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A B S T R A C T

Geochemical systems are known to exhibit highly variable spatiotemporal behavior. This may be observed both
in non-smooth concentration curves in space for a single sampling time and also in variability between samples
taken from the same location at different times. However, most models that are designed to simulate these
systems provide only single-solution smooth curves and fail to capture the noise and variability seen in the data.
We apply a recently developed reactive particle-tracking method to a system that displays highly complex
geochemical behavior. When the method is made to most closely resemble a corresponding Eulerian method, in
its unperturbed form, we see near-exact match between solutions of the two models. More importantly, we
consider two approaches for perturbing the model and find that the spatially-perturbed condition is able to
capture a greater degree of the variability present in the data. This method of perturbation is a task to which
particle methods are uniquely suited and Eulerian models are not well-suited. Additionally, because of the nature
of the algorithm, noisy spatial gradients can be highly resolved by a large number of mobile particles, and this
incurs negligible computational cost, as compared to expensive chemistry calculations.

1. Introduction

Chemical reactions are ubiquitous in hydrologic systems and play a
controlling role in the small and large scale behavior of many systems of
practical interest e.g. (Dentz et al., 2011; Valocchi et al., 2018). How-
ever, predicting complex reactions in realistic environmental settings,
which are typically characterized by high degrees of heterogeneity and
uncertainty with multiple processes occurring at different spatial and
temporal scales, still remains a demanding challenge. Many theoretical
e.g. (Le Borgne et al., 2010; Kitanidis, 1994; Engdahl et al., 2014; de
Barros et al., 2012; Ranz, 1979; Le Borgne et al., 2015) and computa-
tional approaches e.g. (Steefel et al., 2005; Mayer et al., 2002; Beisman
et al., 2015; Benson and Meerschaert, 2008) have and continue to be
developed to tackle this issue. On the computational side, methods for
simulating reactive transport broadly fall into two categories: Eulerian
and Lagrangian. Defined in broad terms, Eulerian methods are grid-

based methods, while Lagrangian methods are gridless.
To date, Eulerian methods (e.g. classical finite-difference, −volume,

or -element methods) are most commonly used. These employ a spatial
grid, on which chemical species move in accordance with discretized
forms of mass balance laws, such that they approximate transport
governed by advection and dispersion. To simulate chemical reactions,
each grid block is treated as a well-mixed volume, and reactions are
calculated based on the average concentrations of species residing
within that volume. Advantages of Eulerian methods include their in-
tuitive nature, (relative) ease of implementation/parallelization, and
the large body of mathematical research and justification supporting
them. This has led to their widespread use in various industrial and
research applications (Xu et al., 2014; Steefel, 2009; Parkhurst and
Appelo, 2013; Prommer, 2006).

However, such methods also suffer from a variety of important
drawbacks, such as the introduction of spurious numerical diffusion in
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the simulation of advection (Sweby, 1984; Leonard, 1991; LeVeque,
2002) and an inability, in their most basic implementation, to capture
fluctuations in concentration or mixing below scales resolved by the
numerical grid. Oftentimes, strongly non-linear reactions cause the
concentration fluctuations to dominate overall reaction rates relative to
the means. It should be noted that there are strategies that allow Eu-
lerian methods to capture subgrid mixing variability, for instance, by
the application of a block-scale dispersion (Rubin et al., 1999; Rubin
et al., 2003; de Barros and Rubin, 2011; de Barros and Dentz, 2016) or
higher order closures (Porta et al., 2012; Porta et al., 2013), but these
also come with limitations. As a result, if the system of interest requires
capturing small-scale fluctuations, which can be important in the con-
text of reactions (Battiato and Tartakovsky, 2011; Battiato et al., 2009),
a very finely-discretized grid is required and may lead to high com-
putational overhead, particularly as numerical stability conditions,
dictated by advective velocity or dispersive/diffusive strength, impose
restrictive time steps (e.g. Δt/Δx2 < c for some number c). Alter-
natively, upscaling and the inclusion of additional closure terms that
account for subscale effects can be included in the governing equations,
but these too present significant challenges and restrictions depending
on the complexity of reactions and competition between transport and
reaction time scales (Battiato and Tartakovsky, 2011; Battiato et al.,
2009; Schwede et al., 2008; Benson et al., 2019). While empirical ad-
justments to reaction rates can often lead to better agreement between
measurements and models, the physical basis for these adjustments
(calibrations) can be questionable and typically cannot be scaled to
other systems of interest. Agreement is often only obtained through
unphysical calibration and tweaking of model parameters, which works
for hind-casting and observation fitting, but highlights the unphysical
basis of many of these models and reveals problems with their use in a
truly predictive sense.

