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A B S T R A C T

Active subspace analysis is a useful computational tool to identify and exploit the most
important linear combinations in the space of a model’s input parameters. These directions
depend inherently on a quantity of interest, which can be represented as a function from input
parameters to model outputs. As the dynamics of many plasma models are driven by potentially
uncertain parameter values, the utilization of active subspaces to perform global sensitivity
analysis represents an important step in understanding how certain physical phenomena depend
upon fluctuations in the values of these parameters. In the current paper, we construct and
implement new computational methods to quantify the induced uncertainty within the growth
rate generated by perturbations in a collisionless plasma modeled by the one-dimensional
Vlasov–Poisson system near an unstable, spatially-homogeneous steady state in the linear
regime.

. Introduction

A number of plasma models require the strict knowledge of input parameters in order to tune them to experimental studies
r validate computational simulations. For example, scientists studying Landau damping [1–4], i.e. the stability and exponential
ecay of a collective mode of oscillations in a plasma without the consideration of collisions among charged particles, must first
dentify the parameter regimes within which such behavior occurs in order to understand the inherent structure of solutions. Another
henomenon of extreme interest within the plasma physics community is the study of plasma instabilities, such as the Two-Stream
nd Bump-on-Tail instabilities, which arise from perturbations in the particle distribution function near an unstable, double-humped
teady state distribution. These instabilities play a significant role in the theoretical study of plasmas and can be applied to better
nderstand the properties of charged beams in particle accelerators and magnetic confinement devices [5,6].

While prior studies focus on theoretical results concerning the behavior of a deterministic model for electrostatic plasma inter-
ctions, in reality, the physical system depends inherently upon knowledge of a variety of parameters, which are often themselves
nfluenced or determined by experimental data. As such information may possess intrinsic uncertainty due to measurement errors,
t is crucial to understand how this level of uncertainty can propagate within the output variables of the model. In the context of
lasma instabilities, tools from the fields of uncertainty quantification [7,8] and computational science [9] can allow scientists and
ngineers to make predictions regarding the influence of model parameters. Hence, it is the central purpose of this article to quantify
he uncertainty within the growth rate from an unstable steady state that is created by random fluctuations in model parameters,
ncluding the mean drift velocity and thermal velocity of the state (henceforth denoted by 𝜇 and 𝜎2, respectively) and the amplitude
nd frequency of associated oscillations (i.e. 𝛼 and 𝑘 herein).

∗ Corresponding author.
E-mail addresses: sterrab@mines.edu (S. Terrab), pankavic@mines.edu (S. Pankavich).

1 The authors were supported by National Science Foundation, USA grants DMS-1551229, DMS-1614586, and DMS-2107938.
vailable online 24 March 2024
007-5704/© 2024 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.cnsns.2024.107994
eceived 4 September 2023; Received in revised form 12 March 2024; Accepted 19 March 2024

https://www.elsevier.com/locate/cnsns
https://www.elsevier.com/locate/cnsns
mailto:sterrab@mines.edu
mailto:pankavic@mines.edu
https://doi.org/10.1016/j.cnsns.2024.107994
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2024.107994&domain=pdf
https://doi.org/10.1016/j.cnsns.2024.107994


Communications in Nonlinear Science and Numerical Simulation 134 (2024) 107994S. Terrab and S. Pankavich

F
I
n
C
o
t
t
b

V

2. Plasma instabilities

It is well known that collisionless plasmas can experience instabilities generated by perturbations from an associated steady state.
or instance, such instabilities are known to occur in particle beams, i.e. accelerated streams of charged particles (ions and electrons).
n the laboratory, these beams are created by particle accelerators, like cathode ray tubes and cyclotrons, while such phenomena are
aturally created by strong electric fields, as occur in double layers. Particle beams possess a wide range of applications to Inertial
onfinement Fusion (ICF) [10,11], fast ignition fusion [12], astrophysics [13,14], and high energy density physics [15], among many
thers. Here, the background plasma presents a means of current and charge neutralization for charged particle beams, enabling
he ballistic propagation of an intense beam pulse [16]. However, the beam streaming through the background plasma can lead to
he development of many different instabilities, including the Bump-on-Tail and Two-Stream instabilities, which we will investigate
elow.

In order to capture this unstable behavior for an electrostatic plasma, we will utilize illustrative examples arising from the
lasov–Poisson system posed in a spatially-periodic two-dimensional phase space (𝑥, 𝑣) with 0 ≤ 𝑥 ≤ 𝐿, −∞ < 𝑣 < ∞, and 𝑡 ≥ 0

representing time. In dimensionless form, this model is given by

𝜕𝑡𝑓 + 𝑣𝜕𝑥𝑓 − 𝐸𝜕𝑣𝑓 = 0 (1a)

𝜕𝑥𝐸 = 1 − ∫ 𝑓 (𝑡, 𝑥, 𝑣) 𝑑𝑣. (1b)

Here, 𝑓 (𝑡, 𝑥, 𝑣) represents the electron distribution function with a fixed and normalized ionic background density, and 𝐸(𝑡, 𝑥) is
the electric field induced by the charges in the system. This system of partial differential equations is obtained by reducing the
dimension of the parameter space in the original (dimensional) model via rescaling (Appendix A).

In the case of linearized instability, i.e. the study of the Vlasov–Poisson system linearized about a spatially-homogeneous state
𝑓𝑒𝑞(𝑣), precise analytic results regarding the growth rate have been established [17–19]. Here, one assumes the perturbative solution

𝑓 (𝑡, 𝑥, 𝑣) = 𝑓𝑒𝑞(𝑣) + 𝛿𝑓 (𝑡, 𝑥, 𝑣)

where the perturbation satisfies the plane wave form

𝛿𝑓 (𝑡, 𝑥, 𝑣) = 𝛼𝑓1(𝑣) exp(𝑖[𝑘𝑥 − 𝜔𝑡])

𝐸(𝑡, 𝑥) = 𝐸1 exp(𝑖[𝑘𝑥 − 𝜔𝑡]),

while ignoring the contribution from the resulting nonlinear term in the Vlasov equation. In particular, for sufficiently small 𝛼 with
0 < 𝛼 ≪ 1, the associated electric field may grow or decay exponentially in the time-asymptotic limit, and the corresponding rate
𝛾 can be completely determined for a given perturbation frequency 𝑘. More specifically, if we decompose the temporal frequency
into its real and imaginary components

𝜔(𝑘) = 𝜔𝑅(𝑘) + 𝑖𝛾(𝑘),

where both 𝜔𝑅 and 𝛾 are real-valued, then the induced electric field 𝐸(𝑡, 𝑥; 𝑘) grows or decays exponentially with rate 𝛾(𝑘) and
oscillates at a frequency 𝜔𝑅(𝑘) where these values can be determined as roots of the dielectric function [17,20]

𝜀(𝑘, 𝜔) = 1 − 1
𝑘2 ∫

𝑓 ′
𝑒𝑞(𝑣)

𝑣 − 𝜔∕𝑘
𝑑𝑣. (2)

The relation 𝜀(𝑘, 𝜔) = 0 is then called the dispersion relation corresponding to the steady state 𝑓𝑒𝑞(𝑣). This quantity dictates
the existence of so-called normal modes of the system and provides a relationship between the wavenumber and frequency of
a perturbation wave, while describing the conditions under which the wave will or will not propagate. Namely, for a given
wavenumber 𝑘, we define 𝛾(𝑘) = Im(𝜔(𝑘)) where 𝜀(𝑘, 𝜔(𝑘)) = 0. The corresponding steady state is deemed (linearly) stable under
suitably small perturbations of wavenumber 𝑘 for 𝛾(𝑘) < 0, as the perturbed electric field decays to zero exponentially fast, and
unstable for 𝛾(𝑘) > 0, as the resulting field amplitude grows exponentially in time. While the roots of (2) are independent of the
perturbation amplitude 𝛼, this value must be sufficiently small to guarantee the validity of the perturbative regime. Additionally,
we note that the dispersion relation only strictly applies to solutions for which 𝛾(𝑘) > 0 or 𝛾(𝑘) < 0, as the dielectric function 𝜖(𝑘, 𝜔)
suffers a discontinuity along the curve 𝛾 = 0. Furthermore, for 𝛾(𝑘) < 0 initial wave-like perturbations may not give rise to an
electric field with only linear exponential behavior in time. For instance, solutions that demonstrate Gaussian-like behavior in time
can be constructed, though these are ultimately dominated by linear exponential decay as 𝑡 grows large [21]. These ideas have
served as a point of contention and confusion since Landau’s [1] original work, which analytically continued (2) into the complex
plane for 𝛾 < 0 even though the dielectric function fails to remain analytic along 𝛾 = 0, ultimately arriving at solutions that, strictly
speaking, are not normal modes of the system. Such issues were originally clarified by van Kampen [22] and Case [23], but have
been refined more recently using Cauchy-type integrals by Lee and Shadwick [21], which also resolved inconsistencies between
these approaches and Jackson’s [24] expansion of Landau’s study. More generally this analysis can be extended beyond plane wave
solutions and made more precise for general initial data using the Laplace (in 𝑡) and Fourier (in 𝑥) transforms to solve the linearized
Vlasov–Poisson system, as the form of the solution will depend upon all modes, rather than a single wave (see [21]).

In the current context, we will be concerned with parameter regimes in which the values of 𝛾 may be positive, leading to the
development of instabilities, but can be possibly reduced in magnitude due to variations in parameters related to the physical
2

properties of the steady state. To be clear, the steady state distributions we consider may give rise to both stable and unstable
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behavior for differing parameter values, and we seek to identify parameter regimes in which the unstable response to the perturbation
wave can be tamed. More specifically, we will consider two specific states – the so-called Two-Stream distribution and the Bi-
Maxwellian (sometimes referred to as the ‘‘double Maxwellian’’) distribution – in order to perform numerical studies of the growth
rate of perturbative solutions. The Two-Stream distribution with mean drift velocity 𝜇 ∈ R and scale parameter 𝜎2 > 0 is given by
the formula

𝑓𝑇𝑆 (𝑣;𝜇, 𝜎2) =
1

√

2𝜋𝜎2
|𝑣 − 𝜇|2

𝜎2
exp

(

− 1
2𝜎2

|𝑣 − 𝜇|2
)

.

