? 

For the particle simulations that follow, we assume a simple prob-
em that is directly solvable: one-dimensional (1-D) diffusion from an
nitial condition 𝑐( 𝑥, 0) = 𝛿( 𝑥 ) . The solution is Gaussian, with consistent
ntropy from finite sampling given by: 

 𝐶 ( 𝑋) = − ∫
𝑒 − 𝑥 

2 ∕4 𝐷𝑡 √
4 𝜋𝐷𝑡 

ln 
( 

𝑒 − 𝑥 
2 ∕4 𝐷𝑡 √
4 𝜋𝐷𝑡 

Δ𝑉 

) 

𝑑𝑥 

= − ln 
( 

Δ𝑉 √
4 𝜋𝐷𝑡 

) 

+ 

1 
2 

= − ln ( Δ𝑉 ) + ln 
√
4 𝜋𝐷𝑡 + 

1 
2 

(14) 

his reveals a few interesting points regarding entropy calculation. First,
or any finite sampling volume, the initial condition has unphysical
 𝐶 = −∞. The calculation only makes sense after some “setting time ”

 > ( ΔV ) 2 /(4 𝜋eD ) ≈ 0.03( ΔV ) 2 / D . Second, for a reliable estimation of en-
ropy, the sampling interval for a moving plume must remain constant,
hich means that the sampling volume must be constant in space. For

nstance, if an Eulerian model possesses finer grids in some areas, the
lume will appear to have changing entropy if the Eulerian grid is used
or entropy calculation. Third, the sampling interval must be held con-
tant in time. Very often, PT results are sampled at increasingly larger
ntervals as a plume spreads out (in order to reduce sampling error,
see Chakraborty et al., 2009 )). Clearly, if the sampling size Δ𝑉 ∝

√
𝑡 ,

hen the calculated entropy will remain erroneously constant over time.
ourth, there are two components of the entropy calculation: one given
y the PDF, and one given by the act of sampling, or the amount of
nformation used to estimate the probabilities (the term inside the loga-
ithm). This implies that, all other things held equal, a finely discretized
odel has greater consistent entropy. Typically, a model’s fitness is pe-
alized by its excess information content, but that is only represented
currently) by adjustable parameters (e.g., Akaike, 1974; Hill and Tiede-
an, 2007 ). The definition of consistent entropy H C suggests that the
umber of nodes or total calculations in a model should also contribute
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o the penalty. A simple example and a derivation of a computational
nformation criterion for numerical models is explored in Section 6 and
ppendix A . 

Unfortunately, a general formula that relates entropy growth with
he characteristics of the kernel 𝜙( x ) cannot be gained because 

( 𝑋) = − ∫
𝑁 ∑
𝑖 =1 

𝑚𝜙( 𝑥 − 𝑥 𝑖 ) ln 

( 

Δ𝑉 𝑚 

𝑁 ∑
𝑖 =1 

𝜙( 𝑥 − 𝑥 𝑖 ) 

) 

𝑑𝑥 

= − ln ( Δ𝑉 𝑚 ) − 𝑚 ∫
𝑁 ∑
𝑖 =1 

𝜙( 𝑥 − 𝑥 𝑖 ) ln 

( 

𝑁 ∑
𝑖 =1 

𝜙( 𝑥 − 𝑥 𝑖 ) 𝑑𝑥 

) 

, (15)

nd the logarithm of the sum inside the last integral does not expand.
s a result, we will rely on numerical applications of several different
ernels in computing the consistent entropy of Eq. (7) . 

. Mass-Transfer PT Method 

A recent PT algorithm ( Benson and Bolster, 2016 ) implements mass-
ransfer between particles coupled with random-walk particle-tracking
MTPT). The mass transfer between particle pairs is based on the con-
eptualization of mixing as a simple chemical reaction (see Benson and
eerschaert, 2008; Benson and Bolster, 2016; Benson et al., 2019b ).

pecifically, full mixing between two particles possessing potentially
ifferent masses (or moles) a and b of any species Z can be written
s the irreversible pseudo-reaction 𝑎𝑍 + 𝑏𝑍 → 𝑎 + 𝑏 

2 𝑍 + 

𝑎 + 𝑏 
2 𝑍. This full

ixing only occurs between two particles based on their probability of
o-location in a time step of size Δt , and the algorithm is applied to
ll potentially interacting particle pairs. The algorithm has been shown
o act as a globally diffusive operator ( Schmidt et al., 2018 ) if the lo-
al mixing is modeled as diffusive (i.e., particles move and/or collide
y Brownian motion). This means that, even if particles are considered
irac delta functions, their masses continually change, and so the total
ntropy H D must also change. The diffusive nature of the mass transfer
ay be coupled with random walks to fully flesh out the local hydro-
ynamic dispersion tensor. So between diffusive mass transfer, random
alks, and local advection, the mass experiences the Green’s function
f transport (which may be complex due to variable velocities, (e.g.,
enson et al., 2019 )). A key feature of this algorithm is that the number
f particles encodes the degree of interparticle mixing, which is sepa-
ate from, but related to, the spreading of a diffusing plume ( Benson et
l., 2019; Schmidt et al., 2018 ). Because fewer particles implies greater
verage separation, the mixing lags behind the spreading of particles
o a greater degree as N is decreased ( Paster et al., 2014 ). However,
t remains to be shown that this effect is reflected in the entropy of a
onservative plume. 

To briefly review, the mass-transfer PT method calculates the proba-
ility of collision between particles. This probability becomes a weight
f mass transfer ( Benson and Bolster, 2016; Schmidt et al., 2018 ), with
he understanding that co-located particles would be well-mixed. As a
esult, for the i th particle, the mass of a given species m i satisfies to first
rder 

 𝑖 ( 𝑡 + Δ𝑡 ) = 𝑚 𝑖 ( 𝑡 ) + 

𝑁 ∑
𝑗=1 

1 
2 
( 𝑚 𝑗 ( 𝑡 ) − 𝑚 𝑖 ( 𝑡 )) 𝑃 𝑖𝑗 (16)

or 𝑖 = 1 , … , 𝑁 . For local Fickian dispersion, each particle pair’s collision
robability is given by ( Benson and Meerschaert, 2008 ): 

 𝑖𝑗 = (Δ𝑠 ∕(8 𝜋𝜂𝐷 𝑖𝑗 Δ𝑡 ) 𝑑∕2 ) exp (− 𝑟 2 ∕(8 𝜂𝐷 𝑖𝑗 Δ𝑡 )) , (17)

here Δs is the particle support volume, D ij is the average D between
he i and j particles, r is the distance between the i and j particles, and
 < 𝜂 < 1 is the fraction of the isotropic diffusion simulated by inter-
article mass transfer. The remainder ( 1 − 𝜂) is performed by random
alks. Here we use the arithmetic average 𝐷 𝑖𝑗 = ( 𝐷 𝑖 + 𝐷 𝑗 )∕2 . It should
e noted that the Δs does not actually change the calculation of mass
ransfer because the probabilities are normalized, namely 

𝑁 

𝑗=1 
𝑃 𝑖𝑗 = 1 , for all 𝑖 = 1 , … , 𝑁. (18)

f P is constructed as a matrix, this amounts to row normalization, which
oes not guarantee columns summing to unity. In practice, an average
f row and column normalization is used to construct a symmetric and
robability (mass) preserving matrix in which 𝑃 𝑖𝑗 = 𝑃 𝑗𝑖 . The calculated
robabilities are normalized to sum to unity because mass must either
ove to other particles (when i ≠ j ) or stay at the current particle (when

 = 𝑗). When particle masses are not all the same and particles are close
nough to exchange mass, then the masses must also change, and there-
ore the entropy 𝐻 𝐷 = − 

∑𝑁 

𝑖 =1 𝑚 𝑖 ln ( 𝑚 𝑖 ) must change. 
As discussed in the Introduction, in the presence of dispersion gra-

ients, particles undergoing random walks must be pseudo-advected by
he true velocity plus the divergence of dispersion. In contrast, the prob-
bilities in Eq. (16) should automatically adjust for these gradients be-
ause the probability of mass transfer is not given solely by D at the
 

th particle. Transfer is automatically lower in the direction of lower D ,
s opposed to the random walk algorithm, which moves a particle with
 magnitude given by the value of D at the particle (and hence moves
t too far into regions of lower D ). Therefore, while the mass transfer
lgorithm has been shown to be diffusive, it should also properly solve
he ADE with its dispersion gradients. However, this effect has yet to
e investigated, so we provide evidence via a case study of transport in
hear flow in Appendix B . 

