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SUMMARY

A collisionless plasma is modelled by the Vlasov–Poisson system in one dimension. A fixed background
of positive charge, dependent only upon velocity, is assumed and the situation in which the mobile negative
ions balance the positive charge as |x | → ∞ is considered. Thus, the total positive charge and the total
negative charge are infinite. In this paper, the charge density of the system is shown to be compactly
supported. More importantly, both the electric field and the number density are determined explicitly for
large values of |x |. Copyright q 2007 John Wiley & Sons, Ltd.

KEY WORDS: partial differential equations; plasma physics; Vlasov–Poisson; kinetic theory; infinite
mass

INTRODUCTION

Consider the one dimensional Vlasov–Poisson system with a given positive background function
and initial data. We take as given the functions F : R → [0,∞) and f0 : R2 → [0,∞) and seek
functions f : [0, T ] × R × R → R and E : [0, T ] × R → R such that

�t f + v�x f − E�v f = 0

�(t, x) =
∫

(F(v) − f (t, x, v)) dv

E(t, x)= 1

2

(∫ x

−∞
�(t, y) dy −

∫ ∞

x
�(t, y) dy

)
f (0, x, v) = f0(x, v)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1)
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376 S. PANKAVICH

Here t ∈ [0, T ] denotes time, x ∈ R denotes one-dimensional space, and v ∈ R denotes one-
dimensional momentum. In (1), F represents a number density in phase space of positive ions which
form a fixed background, and f describes the number density of mobile negative ions. Notice that if
f0 = F , then f = F is a steady solution. Thus, we consider solutions for which f → F as |x |→∞.
The existence of a unique, local-in-time solution to (1) was shown in [1]. Thus, we will include
assumptions which satisfy the requirements of [1] so that the existence of a solution f on [0, T ]
is valid for some T>0, and the results which follow may be applied to the local-in-time solution.

The Vlasov–Poisson system has been studied extensively in the case where F(v)= 0 and
solutions tend to zero as |x |→∞, both for the one-dimensional problem and the more difficult,
three-dimensional problem. Most of the literature involving the one-dimensional Vlasov–Poisson
system focus on time asymptotics, such as [2, 3]. Much more work has been done concerning
the three-dimensional problem. Smooth solutions were shown to exist globally in-time in [4] and
independently in [5]. The results of [4] were later revised in [6]. Important results preliminary to
the discovery of a global-in-time solution include [7, 8]. A complete discussion of the literature
concerning the Vlasov–Poisson system may be found in both [9, 10].

Only over the past decade has some work begun studying solutions of the Vlasov–Poisson
system with infinite mass and energy. Under differing assumptions, distributional solutions with
infinite mass or infinite kinetic energy have been constructed in [11, 12]. More recently, the three-
dimensional analogue of (1), which yields solutions with both infinite mass and energy, has been
studied. Local existence of smooth solutions and a continuation criteria for this problem were
shown in [13]. A priori bounds on the current density were achieved in [14]. Finally, global
existence in the case of a radial electric field was shown in [15], and global existence without the
assumption of radial symmetry in [16].

SECTION 1

We will make the following assumptions throughout, for any x, v ∈ R:

(I) There is R>0 such that for |x |>R,

f0(x, v) = F(v) (2)

where F ∈C1
c(R) is even and non-negative, and f0 ∈C1

c(R
2) is non-negative.

(II) There is C (1)>0 such that ∫ T

0
‖E(�)‖∞ d��C (1) (3)

Notice that Assumption (I) satisfies the assumptions made in [1] and thus the existence of a unique
local-in-time solution is guaranteed. Define the characteristics X (s, t, x, v) and V (s, t, x, v) by

�
�s

X (s, t, x, v) = V (s, t, x, v)

�
�s

V (s, t, x, v)=−E(s, X (s, t, x, v))

X (t, t, x, v) = x

V (t, t, x, v) = v

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4)
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EXPLICIT SOLUTIONS OF THE ONE-DIMENSIONAL VLASOV–POISSON SYSTEM 377