Lagrangian methods, often referred to as particle-tracking (PT), do
not employ a static spatial grid but rather discretize mass (or con-
centrations) into numerical “particles,” whose locations evolve in time,
again following rules designed to capture advection and dispersion
processes. Generally speaking, one can define three sub-classes of these
methods, grouped here according to how they simulate dispersion, ty-
pically dictated by the needs of the model. One group simulates dis-
persion using random walks alone (Benson and Meerschaert, 2008;
Paster et al., 2013; Paster et al., 2014; Benson et al., 2017; Bolster et al.,
2016; Ding et al., 2013; Ding and Benson, 2015; Ding et al., 2017;
Schmidt et al., 2017; Sole-Mari et al., 2017; Sole-Mari and Fernàndez-
Garcia, 2018; Sole-Mari et al., 2019a). A second simulates dispersion
via mass-transfer between and among particles that do not random-
walk and whose positions can only change by advection (Herrera et al.,
2009; Herrera and Beckie, 2012; Schmidt et al., 2018). The third group
combines the random-walk and mass-transfer approaches (Engdahl
et al., 2017; Herrera et al., 2017; Benson and Bolster, 2016; Schmidt
et al., 2019; Sole-Mari et al., 2019b), providing these algorithms the
flexibility to model the distinct processes of mixing and spreading se-
parately. For methods that simulate dispersion via mass-transfer, there
are two subdivisions whose equivalence, under specific modeling as-
sumptions, was recently shown (Sole-Mari et al., 2019b): smoothed-
particle hydrodynamics (SPH) methods (Herrera et al., 2009; Herrera
and Beckie, 2012; Gingold and Monaghan, 1977; Monaghan, 2012) and
mass-transfer particle-tracking (MTPT) methods (Schmidt et al., 2018;
Engdahl et al., 2017; Benson and Bolster, 2016; Schmidt et al., 2019;
Engdahl et al., 2019). In this work, we focus on the group of hybrid PT
methods that use both random-walks and mass-transfer to simulate
dispersion.

Some key advantages of particle-tracking methods include a lack of
numerical diffusion when simulating advection and a natural ability to
model arbitrarily steep concentration gradients, and thus the in-
complete mixing inherent to many natural systems. Because particle
positions evolve continuously with time, regions of chemical hetero-
geneity can evolve, move, and change size with time with arbitrarily

fine resolution, so there is no “homogeneity cutoff,” as exists at the grid-
scale of an Eulerian method. Also, recent work has allowed for the
parallelization of these algorithms, significantly reducing computa-
tional times (Engdahl et al., 2019; Rizzo et al., 2019). However, im-
portant drawbacks also arise from these methods. First, the body of
literature supporting PT methods is still relatively young, and there are
open questions relating to the optimal particle number or time step
length utilized in simulations (Schmidt et al., 2017). Additionally, while
it has been conjectured, empirically demonstrated, and semi-analyti-
cally confirmed that these particle methods are simulating a perturbed
reactive transport system (Paster et al., 2014; Schmidt et al., 2017), it is
not clearly understood how different methods of perturbing the simu-
lation correspond to observable heterogeneities in the real world. To
date, these approaches have only been applied to relatively simple re-
active systems, consisting of a somewhat small number of reactive
components and reactions.

In order to address these challenges, we apply the mobile-immobile
reactive particle-tracking (miRPT) model of (Schmidt et al., 2019) that
allows for interaction between aqueous (mobile) solutes and immobile
mineral phases to simulate a chemically-complex benchmark system. In
the course of this application, we examine the effects of a key modeling
choice that is inherent to the miRPT algorithm–the choice of how to
represent solid species via immobile particles. Specifically, what hap-
pens if we perturb this representation, and what is the meaning of
different types of perturbations, as it relates to reactant inhomogeneity
or imperfect mixing? From a physical perspective, it seems intuitive
that the spatial configuration of solid species should influence the re-
sults of a reactive transport simulation. In order to capture a highly
heterogeneous state, Eulerian methods would require an increased level
of spatial discretization to resolve solid species distributions, driving up
computation times and imposing stricter stability conditions. In fact,
due to the computational burden imposed by such conditions, the fa-
mily of particle-tracking models considered in this work tend to display
run times significantly lower than first-order Eulerian methods and less
than half that of a more accurate 3rd-order method (Benson et al.,
2017).

This particular particle-tracking method (miRPT) offers increased
flexibility in its ability to capture heterogeneity. For a sufficient number
of immobile particles, a user may distribute them in space in a fully-
controllable manner. This may be done to fit a desired continuous
distribution, incurring no extra computational cost, as no increase in
discretization is required. Also, due to the local nature of particle
methods, in that particles that are not near one another do not interact
via mass-transfer, they are able to capture poor mixing in a way that
Eulerian models cannot. Additionally, without increasing model com-
plexity, the user may run an ensemble of such simulations in order to
inform descriptive statistics about the system, rather than just obtaining
point estimates.