Within Eqs. (16) - (18) , it appears that the collision probabilities act
s a kernel to redistribute mass. In other words, rather than create a
ew interpolated concentration function as a convolution of the parti-
le masses, the collision probability directly re-distributes the particle
asses via convolution. Because the convolution kernel is the collision
robability, we will refer to Eq. (17) as the “collision kernel ”. Several
esearchers ( Rahbaralam et al., 2015; Sole-Mari et al., 2017; Sole-Mari
nd Fernàndez-Garcia, 2018 ) have suggested that the kernel represent-
ng the mass transfer should actually be a function of total simulation
ime and/or particle number and local density (through the statistics of
he particle distribution), and not merely the time interval over which
he particle undergoes some small-scale motions. To summarize, these
uthors perform smoothing in order to most closely solve Eq. (1) , i.e.,
he case in which mixing and dispersion are both equally modeled by
he diffusion term. Another effect of this operation should be to most
losely match the entropy of the (perfectly-mixed) analytic solution of
he diffusion equation, so we investigate it here. 

Recently, Sole-Mari et al. (2019) showed that MTPT can be general-
zed so that particles can use a Gaussian function (kernel) other than the
article/particle collision probability of Eq. (17) for the mass transfer.
n doing so, the methodology can be made numerically equivalent to
moothed particle hydrodynamics (SPH) simulations. The choice of ker-
el has an effect on simulation accuracy ( Sole-Mari et al., 2019 ), which
e theorize also changes the entropy, or mixing, within the simulations.
pecifically, for the mixing pseudo-reaction we study here, Sole-Mari et
l. (2019) rewrite the mass transfer function (16) in the more general
orm 

 𝑖 ( 𝑡 + Δ𝑡 ) = 𝑚 𝑖 ( 𝑡 ) + 

𝑁 ∑
𝑗=1 

𝛽𝑖𝑗 ( 𝑚 𝑗 ( 𝑡 ) − 𝑚 𝑖 ( 𝑡 )) 𝑃 𝑖𝑗 , (19)

here 

𝑖𝑗 = 

2 𝜂𝐷 𝑖𝑗 Δ𝑡 

ℎ 2 
, (20)

nd the expression for P ij in Eq. (17) is also modified by the kernel
andwidth choice: 

 𝑖𝑗 = (Δ𝑠 ∕(2 𝜋ℎ 2 ) 𝑑∕2 ) exp (− 𝑟 2 ∕(2 ℎ 2 )) . (21)

he kernel bandwidth h depends, at any time, on the global statistics of
he particle distribution. For this reason, it is called an adaptive kernel
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m  
 Silverman, 1986 ). More specifically, we set it as the value that mini-
izes the asymptotic mean integrated squared error (AMISE) of a kernel
ensity estimation. The following expression is valid for a density esti-
ation with a Gaussian kernel and particles carrying identical masses

 Silverman, 1986 ): 

 DE = 

( 

𝑑 

(2 
√
𝜋) 𝑑 𝑁 ∫ (∇ 

2 𝑓 ) 2 d 𝑥 

) 1∕( 𝑑+4) 

, (22)

here f is the (usually unknown) true distribution of solute mass. For the
resent diffusion benchmark problem, f is a zero-mean Gaussian with
ariance 2 Dt , so the density estimation kernel is Gaussian with ( Sole-
ari et al., 2017 ) 

 DE = 1 . 06 𝑁 

−1∕5 𝜎 = 1 . 06 𝑁 

−1∕5 
√
2 𝐷𝑡 . (23)

his bandwidth can be used to interpolate the classical PT method, for
xample using a Gaussian kernel in Eq. (10) . 

In the case of MTPT, however, we do not have a variable density
f particles with identical masses, but a constant density of particles
ith variable masses. As an approximation, we replace the number of
articles N in Eq. (22) with the equivalent value for which the average
article density 𝜌 would be equal in the two cases 

= 𝑁 ∫ 𝑓 2 d 𝑥, (24)

hich allows us to rewrite expression (22) as an approximation for
TPT: 

 SPH = 

( 

𝑑 ∫ 𝑓 2 d 𝑥 

(2 
√
𝜋) 𝑑 𝜌 ∫ (∇ 

2 𝑓 ) 2 d 𝑥 

) 1∕( 𝑑+4) 

. (25)

nce again, because of the simple benchmark problem studied herein,
here is a very simple solution for the bandwidth, because the distribu-
ion f at any time is a Gaussian with variance 𝜎2 = 2 𝐷𝑡 . Furthermore, if
 particles are placed within an interval of length Ω with average spac-

ng Ω∕ 𝑁 = 1∕ 𝜌 which doesn’t change significantly during a simulation,
hen the bandwidth reduces to 

 SPH = 0 . 82 𝜎4∕5 𝜌−1∕5 ≈ 0 . 82(2 𝐷𝑡 ) 2∕5 ( 𝑁∕Ω) −1∕5 . (26)
e have implemented the adaptive kernels as both the density interpo-
ator 𝜙 of the classical random walk at any time (i.e., a Gaussian kernel
ith variance ℎ 2 DE in Eq. (10) ) and also in the mass transfer coefficient

20) and the probability weighting function (21) with bandwidth h SPH 

n the mass-transfer algorithm (19) . 

. Results and discussion 

All simulations use 𝐷 = 10 −3 [L 2 T 

−1 ] and are run for 𝑡 𝑓𝑖𝑛𝑎𝑙 = 1000
rbitrary time units. The spatial domain is arbitrary, but for the MTPT
ethod, we randomly placed particles (with zero initial mass) uniformly

n the interval [-5,5], which is approximately ±3 . 5 
√
2 𝐷𝑡 𝑓𝑖𝑛𝑎𝑙 . Note that

he units are arbitrary but must be internally consistent because of the
cale-invariance of the solutions to the diffusion equation that follow
in 1-D) 𝑐( 𝑥, 𝑡 ) = (2 𝐷 𝑡 ) −1∕2 𝑐 

(
𝑥 (2 𝐷 𝑡 ) −1∕2 , 1 

)
. As long as the same units of

 (say, meters and seconds) are used for elapsed time and the units of the
patial domain, the solutions are universal. More extensive discussions
f multi-scale invariance in 3-D are given by Schumer et al. (2003) . 

The MTPT method can represent a Dirac delta function initial condi-
ion by any number of particles. Here we place one particle at 𝑥 = 0 with
nit mass. To enable direct comparison of consistent entropy between
ll methods, we chose equivalent average particle spacing and sampling
olume of Δ𝑉 = Δ𝑥 = 10∕ 𝑁 . We investigate the calculation of entropy
nd dilution indices for 1) The PT method using bins of size Δx ; 2) The
T method using constant-size Gaussian interpolation kernels; 3) The PT
ethod using adaptive kernels with bandwidth given by Eq. (23) ; 4) The

TPT method using a collision probability kernel size of 
√
4 𝐷Δ𝑡 ; and 5)

he MTPT method using adaptive kernels with size given by Eq. (26) .
ith the latter two mass-transfer scenarios, we also let the proportion

f diffusion by mass transfer (versus random walks) vary and focus on
he two cases of 𝜂 = 1 and 𝜂 = 0 . 1 to see the effect of the collision-based
ersus SPH-based kernel size. 

.1. PT Versus collision kernel MTPT 

First, we simulated the classical PT algorithm with concentrations
apped both by binning and by Gaussian kernels with fixed variance
Fig. 1. Plot of calculated entropies H and H C from 

single realizations of the 1- d random-walk diffusion 

problem. 
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Fig. 2. Plots of calculated dilution indices E in 

the 1- d diffusion problem using interpolation of PT 

method and MTPT method for “fixed ” collision ker- 

nels: (a) 𝑁 = 30 , 000 and (b) 𝑁 = 300 . 
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 D × 1 time unit. Because the simulations go from 𝑡 = 0 . 01 to 1000, we
hose a kernel size that is too big in the beginning and perhaps too small
n the end (i.e., the kernel size is about 1/3 the spread of particles at
 = 10 ). The calculated entropies from these simulations were compared
o the analytic solution of Eq. (14) using Δ𝑉 = 10∕ 𝑁 and the collision-
ernel MTPT algorithm outlined in the previous Section 4 . In these first
TPT simulations, we set the proportion of diffusion by mass transfer
= 1 . In comparison to the other methods, the entropy from binned-PT

oncentrations matches the analytical solution very well at early times
ut significantly diverges later ( Fig. 1 ). The difference between solutions
s more obvious when looking at the dilution index E ( Fig. 2 ). The fixed
aussian-kernel interpolated concentrations over-estimate entropy and
ixing at early time because a fixed kernel size is chosen that is typi-

ally larger than the actual diffusion distance for small times. The MTPT
ethod underestimates entropy at early time relative to the analytic so-

ution of Eq. (14) because the method, by design, does not perfectly mix
oncentrations. The random spacings impart regions where the parti-
les are farther apart, and in these regions, the solutions are imperfectly
ixed (i.e., imperfectly diffusive). As N gets larger, the solution is more
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Fig. 3. Plot of calculated entropies H C from ensem- 

ble averages of the 1- d random-walk diffusion prob- 

lem using adaptive kernels for interpolation of sim- 

ple random walks (blue circles) and for the mass- 

transfer particle-tracking algorithm (red diamonds) 

using 𝑁 = 30 , 000 and 𝑁 = 300 . (For interpretation 

of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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erfectly-mixed and converges to the analytic diffusion kernel earlier
 Figs. 1 and 2 ). 