Then,

d

ds
f (s, X (s, t, x, v), V (s, t, x, v)) = �t f (s, X (s, t, x, v), V (s, t, x, v))

+ V (s, t, x, v)�x f (s, X (s, t, x, v), V (s, t, x, v))

− E(s, X (s, t, x, v))�v f (s, X (s, t, x, v), V (s, t, x, v))

= 0

so that f is constant along characteristics, and

f (t, x, v)= f (0, X (0, t, x, v), V (0, t, x, v))= f0(X (0, t, x, v), V (0, t, x, v)) (5)

Thus, we find that f must be non-negative and ‖ f ‖∞ = ‖ f0‖∞<∞.
Now, put

g(t, x, v) = F(v) − f (t, x, v)

and define for every t ∈ [0, T ],
Qg(t) := sup{|v| : ∃x ∈ R, �∈ [0, t]such that g(�, x, v) �= 0} (6)

and

R(t) := R + t Qg(t) +
∫ t

0

∫ t

�
‖E(s)‖∞ ds d� (7)

Then, V (s, t, x, v) is linear in v for large |x |, and �(t, x) has compact support for every t ∈ [0, T ].
Theorem 1
Let T>0 and f , a C1 solution of (1) on [0, T ] × R2, be given and assume (2) and (3) hold. Then,
for t ∈ [0, T ] and |x |>R(t) we have

1. �(t, x)= 0.
2. For s ∈ [0, t] and |v|�Qg(t),

�V
�v

(s, t, x, v) = 1

More importantly, we may explicitly determine the unique solution to (1) for large |x |. Define

sign(x) :=
{
1, x�0

−1, x<0

Theorem 2
Let T>0 and f , a C1 solution of (1) on [0, T ] × R2, be given and assume (2) and (3) hold. Then,
for t ∈ [0, T ] and |x |>R(t) we have

E(t, x)= E0 sign(x) cos(�t)
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378 S. PANKAVICH

and

f (t, x, v)= F

(
v + E0 sign(x)

�
sin(�t)

)

where

E0 = 1

2

∫ R

−R

∫
(F(v) − f0(y, v)) dv dy

and

� =
(∫

F(v) dv

)1/2

We derive the form of f (t, x, v) and E(t, x) from the field bound and the initial current density.
Then, using Theorem 1, we show that the current density must be a multiple of the field for large
|x |. In order to arrive at these results, we must first show that Qg is bounded.

Lemma 1
For any t ∈ [0, T ],

Qg(t)�C

To control spatial characteristics, we will use the following lemma.

Lemma 2
For t ∈ [0, T ], s ∈ [0, t], x ∈ R, and |v|�Qg(t), we have

|x |�R(t) ⇒ |X (s, t, x, v)|�R(s)

We will delay the proofs of the lemmas until Section 4. Section 2 will be dedicated to proving
Theorem 1 using the above lemmas. Then, in Section 3, we will prove Theorem 2, utilizing the
first theorem.

SECTION 2

In order to prove Theorem 1, we must first bound the charge density and v-derivatives of charac-
teristics. Notice from (2) and Lemma 2,

|x |>R(t) ⇒ f0(X (s, t, x, v), V (s, t, x, v)) = F(V (s, t, x, v))

for every s ∈ [0, t], t ∈ [0, T ], and |v|�Qg(t). In particular,

|x |>R(t) ⇒ f (t, x, v) = F(V (0, t, x, v)) (8)
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EXPLICIT SOLUTIONS OF THE ONE-DIMENSIONAL VLASOV–POISSON SYSTEM 379

Let |x |>R(t) and using (3), (8), and Lemma 1, we write

|�(t, x)| =
∣∣∣∣
∫

(F(v) − f (t, x, v)) dv

∣∣∣∣
=

∣∣∣∣∣
∫

|v|�Qg(t)
(F(v) − F(V (0, t, x, v)) dv

∣∣∣∣∣
�

∫
|v|�Qg(t)