We note that the scale parameter is directly obtained from the average thermal velocity via the relationship 𝑣th =
√

3𝜎. Hence, using
the original dimensional variables the scale parameter 𝜎2 can be specifically represented as a constant multiple of 𝑘𝐵𝑇 ∕𝑚 where 𝑚
s a particle mass, 𝑇 is temperature, and 𝑘𝐵 is the Boltzmann constant (Appendix A).

After a few standard calculations (see Appendix B), one computes a more precise representation for the dispersion relation,
amely

𝜀𝑇𝑆 (𝑘, 𝜔) = 1 − 1
𝜎2𝑘2

[

1 − 2𝐴(𝑢)2 + 2
(

𝐴(𝑢) − 𝐴(𝑢)3
)

𝑍(𝐴(𝑢))
]

(3)

where we have denoted the phase velocity by 𝑢 = 𝜔∕𝑘, the function

𝐴(𝑢) = 1
√

2𝜎2
(𝑢 − 𝜇) ,

and 𝑍(⋅) to be the plasma 𝑍-function, given by

𝑍(𝑧) = 1
√

𝜋 ∫

∞

−∞

𝑒−𝑡2

𝑡 − 𝑧
𝑑𝑡 (4)

for any complex 𝑧. Similar to analytic results concerning the Landau damping [1,25] of perturbations from the Maxwellian
equilibrium, the exact roots of the dispersion function for the Two-Stream instability cannot be precisely obtained via analytic
means and must be either estimated or computationally approximated in order to generate the corresponding rate 𝛾𝑇𝑆 (𝑘, 𝜇, 𝜎2).

We will also study the behavior near a different state with similarly-defined parameters, namely the Bi-Maxwellian function
iven by

𝑓𝐵𝑀 (𝑣;𝜇1, 𝜇2, 𝜎21 , 𝜎
2
2 , 𝛽) =

𝛽
√

2𝜋𝜎21

exp

(

− 1
2𝜎21

|𝑣 − 𝜇1|
2

)

+
1 − 𝛽

√

2𝜋𝜎22

exp

(

− 1
2𝜎22

|𝑣 − 𝜇2|
2

)

,

long with the constraint 0 < 𝛽 < 1. Here, the steady state distribution is merely a convex combination of two Maxwellians, and
he parameters 𝜇1, 𝜇2 and 𝜎21 , 𝜎

2
2 again represent the mean drift velocity and average thermal velocity of each separate Maxwellian,

espectively, while the parameter 𝛽 controls the relative densities of the Maxwellians contributing to the velocity distribution. In
his case, the dispersion relation can be analogously simplified (Appendix B) to arrive at

𝜀𝐵𝑀 (𝑘, 𝜔) = 1 +
𝛽

𝜎21𝑘
2

[

1 + 𝐴1(𝑢)𝑍(𝐴1(𝑢))
]

+
1 − 𝛽
𝜎22𝑘

2

[

1 + 𝐴2(𝑢)𝑍(𝐴2(𝑢))
]

, (5)

where 𝑢 and 𝑍 are defined as before and

𝐴𝑖(𝑢) =
1

√

2𝜎2𝑖

(

𝑢 − 𝜇𝑖
)

for 𝑖 = 1, 2. As for the Two-Stream distribution, the zeros of the dispersion function cannot be analytically computed, and an analytic
approximation will not yield precise roots. Instead, a computational approach is needed to determine the influence of parameter
variations on the associated rate of instability, in this case given by 𝛾𝐵𝑀 (𝑘, 𝜇1, 𝜇2, 𝜎21 , 𝜎

2
2 , 𝛽). Thus, we will perform a global sensitivity

analysis via active subspace methods described in the following section to investigate the relationship between the growth rate of
the instability and specific parameters in the system.

3. Active subspaces and global sensitivity analysis

Modern simulations of plasma dynamics require several inputs, e.g., charges, masses, mean velocities, and temperatures, as well
as, initial and boundary conditions, and then output a number of quantities of interest. Though dimensional analysis and other
reduction techniques can be used to reduce the size of the parameter space, plasma physicists and computational scientists often
use these simulations to study the relationship between the original input parameters and subsequent output variables. The field
of uncertainty quantification (UQ) generally aims to characterize quantities of interest in simulations subject to variability in the
inputs. These characterizations often reduce to parameter studies that treat the inherent model as a mapping between inputs 𝑝
and a specified quantity of interest 𝑔(𝑝). Such studies fall under the domain of sensitivity analysis, and several techniques – such
as parameter correlations [26], Sobol indices [9], and Morris screening [27] – exist that use a few simulation runs to screen the
3

importance of input variables.
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Another approach is to identify important linear combinations of the inputs 𝑝 and focus parameter studies along these associated
irections. Active subspaces [7,28] are defined by important directions in the high-dimensional space of inputs; once identified,
cientists can exploit the active subspace to enable otherwise infeasible parameter studies for expensive simulations [29,30]. More
recisely, an active subspace is a low-dimensional linear subspace of the set of parameters, in which input perturbations along these
irections alter the model’s predictions more, on average, than perturbations which are orthogonal to the subspace. The identification
f these subspaces allow for global, rather than local, sensitivity measurements of output variables with respect to parameters and
ften the construction of reduced-order models that greatly decrease the dimension of the input parameter space. In the current
ontext, they may allow one to answer particular physical questions, such as determining which parameters are most influential to
he rate of instability or identifying the minimal and maximal values of this rate within a particular parameter regime.

We begin with a description of the gradient-based active subspace method, which has been recently summarized within [7]. Let
∈ 𝑃 = [−1, 1]𝑚 denote a vector of model inputs, where 𝑚 is a positive integer representing the number of parameters, and the

pace 𝑃 represents a normalized set of parameter values. Namely, we assume that the independent inputs have been shifted and
caled so that they are centered at the origin and possess unit variation. Additionally, we assume the input space is equipped with a
robability density function 𝜓(𝑝) that is strictly positive in the domain of the quantity of interest 𝑔(𝑝), zero outside the domain, and
s normalized so that ∫𝑃 𝜓(𝑝) 𝑑𝑝 = 1. In practice, 𝜓 identifies the set of input parameters of interest and quantifies their variability.
ssume that 𝑔 ∶ 𝑃 → R is continuous, square-integrable with respect to the weight 𝜓 , and differentiable with gradient vector

∇𝑔 ∈ R𝑚, which is also square-integrable with respect to 𝜓 . The active subspace is then defined by the first 𝑛 < 𝑚 eigenvectors of
the 𝑚 × 𝑚 symmetric positive semi-definite matrix

𝐶 = ∫𝑃
∇𝑔(𝑝)∇𝑔(𝑝)𝑇𝜓(𝑝) 𝑑𝑝 =∶ 𝑊𝛬𝑊 𝑇 , (6)

where the right side of (6) represents the spectral decomposition of 𝐶 [31,32]. In other words, 𝑊 represents the orthogonal matrix
whose columns 𝑤𝓁 , (𝓁 = 1,… , 𝑚) are the orthonormal eigenvectors of 𝐶, and 𝛬 is the diagonal matrix of eigenvalues of 𝐶, denoted
𝜆1,… , 𝜆𝑚. The matrix 𝐶 represents an average derivative functional which weights input values according to the probability density
𝜓 . Additionally, we assume that the eigenvalues in 𝛬 (each of which must be non-negative) are listed in descending order and
the associated eigenvectors are listed within the same column as their corresponding eigenvalues. The eigenvalue 𝜆𝓁 measures the
average change in 𝑔 subject to perturbations in 𝑝 along the corresponding eigenvector 𝑤𝓁 , as they are related by the identity

𝜆𝓁 = ∫𝑃
|∇𝑔(𝑝) ⋅𝑤𝓁|

2𝜓(𝑝) 𝑑𝑝 (7)

for 𝓁 = 1,… , 𝑚.
For example, if 𝜆𝓁 = 0, then 𝑔 is constant along the direction 𝑤𝓁 , and directions along which 𝑔 is constant can be ignored when

studying the behavior of 𝑔 under changes in the parameter space 𝑃 . Conversely, if the eigenvalue under consideration is large, then
we may deduce from (7) that on average 𝑔 changes considerably in the direction of the corresponding eigenvector. Now, suppose
that a spectral gap exists, and the first 𝑛 < 𝑚 eigenvalues are much larger than the trailing 𝑚−𝑛. Let 𝑊1 be the matrix containing the
first 𝑛 columns of 𝑊 . Then, as we will show below, a reasonable approximation for 𝑔 is 𝑔(𝑝) ≈ ℎ(𝑊 𝑇

1 𝑝), where ℎ is the projection
of 𝑔 onto the range of 𝑊1, i.e. ℎ(𝑦) = 𝑔(𝑊1𝑦).

Once the eigendecomposition involving 𝑊 and 𝛬 in (6) has been determined, the eigenvalues and eigenvectors can be separated
in the following way:

𝛬 =
[

𝛬1 0
0 𝛬2

]

, 𝑊 =
[

𝑊1 𝑊2
]

(8)

where 𝛬1 contains the ‘‘large’’ eigenvalues of 𝐶, 𝛬2 contains the ‘‘small’’ eigenvalues, and 𝑊𝑘 contains the eigenvectors associated
with each 𝛬𝑘, for 𝑘 = 1, 2. A simple way to differentiate between the ‘‘large’’ and ‘‘small’’ eigenvalues is to list them on a log plot
from greatest to least and determine the appearance of a spectral gap. This gap will correspond to differences of at least an order
of magnitude, and thus allow one to compartmentalize the greatest eigenvalues within 𝛬1 and the remaining, lesser eigenvalues in
𝛬2. A more systematic method of choosing the number of eigenvalues to store within 𝛬1 can also be utilized, as developed in [7].

With the decomposition (8), we can represent any element 𝑝 of the parameter space by

𝑝 = 𝑊𝑊 𝑇
⏟⏟⏟

= 𝐼

𝑝 = 𝑊1 𝑊 𝑇
1 𝑝

⏟⏟⏟
= 𝑞

+𝑊2 𝑊 𝑇
2 𝑝

⏟⏟⏟
= 𝑟

= 𝑊1𝑞 +𝑊2𝑟. (9)

Thus, evaluating the quantity of interest at 𝑝 is equivalent to doing so at the point 𝑊1𝑞 +𝑊2𝑟, and we may approximate 𝑔(𝑝) using

𝑔(𝑝) = 𝑔(𝑊1𝑞 +𝑊2𝑟) ≈ 𝑔(𝑊1𝑞) = 𝑔(𝑊1𝑊
𝑇
1 𝑝) =∶ ℎ(𝑊

𝑇
1 𝑝).

y the definition of 𝑊1 and 𝑊2, it is clear that small perturbations in 𝑟 will not, on average, alter the values of 𝑔. However, small
erturbations in 𝑞 will, on average, change 𝑔 significantly. For this reason the outputs of 𝑊1 are defined to be the active subspace

of the model and the outputs of 𝑊2 are the corresponding inactive subspace. The linear combinations that generate these subspaces
then represent the contributions of differing parameters in the model and describe the sensitivity of the quantity of interest with
respect to parameter variations.