It is also important to note that neither the analytic solution nor the
lassical PT method represents the entropy of the initial condition cor-
ectly. The PT method, with all N particles placed at the origin, still has
 𝐷 = ln ( 𝑁) , while the entropy of the true Dirac delta initial condition is
 𝐷 = −1 ln (1) = 0 . The analytic solution of Eq. (14) must use a calcula-

ion grid with finite Δx and sampling volume ΔV . In order for later-time
ntropies to match, this must be chosen as the same size as the bins for
he PT method, i.e., Δ𝑥 = ( 𝑥 max − 𝑥 min )∕ 𝑁, where the extents are chosen
o almost surely see all particles in a simulation. 

On the other hand, the MTPT method can represent the initial con-
ition in many different ways, but here we simply placed one parti-
le at the origin with unit mass, while the remaining 𝑁 − 1 particles
re placed randomly from the uniform distribution on −5 < 𝑥 < 5 with
ero mass. Because of this IC, the MTPT method can faithfully represent
 𝐷 ( 𝑡 = 0) = 0 , and the effect of this deterministic, unmixed, IC stays
ith the simulations for a fair amount of time. At later time, both the
xed kernel PT and the MTPT methods converge to the analytic solu-
ion ( Figs. 1, 2 ). At early times, however, the fixed kernel interpolator
verestimates mixing when generating c ( x, t ), not only with respect to
he Gaussian solution, but also relative to the true initial condition with
 𝐷 = 0 . Note also that the calculations of consistent entropy H D depend

trongly on N , but not the dilution index E which accounts for the dif-
erent sampling (support) volumes. 

.2. Adaptive kernel versus collision kernel MTPT 

We now turn to simulations using adaptive kernels, in which
he particle-particle interaction probability has a time (and particle-
umber) varying kernel size by placing Eq. (25) into Eq. (21) . This is
redicated on the fact that a finite sampling of independent random
ariables is often used to create a histogram of those RVs. The idea is
hat a re-creation of the histogram should allow each sample to represent
 larger domain than just its value, and a kernel should be assigned to
pread each sample value. In the case of independent, mass-preserving
andom walks, the idea is clearly sound: for a delta-function initial con-
ition, each particle is a sample with a PDF that is the Green’s function,
o that each particle’s position could be viewed as a rescaled Green’s
unction which is approximated by the histogram itself. The rescaling
epends on the actual Green’s function, which may vary in time and
pace, and the particle numbers. For independent particles undergoing
rownian motion, the Green’s function is Gaussian with variance 2 Dt ,
nd the kernel is shown to be Gaussian with zero mean and standard
eviation given by Eq. (25) . It is less clear whether this kernel should
e used to represent the particle-particle interaction probability. First,
he global statistics are not important to local mixing or reactions, i.e.,
 paucity of a reactant in one location is not informed by a wealth of
eactant outside of the diffusion distance in one timestep. Second, the
asses present on particles are anything but independent, as they de-
end strongly on their near-neighbors. Third, the kernels are designed
o create a maximally smooth PDF based on random samples, but much
esearch has shown that small-scale fluctuations are the most important
river of mixing and reaction rates. Thus, any kernel that smooths the
ocal fluctuations is artificially increasing mixing and resulting reaction
ates. However, much of this discussion is pure speculation, so we im-
lement the kernel functions here as both interpolants of independent
andom walks and as weights in the mixing function. 

For brevity and consistency with the previous results, we only show
imulations with 𝑁 = 300 and 𝑁 = 30 , 000 . Intermediate numbers track
he same trends. For both particle numbers, the kernel-interpolated
lassical PT method has consistent entropy and dilution indices that
atch the diffusion equation analytic solution quite nicely (blue circles,

igs. 3 and 4 ). The kernels perform exactly as designed for optimally
nterpolating the PDF of independent, randomly-walking particles. For
he lower particle number (300), the adaptive kernels in the MTPT algo-
ithm match the analytic solution more closely than the collision kernel
t early times (compare Figs. 1 and 3 ). The analytic solution assumes
erfect mixing, i.e., local mixing and spreading are equal and character-
zed by the single coefficient D . 
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Fig. 4. Plots of calculated dilution indices E in the 1- D diffu- 

sion problem using adaptive kernels for interpolation of simple 

random walks (blue circles) and for the mass-transfer particle- 

tracking algorithm (red diamonds) for (a) 𝑁 = 30 , 000 and (b) 

𝑁 = 300 . MTPT with collision kernel results reproduced from 

Fig. 1 as grey diamonds for comparison. (For interpretation of 

the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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.3. Partitioning of local mixing and random walk spreading 

Recent studies ( Benson et al., 2019; Schmidt et al., 2018 ) that em-
loy the collision kernel for mass transfer have shown that mixing can
e simulated as a smaller-scale (and smaller magnitude) process than so-
ute spreading. This concept relies on the fact that upscaling by volume
veraging and/or projection of 3-D concentrations to 2-D or 1-D replaces
ulti-valued concentrations with an average (e.g., Taylor, 1953 ). The

preading or warping of a concentration interface is a faster process than
ctual mass transfer across the interface. This is exemplified by misci-
le displacement of one fluid by another in laminar Poiseuille flow in
 tube, where higher velocity in the center warps an initially sharp in-
erface much faster than molecular diffusion actually mixes the fluids.

hen volume averaged to 1-D ( Taylor, 1953 ), the spreading is given
y a macro-dispersion coefficient that grows in time to an asymptotic
alue. Benson et al. (2019) showed that Taylor’s macrodispersion can be
erformed by random walks, which causes particles to spread apart on
verage, while true mixing by molecular diffusion is performed by inter-
article mass transfer using the physics-based collision kernel. It is un-
lear whether using the adaptive SPH kernels as defined in Eq. (26) can
chieve the same effect, given that the particle spreading is part of the
valuation of the kernel size for smaller-scale mixing. To investigate this
ffect, we chose a simple system in which the “macrodispersion ” por-
ion of D was the largest part (and also constant over time) by setting a
onstant mixing proportion 𝜂 = 0 . 1 and re-ran the MTPT simulations for
 = 300 and 𝑁 = 30 , 000 . Only the dilution indices are shown here, in

ig. 5 . The differences between results for the collision kernel are small,
hile the adaptive kernel shows significantly decreased mixing. 

This increased error for the adaptive kernel when 𝜂 ≪ 1 can be ex-
lained as follows. Expression (26) was obtained from (25) by assuming
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Fig. 5. Dilution indices for mixing/spreading proportions 𝜂 = 1 
and 0.1 for (a) 𝑁 = 30 , 000 and (b) 𝑁 = 300 . 
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hat the spatial distribution of the solute ( f ) is represented by a Gaussian
unction with variance 2 Dt . While this is approximately true for 𝜂 = 1 ,
he micro-scale variability generated when 𝜂 = 0 . 1 (see Fig. 7 a) suggests
hat f may not even be continuous and twice-differentiable to start with
which is a requisite for expression (25) to be valid). Nevertheless, if
( ∇ 

2 f ) 2 d x was to be numerically estimated each time step (such as in
ole-Mari and Fernàndez-Garcia (2018) ), it would be much higher than
or a Gaussian f with variance 2 Dt , because of the strong, small-scale con-
entration variations, suggesting that the truly optimal adaptive kernel
btained from Eq. (25) in this case would be much smaller than Eq. (26) .

.4. Distributional entropy 

As noted earlier, particle simulations display greater entropy with
n increasing number of particles (e.g., Figs. 1 and 3 ). In a similar
ay that the consistent entropy is related to classically defined incon-
istent entropy for a continuous RV by adding the sampling portion:
 𝐶 = − ln (Δ𝑉 ) + 𝐻 𝐼 , the portion of the entropy of a discrete RV can be

artitioned into particle number and underlying “structure ” of the PMF:
 PMF = ln (Ω∕ 𝑁) + 𝐻 𝐷 . Using this adjustment, the amount of mixing

given by the rate of convergence to the Gaussian) between simulations
ith different particle numbers can be compared ( Fig. 6 ). Here, we ran
TPT simulations using the collision kernel with particle numbers in the

et {100, 300, 1000, 3000, 10000, 30000}. For smaller N , the ensemble
verage of up to 20 realizations is used because of differences between
ndividual runs. Quite clearly, the smaller particle numbers experience
elayed convergence to the well-mixed Gaussian. This is a feature of the
T algorithm that is usually reflected in reduced reaction rates. But a

imple measurement of the reduced entropy creation rate with smaller
article numbers is a sufficient demonstration of suppressed mixing. 
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Fig. 6. Plots of relative, or PMF, entropy 𝐻 PMF = 𝐻 𝐷 + ln (Ω∕ 𝑁) 
growth over time for different particle numbers diffusing under 

the MT algorithm. Also plotted is the H I ( t ) for a Gaussian diffusion 

(i.e., Eq. (14) using Δ𝑉 = 1 ). 
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It is also instructive to inspect the plots of the calculated PMFs
nd PDFs from the 𝜂 = 0 . 1 simulations ( Fig. 7 ). The collision kernel
TPT method is notable because the degree of mixing and the shape

f the plume are somewhat independent. Random walks may place par-
icles with different masses in arbitrarily close proximity, and some time
ust elapse before local mixing equilibrates those masses (e.g., Fig. 7 a).
he result is the mass (or concentration) at any single position in 1-
 space possesses substantial variability. This feature —concentration
uctuations at any point in space —has been exploited to perform accu-
ate upscaling of transport and reaction in heterogeneous velocity fields
 Benson et al., 2019; Cirpka and Kitanidis, 2000a, 2000b; Dentz et al.,
000; Dentz and Carrera, 2007 ). On the other hand, the fixed kernel in-
erpolation of classic PT methods replaces this concentration variance at
very location with concentration variability in space (see blue circles
n Fig. 7 b). 