‖F ′‖∞|V (0, t, x, v) − v| dv

� Qg(t) ‖F ′‖∞
(∫ t

0
‖E(�)‖∞ d�

)

�C

So, for |x |>R(t),

�(t, x)�C (9)

To bound derivatives of characteristics, we use (1) and (4) to find

�Ẋ
�v

(s, t, x, v) = �V
�v

(s, t, x, v)

and

�V̇
�v

(s, t, x, v) = −Ex (s, X (s, t, x, v))
�X
�v

(s, t, x, v)

= −�(s, X (s, t, x, v))
�X
�v

(s, t, x, v)

so that

�V
�v

(s, t, x, v)= 1 +
∫ t

s
�(�, X (�, t, x, v))

�X
�v

(s, t, x, v) d� (10)

Thus, ∣∣∣∣�X�v
(s, t, x, v)

∣∣∣∣�
∫ t

s

∣∣∣∣�V�v
(�, t, x, v)

∣∣∣∣ d�
and ∣∣∣∣�V�v

(s, t, x, v)

∣∣∣∣ �1 +
∫ t

s

∣∣∣∣�(�, X (�, t, x, v))
�X
�v

(s, t, x, v)

∣∣∣∣ d�
Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:375–389
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380 S. PANKAVICH

Combining the two inequalities, we use Lemma 2 and (9) so that∣∣∣∣�X�v
(s, t, x, v)

∣∣∣∣ +
∣∣∣∣�V�v

(s, t, x, v)

∣∣∣∣ � 1 +
∫ t

s

(∣∣∣∣�V�v
(�, t, x, v)

∣∣∣∣ + C

∣∣∣∣�X�v
(�, t, x, v)

∣∣∣∣
)
d�

� 1 + C
∫ t

s

(∣∣∣∣�V�v
(�, t, x, v)

∣∣∣∣ +
∣∣∣∣�X�v

(�, t, x, v)

∣∣∣∣
)
d�

for |x |>R(t) and |v|�Qg(t). Then, by Gronwall’s Inequality, for t ∈ [0, T ], s ∈ [0, t], |x |>R(t),
and |v|�Qg(t) ∣∣∣∣�X�v

(s, t, x, v)

∣∣∣∣ +
∣∣∣∣�V�v

(s, t, x, v)

∣∣∣∣�C (11)

and we have bounds on v-derivatives of characteristics.

Now that �(t, x) and (�X/�v)(s, t, x, v) are bounded, define

�(t) := sup
|x |>R(s)
s∈[0,t]

|�(s, x)|

and

�(t) := sup
|x |>R(t)
|v|�Qg(t)
s ∈ [0,t]

∣∣∣∣�X�v
(s, t, x, v)

∣∣∣∣

Then, for |v|�Qg(t) and |x |>R(t),∣∣∣∣
∫ t

0
�(�, X (�, t, x, v))

�X
�v

(�, t, x, v) d�

∣∣∣∣ �
∫ t

0
�(�)�(t) d�

= �(t)

(∫ t

0
�(�) d�

)

=: G(t)

Notice G ∈C[0, T ], G increasing, G(t)�0 for every t ∈ [0, T ], and G(0)= 0. Define

T0 := sup{T̃ : G(T̃ )� 1
2 }

Thus, G(T0)� 1
2 and by the above computation,∣∣∣∣

∫ t

0
�(�, X (�, t, x, v))

�X
�v

(�, t, x, v) d�

∣∣∣∣�1

2

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:375–389
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EXPLICIT SOLUTIONS OF THE ONE-DIMENSIONAL VLASOV–POISSON SYSTEM 381

for every t�T0. By (10), we find for t ∈ [0, T0]
∣∣∣∣�V�v

(0)

∣∣∣∣ � 1 −
∣∣∣∣
∫ t

0
�(�, X (�, t, x, v))

�X
�v

(�, t, x, v) d�

∣∣∣∣
� 1 − 1

2

= 1

2

so that ∣∣∣∣∣∣∣∣
1

�V
�v

(0)

∣∣∣∣∣∣∣∣
�2 (12)

for |v|�Qg(t) and |x | > R(t). Once we show �(t, x)= 0 for |x |>R(t) with t ∈ [0, T0], then
�(t) =G(t) = 0 for every t ∈ [0, T0], and it follows that T0 = T , thus bounding |(�V /�v)(0)| from
below for all t ∈ [0, T ].