In general, the eigenvalues and eigenvectors of 𝐶 defined by (6) can be well-approximated computationally, using finite difference
methods and Monte Carlo sampling. Though we only briefly outline the method below, full details can be found in [7] (Algorithm
3.1) and [28]. The numerical algorithm can be described concisely as follows:
4
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Table 1
Two-stream instability parameters and their baseline values.

Two-stream instability

Parameter Quantity Baseline

𝛼 Perturbation size N/A
𝑘 Perturbation wavenumber 0.5
𝜇 Mean velocity 0
𝜎2 Scale parameter 1
𝑝 Parameter vector [𝑝1 , 𝑝2 , 𝑝3] ∝ [𝑘, 𝜇, 𝜎2]

Table 2
Bi-Maxwellian parameters and their baseline values.

Double beam Bump-on-tail

Param. Quantity Baseline Param. Quantity Baseline

𝛼 Perturbation size N/A 𝛼 Perturbation size N/A
𝑘 Perturbation wavenumber 0.5 𝑘 Perturbation wavenumber 0.5
𝜇1, 𝜇2 Mean velocities 0, 4 𝜇1, 𝜇2 Mean velocities 0, 4
𝜎21 , 𝜎22 Thermal velocities 0.5, 0.5 𝜎21 , 𝜎22 Thermal velocities 0.25, 0.25
𝛽 Relative strength 0.5 𝛽 Relative strength 0.8

Parameter vector 𝑝 = [𝑝1 , 𝑝2 , 𝑝3 , 𝑝4 , 𝑝5 , 𝑝6] ∝ [𝑘, 𝜇1 , 𝜇2 , 𝜎21 , 𝜎
2
2 , 𝛽]

1. Draw 𝑁 parameter samples {𝑝𝑗}𝑁𝑗=1 independently according to the density 𝜓 .
2. For each parameter sample 𝑝𝑗 , compute the gradient ∇𝑝𝑔𝑗 = ∇𝑝𝑔(𝑝𝑗 )
3. Approximate the matrix 𝐶 by the finite sum

𝐶 ≈ �̂� = 1
𝑁

𝑁
∑

𝑗=1
(∇𝑝𝑔𝑗 )(∇𝑝𝑔𝑗 )𝑇

4. Compute the corresponding eigendecomposition �̂� = �̂� �̂��̂� 𝑇 .

We note that the last step is equivalent to computing the Singular Value Decomposition (SVD) of the matrix
1

√

𝑁

[

∇𝑝𝑔1 …∇𝑝𝑔𝑁
]

= �̂�
√

�̂�𝑉 ,

here it can be shown that the singular values are the square roots of the eigenvalues of �̂� and the left singular vectors are the
eigenvectors of �̂�. The SVD method of approximating �̂� was developed first in [33] and further utilized to study the global sensitivity
of parameters within a variety of scientific models [34–39].

Once �̂� and �̂� are computed, we further decompose the eigenspace into their active and inactive portions, namely �̂�1 and
�̂�2, which correspond to the set of eigenvectors associated with the large eigenvalues along the diagonal of �̂�1 and the small
eigenvalues along the diagonal of �̂�2, respectively. In practice and as we will find below, many systems possess a one-dimensional
active subspace, so that �̂�1 ∈ R and �̂�1 = 𝑤 ∈ R𝑚. In such a scenario, the values of the vector 𝑤 represent the weights in a linear
combination of the input parameters along which the quantity of interest is most volatile. In this way, the entries of 𝑤 describe
the relative importance of the parameters with respect to this quantity. For instance, if 𝑤2 ≫ 𝑤1, then we generally expect 𝑔(𝑝)
to vary more when the second entry of 𝑝 is altered from the 𝑤 direction than when the first entry of 𝑝 is altered. Similarly, if
say 𝑤3 ≈ 0 then 𝑔(𝑝) does not change much on average when the third entry of 𝑝 is altered. With this information, the ultimate
goal is to produce a model possessing reduced dimensional dependence, and this can be achieved by using a sufficient summary
plot. In particular, if the active subspace is one-dimensional, then we have identified the single direction in the parameter space
along which 𝑔 is most variable, and hence, the Monte Carlo sample points {𝑝𝑗}𝑁𝑗=1 can be used to construct an approximate model
ℎ along this direction, which is given by 𝑤𝑇 𝑝. To create the reduced model, a simple linear fit, or if greater precision is required, a
nonlinear least-squares curve fit, can be used. In the following section, we focus on using these tools in conjunction with numerical
simulations of the dispersion relation in order to (i) identify the physical parameters that are most influential and (ii) generate
nonlinear, low-dimensional models for the growth rate of plasma instabilities.

4. Computational methods

Now that the active subspace method has been described, we will demonstrate its utility for simulations of the instability rate
by applying the aforementioned algorithm. Of course, prior to applying the procedure for computing a reduced model, we must
first decide how to represent the original computational model; that is, how to approximate solutions of (1). In our simulations
5

the quantity of interest is the instability growth rate 𝛾, and this must be computed from a set of normalized input parameters,
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Fig. 1. Two-Stream instability: The growth rate as a function of 𝑘, indicating peak at (𝑘, 𝛾) = (0.4241, 0.2649). The function matches that represented within [41].

e.g. 𝑝 = [𝑝1, 𝑝2, 𝑝3] ∝ [𝑘, 𝜇, 𝜎2] for the Two-Stream distribution, where the symbol ∝ is merely used to abbreviate the linear relationship
between the original variables (𝑘, 𝜇, 𝜎2) and their normalized counterparts (𝑝1, 𝑝2, 𝑝3) given by (10) below. Hence, the computational
model is expressed as a specific function 𝑔 so that 𝛾 = 𝑔(𝑝). For the remainder of the paper, the function 𝑔(𝑝) merely represents
the process of approximating the exponential growth rate of a plane wave solution of the linearized Vlasov–Poisson system (1) by
computing roots of the dispersion relation (2) associated with a specific steady state and its normalized parameters 𝑝. We note that
the dispersion relation solver requires a numerical approximation of the plasma 𝑍-function [40] to compute the temporal frequency
𝜔 that satisfies 𝜀(𝑘, 𝜔) = 0 for a specified value of 𝑘.

Notice that gradients of the growth rate are also required to implement the active subspace method. Though one can more
easily employ a finite difference scheme with a sufficiently small step size (e.g., 𝛥 = 10−6) to approximate these gradients from two
samples of 𝛾, an explicit representation of partial derivatives of 𝛾 as a function of system parameters can be obtained by implicit
differentiation in (2). For example, taking a derivative with respect to 𝑘 within (2) and simplifying yields

𝜕𝛾
𝜕𝑘

= −Im

⎛

⎜

⎜

⎜

⎝

∫
𝑓 ′𝑒𝑞 (𝑣)𝑣

(𝑣−𝜔∕𝑘)2 𝑑𝑣 + ∫
𝑓 ′𝑒𝑞 (𝑣)
𝑣−𝜔∕𝑘 𝑑𝑣

∫ 𝑓 ′𝑒𝑞 (𝑣)
(𝑣−𝜔∕𝑘)2 𝑑𝑣

⎞

⎟

⎟

⎟

⎠

,

which can be computed for any set of parameters. Analogous formulas for the derivatives of 𝛾 with respect to other parameters
follow in the same manner. Hence, we will evaluate explicit formulas for the partial derivatives of 𝛾 from the random samples in
order to approximate the necessary gradients. Thus, each parameter sample merely requires one root of the dispersion relation to
construct the gradient of the growth rate mapping with respect to the normalized model parameters.

Additionally, in forthcoming simulations each sample is chosen so that every normalized parameter is uniformly distributed
between −1 and 1, i.e. 𝑝𝑗 ∼  ([−1, 1]𝑚) for 𝑗 = 1,… , 𝑁 , so that 𝜓(𝑝) = 2−𝑚. In order to map this normalized parameter space onto
the physically-relevant range of parameter values, we use the linear mapping

𝑝range = 1
2
(

diag(𝑢 − 𝓁)𝑝𝑗 + (𝑢 + 𝓁)
)

, (10)

for the random samples {𝑝𝑗}𝑁𝑗=1, where 𝑢 and 𝓁 are vectors containing the upper and lower bounds on the original parameters,
respectively. Thus, the resulting vector 𝑝range represents the physical parameter values input to the model. For our purposes, the
upper and lower limits, 𝑢 and 𝓁 are defined to incorporate a specific percentage (e.g., 1%, 5%, 25%) above and below the baseline
values given in Tables 1 and 2, respectively. For instance, in performing a 1% perturbation from the baseline parameter vector 𝑏,
we take 𝑢 = 1.01𝑏 and 𝓁 = 0.99𝑏. If a baseline value is identically zero, as in the case of 𝜇, then for a 1% perturbation we take
𝑢 = 0.01 and 𝓁 = −0.01.

In the next section, we provide results from simulation studies of the Two-Stream and Bi-Maxwellian distributions. All numerical
simulations were conducted in MATLAB using a high-performance computing node with a 3.0 GHz Skylake 5118 24-Core processor
and 192 GB of RAM. The code used to generate the results in this section is available at

https://github.com/sterrab/GSA_PlasmaInstabilities.git [42].

Average simulation times ranged from two to five seconds to generate 29 trials. The global sensitivity analysis provides an
explicit representation of the growth rate 𝛾 = 𝑔(𝑝). As mentioned in the previous section, if a one-dimensional active subspace arises
then such a multivariate function can be well-approximated as a scalar function ℎ(𝑦), where 𝑦 = 𝑤𝑇 𝑝 and 𝑤 is the weight vector
corresponding to the independent parameters. In this case, 𝑤𝑇 𝑝 is merely a linear combination of the weighted parameters 𝑝. These
parameter weights 𝑤 and functions ℎ(𝑦) are presented for the various global sensitivity analyses along with the associated sufficient
summary plots.
6
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Fig. 2. Two-Stream Instability: Global sensitivity analysis (1%) indicating the eigenvalues (left), parameter weights (center), and sufficient summary plot (right)
f the one-dimensional active subspace, which represents 𝜂1 = 99.99% of the total variation.