. Computational entropy penalty 

Numerical models provide discrete estimates of dependent variables
hat may be continuous functions of time and space. Often, the functions
re non-negative and can be normalized to unit area so that they are
DFs. Therefore, the underlying “true ” PDF has a certain entropy, and
he sampling, or computational, procedure used to approximate these
unctions adds some artificial entropy because of the information re-
uired by the discretization. One desirable trait of a model is a parsi-
onious representation of the true physical process, i.e. fewer model
arameters are preferred. At the same time, a more straightforward and
ccurate computational process is also preferred. Considerable attention
as been paid to parsimonious (few parameter) models, but less atten-
ion has been paid to model computational requirements. Eq. (7) shows
hat, if a true PDF can be estimated via very few sampling points or
odes, there is less additional entropy incurred in the calculation. That
s to say, if two models (with the same parametric parsimony) yield
quivalent estimates of the underlying “true ” dependent variable, then
he model that estimates the PDF with the coarsest sampling, or least
omputationally intensive structure, is preferred from an entropic stand-
oint. Augmenting the Kullback-Leibler (inconsistent) representation of
odel entropy with the consistent entropy ( Appendix A ) allows us to

ompare the discrete PMFs obtained from computational approximation
ith the underlying PDF, and ultimately results in the COMputational
nformation Criterion (COMIC) as a natural extension of Akaike’s infor-
ation criterion ( Akaike, 1974; 1992 ). To emphasize the influence of

omputational entropy, we illustrate two examples here by estimating
 true diffusion given by a Gaussian with variance 2 Dt by several nu-
erical calculations with zero adjustable parameters (i.e., D is a known
arameter). 

.1. Finite-difference example 

For simplicity, we set Δ𝑉 = Δ𝑥 = Ω∕  for a fixed domain Ω and
 nodes, and then compared the numerical estimation of the Green’s

unction of the 1-D diffusion equation given by implicit finite-difference
FD) models with different discretizations Δx ∈ {0.4, 0.12, 0.04, 0.012,
.004, 0.0012, 0.0004}. Other numerical parameters were held con-
tant, including Ω = [−6 , 6] , 𝐷 = 10 −3 , and Δ𝑡 = 0 . 05 . We use all of the
ata from each model to calculate the mean SSE (i.e., the mean SSE is
ndependent of subsampling), so here 𝑛 =  . Clearly a smaller Δx pro-
ides a better estimate of the analytic solution of a Gaussian with vari-
nce 2 Dt , but at what cost? Do 100 nodes suffice? A million? Because
here are no adjustable parameters, the AIC, which is given in terms
f the log-likelihood function AIC = 2 ln ( SSE ∕  ) , is a decreasing func-
ion of the number of nodes  ( Fig. 8 a). If, however, one factors in the
enalty of ln ( ΔV ), there is an optimal tradeoff of accuracy and compu-
ational entropy at  ≈ 3000 at almost every time step ( Fig. 8 b). Fewer
odes are not sufficiently accurate, and more nodes are superfluous for
his particular problem, as shown by plotting the relative fitness criteria
AIC versus COMIC) for each discretization at some time ( Fig. 8 c). 

Four important points regarding the COMIC immediately arise: 

1. A model is typically sampled at a finite and fixed number of data
measurement locations. We also sampled the many FD models and
analytic solution at 15 randomly chosen “measurement points ” com-
mon to all simulations and found nearly identical (albeit more noisy)
results. However, we have not yet investigated the effect of addi-
tional sample noise on discerning the optimal discretization. 

2. The AIC was derived with the assumption that the number of sample
points and computational burden of models is identical and do not
contribute to the relative AIC. Often, the common factors are elim-
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Fig. 7. Plot of calculated PMFs and PDFs (and their variances) 

in the 1- d diffusion problem using “fixed ” kernels for (a) 𝑁 = 
30 , 000 and (b) 𝑁 = 300 . 
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inated from the AIC, and some arbitrary constants are also added,
with no effect on relative AIC. In considering the COMIC, however,
the choice of likelihood function and inclusion of constants may
change the optimal model, so care in the choice of AIC is required. 

3. The numerical solutions at some final time T are actually conditional
densities of the joint densities c ( x, t ), so that increased number of
timesteps should also increase computational entropy (i.e., Δt con-
tributes to the multidimensional ΔV , see Appendix A ). Here we held
the time step size constant for all FD models, so that the temporal
sampling 𝑡 = 𝑗Δ𝑡 has no effect on the relative entropy. 

4. We used a constant spatial discretization Δ𝑉 = Δ𝑥 to simplify the
comparative Kullback-Leibler measures. Some models use variably-
spaced grids, so the resulting computational entropy is more com-
plicated than we investigate here. 
m  
.2. Mass-transfer particle-tracking examples 

Regarding this last point stated above for finite-difference models,
he main thrust of this paper is the entropy of particle methods. The
articles are typically randomly spread in space, so that a constant ΔV

s not possible. However, using the inconsistent entropy isolates the cor-
espondence of the N particles to an underlying PMF (e.g., Fig. 6 ). In the
ase of perfectly-mixed Fickian diffusion, this enables a direct compari-
on of the fitness of the particle methods to simulating diffusion, and the
orrection term − ln (Ω∕ 𝑁) is the entropy associated with computation.
e use this correction, in analogy with the FD results above, to assess

he entropic fitness of MTPT methods and test several intuitive hypothe-
es. First, prior research has shown that fewer particles in the collision
ernel MTPT method represent poorer mixing (hence poor fitness when
odeling perfectly-mixed Fickian diffusion). In the absence of mixing
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Fig. 8. Plots of relative model fitness measures for FD model: (a) log-likelihood 

function ln ( SSE ∕  ) ; (b) computational information criteria COMIC =− ln (Δ𝑉 ) + 
ln ( SSE ∕  ) ; and, (c) both measures versus discretization at a single time 𝑡 = 250 . 

Fig. 9. Plots of ensemble statistics of relative model fitness measures for three 

MTPT models of Fickian diffusion at 𝑡 = 1000 : a) Using the collision kernel with 

all diffusion by mass transfer ( 𝜂 = 1 ); b) adaptive SPH kernel using Eq. (26) and 

full diffusion by mass transfer ( 𝜂 = 1 ); (b) collision kernel and half diffusion by 

mass transfer and half by random walks ( 𝜂 = 0 . 5 ). Error bars are ± one standard 

deviation in ensemble results. 
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y random walks (i.e., 𝜂 = 1 ), we hypothesize that adding more par-
icles will yield an improved average SSE, but that the overall model
ntropic fitness (measured by a smallest COMIC) reaches a maximum
t some point. Indeed, a statistically significant minimum is found be-
ween 𝑁 = 1000 and 𝑁 = 10 , 000 particles, with an estimated minimum
t ≈ 3000 particles ( Fig. 9 a). 

On the other hand, the adaptive SPH kernel is constructed to best
atch Fickian diffusion by everywhere adjusting for particle density and
umber. Therefore, we hypothesize that the model entropic fitness will
e relatively stable across a broad range of particle numbers. This is also
ound to be true in simulations ( Fig. 9 b), and COMIC fitness only suf-
ers in a significant way for N < 100. Finally, in contrast to the collision
ernel for 𝜂 = 1 (shown in Fig. 9 a), we hypothesize that splitting the dif-
usion between mass transfer and random walks will improve (for this
xample) the fitness of smaller particle number simulations by elimi-
ating persistent “mixing gaps ” where large random distances between
articles prevents convergence to a well-mixed Gaussian. However, at
ome point, the model SSE will not improve with the addition of more
articles because the “noise ” of concentrations around the Gaussian will
e saturated (see, e.g., Fig 7 a). Fig. 9 c reveals exactly this behavior in
he COMIC: adding random walks decreases the optimal number of par-
icles to ≈ 300. 