The test problem we use to investigate the above-mentioned issues
is presented in (Arora et al., 2015), wherein the authors consider the
problem of heavy metal cycling in lake sediments (henceforth referred
to as the HMLS system). The authors use the system as a benchmark to
compare several popular and state-of-the-art Eulerian reactive transport
models (TOUGHREACT (Xu et al., 2014), CrunchFlow (Steefel, 2009),
PHREEQC (Parkhurst and Appelo, 2013; Parkhurst and Wissmeier,
2015), and PHT3D (Prommer, 2006)). A selection of the results of this
benchmark study are shown in Fig. 2, in which their results are com-
pared to experimental data from (Winowiecki, 2002). Note that while
all of the Eulerian models yield nearly identical results, none of them
capture the variability in the data, nor do they capture visible fluc-
tuations of certain species. This is most evident in Fig. 2(f), depicting
Pb+2, where we see an order-of-magnitude difference between the two
data plots and a non-smooth distribution of the data in space. Neither of
these is captured by the single-solution smooth curves provided by the
Eulerian models, but this variability is exactly the type of behavior that
can be captured by our stochastic particle-tracking model, especially
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when using an ensemble of realizations employing perturbed condi-
tions.

We wish to note here that our primary goal in this work is to in-
vestigate how transport modeling choices affect the results of a geo-
chemical model. As such, within our various particle models, we em-
ploy exactly the same PHREEQC input file as was used in (Arora et al.,
2015), which was provided by the authors. This is to say that we aim to
test if we can better capture certain characteristics of the data without
any alteration of geochemical parameters or methods.

We organize our investigation of this benchmark reactive transport
system as follows. In Section 2, we discuss the mathematical model and
describe relevant physical processes. In Section 3, we describe how a
finite-difference method, later used as a base-case for comparison with
our PT models, is implemented and provide details germane to our
implementation of the miRPT algorithm. In Section 4, we outline the
results of simulating the HMLS system with the miRPT algorithm,
where we develop unperturbed and perturbed models. Finally, con-
clusions are presented in Section 6.

2. Governing model

2.1. Conceptual description

Generally speaking, our model concerns a diffusion-reaction trans-
port system driven by the vertical diffusion of solute into a sediment
lake bed that is treated as a 1-dimensional column. For brevity, we refer
the reader to the work of Arora et al. (Arora et al., 2015) for a highly
detailed description of the system and chemical reactions involved (see
Fig. 1 for their schematic diagram). Here we provide only a brief sy-
nopsis of the principal physico-chemical processes. In general, the
system represents a transition from oxic conditions at an upper lake
water boundary to anoxic, or reducing conditions, deeper in the sedi-
ment column. Oxygenated water with an electron donor (food source)
of acetate is present in the lake water and enters the column from the
top. Microbial aerobic respiration converts the acetate to carbonate ions
(represented here by total alkalinity) and reduces aqueous-phase elec-
tron acceptors (in order of preference or ease of conversion) O2, nitrate
(NO3

−), Fe+3, and sulfate (SO4
−2). Reductive dissolution of solid-

phase (in the lake sediments) ferrihydrite (Fe(OH)3) in this sequence
also releases metals sorbed to the mineral surface, including lead and

zinc. These dissolved metals and associated aqueous complexes may
diffuse back into the upper-boundary lake water, or react with bio-
genically produced sulfide from sulfate reduction in the lake sediments
and precipitate as solid sulfide minerals.

2.2. Mathematical formulation

The mathematical model we consider is governed by the 1D diffu-
sion-reaction equation (DRE)
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where Ci(t,x) [mol m−3] is the concentration of chemical species i, ϕ
[dimensionless] is porosity, D [m2 s−1] is the diffusion coefficient
(defined to be constant and equal for all aqueous species and zero for
solid species), and ri [mol m−3 s−1] is a source/sink term representing
chemical reaction that, for each species i, is a function of some number
of the n species and m reaction coefficients, kj. The system that we focus
on is referred to as the “biotic case” or “base case” in the work of Arora
et al. (Arora et al., 2015). Their schematic diagram is reproduced in
Fig. 1, but we also summarize here. In this system, the modeling do-
main, Ω, is a vertically-oriented sediment column of length L=0.4 m in
the downward direction, i.e., Ω= [0.0,−0.4]. The initial condition
(IC) is homogeneous throughout the domain and consists of a specific
distribution of the species of chemical reactants [see (Arora et al.,
2015), Table 6]. The boundary conditions (BCs) are Dirichlet (constant
and equivalent to the initial condition) at the upper boundary (x=0),
or sediment/lake-water interface, and Neumann (zero flux) at the lower
boundary (x= − L), which represents the lake bed, such that
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A table showing the initial concentrations, Ci0, for key chemical
species of interest is given in Table 1; note that the initial pore water
chemistry has not yet been allowed to equilibrate with the mineral
phases in the sediments.