5. Computational results

The active subspace method was numerically implemented for the linear parameter regime by computationally approximating
roots of the dispersion relation 𝜀(𝑘, 𝜔) = 0 for 𝜔 given the parameter value 𝑘 and defining the output quantity of interest to be
𝛾 = Im(𝜔). As the dispersion relation further depends upon parameters within the steady state distribution, the resulting growth
rate will also be a function of these quantities. Throughout the simulation study, the chosen parameters are merely representative
of a specific physical environment, and we note that any selection of parameter values can be utilized within the global sensitivity
analysis.

In order to verify that our simulations match those of previous computational (but, not parameter) studies, we first performed
a series of simulations for the Two-Stream instability with 𝜇 = 0 and 𝜎2 = 1 and reproduced known results. In particular, Fig. 1
isplays the resulting growth rate 𝛾 as a function only of the wavenumber 𝑘 and results in outputs identical to that of [41].

.1. Two-Stream instability

We begin by studying the behavior of spatiotemporal perturbations from the Two-Stream distribution, given by

𝑓𝑇𝑆 (𝑣;𝜇, 𝜎2) =
1

√

2𝜋𝜎3
|𝑣 − 𝜇|2 exp

(

− 1
2𝜎2

|𝑣 − 𝜇|2
)

.

ts associated dispersion relation (Appendix B) is

𝜀𝑇𝑆 (𝑘, 𝜔) = 1 − 1
𝜎2𝑘2

[

1 − 2𝐴(𝑢)2 + 2
(

𝐴(𝑢) − 𝐴(𝑢)3
)

𝑍(𝐴(𝑢))
]

,

where 𝑢 = 𝜔∕𝑘, 𝐴(𝑢) = 1
√

2𝜎2
(𝑢 − 𝜇), and 𝑍(⋅) is the plasma 𝑍-function defined by (4). As the nonlinear growth of this instability has

been shown numerically [41,43], this three-parameter distribution serves as a useful test case prior to investigating more complex
distributions. Within these simulations, the parameters 𝑘, 𝜇, and 𝜎2 are shifted and scaled to create the normalized parameter vector
𝑝 = [𝑝1, 𝑝2, 𝑝3] ∝ [𝑘, 𝜇, 𝜎2], and their baseline values are set at 𝑘 = 0.5, 𝜇 = 0, and 𝜎2 = 1. The simulation study includes variations of
1%, 15%, 25%, and 50% of these nominal parameter values, and a total number of 512 parameter samples were drawn in parallel.
We note that taking, for instance, 𝜎2 ∈ [0.5, 1.5] in the dimensionless framework is equivalent to considering perturbations of up to
50% of the thermal velocity of the plasma.

With the simulation parameters complete, we first perform a 1% perturbation simulation using the active subspace algorithm.
Fig. 2 displays three distinct panels of the resulting decomposition — the eigenvalues (listed in descending order) 𝜆1 > ⋯ > 𝜆3 =
diag(�̂�) of the covariance matrix 𝐶, the active subspace weight vector 𝑤, and a sufficient summary plot detailing the dependence
of the output variable 𝛾 ≈ ℎ(𝑦) on the linear combination of input parameters 𝑦 = 𝑤𝑇 𝑝 with each of the 𝑁 data points representing
a Monte Carlo sampling value 𝑝𝑗 , 𝑗 = 1,… , 𝑁 .

From the first panel, we can clearly identify a large spectral gap between the first and second eigenvalues. The second panel of
the figure displays the eigenvector 𝑤 = [0.89, 3.1 × 10−5, 0.45]𝑇 corresponding to the maximal eigenvalue 𝜆 , and it can be seen that
7
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Fig. 3. Two-Stream Instability: Global sensitivity analysis (15%) indicating the eigenvalues (left), parameter weights (center), and sufficient summary plot (right)
of the one-dimensional active subspace, which represents 𝜂1 = 99.83% of the total variation.

Fig. 4. Two-Stream Instability: Global sensitivity analysis (50%) indicating the eigenvalues (left), parameter weights (center), and sufficient summary plot (right)
of the one-dimensional active subspace, which represents 𝜂1 = 98.53% of the total variation.

two parameters possess associated weights greater than 0.4, while the remaining parameter possesses a negligible weight. Hence,
small perturbations in the former parameters, namely 𝑘 and 𝜎2, will significantly alter the value of 𝛾 = 𝑔(𝑝), as they are the most
heavily weighted. Contrastingly, changes within the remaining parameter 𝜇, whose weight is near zero, will not have an appreciable
affect on 𝛾. Intuitively, the effect on 𝛾 of changing 𝜇 should be negligible as translations by 𝜇 in the velocity distribution function

ill not influence the growth rate. This idea can be deduced from (2) in noticing that a change of variable 𝑥 = 𝑣−𝜇 in the dispersion
elation integral will only alter Re(𝜔) and not Im(𝜔).

Finally, the third panel contains a plot of the quantity of interest 𝛾 = 𝑔(𝑝) ≈ ℎ(𝑤𝑇 𝑝). The horizontal axis contains values of the
irst active variable 𝑦 = 𝑤𝑇 𝑝, which represents a linear combination of the normalized parameters 𝑝 with weights given by entries

of the first active variable vector 𝑤. This panel displays the linear functional form of the active subspace decomposition and shows
clear trend, namely that the growth rate 𝛾 is a decreasing function of the active variable and can be well approximated by a linear
8
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Table 3
Two-Stream Instability Parameter Weights with 𝑝 ∝ [𝑘, 𝜇, 𝜎2] . Notice that the weight 𝑤1 associated to 𝑘 is decreasing
with the parameter variation from baseline values, while that of 𝜎2, namely 𝑤3, increases in magnitude. Hence, the
wavenumber becomes less influential as the parameter space grows, and the scale parameter (proportional to the thermal
velocity) more so.
Variation Parameter weights
(%) 𝑤𝑇 𝑝 = 𝑤1𝑝1 +𝑤2𝑝2 +𝑤3𝑝3

𝑤1 𝑤2 𝑤3

1 0.8948 3.065 × 10−5 0.4485
5 0.8936 −1.505 × 10−5 0.4494
10 0.8910 −5.457 × 10−6 0.4540
15 0.8866 4.384 × 10−7 0.4625
20 0.8858 1.074 × 10−7 0.4641
25 0.8824 2.497 × 10−7 0.4704
50 0.8877 1.087 × 10−6 0.4604

function of 𝑦. The linearity of this relationship is expected as a 1% variation in parameters constitutes a small perturbation from
their baseline values, and is similar to conducting a local sensitivity analysis near this point in order to determine the line of best
fit. As the entries of the weight vector corresponding to 𝑘 and 𝜎2 are positive (𝑤1, 𝑤3 > 0), this further implies that the growth rate
s decreasing in these parameters, due to the decreasing nature of the functional approximation within the third panel. Here, the
rowth rate is approximated as

𝛾𝑇𝑆 ≈ ℎ
(

0.89𝑝1 + 3.1 × 10−5𝑝2 + 0.45𝑝3
)

,

here

𝑝1 = 200(𝑘 − 0.5), 𝑝2 = 100𝜇, 𝑝3 = 100(𝜎2 − 1)

re determined by inverting (10) for each parameter, and ℎ is the linear function defined by

ℎ(𝑦) = −0.0008𝑦 + 0.2592.

implifying these expressions, we can write an explicit representation for the growth rate in terms of the original parameters as

𝛾𝑇𝑆 (𝑘, 𝜇, 𝜎2) ≈ −0.0008
(

178(𝑘 − 0.5) + 0.003𝜇 + 45(𝜎2 − 1)
)

+ 0.2592. (11)

his expression can then be used in lieu of evaluating (2) and produces a low-dimensional, inexpensive surrogate model for
valuation of the rate of instability. Furthermore, as this quantity is decreasing in both the wavenumber and the scaling parameter,
11) shows that a more-focused pair of beams or reduced perturbation frequency will give rise to greater instability, while a less
oncentrated distribution or greater initial frequency will lessen the rate of instability.

The results of additional simulations corresponding to 15% and 50% variations are displayed in Figs. 3–4. These plots include
he eigenvalues on the left panel, the entries of the parameter weight vector 𝑤 of the first eigenvector in the center panel,
nd the sufficient summary plot of the one-dimensional active subspace in the right panel. Additionally, the reduced dimension
pproximation, calculated as

𝜂1 =
𝜆1

∑3
𝑖=1 𝜆𝑖

s included in the caption of each figure to demonstrate the percentage of the total variation captured by the one-dimensional
ubspace. This quantity is analogous to the eigenvalue ratio used in Principal Component Analysis (PCA). Hence, (11) can be used
o compute the growth rate to over 99% accuracy over the parameter space defined by a 1% variation from baseline values.

As shown by the sufficient summary plot, the one-dimensional active subspace changes from linear to quadratic for the
imulations presented in Figs. 2–4. The total variation captured by this approximation decreases as the parameter variations are
ncreased, from 𝜂1 = 99.99% for the 1% variational study (Fig. 2) to 𝜂1 = 98.53% for the 50% study (Fig. 4).

Table 3 includes the parameter weights and corresponding 𝑦 = 𝑤𝑇 𝑝 scalar variable for the one-dimensional subspace. The exact
olynomial fits are included in Table 4 and plotted in Fig. 5. With larger variations, the coefficient of the quadratic term increases in
agnitude from −3.3×10−5 for the 1% simulation to −8×10−2 for the 50% simulation. This is expected as a first-order approximation

s less informative away from baseline values. However, even within the 50% simulation the linear term dominates as in Figs. 4
nd 5.