Let |x |>R(t). Using (8), (10), and (12), we find

�(t, x) =
∫

(F(v) − F(V (0, t, x, v))) dv

=
∫

F(v) dv −
∫

F(w)
1

�V
�v

(0)

dw

=
∫

F(w)

⎛
⎜⎜⎝1 − 1

�V
�v

(0)

⎞
⎟⎟⎠ dw

=
∫

F(w)

⎛
⎜⎜⎝

�V
�v

(0) − 1

�V
�v

(0)

⎞
⎟⎟⎠ dw

=
∫

F(w)

(∫ t

0
�(�, X (�, t, x, w))

�X
�v

(�) d�

)
1

�V
�v

(0)

dw

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:375–389
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382 S. PANKAVICH

Thus, for |x |>R(t), we use Assumption (I), (11), and (12) to find

|�(t, x)| �
∫

|w|�Qg(t)
|F(w)|

(∫ t

0
|�(t, X (�))|

∣∣∣∣�X�v
(�)

∣∣∣∣ d�
) ∣∣∣∣∣∣∣∣

1

�V
�v

(0)

∣∣∣∣∣∣∣∣
dw

�C
∫

|w|�Qg(t)
F(w)

∫ t

0
|�(�, X (�))| d� dw

Now, define

P(s) := sup
|x |>R(s)

|�(s, x)|

The above inequality becomes

P(t)�C

(∫
F(w) dw

)∫ t

0
P(�) d�

By Gronwall’s inequality,

P(t)�0

Thus,

P(t) = 0

and

�(t, x)= 0 (13)

for |x |>R(t). As previously stated, since (13) holds for t ∈ [0, T0], we can conclude that it does
so for all t ∈ [0, T ]. Then, since �(t, x) has compact support, we use Lemma 2 and (13) to find

|x |>R(t) ⇒ �(�, X (�, t, x, v)) = 0

for any t ∈ [0, T ], � ∈ [0, t], |v|�Qg(t). Using this with (10), we may conclude

�V
�v

(s, t, x, v) = 1

for |x |>R(t), |v|�Qg(t) and s ∈ [0, t]. Thus, the proof of Theorem 1 is complete.

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:375–389
DOI: 10.1002/mma



EXPLICIT SOLUTIONS OF THE ONE-DIMENSIONAL VLASOV–POISSON SYSTEM 383

SECTION 3

In order to prove Theorem 2, let us first define the current density, j : [0, T ] × R → R by

j (t, x) :=
∫

v(F(v) − f (t, x, v)) dv

A well-known result, known as the equation of continuity, follows from (1):

�t�(t, x) + �x j (t, x)= 0 (14)

Using the second result of Theorem 1, we find for |x |>R(t), |v|�Qg(t), and s ∈ [0, t]
V (s, t, x, v) = v + �(s, t, x)

for some �. In addition, (4) implies

V (s, t, x, v)= v +
∫ t

s
E(�, X (�, t, x, v)) d�

Thus, for |x |>R(t),

E(�, X (�, t, x, v)) = E(�, X (�, t, x, 0))

Define for |x |>R(t),

�(s, t, x) :=
∫ t

s
E(�, X (�, t, x, 0)) d�

so that

V (0, t, x, v)= v + �(0, t, x) (15)

Now, let |x |>R(t). By Assumption (I), (5), and Lemma 2, we find

j (t, x) =
∫

v(F(v) − f (t, x, v)) dv

=
∫

vF(v) dv −
∫

v f0(X (0), V (0)) dv

= −
∫

vF(V (0)) dv

= −
∫

vF(v + �(0, t, x)) dv

= −
∫

F(w)[w − �(0, t, x)] dw

=
∫

F(w)�(0, t, x) dw

=
(∫

F(w) dw

)∫ t

0
E(�, X (�, t, x, 0)) d�

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:375–389
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384 S. PANKAVICH