As to the values of relevant model parameters, we use those found in
[(Arora et al., 2015), Table 5], namely ϕ=0.47, D=4.27×10−10

m2 s−1, and a total simulation time of T=5 years. We clarify here that
based on the description in (Arora et al., 2015) of the problem and
correspondence of our numerical results (Section 4) with theirs, holding
porosity constant in time appears to be the appropriate modeling choice
in this case. As such, we absorb ϕ into D (and the reactive term) for an
effective diffusion coefficient of D∗:=D/ϕ≈9.09×10−10 m2 s−1.
Chemical reaction parameters are not discussed here, as they are de-
fined within a PHREEQC input file and database that were provided by
the authors of (Arora et al., 2015) so as to match those used in their
simulations. These files, along with the rest of the code used to generate
the results in Section 4, are provided in the following repository

Fig. 1. Fig. 1 from (Arora et al., 2015), used with permission. Schematic dia-
gram depicting the modeling domain and biogeochemical processes governing
the heavy metal cycling in lake sediments (HMLS) system. The x-coordinate
system of the modeling domain is indicated on the left side of the schematic.

Table 1
Initial/boundary concentrations of selected chemical spe-
cies, corresponding to those shown in the figures of Section
4.

Concentration

pH 7.2

Alkalinity 0.72×10−2 mol/kgw
NO3

− 0.80×10−5 mol/kgw
SO4

−2 0.58×10−4 mol/kgw
Fe+2 0.48×10−12 mol/kgw
Pb 0.55×10−7 mol/kgw
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doi:https://doi.org/10.5281/zenodo.3731275 (Schmidt, 2020).

3. Numerical implementation

In order to re-create the results of (Arora et al., 2015) and consider
the effect of spatial perturbations in the PT model, we consider two
numerical approaches: a finite-difference (FD) model that we use as a
base-case for comparison and one employing the miPRT algorithm
(Schmidt et al., 2019). Both models use the phreeqcRM reaction module
(Parkhurst and Wissmeier, 2015) for chemistry calculations, which is
driven by the PHREEQC input file and database provided by the authors
of (Arora et al., 2015).

3.1. Finite-difference model

The FD model we use as a base case is on a regularly-spaced grid,
explicit in time, and second-order, centered in space; we use an op-
erator-splitting approach between diffusion and reaction calculations.
We choose a spatial grid with spatial step size Δx=1 cm (implying a
number of cells, NC:=L/Δx=40), in contrast to (Arora et al., 2015),
which uses 46 cells, spaced by 0.5 cm for the top 8 and by 1 cm for the
rest of the domain. We consider three different time step lengths of
Δt∈ {259,2592,25920} s, so as to calibrate our model by exploring the
range of time step lengths explored by (Arora et al., 2015), while
obeying the von Neumann stability condition

D t
x

1
2

.2

3.2. Particle-tracking model

The PT model we use employs the miRPT algorithm of (Schmidt
et al., 2019). That algorithm is based on (Bolster et al., 2016) which
reformulated reactive PT algorithms in terms of mass reduction, rather
than a particle-killing approach. The work of (Benson and Bolster,
2016) extended this algorithm such that particles could carry an arbi-
trary number of chemical species that are transferred among particles
via diffusive mass transfer, and (Engdahl et al., 2017) added
phreeqcRM (Parkhurst and Wissmeier, 2015) to handle complex geo-
chemical reactions between the species. The algorithm of (Schmidt
et al., 2019) further added the capability for fluid-solid (mobile-im-
mobile) interactions.

For this implementation, we partition the total (effective) diffusion
of the system such that

= + +D D D D: ,RW MI IM (3)

where DRW, DMI, and DIM are the portions of the total diffusion simu-
lated by random-walks, mobile-to-immobile mass-transfers, and im-
mobile-to-mobile mass-transfers, respectively; we impose values of
D∗ ×{0.5,0.25,0.25}. This means that half of the total diffusion in the
system is simulated by random-walking mobile particles, and the re-
maining half is simulated by the two “directions” of mass-transfer. For
the purposes of this project, these values were chosen ad-hoc, though it
has been suggested that properly calibrating this partitioning allows for
separate simulation of the distinct processes of mixing and spreading
(Schmidt et al., 2018; Sole-Mari et al., 2019b). For a discussion of the
effect of these modeling choices, see Appendix A in (Schmidt et al.,
2019). The time step lengths that we employ are chosen so as to cor-
respond to the results given by the finite-difference simulations, and so
we consider Δt∈ {259,2592,25920} s.