To summarize the MTPT entropic fitness for simulating Fickian dif-
usion: 1) for the SPH kernel, small particle numbers are sufficient and
qually fit (by design); 2) similarly to the FD method, the collision ker-
el has a minimum COMIC around 3000 particles; and 3) with the col-
ision kernel, partitioning diffusion by mass transfer and random walks
romoted mixing and fitness for smaller particle numbers ( ≈ 300) and
learly shows the superfluous nature of large particle numbers for sim-
lating Fickian diffusion. 

. Conclusions 

Classical PT methods do not track entropy until a concentration func-
ion is mapped from particle positions. The choice of bins or kernels for
his mapping cannot be arbitrary, as the choice directly changes the cal-
ulated entropy, or degree of mixing, of a moving plume. The newer
ass-transfer method directly simulates entropy without any such map-
ing (because particle masses continually change), and does so with
everal beneficial features. First, the zero-entropy initial condition, and
ts effect on the early portions of a simulation, are accurately tracked.
econd, the particle number is an integral part of the mixing rate of a
lume. Higher particle numbers simulate more complete mixing at ear-
ier times, as shown by the convergence of entropy to that of a Gaussian.
he MTPT method can use physically-based particle collision probabil-

ties for the mixing kernel, or adaptive kernels dictated by the SPH al-
orithm. These adaptive kernels more closely match the analytic Gaus-
ian solution’s entropy when solving the diffusion equation in one pass
i.e., all mass transfer given by the diffusion coefficient). However, when
he diffusion/dispersion is split between local inter-particle mixing and
preading by random walks, the adaptive-kernel entropies change sub-
tantially and do not match the Gaussian solution for small particle num-
ers. The collision kernel does not generate the same effect. We suggest
hat the adaptive SPH kernels only be used to solve locally well-mixed
roblems (i.e., where the dispersion tensor represents both mixing and
ispersion equally), whereas the collision kernel may partition mixing
nd spreading as the physics of the problem dictate ( Benson et al., 2019 ).

The fact that discrete (or discretized) approximations to real, con-
inuous functions carry a sampling (or computational) entropy means
hat metrics which compare different simulations based on informa-
ion content must be penalized by that computational information. For
his purpose, we define a computational information criterion (COMIC)
ased on Akaike’s AIC that includes this penalty. We show how a finite-
ifference solution of the 1- d diffusion equation has a well-defined op-
imal solution of about 3000 nodes in terms of combined accuracy and
omputational requirements. When the MTPT is used to simulate Fick-
an diffusion, these simulations show that the collision kernel also has
 minimum COMIC around 3000 particles, but the adaptive SPH ker-
el, by design, is fit over a large range of particle numbers. Adding
ome diffusion by random walks makes the collision kernel a better fit
or smaller particle numbers ( 𝑁 ≈ 300 ), and shows that simulations of
ickian diffusion for large number of particles is computationally su-
erfluous. We anticipate that this new entropy-based fitness metric may
iscount some overly computationally-intensive models that previously
ave been deemed optimal in terms of data fit alone. 
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ppendix A. Computational information criterion and maximum 

ikelihood estimators 

The ultimate goal of this section is to derive an extension of Akaike’s

an information criterion ” (AIC) ( Akaike, 1974 ) that establishes an ob-
ective function to be optimized in order to select a model and a min-
mal number of parameters that best fits a given set of data. Such an
xtension must incorporate the results of Section 2, which introduced a
onsistent notion of entropy that allows one to compare the relative en-
ropies of a continuous PDF with that of a discrete PMF approximation.
f course, this discussion will first require some background knowledge
f the Kullback-Leibler divergence, the basic formulation of the AIC, and
aximum likelihood estimators, each of which we provide below. 

1. Kullback-Leibler divergence 

We begin with a review of the Kullback-Leibler divergence and its
xtension to the inconsistent entropy for continuous RVs. Following
ullback (1968) , we first consider the likelihood of two competing hy-
otheses h 1 and h 2 given some knowledge of the probability of an event
 , and note that Bayes’ Theorem provides a representation for the con-
itional probability of each hypothesis given x , namely: 

 ( ℎ 𝑖 |𝑥 ) = 

𝑃 ( 𝑥 |ℎ 𝑖 ) 𝑃 ( ℎ 𝑖 ) 
𝑃 ( 𝑥 |ℎ 1 ) 𝑃 ( ℎ 1 ) + 𝑃 ( 𝑥 |ℎ 2 ) 𝑃 ( ℎ 2 ) (27)

or 𝑖 = 1 , 2 . Next, this statement can be generalized to continuous RVs
o that if h and h now represent the events that a random variable
1 2 

https://doi.org/10.13039/100000001
https://github.com/dbenson5225/Particle_Entropy
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 comes from a distribution represented by the PDFs f 1 ( x ) and f 2 ( x ),
espectively, then the conditional probability of each hypothesis given
hat 𝑋 = 𝑥 is now 

 ( ℎ 𝑖 |𝑥 ) = 

𝑓 𝑖 ( 𝑥 ) 𝑃 ( ℎ 𝑖 ) 
𝑓 1 ( 𝑥 ) 𝑃 ( ℎ 1 ) + 𝑓 2 ( 𝑥 ) 𝑃 ( ℎ 2 ) 

(28)

or 𝑖 = 1 , 2 . Taking logarithms and rearranging this expression then
ields 

n 
( 

𝑓 1 ( 𝑥 ) 
𝑓 2 ( 𝑥 ) 

) 

= ln 
( 

𝑃 ( ℎ 1 |𝑥 ) 
𝑃 ( ℎ 2 |𝑥 ) 

) 

− ln 
( 

𝑃 ( ℎ 1 ) 
𝑃 ( ℎ 2 ) 

) 

. (29)

he right side of this equality is a measure of the difference between
he logarithm of the odds in favor of hypothesis 1 (versus hypothesis
) after the observation of 𝑋 = 𝑥 relative to before this observation.
n other words, this difference represents exactly the information con-
ained within the observation that 𝑋 = 𝑥, and the left side of the equal-
ty, often referred to as the log-likelihood ratio, is the information in fa-
or of h 1 (and against h 2 ). To obtain the mean value of this, we merely
ntegrate over all possible observations and against the PDF f 1 ( x ), which
ives 

( 𝑓 1 , 𝑓 2 ) = ∫ 𝑓 1 ( 𝑥 ) ln 
( 

𝑓 1 ( 𝑥 ) 
𝑓 2 ( 𝑥 ) 

) 

𝑑𝑥. (30)

his quantity is defined to be the Kullback-Leibler divergence (KLD), and
epresents the entropy of f 1 relative to f 2 . Notice that this expression can
lso be separated into two integrals so that 

( 𝑓 1 , 𝑓 2 ) = ∫ 𝑓 1 ( 𝑥 ) ln 𝑓 1 ( 𝑥 ) 𝑑𝑥 − ∫ 𝑓 1 ( 𝑥 ) ln 𝑓 2 ( 𝑥 ) 𝑑𝑥, (31)

nd the former of these two integrals is directly related to the inconsis-
ent entropy of Eq. (3) . Next, we will use the KL divergence to establish
he AIC. 

2. Akaike information criterion (AIC) 

The AIC was originally established to select a model and associated
arameter values that are a best predictor of potential future data based
n some set of given data. It is well-known that adding parameters
ill reduce data/model misfit for a single set of observations, but the
dded parameters will often cause worse fits for newly collected data
 Konishi and Kitagawa, 2008 ). In particular, consider a variety of dif-
erent models defined by distinct parameter vectors 𝜃 and corresponding
DFs h ( y | 𝜃) arising from data values 𝑦 1 , … , 𝑦 𝑛 , along with a single vector
f “true ” parameter values 𝜃0 with PDF 𝑔( 𝑦 ) = ℎ ( 𝑦 |𝜃0 ) . The problem of
nterest is how to optimally select both a number of model parameters k
nd their associated values 𝜃 to best approximate 𝜃0 given that we have
ncomplete knowledge of the latter quantity. In fact, the information
rovided to make this decision arises only from the given data, which is
erely a collection of n independent sample values, each representing
 realization of a random variable Y with PDF g ( y ). Ultimately, the AIC
ields an approximate criterion for the selection of parameters, which
ntails minimizing the quantity 

2 
𝑛 ∑

𝑖 =1 
ln ℎ ( 𝑦 𝑖 |𝜃̂) + 2 𝑘 (32)

ver the number of parameters k , where 𝜃̂ is the maximum likelihood
stimate for 𝜃. Furthermore, this process corresponds to minimizing the
nderlying entropy among such models. 