Thus, from this relation, we find

�
�t

( j (t, x))=
(∫

F(w) dw

)
E(t, x) (16)

Since �(t) has compact support, let us write supp(�(t))⊂[−L , L] for some L>0, and so

E(t, x)= 1

2

(∫ x

−L
�(t, y) dy −

∫ L

x
�(t, y) dy

)

Also, notice

E(t, L) = −E(t, −L) (17)

Therefore, using (14)

�
�t

(E(t, x)) = 1

2

(∫ x

−L
�t (t, y) dy −

∫ L

x
�t (t, y) dy

)

= 1

2

(
−

∫ x

−L
jx (t, y) dy +

∫ L

x
jx (t, y) dy

)

= 1

2
[ j (t,−L) − j (t, x) + j (t, L) − j (t, x)]

= 1

2
( j (t,−L) + j (t, L)) − j (t, x)

Thus, using (16) and (17), we find for |x |>R(t)

�2

�t2
(E(t, x)) = 1

2
[ jt (t,−L) + jt (t, L)] − jt (t, x) (18)

= 1

2

(∫
F(w) dw

)
[E(t, −L) + E(t, L)] −

(∫
F(w) dw

)
E(t, x) (19)

= −
(∫

F(w) dw

)
E(t, x) (20)

Now, for |x |>R(t)

E(t, x) = 1

2
sign(x)

∫ L

−L
�(t, y) dy

= sign(x)E(t, L)

For all t ∈ [0, T ], define

e(t) := E(t, L)

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:375–389
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EXPLICIT SOLUTIONS OF THE ONE-DIMENSIONAL VLASOV–POISSON SYSTEM 385

and

� :=
(∫

F(w) dw

)1/2

Then, (20) yields

e′′(t) =−�2e(t)

and so

e(t)= c1 sin(�t) + c2 cos(�t) (21)

for some c1, c2 ∈ R. Thus, for |x |>R(t)

E(t, x)= sign(x)(c1 sin(�t) + c2 cos(�t)) (22)

Now, we use (1) and Assumption (I) to find for |x |>R(t)

E(0, x) = 1

2
sign(x)

∫ R

−R
�(0, y) dy

= 1

2
sign(x)

∫ R

−R

∫
(F(v) − f0(y, v)) dv dy

=: E0 sign(x)

However, by (22)

E(0, x) = (c1 sin(0) + c2 cos(0)) sign(x)

So, c2 = E0. Also, for |x |>R(t),

Et (0, x)= 1
2 [ j (0,−L) + j (0, L)] − j (0, x)= 0

But, Et (0, x)=�c1, so that for non-trivial E , c1 = 0. Finally, we may write

E(t, x)= E0 sign(x) cos(�t) (23)

for |x |>R(t) where

E0 = 1

2

∫ R

−R

∫
(F(v) − f0(y, v)) dv dy

and

�=
(∫

F(w) dw

)1/2

So, the proof of the first part of Theorem 2 is complete.
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386 S. PANKAVICH

Now, we may use this result to show the second part of the theorem. First, by (4), we know for
s ∈ [0, t],

V (s) = v +
∫ t

s
E(�, X (�)) d�

Using (23) and Lemma 2 in this equation, for |x |>R(t),

V (s) = v +
∫ t

s
E0 sign(x) cos(��) d�

= v + E0 sign(x)

(
1

�

)
[sin(�t) − sin(�s)]

In addition, for |x |>R(t)

X (s) = x −
∫ t

s
V (�) d�

= x − sign(x)
∫ t

s

[
v + E0

�
(sin(�t) − sin(��))

]
d�

= x − sign(x)

(
(t − s)

[
v + E0

�
sin(�t)

]
+ E0

�

∫ t

s
sin(��) d�

)

= x − sign(x)

(
(t − s)