The number of mobile particles (NM) is held to be 4000 for all si-
mulations, though we consider different numbers of immobile particles
(NI), depending on the effects we wish to examine. For the base (un-
perturbed) case we consider NI ∈ {40,100,400}, and for the perturbed
cases we consider NI ∈ {100,400}. The reason for the disparity between
NI and NM is that we wish to highly resolve spatial gradients with a

large number of mobile particles because transport calculations are
computationally cheap; however, because the highly-expensive chem-
istry calculations are conducted on the immobile particles, we would
like to minimize NI to the smallest appropriate level. To put numbers to
this concept, when employing (NI,NM)= (40,4000) and running on a
laptop machine, the chemistry calculations are O (100) times more ex-
pensive than all of the transport calculations within a time step, despite
the chemistry calculations being conducted in parallel on 4 cores and
the transport being conducted in serial. Finally, the zero-flux Neumann
condition at x= − L is enforced as a reflecting boundary (Szymczak
and Ladd, 2003).

3.2.1. Reformulated optimality condition
Here, we provide a brief discussion of the “optimality condition” for

the miRPT algorithm (Schmidt et al., 2019). In particular, the simula-
tion constraint attempts to ensure that the maximum average inter-
particle spacing (whether of mobile or immobile particles) is of the
same order as the magnitude of the system's diffusion within a time step
of length Δt. As such, there should always be a “nearby” mobile or
immobile particle to receive mass-transfers from a given particle of the
opposite type. Violation of this condition does not necessarily lead to
unstable solutions that “blow up” as occurs when one violates a von
Neumann stability condition in a finite-difference simulation. Instead,
the accuracy of the solution degrades in a relatively steady manner as
we move further from the prescribed optimal values of η.

= L N N
D t

: ( /min( , )) 1,I M
2

(4)

We acknowledge that many of the previously mentioned choices of
discretization parameters, NI, NM, Δt violate this condition. In
(Schmidt et al., 2019), NI and NM were always close to the same order of
magnitude, while here this is not feasible due to the highly expensive
chemistry calculations (i.e., we always choose to have fewer immobile
particles, in order to minimize the cost of these chemistry calculations).
As a result, a more nuanced formulation of this condition is presented
for our purposes.

We would like to enforce a condition such that, for a given transfer
(denoted “MI” for mobile-to-immobile and vice versa “IM”), the ex-
pected distance between two particles of opposite species is less than
the standard diffusion distance = D t: 2 . This is motivated by the
fact that the weighting-kernel for mass transfers is a Gaussian function
with bandwidth (variance) that is proportional to ℓ, and maintaining an
expected inter-particle spacing on this order ensures that mass-transfers
will be non-negligible. This inter-particle distance is maximized when a
particle is located directly between two particles of the opposite spe-
cies, so in the case of an MI transfer, the maximum distance of a mobile
particle to the nearest immobile particle is L/(2NI). Thus, we would
reformulate the individual optimality conditions for a given MI or IM
transfer as

D t D t2
1 and

2
1,

L
N

L
N2 2I M

or upon simplifying these expressions
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2
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Hence, we choose all values of NI, NM, and Δt in the following
sections so as to satisfy these conditions.

4. Results

Next, we examine the effect of various modeling choices on the
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results of simulating the HMLS system via the miRPT algorithm. All
plots in this section depict final time results (5 years) within the domain
for relevant chemical species (and pH), corresponding to those from
Figs. 3 and 4 of Arora et al. (Arora et al., 2015), which are reproduced
in Fig. 2 for reference. The plots that correspond to [(Arora et al.,
2015), Fig. 3] depict final concentrations of key chemical markers,
including important aqueous ions, pH, and alkalinity, and they aim to
recreate experimental data from (Winowiecki, 2002). We obtained a
copy of the Winowiecki thesis (Winowiecki, 2002), which includes the
data that is used by (Arora et al., 2015). The data in the thesis include
two trials at two different sampling times, summer and fall of 2001, and
we portray all of this data in order to highlight its variability (note that
the two data scatters in (Arora et al., 2015) depict summer, trial 2 and

fall, trial 1). In Figs. 3, 6, and 8, we plot the data for pH, sulfate, Fe+2,
and Pb (plots (a) and (d)-(f), respectively); note however, that there are
not two trials for each sampling for pH, so only two data scatters are
shown in plot (a). The plots that correspond to [(Arora et al., 2015),
Fig. 4] depict the percentage difference between initial and final
amounts of three secondary iron species for which there is not data but
whose behavior would be affected by the presence of the previously-
mentioned aqueous ions.