In the context of computing concentrations as in previous sections,
e could consider a function c ( x, t ) for which we have a coupled set of
bserved data, say {( 𝑥 𝑖 , 𝑐 𝑖 ) ∶ 𝑖 = 1 , … , 𝑛 } , which represents values of the
oncentration measured at differing spatial points and at a fixed time
 = 𝑇 . Here, the function c can be a solution to a PDE (e.g., Eq. (1) )
nd may depend upon some parameters 𝜃, for instance, D in Eq. (1) . Of
ourse, the parameter values are unknown and must be inferred from the
iven data, which may contain some noise due to errors in measurement.
e can then define y to be the corresponding error between c and the
i 
easured data c i for every 𝑖 = 1 , … , 𝑛 and consider the associated PDF
or each of these errors, denoted h ( y | 𝜃). Additionally, 𝜃0 represents the
true ” parameter values so that the underlying PDF can be represented
y 𝑔( 𝑦 ) = ℎ ( 𝑦 |𝜃0 ) . The AIC will then provide a criterion to select the
arameter values (and number of parameters) that is a best predictor of
ny future concentration data, thereby selecting a specific model. 

The selection criterion is based on the entropy maximization prin-
iple, which states that the optimal model is obtained by maximizing
over the given data, on which 𝜃 depends) the expected value of the
og-likelihood function, namely 

( 𝑔 , ℎ ( ⋅|𝜃)) = ∫ 𝑔 ( 𝑦 ) ln ( ℎ ( 𝑦 |𝜃)) 𝑑𝑦. (33)

his quantity is not a well-defined (i.e., strictly positive) counterpart to
ntropy, as discussed in the main text. Thus, it is typically implemented
n a relative sense among models using the Kullback-Leibler divergence
f g and h , given by 

( 𝑔 , ℎ ( ⋅|𝜃)) = ∫ 𝑔 ( 𝑦 ) ln 
( 

𝑔 ( 𝑦 ) 
ℎ ( 𝑦 |𝜃) 

) 

𝑑𝑦 = 𝑆( 𝑔 , 𝑔 ) − 𝑆( 𝑔 , ℎ ( ⋅|𝜃)) . (34) 

s noted in the previous section, this can be interpreted as a measure-
ent of the relative similarity between the probability distributions g

nd h . As Akaike (1974) notes, maximizing the expected log-likelihood
bove is equivalent to minimizing I ( g, h ( · | 𝜃)) over the given data. Of
ourse, since 𝜃0 is unknown and 𝑔( 𝑦 ) = ℎ ( 𝑦 |𝜃0 ) depends upon knowledge
f the “true ” parameter values, we cannot directly compute I ( g, h ( · | 𝜃)).
nstead, this quantity must be suitably approximated. Following Akaike
1974, 1992) , when the number of data points n is sufficiently large, an
pproximation of the KLD using the Fisher information matrix can be
tilized, and classical estimation techniques imply 

( 𝑔 , ℎ ( ⋅|𝜃)) ≈ ( 𝑛 ∑
𝑖 =1 

ln 𝑔( 𝑦 𝑖 ) − 

𝑛 ∑
𝑖 =1 

ln ℎ ( 𝑦 𝑖 |𝜃̂) ) 

+ 𝑘, (35)

here k is the number of estimated parameters within 𝜃, and 𝜃̂ is the
aximum-likelihood estimate for 𝜃. Here, k appears in order to correct

or the bias introduced by approximating the “true ” parameter values
ith their corresponding maximum-likelihood estimates. Finally, since

he sum involving g is constant for any choice of model parameters, it
an be omitted in computing the minimization. Therefore, the AIC may
e defined (with a scaling factor of two, as in Akaike (1974) ) by 

IC = −2 ln ( maximum likelihood ) + 2 𝑘, (36)

r in the notation described herein 

IC ( ̂𝜃) = −2 
𝑛 ∑

𝑖 =1 
ln ℎ ( 𝑦 𝑖 |𝜃̂) + 2 𝑘. (37)

t is this quantity that one wishes to minimize (over k , where 𝜃̂ may
epend upon k ) in order to select the best model approximation to g ,
nd this is the basis of our departure. Prior to formulating an extension
f the AIC, we provide a brief review involving maximum likelihood
stimators. 

3. Maximum likelihood estimators (MLEs) 

Though we have not mentioned the process of obtaining the
aximum-likelihood estimates 𝜃̂ described above, useful discussions of
LEs for models with unknown structure are provided by Hill and Tiede-
an (2007) and Brockwell and Davis (2016) . As an example, consider

he scenario in which the errors between model and observations are
ndependent, zero-mean Gaussians. In this case the likelihood function
s given by 

 ( 𝑦 ; 𝜃) = 

[
(2 𝜋) 𝑛 |Σ( 𝜃) |]−1∕2 exp (− 

1 
2 
𝑦 𝑇 Σ( 𝜃) −1 𝑦 

)
, (38)

here n is the number of observation points, Σ( 𝜃) is a covariance matrix
f errors that depends upon some unknown parameter vector 𝜃, and y is
 vector of residuals satisfying 𝑦 = 𝑐 − 𝑐( 𝑥 , 𝑇 ) for 𝑖 = 1 , ., 𝑛 . Recall that
𝑖 𝑖 𝑖 
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 i is the measured concentration and c ( x i , T ) represents the concentra-
ion at the spatial data point x i and time T given by the PDE solution.
herefore, the log-likelihood function is 

n ( 𝐿 ) = − 

𝑛 

2 
ln ( 2 𝜋) − 

1 
2 
ln |Σ| − 

1 
2 
𝑦 𝑇 Σ−1 𝑦. (39) 

n practice, the observation errors are often assumed to be independent,
nd Σ is diagonal. Furthermore, the variance of each observation is often
nknown or estimated during the model regression (although numerous
pproximations can be applied - see Chakraborty et al. (2009) for as-
umed concentration errors in particle tracking), so it is assumed that Σ
epends only upon a single variance parameter, denoted by 𝜎2 , and thus
atisfies Σ = 𝜎2 𝕀 . The last term in Eq. (39) is more conveniently given in
erms of the sum of squared errors SSE = 𝑦 ⋅ 𝑦 = |𝑦 |2 so that 

n ( 𝐿 ) = − 

𝑛 

2 
ln (2 𝜋) − 

𝑛 

2 
ln 𝜎2 − 

𝑛 

2 𝜎2 
SSE 
𝑛 

. (40)

ecause this function should be maximized, one takes the derivative
ith respect to 𝜎2 and sets it to zero to compute the value of 𝜎2 at
hich the maximum occurs. This provides an estimator of the observa-

ion variance, namely 𝜎̂2 = SSE ∕ 𝑛, so that the corresponding maximum
s 

n ( 𝐿 ) = − 

𝑛 

2 

(
1 + ln (2 𝜋) + ln 

(SSE 
𝑛 

))
. (41)

ecause the number of observations is usually fixed, the 𝑛 

2 term is

anceled from all terms (as maximizing ln ( L ) also maximizes 2 
𝑛 
ln ( 𝐿 ) ).

ence, the MLE is 𝜎̂2 = SSE ∕ 𝑛 and the quantity − ln ( SSE ∕ 𝑛 ) provides a
elative estimate for the value of the log-likelihood function evaluated
t the MLE. 

4. Computational information criterion 

Returning to the formulation of the AIC for a model of concentra-
ion, we wish to alter the original derivation so that one may compare a
ariety of discrete computational models to the true, continuous model
sing their relative entropy to evaluate their similarity. In such a case,
e would like to use the KLD to measure the relative entropy of the er-

or distribution between the observed data and the solution of the PDE
odel, but we must also correct this criterion for the fact that our dis-

rete approximations to the PDE solution change with the resolution of
he chosen numerical method, which is often described by a single pa-
ameter N . For instance, this parameter can represent the number of par-
icles N in a stochastic particle method or identify the spatial grid size,
𝑥 = 

Ω
𝑁 

, in a finite difference method. Ultimately, we wish to establish a
riterion to select the best of these approximate models depending upon
he value of N . 

As before, letting ( x i , c i ) for 𝑖 = 1 , … , 𝑛 represent the given pairs of
oncentration data and c ( x, t ) denote the true solution to the PDE model,
e can describe the statistical model incorporating measurement error
y 

 𝑖 = 𝑐( 𝑥 𝑖 , 𝑇 ) + 𝜖

or 𝑖 = 1 , … , 𝑛, where T is a known measurement time and 𝜖 ~ h ( y | 𝜃) is a
andom variable with distribution h that encodes each of the associated
andom errors. Because we often do not possess an analytic solution for
 , it is necessary to approximate the PDE solution at time 𝑡 = 𝑇 with
 number of suitable numerical models, the solutions of which we de-
ote by c N ( x ), with the model of interest changing with the value of N .
ence, discrete approximation error, in addition to measurement error

rom the data, must be incorporated into the model selection criterion.
ecause the KLD can account for the latter quantity, we can establish
 computational information criterion merely by correcting the AIC by
he difference in entropy between the PDE solution and the numerical
pproximation. In this way if H rel ( f 1 , f 2 ) represents the relative entropy
a  
etween f 1 and f 2 , then the new information criterion can be expressed
s 

OMIC ( ̂𝜃, 𝑁) = 𝐻 𝑟𝑒𝑙 ( 𝑐, 𝑐 𝑖 ) + 𝐻 𝑟𝑒𝑙 ( 𝑐 𝑁 

, 𝑐) . 

he first relative entropy here is given by the AIC, while the second is
erely the difference between the discrete entropy of the approximate

olution and the inconsistent entropy of the PDE solution, or 𝐻 𝐷 − 𝐻 𝐼 ,

here these quantities are given by Eqs. (2) and (3) , respectively. In
ection 2, a sampling volume was introduced to relate these terms using
he consistent entropy of Eq. (6) , and we found (see Fig. 6 with Δ𝑉 =
Ω
𝑁 

) 

 𝐷 − 𝐻 𝐼 ≈ − ln (Δ𝑉 ) . 