Moreover, the spectral gap decreases as the variation percentage increases, displaying a loss in the amount of information
hat can be captured by using only a one-dimensional approximation along the direction of greatest output fluctuation. Though
he disappearance of the spectral gap is not visually documented within these figures, a greater variation in baseline values, say
0%, does begin to show such differences. In particular, the eigenvalues begin to cluster, and this reduces the amount of variation
ontained within a one-dimensional active subspace decomposition. More specifically, 𝜂1 ≈ 90% for the 80% variation from baseline
alues, so the information captured within a single active variable continues to decrease. Instead, a two-dimensional decomposition
9
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Table 4
Two-stream instability coefficients.
Variation Polynomial fit
(%) ℎ(𝑤𝑇 𝑝) = ℎ(𝑦) = 𝑎2𝑦2 + 𝑎1𝑦 + 𝑎0

𝑎2 𝑎1 𝑎0
1 −3.2899 × 10−5 −0.0008 0.2592
5 −0.0008 −0.004 0.2593
10 −0.003 −0.008 0.2594
15 −0.007 −0.013 0.2595
20 −0.013 −0.017 0.2597
25 −0.020 −0.021 0.2598
50 −0.080 −0.038 0.2606

Fig. 5. Two-Stream instability 2nd-order polynomial fits.

Fig. 6. Level curves (left) and three-dimensional plot (right) of the growth rate 𝛾(𝑘, 𝜎2) as a function of the wavenumber and scale parameter. Each parameter
is varied by 25% of its baseline value.

can be used to retain a suitable degree of variation in the values of the growth rate, and we will revisit this concept for a more
pronounced change in the eigenvalues within a later section.

Alternatively, because the growth rate is insensitive to changes in the mean parameter 𝜇, we can more easily visualize it as a
function of the remaining two parameters of the steady state. In Fig. 6 we display a plot of the growth rate 𝛾(𝑘, 𝜎2) as a function of the
wavenumber and scale parameter with 𝜇 = 0 fixed. Additionally, the level curves are displayed and the approximation of the weight
vector 𝑤 is orthogonal to these curves near their baseline values. For each of the parameter variations, the active subspace method
allows for the construction of an inexpensive computational approximation and an explicit analytic formula to well approximate
the growth rate as a function of model parameters.
10
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Fig. 7. Two-Stream (left) and Bi-Maxwellian distributions for 𝛽 = 0.5 (center) and 𝛽 = 0.8 (right).

5.2. Bi-Maxwellian distribution

Next, we study the resulting behavior of unstable perturbations from the Bi-Maxwellian distribution, given by

𝑓𝐵𝑀 (𝑣;𝜇1, 𝜇2, 𝜎21 , 𝜎
2
2 , 𝛽) =

𝛽
√

2𝜋𝜎21

exp

(

− 1
2𝜎21

|𝑣 − 𝜇1|
2

)

+
1 − 𝛽

√

2𝜋𝜎22

exp

(

− 1
2𝜎22

|𝑣 − 𝜇2|
2

)

, (12)

ith the constraint 0 < 𝛽 < 1. The associated dispersion relation for this state (Appendix B) is given by

𝜀𝐵𝑀 (𝑘, 𝜔) = 1 +
𝛽

𝜎21𝑘
2

[

1 + 𝐴1(𝑢)𝑍(𝐴1(𝑢))
]

+
1 − 𝛽
𝜎22𝑘

2

[

1 + 𝐴2(𝑢)𝑍(𝐴2(𝑢))
]

,

where 𝑢 = 𝜔∕𝑘,

𝐴𝑖(𝑢) =
1

√

2𝜎2𝑖

(

𝑢 − 𝜇𝑖
)

for 𝑖 = 1, 2, and 𝑍(⋅) is again defined by (4).
As before, the parameters (now 𝑘, 𝜇1, 𝜇2, 𝜎21 , 𝜎

2
2 , and 𝛽) are shifted and scaled to create the normalized parameter vector

𝑝 = [𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6] ∝ [𝑘, 𝜇1, 𝜇2, 𝜎21 , 𝜎
2
2 , 𝛽], and we will consider two different sets of baseline values: (i) an instability driven

by two distinct plasma beams with differing mean velocities but similar spread and strength that we will call the Double Beam
Instability and (ii) the well-known Bump-on-Tail instability. The qualitative differences between these states are displayed in Fig. 7.
Finally, to close this section we will also construct an approximation for the Bi-Maxwellian growth rate that is global throughout
the parameter space.

5.2.1. Double Beam instability
In the first case, we investigate the behavior of the growth rate for a double-humped distribution that represents two ionic beams

with similar densities and thermal velocities, but different mean velocities. Here, the baseline parameter values are 𝑘 = 0.5, 𝜇1 =
, 𝜇2 = 4, 𝜎21 = 0.5, 𝜎22 = 0.5, and 𝛽 = 0.5. As in the previous section, a total number of 𝑁 = 512 samples are drawn in the parameter
pace.

The simulations included variations of 1%, 5%, 15%, and 25% of these nominal parameter values, with results presented in
igs. 8–11, and the parameter weights for each of the variational studies are included in Table 5. As before, figures feature the
igenvalues on the left panel, the parameter weight vector 𝑤 in the center panel, and the sufficient summary plot of the one-
imensional active subspace in the right panel. Throughout each of the simulations, we note that the wavenumber 𝑘 and mean
elocity 𝜇2 are the most influential on the growth rate. Generally, these parameters are negatively correlated with 𝛾, which

is typically a decreasing function of the active variable 𝑦. However, the growth of the parabolic component of the reduced
approximation indicates that a maximal growth rate is achieved within the parameter regimes corresponding to the 15% and 25%
variations. Hence, one can maximize or minimize the rate of instability by altering the physical structure of the beams, in this case
the initial frequency of the spatial perturbation 𝑘 and the mean velocity 𝜇2. Additionally, we see that, even at lower wavenumbers,
ncreasing the mean velocity of the second beam will attenuate the growth rate. Thus, a greater separation of the mean velocities
f the electron beams may serve to tame the instability.

The reduced dimension approximation, calculated as

𝜂1 =
𝜆1

∑6
𝑖=1 𝜆𝑖

,

s also included in the caption of each figure to demonstrate the percentage of the total variation captured in the one-dimensional
ubspace. More generally, we define

𝜂𝑚 =
∑𝑚
𝑖=1 𝜆𝑖

∑6
11

𝑖=1 𝜆𝑖
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Fig. 8. Double Beam Instability: Global sensitivity analysis (1%) indicating the eigenvalues (left), parameter weights (center), and sufficient summary plot (right)
of the one-dimensional active subspace, which represents 𝜂1 = 99.92% of the total variation.

Fig. 9. Double Beam Instability: Global sensitivity analysis (5%) indicating the eigenvalues (left), parameter weights (center), and sufficient summary plot (right)
of the one-dimensional active subspace, which represents 𝜂1 = 98.42% of the total variation.

for 𝑚 = 1,… , 5 (and 𝜂6 = 1) to represent the percent variation captured by the 𝑚-dimensional active subspace approximation. As can
be examined by the sufficient summary plot, the one-dimensional active subspace is linear for the 1% and 5% variational studies
(Figs. 8–9). For variations of 15% and greater (Figs. 10–11), the sufficient summary plots become parabolic. This is also observed
in Table 6, which displays a larger magnitude of the quadratic coefficient as the variation increases, e.g. −2× 10−4 for 1% variation
and −0.1222 for 25% variation, along with the corresponding transition from linear to parabolic curves in Fig. 12. As expected, the
total variation captured by the one-dimensional active subspace drops from 𝜂1 = 99.92% for the 1% variational study (Fig. 8) to
1 = 92.04% for the 25% study (Fig. 11). Notice that 𝜂1 is decreasing faster than for the Two-Stream study, and we begin to see
n Fig. 11 that a one-dimensional active subspace is no longer a strong approximation to the domain of 𝑔(𝑝), given the decreasing
pectral gap. In comparison, the growth rate as a function of the first and second parameter weight vectors are plotted for both the
12

% and 25% simulations in Fig. 13. The corresponding total approximation of the two-dimensional active subspace is 𝜂2 = 99.99%
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Fig. 10. Double Beam Instability: Global sensitivity analysis (15%) indicating the eigenvalues (left), parameter weights (center), and sufficient summary plot
right) of the one-dimensional active subspace, which represents 𝜂1 = 93.60% of the total variation.

Fig. 11. Double Beam Instability: Global sensitivity analysis (25%) indicating the eigenvalues (left), parameter weights (center), and sufficient summary plot
right) of the one-dimensional active subspace, which represents 𝜂1 = 92.04% of the total variation.

or the 1% perturbations and 𝜂2 = 99.58% for the 25% perturbation simulation. Indeed, in the left plot in Fig. 13 representing the
% simulation, the growth rate as shown by the vertical banded colors does not change along the vertical axis, which represents
he second parameter weight vector. On the other hand, for the 25% case in the right plot in Fig. 13, the growth rate can change
ignificantly along both the horizontal and vertical axes, corresponding to the first and second parameter weight vectors.

As for the Two-Stream instability, an explicit approximation of the growth rate can be constructed for each parameter study.
or instance, if the normalized parameters are varied by 10% from their baseline value (see Tables 5 and 6) the growth rate is
ell-approximated by 𝛾𝐷𝐵 ≈ ℎ(𝑦), where

𝑦 = 0.80𝑝 − 0.14𝑝 + 0.58𝑝 + 0.05𝑝 + 0.05𝑝 − 0.0002𝑝
13
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Table 5
Double beam instability parameter weights.
Variation Parameter weights
(%) 𝑤𝑇 𝑝 = 𝑤1𝑝1 +𝑤2𝑝2 +𝑤3𝑝3 +𝑤4𝑝4 +𝑤5𝑝5 +𝑤6𝑝6

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

1 0.8666 −0.1159 0.4640 0.1006 0.1009 −4.6 × 10−5

5 0.8513 −0.1235 0.4943 0.0887 0.0888 −0.0002
10 0.8017 −0.1438 0.5752 0.0539 0.0542 −0.0002
15 0.7404 −0.1629 0.6517 0.0171 0.0167 −0.0012
20 0.7069 −0.1715 0.6860 −0.0076 −0.0095 0.0056
25 0.7051 −0.1719 0.6877 −0.0128 −0.0139 0.0002

Table 6
Double beam instability coefficients.
Variation Polynomial fit
(%) ℎ(𝑤𝑇 𝑝) = ℎ(𝑦) = 𝑎2𝑦2 + 𝑎1𝑦 + 𝑎0

𝑎2 𝑎1 𝑎0
1 −0.0002 −0.0053 0.1848
5 −0.0046 −0.0267 0.1845
10 −0.0213 −0.0550 0.1838
15 −0.05 −0.0866 0.1823
20 −0.0828 −0.1158 0.1786
25 −0.1222 −0.1461 0.1780

Fig. 12. Double beam instability 2nd-order polynomial fits.

is the active variable that can be represented in terms of the original variables using

𝑝1 = 20(𝑘 − 0.5), 𝑝2 = 10𝜇1, 𝑝3 = 2.5(𝜇2 − 4),

𝑝4 = 20(𝜎21 − 0.5), 𝑝5 = 20(𝜎22 − 0.5), 𝑝6 = 20(𝛽 − 0.5),

and ℎ is the quadratic function defined by

ℎ(𝑦) = −0.021𝑦2 − 0.055𝑦 + 0.1838.