The code used to generate the results is implemented in Fortran
using the Intel Fortran compiler version 16.0.1. Geochemical calcula-
tions are performed using the PhreeqcRM library (Parkhurst and
Wissmeier, 2015), compiled using OpenMP that takes advantage of the
natural parallelism of reaction calculations. The simulations were run

Fig. 2. (Top) Fig. 3 from Arora et al. (Arora et al., 2015), depicting key chemical markers. Note that, while the bottom right plot is labeled Pb+2, this should be Pb
(See (Sengör et al., 2007), Fig. 7(c) to confirm this). As well, while (b) is labeled as “alkalinity,” (Sengör et al., 2007) refer to this quantity as “bicarbonate alkalinity,”
and for this reason, we plot actual alkalinity in all of our subsequent plots, leading to the apparent discrepancy between our plots and (b), here. (Bottom) Fig. 4 from
Arora et al. (Arora et al., 2015). The percentage difference between the initial and final amount of the secondary iron species, after 5 years of simulation time, is
depicted. Used with permission.
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Fig. 3. FD base-case simulations with 40 cells for varying values of Δt. Final time concentrations (t=5 years) of key chemical markers and pH are shown in plots (a)-
(f) and percentage difference between initial and final amounts of secondary iron species is shown in plots (g)-(i). Data from (Winowiecki, 2002) is plotted against
simulated results for (a), (d)-(f). Note that (b) depicts alkalinity, whereas the plots labeled alkalinity in (Arora et al., 2015) (reproduced in Fig. 2) depict “bicarbonate
alkalinity.”
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on nodes of a Linux cluster running CentOS release 6.9. For reference,
using a 16-core node to run the base-case particle-tracking simulations
discussed in Section 4.2 with Δt=25920 s, employing 4000 mobile
particles (NM) and NI={40,100,400} immobile particles results in run
times of 52min, 2 h, and 7.75 h, respectively. All of the code used to
generate the results in this Section, including the data from
(Winowiecki, 2002), may be found at doi:https://doi.org/10.5281/
zenodo.3731275 (Schmidt, 2020).

4.1. Verification

We first verify that the results of Arora et al. (Arora et al., 2015) can
be recreated by implementing the FD simulation described in Section
3.1. The results of running FD simulations for values of Δt ranging three
orders of magnitude (corresponding to the time steps used in the Eu-
lerian models of (Arora et al., 2015)) are displayed in Fig. 3 and show
that, for this model, the length of the time step does not appear to result
in a significant difference in the results. All plots shown in Fig. 3 de-
monstrate nearly identical behavior and correspond closely to those
shown in Fig. 3 of (Arora et al., 2015) (reproduced here in Fig. 2). One

noticeable difference, however, is the appearance of slight changes in
the upper (x=0) boundary concentrations of nitrate (NO3

−, Fig. 3(c))
related to the chemistry calculations performed by phreeqcRM. Such
deviations occur, as the authors of (Arora et al., 2015) note in their
provided PHREEQC input file, because equilibrium is never reached for
nitrate under the conditions they consider. This is evidenced by the
discrepancy between initial/boundary concentrations and concentra-
tions within the domain at the x=0 boundary, the magnitude of which
appears to be highly dependent on time step length. Thus, a longer time
step results in more consumption of the nitrate entering at the upper
boundary, explaining the lower concentrations as the time step is in-
creased. The authors also note the same for sulfate (SO4

2−, Fig. 3(d)),
though the effects are less dramatic in these FD cases. The results shown
in Fig. 3 indicate that little error is induced in the chemistry calcula-
tions by choosing a time step in the given range, and, provided that it
does not introduce error in the transport calculations, we may consider
time step lengths in this range for PT simulations.
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4.2. Particle-tracking results for base-case model

Now that the FD simulations have been faithfully reproduced, we
will use the miRPT algorithm to model the HMLS system. We first verify
that the prior results are produced in the case of equally-spaced im-
mobile particles. Fig. 4 displays the results of PT simulations for im-
mobile particles that are equally-spaced across the domain and possess
the same initial concentrations as in the FD case. We compare these to
the finest time-discretization of the FD results, though they were similar
for all tested values of Δt. We find close agreement between most of the
PT simulations and the FD results, with the cases of
(NI,Δt)= ({40,100},25920) and (NI,Δt)= (400,{259,2592}) all dis-
playing nearly identical behavior. These PT simulations diverge from
the FD results in the case of nitrate and sulfate concentrations (NO3

−

and SO4
2−, Fig. 4(c) and (d), respectively). However, this difference is

attributable to the effect of the time step on the chemistry calculations,
as described in Section 4.1.