Using this, we can finally define an adjusted criterion to the AIC,
hich we name COMIC or the COMputational Information Criteria,
iven by 

OMIC ( ̂𝜃; Δ𝑉 ) = −2 
𝑛 ∑

𝑖 =1 
ln ℎ ( 𝑦 𝑖 |𝜃̂) + 2 𝑘 − ln (Δ𝑉 ) . (42)

rom an information theory perspective, this computational penaliza-
ion can also be seen as a limitation on the information content needed
o represent the approximate solution c N ( x ). Assuming the selected nu-
erical method converges to the underlying PDE solution as N → ∞,

he values of c ( x, t ) can be computed to an arbitrarily large degree of
recision by merely choosing N sufficiently large in the computational
odel. However, in doing so, one must continue to store increasingly

arge amounts of information to gain smaller and smaller levels of accu-
acy. Thus, a trade-off results between the desired gain in precision and
he stored information content, and the COMIC provides an efficient cri-
erion for penalizing such considerations to select a parsimonious and
omputationally efficient (low information content) model. 

In order to focus on the computational implications of this adjust-
ent to the model selection criterion, we consider the case in which the

rrors between model and observations are Gaussian with variance 𝜎2 ,
s in the example illustrated within the previous section, and assume
hat no other parameters (e.g., D ) require estimation. In this case, the
og-likelihood function evaluated at the maximum-likelihood estimate is
roportional to the log of the average sum of squared errors (SSE) given
y Eq. (41) . Upon removing constants, the form of the COMIC becomes

OMIC (Δ𝑉 ) = 2 ln 
(SSE 

𝑛 

)
− ln (Δ𝑉 ) , (43)

here 

SE = 

𝑛 ∑
𝑖 =1 

( 𝑐 𝑖 − 𝑐 𝑁 

( 𝑥 𝑖 )) 2 . (44)

or numerical models with equivalent SSE, their measure of distribu-
ional entropy is the same, but their computational entropy would be
 ln (Δ𝑉 ) , so that the model fitness should be adjusted by this difference

n information content. 

ppendix B. Effect of 𝛁 · D on the mass-transfer algorithm 

We illustrate the effect of spatially-variable D in simple 2- d shear
ow, borrowing the parabolic velocity profile 𝑣 𝑦 = 0 and 𝑣 𝑥 = − 𝑦 2 − 𝑏𝑦

f Hagen-Poiseuille flow. The domain used here is 0 < x < 400;
 < y < 1, with concentrations initially zero everywhere except for a
trip 90 < x < 110 with concentration 1/20, i.e., initial mass = 1. The
 -domain is periodic, so particles that exit at 𝑥 = 400 are re-introduced
t 𝑥 = 0 . We show a scenario with heterogeneous and anisotropic diffu-

ion 𝐃 = 

[ 
𝛼𝐿 𝑣 𝑥 0 
0 𝛼𝑇 𝑣 𝑥 

] 
, with longitudinal and transverse dispersivi-

ies 𝛼𝐿 = 10 −2 ; 𝛼𝑇 = 10 −3 . Dispersive transport was simulated for 𝑡 = 500
ith timestep size Δ𝑡 = 1 either solely by mass transfer or solely by ran-
om walks. Because the mass transfer algorithm can move mass among
ll particles in the domain, a total of 20,000 particles were placed in the
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Fig. 10. a-c) Particle positions and masses in shear flow simulations. For clarity, only those particles with mass > 10 −6 are shown. d-f) Histograms on binned masses 

versus lateral y -position. 

4  

c  

o
 

t  

d  

t  

(  

s

00 × 1 domain, with an average of 100 particles in the initial non-zero
oncentration strip. This gives plenty of “clean ” particles on either side
f the strip. 

Pure random walks without the drift correction term migrate all par-
icles, including those with mass, to the lower D regions ( Fig. 10 a). The
rift correction eliminates the lateral bias ( Fig. 10 b and e). The mass
ransfer algorithm has no apparent bias or need for ∇ · D correction
 Fig. 10 c and f). As an aside, the mass-transfer method quite clearly
hows the regions of greatest, and least, shear and mixing ( Fig. 10 c). 
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upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.advwatres.2020.103509 . 

eferences 

kaike, H. , 1974. A new look at the statistical model identification. IEEE Trans. Autom.
Control AC-19 (6), 716–723 . 

kaike, H. , 1992. Information theory and an extension of the maximum likelihood prin-
ciple. Springer Series in Statistics, Perspectives in Statistics, pp. 610–624 . 

enson, D.A., Aquino, T., Bolster, D., Engdahl, N., Henri, C.V., Fernàndez-
Garcia, D., 2017. A comparison of Eulerian and Lagrangian transport
and non-linear reaction algorithms. Adv. Water Resour. 99, 15–37.
https://doi.org/10.1016/j.advwatres.2016.11.003 . 

enson, D.A., Bolster, D., 2016. Arbitrarily complex chemical reactions on particles. Water
Resour Res 52 (11), 9190–9200. https://doi.org/10.1002/2016WR019368 . 

enson, D.A., Meerschaert, M.M., 2008. Simulation of chemical reaction via particle track-
ing: diffusion-limited versus thermodynamic rate-limited regimes. Water Resour. Res.
44, W12201. https://doi.org/10.1029/2008WR007111 . 

enson, D.A., Pankavich, S., Bolster, D., 2019. On the separate treatment of mix-
ing and spreading by the reactive-particle-tracking algorithm: an example of ac-
curate upscaling of reactive Poiseuille flow. Adv. Water Resour. 123, 40–53.
https://doi.org/10.1016/j.advwatres.2018.11.001 . 

enson, D.A., Schmidt, M.J., Bolster, D., Harmon, C., Engdahl, N.B., 2019. Aging and
mixing as pseudo-chemical-reactions between, and on, particles: perspectives on par-
ticle interaction and multi-modal ages in hillslopes and streams. Adv. Water Resour.
103386. https://doi.org/10.1016/j.advwatres.2019.103386 . 

rockwell, P.J. , Davis, R.A. , 2016. Introduction to Time Series and Forecasting. Springer
Texts in Statistics, third Springer . 

hakraborty, P., Meerschaert, M.M., Lim, C.Y., 2009. Parameter estimation for fractional
transport: Aparticle-tracking approach. Water Resources Research 45 (10), W10415.
https://doi.org/10.1029/2008WR007577 . https://www.agupubs.onlinelibrary. 
wiley.com/doi/pdf/10.1029/2008WR007577 . 

hiogna, G., Hochstetler, D.L., Bellin, A., Kitanidis, P.K., Rolle, M., 2012. Mixing,
entropy and reactive solute transport. Geophysical Research Letters 39 (20).
https://doi.org/10.1029/2012GL053295 . https://www.agupubs.onlinelibrary.wiley. 
com/doi/pdf/10.1029/2012GL053295 . 

hiogna, G., Rolle, M., 2017. Entropy-based critical reaction time for mixing-
controlled reactive transport. Water Resources Research 53 (8), 7488–7498.
https://doi.org/10.1002/2017WR020522 . https://www.agupubs.onlinelibrary. 
wiley.com/doi/pdf/10.1002/2017WR020522 . 

irpka, O.A., Kitanidis, P.K., 2000a. An advective-dispersive stream tube approach
for the transfer of conservative-tracer data to reactive transport. Water Re-
sources Research 36 (5), 1209–1220. https://doi.org/10.1029/1999WR900355 .
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/1999WR900355 . 

irpka, O.A., Kitanidis, P.K., 2000b. Characterization of mixing and dilution
in heterogeneous aquifers by means of local temporal moments. Water Re-
sources Research 36 (5), 1221–1236. https://doi.org/10.1029/1999WR900354 .
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/1999WR900354 . 

entz, M. , Carrera, J. , 2007. Mixing and spreading in stratified flow. Phys. Fluid. 19,
17107 . 

entz, M., Kinzelbach, H., Attinger, S., Kinzelbach, W., 2000. Temporal behavior of
a solute cloud in a heterogeneous porous medium: 1. point-like injection. Water
Resources Research 36 (12), 3591–3604. https://doi.org/10.1029/2000WR900162 .
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2000WR900162 . 

ardiner, C.W. , 2004. Handbook of Stochastic Methods for Physics, Chemistry and the
Natural Sciences, 4, 3rd Ed Springer, Berlin . 