Simplifying 𝑦 in terms of the original variables yields

𝑦 = 16(𝑘 − 0.5) − 1.4𝜇1 + 1.45(𝜇2 − 4) + (𝜎21 − 0.5) + (𝜎22 − 0.5) − 0.004(𝛽 − 0.5).

This expression can then be inserted into ℎ(𝑦) to produce an explicit function for the growth rate in terms of the original parameters,
namely 𝛾𝐷𝐵(𝑘, 𝜇1, 𝜇2, 𝜎21 , 𝜎

2
2 , 𝛽).

5.2.2. Bump-on-Tail instability
In addition to the Double Beam instability of the previous section, we investigate the Bump-on-Tail instability arising from two

ionic beams of differing density and mean velocity [44]. Here, the baseline parameter values are 𝑘 = 0.5, 𝜇1 = 0, 𝜇2 = 4, 𝜎21 =
0.25, 𝜎2 = 0.25, and 𝛽 = 0.8. Similarly, a total number of 𝑁 = 512 samples were drawn in the parameter space.
14
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Fig. 13. Two-Dimensional sufficient summary plots for the Double Beam instability: (left) 1% global sensitivity analysis, which represents 𝜂2 = 99.99% of the
total variation, and (right) 25% global sensitivity analysis, which represents 𝜂2 = 99.58% of the total variation. Notice that a one-dimensional representation (see
Fig. 11) cannot capture the variability expressed in the growth rate as a function of model parameters.

Fig. 14. Bump-on-Tail instability: Global sensitivity analysis (1%) indicating the eigenvalues (left), parameter weights (center), and sufficient summary plot (right)
of the one-dimensional active subspace, which represents 𝜂1 = 99.97% of the total variation.

The simulations included variations of 1%, 10%, and 25% of these nominal parameter values, with results presented in Figs. 14–
16, and parameter weights included in Table 7. As shown in the sufficient summary plot, the one-dimensional active subspace is
essentially linear for the 1% variation study (Fig. 14), but becomes parabolic for the 10% variation study and greater (Figs. 15–16).
This is also observed in Table 8, which displays an increasing magnitude of the quadratic coefficient as the variation increases,
e.g. −1.2 × 10−3 for 1% variation and −0.1308 for 25% variation, as well as in the polynomial fits in Fig. 17 that gradually become
more nonlinear with increased parameter variation. The information captured by the one-dimensional active subspace drops from
𝜂1 = 99.97% for the 1% variation study (Fig. 14) to 𝜂1 = 86.83% for the 25% study (Fig. 16). In accordance with the reduced
spectral gap, we observe that a one-dimensional active subspace is no longer a strong approximation to the domain of 𝑔(𝑝), similar
to the 25% variation study of the previous section. As for the Double Beam instability, the wavenumber 𝑘 and mean velocity 𝜇2
are the most influential parameters on the growth rate and generally remain negatively correlated with 𝛾. However, the density
𝛽 of the larger Maxwellian is also moderately influential within this region of the parameter space; hence, the values of 𝛾 in the
Bump-on-Tail instability will depend on 𝛽 in a non-negligible manner. As before, the influence of the parabolic component of the
reduced approximation for the 10% and 25% variations indicates that a maximal growth rate is achieved within these parameter
regimes. Thus, the rate of instability can be suitably increased or decreased by altering the initial frequency of the perturbation
15



Communications in Nonlinear Science and Numerical Simulation 134 (2024) 107994S. Terrab and S. Pankavich

(

(

𝑘
g
i
t
T
(
t

n

Fig. 15. Bump-on-Tail Instability: Global sensitivity analysis (10%) indicating the eigenvalues (left), parameter weights (center), and sufficient summary plot
right) of the one-dimensional active subspace, which represents 𝜂1 = 98.24% of the total variation.

Fig. 16. Bump-on-Tail Instability: Global sensitivity analysis (25%) indicating the eigenvalues (left), parameter weights (center), and sufficient summary plot
right) of the one-dimensional active subspace, which represents 𝜂1 = 86.83% of the total variation.

, the mean velocity 𝜇2, and the relative density of the larger beam, given by 𝛽. More specifically, one can essentially drive the
rowth rate to zero in this parameter regime by choosing 𝜇2 or 𝛽 sufficiently large. That being said, as 𝜇2 is more influential than 𝛽,
ncreasing the thermal velocity of the bump on the tail of the distribution will more easily reduce the growth rate of the instability
han proportionately decreasing its density. In addition, the maximal value attained by the growth rate is analogous to that of the
wo-Stream instability, and hence these phenomena can manifest with similar intensity. In contrast, we note that the volatility
i.e., the spread) in the values of the growth rate for either of the Bi-Maxwellian distributions is significantly greater than that of
he Two-Stream distribution.

Again, an explicit approximation of the growth rate can be constructed for each parameter variation study. For instance, if the
ormalized parameters are varied by 10% from their baseline values (see Tables 7 and 8) the growth rate is well-approximated by
16



Communications in Nonlinear Science and Numerical Simulation 134 (2024) 107994S. Terrab and S. Pankavich

i

Table 7
Bump-on-tail instability parameter weights.
Variation Parameter weights
(%) 𝑤𝑇 𝑝 = 𝑤1𝑝1 +𝑤2𝑝2 +𝑤3𝑝3 +𝑤4𝑝4𝑤5𝑝5 +𝑤6𝑝6

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

1 0.5988 −0.1762 0.7049 −0.0265 −0.0268 0.3348
5 0.5902 −0.1808 0.7232 −0.0292 −0.0390 0.3061
10 0.5999 −0.1779 0.7112 −0.0280 −0.0387 0.3168
15 0.6118 −0.1748 0.6990 −0.0258 −0.0350 0.3236
25 0.6375 −0.1637 0.6551 −0.0211 −0.0274 0.3694

Global 0.5876 −0.0579 0.2897 0.0634 0.0431 0.7494

Fig. 17. Bump-on-Tail instability 2nd-order polynomial fits.

𝛾𝐵𝑜𝑇 ≈ ℎ(𝑦), where

𝑦 = 0.6𝑝1 − 0.18𝑝2 + 0.71𝑝3 − 0.03𝑝4 − 0.04𝑝5 + 0.32𝑝6

s the active variable that can be represented in terms of the original variables using

𝑝1 = 20(𝑘 − 0.5), 𝑝2 = 10𝜇1, 𝑝3 = 2.5(𝜇2 − 4),

𝑝4 = 40(𝜎21 − 0.25), 𝑝5 = 40(𝜎22 − 0.25), 𝑝6 = 12.5(𝛽 − 0.8),

and ℎ is the quadratic function defined by

ℎ(𝑦) = −0.064𝑦2 − 0.172𝑦 + 0.114.

As for the other instabilities, these expressions can then be simplified to produce an explicit function for the growth rate
𝛾𝐵𝑜𝑇 (𝑘, 𝜇1, 𝜇2, 𝜎21 , 𝜎

2
2 , 𝛽) in terms of the original parameters.

5.2.3. Global Bi-Maxwellian approximation
Finally, we also consider an approximation of the Bi-Maxwellian instability rate that is global within the parameter space by

using a larger range of parameter values to simultaneously represent both of the previous instabilities. Rather than perturb the
parameters from a set of baseline values, we instead consider a larger hypercube within which they may vary. Here, the lower and
upper bound vectors on the parameters 𝑝 ∝ [𝑘, 𝜇1, 𝜇2, 𝜎21 , 𝜎

2
2 , 𝛽] are given by

𝓁 = [0.4,−0.1, 3.5, 0.25, 0.25, 0.5]𝑇 and 𝑢 = [0.6, 0.1, 4.5, 0.75, 0.75, 0.99]𝑇 ,

respectively. This implies, for instance, that 𝜇2 = 0.5(𝑝3 + 8) ∈ [3.5, 4.5] or equivalently, 𝑝3 = 2𝜇2 − 8 ∈ [−1, 1]. Results of the one-
dimensional active subspace decomposition are presented in Fig. 18. Unfortunately, because of the differing dominant parameter
dependencies of the two instabilities, a single active variable is insufficient to capture their distinct behaviors, though the same
variables (𝑘, 𝜇2, and 𝛽) remain the most influential. Thus, a two-dimensional decomposition was also performed (Fig. 19) in order
to retain sufficient variation in 𝛾. The associated weight vectors are

𝑇

17

𝑤1 = [0.588,−0.058, 0.29, 0.06, 0.04, 0.75] ,
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Table 8
Bump-on-tail instability coefficients.
Variation Polynomial fit
(%) ℎ(𝑤𝑇 𝑝) = ℎ(𝑦) = 𝑎2𝑦2 + 𝑎1𝑦 + 𝑎0

𝑎2 𝑎1 𝑎0
1 −0.0012 −0.0174 0.1210
5 −0.0219 −0.0904 0.1178
10 −0.0643 −0.1721 0.1137
15 −0.0884 −0.2279 0.1095
25 −0.1142 −0.2787 0.1090

Global −0.0263 −0.1348 0.1204

Fig. 18. Global approximation for Bi-Maxwellian distribution: Global sensitivity analysis indicating the eigenvalues (left), parameter weights (center), and sufficient
summary plot (right) of the one-dimensional active subspace, which represents 𝜂1 = 75.09% of the total variation.

which can be seen in Fig. 18, and

𝑤2 = [−0.567, 0.097,−0.488, 0.143, 0.163, 0.619]𝑇 ,

representing the two linear combinations of parameters that are most influential on the growth rate. Here, we must note that,
unlike in previous sections, 𝑤2 represents the second vector comprising the active subspace, rather than the second entry of the
weight vector previously denoted by 𝑤. With this, a global parameter approximation 𝛾𝐺 ≈ ℎ(𝑦1, 𝑦2) is obtained using a nonlinear
least-squares fit to produce a polynomial of desired degree. In this way, we have determined the quadratic surface that best fits the
growth rate, given by

ℎ(𝑦1, 𝑦2) = 0.1278 − 0.125𝑦1 + 0.016𝑦2 + 0.017𝑦1𝑦2 − 0.044𝑦22,

where

𝑦1 = 𝑤𝑇1 𝑝 and 𝑦2 = 𝑤𝑇2 𝑝.