The other differences occur in the alkalinity (Fig. 4(b)), but are
relatively small. We note that the NI=400 simulations seem to resolve
a sharper gradient in Pb concentration at the upper boundary (x=0)
than the FD or NI={40,100} cases, with a smaller time step corre-
sponding to a sharper apparent gradient. The one simulation that shows
the most significant difference from the other PT simulations is the
(NI,Δt)= (400,25920) case, though these differences are still minor,
both in comparison to the FD simulation and the remaining PT simu-
lations. Overall, the PT and FD models yield highly comparable results.

4.3. Perturbation analysis for particle-tracking model

Next, we investigate the miRPT model described in Section 3.2
under two different perturbation approaches. We first study the effects
of perturbing the initial aqueous-phase concentrations stored on the
evenly-spaced immobile particles (Section 4.3.1), and later study per-
turbations of the spatial locations of the immobile particles (Section
4.3.2). See Fig. 5 for a conceptual depiction of these two perturbation
strategies, as compared to the unperturbed condition. The former ap-
proach introduces a level of variability into the initial distribution of
reactants without affecting the overall mixedness of the system (i.e., the
level of mixing by interaction with mobile species remains the same as
in the unperturbed case). Thus, these results should occupy a middle
ground between the unperturbed case and the spatially-perturbed case
in the subsequent section. Contrastingly, the latter approach is meant to
physically represent an irregular spatial distribution of solid species,
which can also be thought of as introducing a poorly-mixed condition to
the system. These spatial gaps between reactants will take time for
aqueous (mobile) species to traverse, delaying their contact with other
reactive species. The associated increase in travel time will lead to a
slowdown of reaction speed that should be apparent in the shape and
position of reaction fronts. We note that initial concentration pertur-
bation, considered in Section 4.3.1, is a method that can be achieved
similarly by using Eulerian methods. However, the position perturba-
tions, considered in Section 4.3.2, are not so easily achieved with grid-
based methods and represent a task to which particle-tracking methods
are uniquely suited. In both cases, we conduct an ensemble of 100
realizations in order to accurately capture the statistics of the results.

4.3.1. Perturbations of immobile particle initial concentrations
In this section, we employ equally-spaced immobile particles (as in

Section 4.2), but uniformly perturb the initial concentrations that are
stored on these particles. This is achieved by choosing an amount,
α∈ (0,1), and for each species i and immobile particle j, perturbing the
initial concentration C0ij according to a draw from a Uniform,
U +C C((1 ) , (1 ) )ij ij

0 0 , distribution. See Fig. 5(b) for a conceptual
depiction of this perturbation strategy. In other words, we perturb the
initial concentration by±100α%, and for the results of this section, we
have selected α=0.8. This value results in perturbations of relative
significance without the possibility of zero initial concentrations at any
particles, as zero concentrations cause errors with the geochemical
solver. For this analysis, we run simulations with
(NI,Δt)= (100,25920) and (NI,Δt)= (400,{2592,25920}). The results
for these levels of discretization were similar enough that we only de-
pict and discuss (NI,Δt)= (100,25920).

Fig. 6 shows the final time concentrations for each of the 100 rea-
lizations, and Fig. 7 shows the ensemble mean (blue markers) and±1
and±2 standard deviations of the concentration ensemble results
(yellow and orange error bars, respectively). In all plots, we compare to
the unperturbed solution of Section 4.2 (solid black line), and we also
show the data from (Winowiecki, 2002) in selected plots. So that we
may compare to the results in the following section, in which the po-
sitions of immobile particles were randomly chosen and differ for each
member of the ensemble, the ensemble mean and standard deviations

Fig. 5. Conceptual figures representing the miRPT method for the: (a) un-
perturbed case (Section 4.1); (b) perturbations of immobile particle initial
concentrations (CP) case (Section 4.3.1); and (c) perturbations of immobile
particle spatial positions (SP) case. In the unperturbed case, immobile particles
are evenly distributed in space, and all particles carry equivalent initial con-
centrations. In the CP case, initial concentrations are uniformly perturbed, but
immobile particles are still evenly spaced. In the SP case immobile particle
positions are uniformly perturbed, but initial concentrations are equal, as in the
unperturbed case.
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were computed by binning concentrations into equally-spaced bins. The
bin size is chosen such that at least one particle is in each bin, and this
resulted in 19 bins.

4.3.2. Perturbations of immobile particle spatial positions
In this section, we consider the effect of spatial perturbations to the

positions of immobile particles. To do this, we set the positions of im-
mobile particles according to random draws from a uniform distribu-
tion U (0.0, 0.4) and set the initial concentrations on each immobile
particle to be the same as in the previous, equally-spaced, case (see
Table 1). See Fig. 5(c) for a conceptual depiction of this perturbation
strategy. An ensemble of 100 realizations is then conducted, each with a
different spatial distribution of immobile particles. As in Section 4.3.1,
we perform simulations for (NI,Δt)= (100,25920) and (NI,Δt)= (400,
{2592,25920}), and find the combination (NI,Δt)= (100,25920) to be
sufficiently representative, so that we only depict and discuss those
results.