ingold, R.A., Monaghan, J.J., 1977. Smoothed particle hydrodynamics: theory and
application to non-spherical stars. Mon Not R Astron Soc 181 (3), 375–389.
https://doi.org/10.1093/mnras/181.3.375 . 

ill, M.C. , Tiedeman, C.R. , 2007. Effective Groundwater Model Calibration: with Analysis
of Data, Sensitivities, Predictions, and Uncertainty. John Wiley & Sons . 

itanidis, P.K., 1994. The concept of the Dilution In-
dex. Water Resources Research 30 (7), 2011–2026.
https://doi.org/10.1029/94WR00762 . https://www.agupubs.onlinelibrary. 
wiley.com/doi/pdf/10.1029/94WR00762 . 
itanidis, P.K., 1994. Particle-tracking equations for the solu-
tion of the advection-dispersion equation with variable co-
efficients. Water Resources Research 30 (11), 3225–3227.
https://doi.org/10.1029/94WR01880 . https://www.agupubs.onlinelibrary. 
wiley.com/doi/pdf/10.1029/94WR01880 . 

onishi, S. , Kitagawa, G. , 2008. Information Criteria and Statistical Modeling. Springer
Series in Statistics. Springer, New York, NY . 

ullback, S. , 1968. Information Theory and Statistics. Dover Publications . 
ullback, S., Leibler, R.A., 1951. On information and sufficiency. Ann. Math. Statist. 22

(1), 79–86. https://doi.org/10.1214/aoms/1177729694 . 
abolle, E.M. , Fogg, G.E. , Tompson, A.F.B. , 1996. Random-walk simulation of transport in

heterogeneous porous media: local mass-conservation problem and implementation
methods. Water Resour. Res. 32 (3), 583–593 . 

ichtner, P.C., Kelkar, S., Robinson, B., 2002. New form of dispersion tensor for axisym-
metric porous media with implementation in particle tracking. Water Resources Re-
search 38 (8). https://doi.org/10.1029/2000WR000100 . 21–1–21–16. 

onaghan, J., 2012. Smoothed particle hydrodynamics and its di-
verse applications. Annu. Rev. Fluid Mech. 44 (1), 323–346.
https://doi.org/10.1146/annurev-fluid-120710-101220 . 

ksendal, B. , 2003. Stochastic differential equations. Stochastic Differential Equations.
Universitext. Springer, Berlin, Heidelberg . 

aster, A., Bolster, D., Benson, D.A., 2014. Connecting the dots: semi-analytical
and random walk numerical solutions of the diffusion–reaction equa-
tion with stochastic initial conditions. J. Comput. Phys. 263, 91–112.
https://doi.org/10.1016/j.jcp.2014.01.020 . 

edretti, D., Fernàndez-Garcia, D., 2013. An automatic locally-adaptive method to esti-
mate heavily-tailed breakthrough curves from particle distributions. Adv Water Re-
sour. 59, 52–65. https://doi.org/10.1016/j.advwatres.2013.05.006 . 

ahbaralam, M., Fernàndez-Garcia, D., Sanchez-Vila, X., 2015. Do we really need a
large number of particles to simulate bimolecular reactive transport with random
walk methods? a kernel density estimation approach. J. Comput. Phys. 303, 95–104.
https://doi.org/10.1016/j.jcp.2015.09.030 . 

chmidt, M.J., Pankavich, S.D., Benson, D.A., 2018. On the accuracy of simulating mix-
ing by random-walk particle-based mass-transfer algorithms. Adv. Water Resour.
https://doi.org/10.1016/j.advwatres.2018.05.003 . 

chumer, R. , Benson, D.A. , Meerschaert, M.M. , Baeumer, B. , 2003. Multiscaling fractional
advection-dispersion equations and their solutions. Water Resour. Res. 39, 1022 . 

hannon, C.E. , 1948. A mathematical theory of communication. Bell Syst. Techn. J. 27,
379–423 . 

ilverman, B.W. , 1986. Density Estimation for Statistics and Data Analysis. Chapman and
Hall, London . 

ole-Mari, G., Fernàndez-Garcia, D., 2018. Lagrangian modeling of reactive trans-
port in heterogeneous porous media with an automatic locally adaptive
particle support volume. Water Resources Research 54 (10), 8309–8331.
https://doi.org/10.1029/2018WR023033 . https://www.agupubs.onlinelibrary. 
wiley.com/doi/pdf/10.1029/2018WR023033 . 

ole-Mari, G., Fernández-Garcia, D., Rodríguez-Escales, P., Sanchez-Vila, X., 2017.
A KDE-based random walk method for modeling reactive transport with com-
plex kinetics in porous media. Water Resources Research 53 (11), 9019–9039.
https://doi.org/10.1002/2017WR021064 . https://www.agupubs.onlinelibrary. 
wiley.com/doi/pdf/10.1002/2017WR021064 . 

ole-Mari, G., Schmidt, M.J., Pankavich, S.D., Benson, D.A., 2019. Numeri-
cal equivalence between SPH and probabilistic mass transfer methods for
Lagrangian simulation of dispersion. Adv. Water Resour. 126, 108–115.
https://doi.org/10.1016/j.advwatres.2019.02.009 . 

und, N.L., Porta, G.M., Bolster, D., 2017. Upscaling of dilution and mixing using a trajec-
tory based spatial markov random walk model in a periodic flow domain. Adv Water
Resour 103, 76–85. https://doi.org/10.1016/j.advwatres.2017.02.018 . 

aylor, G., 1953. Dispersion of soluble matter in solvent flowing slowly
through a tube. Proceedings of the Royal Society of London A: Math-
ematical, Physical and Engineering Sciences 219 (1137), 186–203.
https://doi.org/10.1098/rspa.1953.0139 . http://www.rspa.royalsocietypublishing. 
org/content/219/1137/186.full.pdf . 

https://doi.org/10.1016/j.advwatres.2020.103509
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0001
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0001
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0002
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0002
https://doi.org/10.1016/j.advwatres.2016.11.003
https://doi.org/10.1002/2016WR019368
https://doi.org/10.1029/2008WR007111
https://doi.org/10.1016/j.advwatres.2018.11.001
https://doi.org/10.1016/j.advwatres.2019.103386
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0008
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0008
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0008
https://doi.org/10.1029/2008WR007577
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008WR007577
https://doi.org/10.1029/2012GL053295
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2012GL053295
https://doi.org/10.1002/2017WR020522
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR020522
https://doi.org/10.1029/1999WR900355
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/1999WR900355
https://doi.org/10.1029/1999WR900354
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/1999WR900354
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0014
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0014
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0014
https://doi.org/10.1029/2000WR900162
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2000WR900162
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0016
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0016
https://doi.org/10.1093/mnras/181.3.375
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0018
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0018
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0018
https://doi.org/10.1029/94WR00762
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/94WR00762
https://doi.org/10.1029/94WR01880
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/94WR01880
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0021
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0021
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0021
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0022
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0022
https://doi.org/10.1214/aoms/1177729694
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0024
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0024
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0024
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0024
https://doi.org/10.1029/2000WR000100
https://doi.org/10.1146/annurev-fluid-120710-101220
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0027
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0027
https://doi.org/10.1016/j.jcp.2014.01.020
https://doi.org/10.1016/j.advwatres.2013.05.006
https://doi.org/10.1016/j.jcp.2015.09.030
https://doi.org/10.1016/j.advwatres.2018.05.003
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0032
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0032
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0032
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0032
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0032
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0033
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0033
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0034
http://refhub.elsevier.com/S0309-1708(19)30345-8/sbref0034
https://doi.org/10.1029/2018WR023033
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR023033
https://doi.org/10.1002/2017WR021064
https://www.agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR021064
https://doi.org/10.1016/j.advwatres.2019.02.009
https://doi.org/10.1016/j.advwatres.2017.02.018
https://doi.org/10.1098/rspa.1953.0139
http://www.rspa.royalsocietypublishing.org/content/219/1137/186.full.pdf

	Entropy: (1) The former trouble with particle-tracking simulation, and (2) A measure of computational information penalty
	1 Introduction
	2 Mathematical background
	3 Entropy calculation
	4 Mass-Transfer PT Method
	5 Results and discussion
	5.1 PT Versus collision kernel MTPT
	5.2 Adaptive kernel versus collision kernel MTPT
	5.3 Partitioning of local mixing and random walk spreading
	5.4 Distributional entropy

	6 Computational entropy penalty
	6.1 Finite-difference example
	6.2 Mass-transfer particle-tracking examples

	7 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Computational information criterion and maximum likelihood estimators
	A1 Kullback-Leibler divergence
	A2 Akaike information criterion (AIC)
	A3 Maximum likelihood estimators (MLEs)
	A4 Computational information criterion

	Appendix B Effect of &#x2207;&#x00A0;&#x00B7;&#x00A0;D on the mass-transfer algorithm
	Supplementary material
	References