As before, a direct representation of 𝑦1 and 𝑦2, and hence 𝛾𝐺, in terms of the original parameters can be obtained by inverting (10)
for each parameter to find

𝑝1 = 10(𝑘 − 0.5), 𝑝2 = 10𝜇1, 𝑝3 = 2(𝜇2 − 4),
𝑝4 = 4(𝜎21 − 0.5), 𝑝5 = 4(𝜎22 − 0.5), 𝑝6 = 4.08(𝛽 − 0.745).

Using the eigenvalues to compute the information contained in this approximation, we find

𝜂1 =
𝜆1

∑6
𝑖=1 𝜆𝑖

= 0.7509 and 𝜂2 =
𝜆1 + 𝜆2
∑6
𝑖=1 𝜆𝑖

= 0.9358.

hus, researchers who possess less precise knowledge concerning the range of parameter values within an experiment can utilize this
wo-dimensional global parameter approximation to capture more than 93% of the variation in 𝛾. Additionally, this approximation
18
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Fig. 19. Two-Dimensional sufficient summary plots for the global approximation of the Bi-Maxwellian distribution: (left) Two-dimensional scatter plot of the
outputs and (right) Three-dimensional plot with best multivariate quadratic approximation, representing 𝜂2 = 93.58% of the total variation.

shows that while fluctuations in the beam density 𝛽 of the larger Maxwellian give rise to the greatest changes throughout the entire
parameter space, this effect is attenuated within each of the two featured regimes (Double Beam and Bump-on-Tail).

6. Conclusions

The formulation and implementation of the active subspace method has allowed us to draw a variety of conclusions. First, the
parameters of greatest importance to the rate of instability were determined for each steady state. In particular, for both the Double
Beam and Bump-on-Tail instabilities, the wavenumber 𝑘 and mean velocity 𝜇2 are most influential to the growth rate 𝛾. This, along
with the negative correlation of these parameters with 𝛾, indicates that the growth rate can be controlled, and moreover decreased,
by increasing the spatial frequency of the initial perturbation or the mean velocity of the second beam. Hence, the linear instability
can be tamed by utilizing a high frequency spatial perturbation or suitably separating the mean velocities of the beams.

For the Bump-on-Tail instability, one might further view this result through the lens of a transition from an unstable distribution
to a stable one, namely the Maxwellian equilibrium. In particular, a variety of parameter limits, e.g. 𝛽 → 1, 𝜎22 → ∞, or the
combination of 𝜇2 → 𝜇1 and 𝜎22 → 𝜎21 , induce the Bi-Maxwellian distribution 𝑓𝑒𝑞(𝑣) given by (12) to converge to a normalized
Maxwellian with mean velocity 𝜇1 and thermal velocity 𝜎21 . The question then becomes, which of these limits drives the greatest
reduction in the rate of instability as it transitions from positive to negative values. Indeed, as Figs. 14–16 demonstrate, separating
the velocities of the beams, i.e. pushing the bump further down the tail of the distribution, by increasing 𝜇2 achieves a greater
reduction in the growth rate than (i) decreasing the relative strength of the bump by increasing 𝛽 or (ii) increasing the thermal
velocity by widening the variance and increasing 𝜎22 . This is somewhat counterintuitive, as the well-known Penrose criterion [25]
is known to imply the linear stability of this equilibrium when the velocity spread between the Maxwellians is sufficiently close.
However, as determined by the active subspace analysis, the rate of instability 𝛾 is actually reduced by further separation of the
velocity spread once the mean velocities of the Maxwellians are already largely separated (e.g., for 𝜇1 ≈ 0 and 𝜇2 ≈ 4). Such a
discrepancy may also serve to highlight the differences in behavior between solutions of the linear and nonlinear Vlasov–Poisson
system. For instance, though our analysis demonstrates that an increase in the wavenumber will generally decrease the rate of
instability arising from the dispersion relation, this need not occur for the full nonlinear plasma model. Indeed, due to the coupling
of different spatial modes within the nonlinear system, an unstable equilibrium perturbed at a spatial frequency outside of the
instability range may still exhibit exponential growth. Hence, further investigation of the nonlinear dynamics of the Vlasov–Poisson
system, rather than the linear response of solutions to a sufficiently small perturbation wave, is certainly warranted.

Next, the extremal values of the growth rate were computed on these intervals, and they demonstrate that the intensity of
the Bump-on-Tail or Double Beam instability is similar to that of the Two-Stream instability, as the attained growth rates are all
around 𝛾 ≈ 0.25 in this dimensionless system. Hence, previous indications [16] that the latter instability must occur with greater
intensity or arise on faster timescales may not hold when fluctuations occur in the mean velocities or density of the particle beams,
or when differing wavenumbers are considered. That being said, it is clear from our simulations that the instabilities arising from
the Bi-Maxwellian distribution possess greater variability in their rates of growth than does the Two-Stream Instability.

Finally, using the dispersion relation, we were able to construct an analytic representation of the growth rate as a function
of model parameters for both the Two-Stream and Bi-Maxwellian distributions. The dispersion-based growth rate solver enabled
accurate, efficient, and inexpensive simulations even for large parameter variations, such as the 20%, 25%, and 50% simulation
cases. Though the one-dimensional approximations begin to break down as the variation percentage is increased beyond 25 − 50%,
two-dimensional active subspace approximations were able to retain the overwhelming majority of the variability contained in the
growth rate. In particular, simulations of the Two-Stream instability provided the knowledge that 𝛾 is essentially independent of the
19
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mean velocity 𝜇 and allowed for an inexpensive, reduced decomposition with high accuracy. Additionally, simulations of the Double
eam and Bump-on-Tail instabilities demonstrated the physical differences arising from changes in parameter values. In either case,
ufficiently accurate one-dimensional and two-dimensional active subspace approximations of the growth rate 𝛾 were acquired. A

global approximation of the growth rate was also obtained for a larger range of parameter values to show that a two-dimensional
active subspace representation can describe the behavior of both extreme cases near the Bi-Maxwellian state. For all distributions
considered herein, these approximations yield explicit algebraic formulas for the growth rate as a function of system parameters.
Lastly, we note that our methods can easily extend to analyze multispecies plasmas without a neutralizing background density, as
well, wherein the active subspace method can reduce the increased complexity of the model resulting from additional parameters,
e.g. masses and charges.
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Appendix A. Dimensionless model

In order to construct the dimensionless Eqs. (1), we begin with the original Vlasov–Poisson system

𝜕𝑡𝑓 + �̃�𝜕�̃�𝑓 −
𝑞
𝑚
�̃�𝜕�̃�𝑓 = 0 (A.1a)

𝜕�̃��̃� =
𝑞
𝑚𝜖0

(�̃�0 − �̃�(𝑡, �̃�)) (A.1b)

�̃�(𝑡, �̃�) = 𝑚∫ 𝑓 𝑑�̃�. (A.1c)

Here, 𝑓 (𝑡, �̃�, �̃�) represents the electron distribution, �̃�(𝑡, �̃�) is the corresponding charge density, and �̃�(𝑡, �̃�) is the electric field induced
by the charge in the system. Additionally,

�̃�0 =
1
𝐿0 ∫

𝐿0

0
�̃�(0, �̃�) 𝑑�̃�

represents a background neutralizing density, and the parameters 𝑞, 𝑚, and 𝜖0 are the charge and mass of a particle and the
ermittivity of free space, respectively.

For each independent and dependent variable, we introduce a scaling factor:

𝑡 = 𝑇0𝑡, �̃� = 𝐿0𝑥, �̃� =
𝐿0
𝑇0
𝑣

𝑓 = 𝐹0𝑓, �̃� = 𝐸0𝐸, �̃� = �̃�0𝜌.

Rewriting (A.1) in terms of the scaled variables ultimately yields the system

𝜕𝑡𝑓 + 𝑣𝜕𝑥𝑓 −

(

𝑞𝐸0𝑇 2
0

𝑚𝐿0

)

𝐸𝜕𝑣𝑓 = 0

𝜕𝑥𝐸 =
(

𝑞𝐿0�̃�0
𝜖0𝐸0

)

(1 − 𝜌)

𝜌 =
(

𝐹0𝐿0
�̃�0𝑇0

)

∫ 𝑓 (𝑡, 𝑥, 𝑣) 𝑑𝑣.

In order to reduce the dimension of the parameter space, we normalize the constant quantities within the parentheses. Doing so
implies choosing

𝐸0 =
𝑞𝐿0�̃�0 , 𝑇0 =

√ 𝜖0𝑚 , 𝐹0 =

√

�̃�0𝜖0𝑚 . (A.2)
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With this scaling, we arrive at the dimensionless Vlasov–Poisson system, namely (1).
We assume that the background density, �̃�0, and the length scale, 𝐿0, have been selected. The remaining parameters, 𝐸0, 𝑇0, and

0, are then uniquely determined, and (1) results for any choice of �̃�0 and 𝐿0. In particular, a standard choice is to select the length
cale of the Debye length, 𝐿0 = 𝜆𝐷, where

𝜆𝐷 =

√

𝜖0𝑘𝐵𝑇
�̃�0𝑞2

,

𝐵 is the Boltzmann constant and 𝑇 is the temperature, and this yields the time scale of the inverse plasma frequency, namely
0 = 𝜔−1

𝑝 , where

𝜔𝑝 =

√

𝑞2�̃�0
𝜖0𝑚

.

These length and time scalings then imply a specific velocity scaling that can influence the value of dimensionless parameters in
the distribution functions via

�̃� = 𝑣th𝑣

here

𝑣th = 𝜆𝐷𝜔𝑝 =
√

𝑘𝐵𝑇
𝑚

.

or instance, if the temperature 𝑇 is increased by a certain factor 𝐴 > 0, then the dimensionless parameter 𝜎2 (which is on the order
of 𝑣2) is also increased by the same factor of 𝐴.