[
v + E0

�
sin(�t)

]
− E0

�
[cos(�t) − cos(�s)]

)

Thus, for |x |>R(t), we can explicitly calculate the characteristics at s = 0 as

X (0)= x − sign(x)

(
t

[
v + E0

�
sin(�t)

]
− E0

�
[cos(�t) − 1]

)

and

V (0) = v + E0 sign(x)

�
sin(�t)

Therefore, we use (5) to find

f (t, x, v)= f0(X (0), V (0))

for |x |>R(t) where X (0) and V (0) are as above. Finally, using (2) and Lemma 2, we conclude

f (t, x, v)= F(V (0, t, x, v)) = F

(
v + E0 sign(x)

�
sin(�t)

)

for |x |>R(t), and the proof of Theorem 2 is complete. The final section will be devoted to the
proofs of Lemmas 1 and 2.
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SECTION 4

We complete the paper with the proofs of the lemmas.

Proof of Lemma 1
Let T>0 be given and f be a solution of (1) on [0, T ]. Define for t ∈ [0, T ],

Q(t) := sup{|v| : ∃x ∈ R, �∈ [0, t] s.t. f (�, x, v) �= 0}

We show that all momenta characteristics are bounded as functions of s. Using (3) and (4),

|V (0, t, x, v)| =
∣∣∣∣v +

∫ t

0
E(s, X (s, t, x, v)) ds

∣∣∣∣
� |v| − C (1)

By definition of Q(t), if |V (0, t, x, v)|�Q(0), we have for every y ∈ R,

f0(y, V (0, t, x, v))= 0

But, by the above equation, if |v|�Q(0) + C (1), then

|V (0, t, x, v)|�|v| − C (1)�Qg(0)

which implies that f0(y, V (0, t, x, v))= 0. So, if f0(y, V (0, t, x, v)) �= 0, we must have

|v|�Q(0) + C (1) (24)

Since we wish to consider only non-trivial f , (5) implies that f (X (0, t, x, v), V (0, t, x, v)) �= 0
for some t ∈ [0, T ], x, v ∈ R, and thus (24) must hold. Taking the supremum over v of both sides
in (24), we find

Q(t)�Q(0) + C (1)�C

for every t ∈ [0, T ]. Since F is compactly supported, it follows that Qg(t)�C for all t ∈ [0, T ], as
well. In addition, for t ∈ [0, T ] and |v|>Qg(t), we have

f (t, x, v)= f0(X (0), V (0))= 0 �

Proof of Lemma 2
Let T>0 be given and f be a solution of (1) on [0, T ]. Define Qg(t) for t ∈ [0, T ] as in (6).
Consider |v|�Qg(t) and use (4) to obtain the integral form of characteristics:

V (s)= v +
∫ t

s
E(�, X (�, t, x, v)) d�
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and

X (s)= x −
∫ t

s

(
v +

∫ t

�
E(s̄, X (s̄, t, x, v)) ds̄

)
d�

Recall,

R(t) := R + t Qg(t) +
∫ t

0

∫ t

�
‖E(s̄)‖∞ ds̄ d�

Thus, for |x |>R(t) and s ∈ [0, t],

|X (s, t, x, v)| � |x | − |v|(t − s) −
∫ t

s

∫ t

�
|E(s̄, X (s̄, t, x, v))| ds̄ d�

� |x | − Qg(t)(t − s) −
∫ t

s

∫ t

�
‖E(s̄)‖∞ ds̄ d�

> R + t Qg(t) − (t − s)Qg(t) +
∫ t

0

∫ t

�
‖E(s̄)‖∞ ds̄ d� −

∫ t

s

∫ t

�
‖E(s̄)‖∞ ds̄ d�

= R + sQg(t) +
∫ s

0

∫ t

�
‖E(s̄)‖∞ ds̄ d�

� R + sQg(s) +
∫ s

0

∫ s

�
‖E(s̄)‖∞ ds̄ d�

= R(s)

Thus, the proof of Lemma 2 is complete. �
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