Appendix B. Dispersion relations for Two-Stream and Bi-Maxwellian instabilities

For the steady states under consideration, explicit formulas for the growth rate within the linear regime can be computed in
terms of the 𝑍-function. In particular, assuming that the charge distribution has the form

𝑓 (𝑡, 𝑥, 𝑣) = 𝑓𝑒𝑞(𝑣) + 𝛿𝑓 (𝑡, 𝑥, 𝑣)

where 𝛿𝑓 (𝑡, 𝑥, 𝑣) = 𝛼𝑓1(𝑣) exp(𝑖[𝑘𝑥 − 𝜔𝑡]), one can express the growth rate 𝛾 as a function of the frequency 𝜔 for fixed wavenumber
𝑘. The plasma dispersion relation, obtained by linearizing (1) about 𝑓𝑒𝑞 and considering plane wave solutions, is

𝜀(𝑘, 𝜔) = 1 − 1
𝑘2 ∫

∞

−∞

𝑓 ′
𝑒𝑞(𝑣)

𝑣 − 𝜔∕𝑘
𝑑𝑣. (B.1)

Prior to computing the dispersion relation for the steady states of interest, we will perform this calculation for a Maxwellian
istribution and then use this information to generalize the expression for the Two-Stream and Bi-Maxwellian cases. Thus, let us
irst consider a single Maxwellian equilibrium, for which the distribution of particle velocities is given by

𝑓𝑀 (𝑣;𝜇, 𝜎2) = 1
√

2𝜋𝜎2
exp

(

− 1
2𝜎2

|𝑣 − 𝜇|2
)

.

Taking a derivative of this function, writing 𝑢 = 𝜔∕𝑘, and substituting 𝑧 = 1
√

2𝜎2
(𝑣 − 𝜇) within the resulting integral of (B.1) yields

𝜀(𝑘, 𝑘𝑢) = 1 + 1
√

𝜋𝜎2𝑘2 ∫

∞

−∞

𝑧
𝑧 − 1

√

2𝜎2
(𝑢 − 𝜇)

𝑒−𝑧
2
𝑑𝑧.

Next, we let

𝐴(𝑢) = 1
√

2𝜎2
(𝑢 − 𝜇)

and rewrite the integrand as
𝑧

𝑧 − 𝐴(𝑢)
𝑒−𝑧

2
= 𝑒−𝑧

2
+

𝐴(𝑢)
𝑧 − 𝐴(𝑢)

𝑒−𝑧
2
.

hen, the integral of the first term can be computed explicitly as
√

𝜋, while the second involves the 𝑍-function given by (4).
Ultimately, we find

𝜀(𝑘, 𝑘𝑢) = 1 + 1
𝜎2𝑘2

[1 + 𝐴(𝑢)𝑍(𝐴(𝑢))] , (B.2)

the principal root of which yields an implicit representation for computing 𝛾 = Im(𝑘𝑢).
For the Two-Stream function, the distribution of particle velocities is given by

𝑓𝑇𝑆 (𝑣;𝜇, 𝜎2) =
1

√
|𝑣 − 𝜇|2 exp

(

− 1
2
|𝑣 − 𝜇|2

)

. (B.3)
21
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P
𝑡

Similar to the Maxwellian distribution, we first differentiate to find

𝑓 ′
𝑒𝑞(𝑣) =

2
√

2𝜋𝜎3
(𝑣 − 𝜇) exp

(

− 1
2𝜎2

|𝑣 − 𝜇|2
)

− 1
√

2𝜋𝜎5
(𝑣 − 𝜇)3 exp

(

− 1
2𝜎2

|𝑣 − 𝜇|2
)

,

hich we decompose as

𝑓 ′
𝑒𝑞(𝑣) =

1
𝜎2

[

𝑔1(𝑣) − 𝑔2(𝑣)
]

.

As the dispersion relation is linear in the contribution of 𝑓 ′
𝑒𝑞(𝑣), we use (B.1) to find

𝜀(𝑘, 𝜔) = 1 − 1
𝜎2𝑘2 ∫

∞

−∞

𝑔1(𝑣)
𝑣 − 𝜔∕𝑘

𝑑𝑣 + 1
𝜎2𝑘2 ∫

∞

−∞

𝑔2(𝑣)
𝑣 − 𝜔∕𝑘

𝑑𝑣.

roceeding with the 𝑔1 integrand and using similar substitution techniques as for the Maxwellian, including the change of variables
= 1

√

2𝜎2
(𝑣 − 𝜇), we have

∫

∞

−∞

𝑔1(𝑣)
𝑣 − 𝜔

𝑘

𝑑𝑣 = 2
√

2𝜋𝜎2 ∫

∞

−∞

(𝑣 − 𝜇) exp
(

− 1
2𝜎2 |𝑣 − 𝜇|

2
)

𝑣 − 𝜔
𝑘

𝑑𝑣,

= 2
√

𝜋 ∫

∞

−∞

𝑡𝑒−𝑡2

𝑡 − 𝐴(𝑢)
𝑑𝑡,

= 2
√

𝜋

[

∫

∞

−∞
𝑒−𝑡

2
𝑑𝑡 + 𝐴(𝑢)∫

∞

−∞

𝑒−𝑡2

𝑡 − 𝐴(𝑢)
𝑑𝑡

]

,

= 2 [1 + 𝐴(𝑢)𝑍(𝐴(𝑢))] ,

where 𝑢 = 𝜔∕𝑘 and 𝐴(𝑢) = 1
√

2𝜎2
(𝑢 − 𝜇). To compute the second integral, we perform the same change of variables to find

∫

∞

−∞

𝑔2(𝑣)
𝑣 − 𝜔

𝑘

𝑑𝑣 = 1

𝜎2
√

2𝜋𝜎2 ∫

∞

−∞

(𝑣 − 𝜇)3 exp
(

− 1
2𝜎2 |𝑣 − 𝜇|

2
)

𝑣 − 𝜔
𝑘

𝑑𝑣,

= 2
√

𝜋 ∫

∞

−∞

𝑡3𝑒−𝑡2

𝑡 − 𝐴(𝑢)
𝑑𝑡

where 𝑢 = 𝜔∕𝑘 and 𝐴(𝑢) = 1
√

2𝜎2
(𝑢 − 𝜇). Next, we make repeated use of the identity

𝑡
𝑡 − 𝐴(𝑢)

= 1 +
𝐴(𝑢)

𝑡 − 𝐴(𝑢)

in order to simplify the rational portion of the integrand, resulting in

𝑡3

𝑡 − 𝐴(𝑢)
= 𝑡2 + 𝑡𝐴(𝑢) + 𝐴(𝑢)2 +

𝐴(𝑢)3

𝑡 − 𝐴(𝑢)
.

With this, we can perform the integration in each portion of the integral, which yields

∫

∞

−∞

𝑔2(𝑣)
𝑣 − 𝜔

𝑘

𝑑𝑣 = 2
√

𝜋 ∫

∞

−∞

[

𝑡2 + 𝑡𝐴(𝑢) + 𝐴(𝑢)2 +
𝐴(𝑢)3

𝑡 − 𝐴(𝑢)

]

𝑒−𝑡
2
𝑑𝑡

= 2
√

𝜋

[

∫

∞

−∞
𝑡2𝑒−𝑡

2
𝑑𝑡 + 𝐴(𝑢)∫

∞

−∞
𝑡𝑒−𝑡

2
𝑑𝑡 + 𝐴(𝑢)2 ∫

∞

−∞
𝑒−𝑡

2
𝑑𝑡 + 𝐴(𝑢)3 ∫

∞

−∞

𝑒−𝑡2

𝑡 − 𝐴(𝑢)
𝑑𝑡

]

= 2
√

𝜋

[
√

𝜋
2

+ 𝐴(𝑢)2
√

𝜋 + 𝐴(𝑢)3
√

𝜋𝑍(𝐴(𝑢))

]

= 1 + 2𝐴(𝑢)2 + 2𝐴(𝑢)3𝑍(𝐴(𝑢)).

Reassembling the results of the 𝑔1 and 𝑔2 terms, we finally arrive at a simplified expression for the dispersion relation, namely

𝜀𝑇𝑆 (𝑘, 𝑘𝑢) = 1 − 1
𝜎2𝑘2

[

1 − 2𝐴(𝑢)2 + 2
(

𝐴(𝑢) − 𝐴(𝑢)3
)

𝑍(𝐴(𝑢))
]

, (B.4)

the roots of which yield an implicit representation for 𝛾𝑇𝑆 (𝑘, 𝜇, 𝜎2) = Im(𝑘𝑢).
Next, we return to (B.1) and simplify the dispersion relation for the Bi-Maxwellian function, for which the distribution of particle

velocities is given by

𝑓𝐵𝑀 (𝑣) =
𝛽

√

2
exp

(

− 1
2𝜎2

|𝑣 − 𝜇1|
2

)

+
1 − 𝛽

√

2
exp

(

− 1
2𝜎2

|𝑣 − 𝜇2|
2

)

, (B.5)
22

2𝜋𝜎1 1 2𝜋𝜎2 2



Communications in Nonlinear Science and Numerical Simulation 134 (2024) 107994S. Terrab and S. Pankavich

T

𝑘

R

where 0 < 𝛽 < 1. Noting that this distribution is merely a convex combination of two Maxwellians, we use the linearity of the
dispersion relation and the previously-computed formula (B.2) for each Maxwellian separately to find

∫

∞

−∞

𝑓 ′
𝑒𝑞(𝑣)

𝑣 − 𝜔∕𝑘
𝑑𝑣 = −

𝛽
𝜎21

[

1 + 𝐴1(𝑢)𝑍(𝐴1(𝑢))
]

−
1 − 𝛽
𝜎22

[

1 + 𝐴2(𝑢)𝑍(𝐴2(𝑢))
]

,

where 𝑢 = 𝜔∕𝑘,

𝐴1(𝑢) =
1

√

2𝜎21

(𝑢 − 𝜇1) and 𝐴2(𝑢) =
1

√

2𝜎22

(𝑢 − 𝜇2).

hus, we have a representation for the dispersion relation as

𝜀𝐵𝑀 (𝑘, 𝑘𝑢) = 1 +
𝛽

𝜎21𝑘
2

[

1 + 𝐴1(𝑢)𝑍(𝐴1(𝑢))
]

+
1 − 𝛽
𝜎22𝑘

2

[

1 + 𝐴2(𝑢)𝑍(𝐴2(𝑢))
]

,

and the associated growth rate 𝛾𝐵𝑀 (𝑘, 𝜇1, 𝜇2, 𝜎21 , 𝜎
2
2 , 𝛽) = Im(𝑘𝑢) is computed as the principal root of 𝜀𝐵𝑀 (𝑘, 𝑘𝑢) given the wavenumber

.
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