In Fig. 8, we plot a selection of 3 realizations out of the 100 con-
ducted (a plot depicting the full 100-member ensemble results may be
found at doi:https://doi.org/10.5281/zenodo.3731275 (Schmidt,
2020)), and we specifically choose these three realizations so as to

demonstrate the spatial variability that may be induced by this type of
perturbation. Fig. 9 depicts the ensemble mean (blue markers) and±1
and±2 standard deviations of the concentration ensemble results
(yellow and orange error bars, respectively). In all plots, we compare to
the unperturbed solution of Section 4.2 (solid black line), and we also
show the data from (Winowiecki, 2002) in selected plots. As mentioned
in the previous section, we bin the ensemble data into 19 equally-
spaced bins to compute the statistics plotted in Fig. 9.

5. Discussion

Here, we discuss the results of Section 4. Section 5.1 contains a
numerical perspective on the results generated by the two perturbation
methods presented in 4.3. For ease of discussion, we will refer to the
perturbations of immobile particle initial concentrations of Section
4.3.1 as the CP (concentration perturbation) case and the perturbations
of immobile particle spatial positions of Section 4.3.2 as the SP (spatial
perturbation) case. In contrast, Section 5.2 is a geochemical discussion
of the results.

Fig. 6. Ensemble results (100 realizations) for 100 equally-spaced immobile particles with randomly-perturbed initial concentrations and Δt=25920. Results of
individual simulations are depicted. Final time concentrations (t=5 years) of key chemical markers and pH are shown in plots (a)-(f) and percentage difference
between initial and final amounts of secondary iron species is shown in plots (g)-(i). Data from (Winowiecki, 2002) is plotted against simulated results for (a), (d)-(f).
Note that (b) depicts alkalinity, whereas the plots labeled alkalinity in (Arora et al., 2015) (reproduced in Fig. 2) depict “b”icarbonate alkalinity.”
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5.1. Numerical discussion of perturbation analysis

Inspection of Fig. 6 shows that the spread of the simulated results
for the CP results is relatively narrow. This is due to the fact that, while
the perturbations discussed in this section do create an initially noisy
distribution of reactants with areas of reactant scarcity, the overall
mixing present in the system is unaltered. Thus, the speed of reactions is
not substantially reduced, and final time concentrations are perturbed
symmetrically about the mean value of the unperturbed case, for the
most part. This behavior is more clearly evident in Fig. 7 where we see
very close match between the ensemble means and the unperturbed
case. The exception to this, present in nearly every plot, is that the
position of reaction fronts (spatial gradients) tends to be pushed up-
ward, or delayed, as compared to the unperturbed reference solution.
This indicates that the initial concentration perturbations do have a
measurable effect on mixing and reaction rates, though not as sig-
nificant as in the SP case.

Another behavior of interest observed in Fig. 6, is that the con-
centration curves for the different realizations are, for the most part,
parallel both to one another and to the reference unperturbed solution.
The exceptions to this generalization are Pb and FeS; Pb displays some

minor crossing of curves, while FeS displays highly oscillatory behavior.
In the case of FeS, the reason for this is most likely related to the ex-
tremely low initial concentration of aqueous sulfur (in the unperturbed
case, O=C (10 )0

Sulfur 28 ), and, as a result, any perturbation of this
quantity will magnify the amount of FeS that precipitates. As for Pb, we
first note that these fluctuations are reflected in the data shown in
Fig. 2(f), leading to the conclusion that this type of perturbation may be
more representative of the true conditions than the domain-wide con-
stant initial condition employed in the unperturbed case. Our ex-
planation for the observed behavior in Fig. 6(f) is related to the “shape”
of the concentration curve at the final time. It is the only species that
does not display a smooth reaction front that spans the domain and
instead contains inflection points (other than pH, but the behavior of
pH is much more smooth and tightly constrained). As such, slight shifts
in the position of the local maxima and minima of Pb (these can also be
thought of as local reaction fronts) can have magnified downstream
effects.

In the results plotted in Fig. 9, we see a much greater degree of
intra-ensemble concentration variability than that of Fig. 7. This in-
dicates that a perturbed spatial distribution of solid species has a
magnified impact on the results of HMLS reactive transport simulations,
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Fig. 7. Ensemble results (100 realizations) for 100 equally-spaced immobile particles with randomly-perturbed initial concentrations and Δt=25920. Final time
concentrations (t=5 years) of key chemical markers and pH are shown in plots (a)-(f) and percentage difference between initial and final amounts of secondary iron
species is shown in plots (g)-(i). Note that (b) depicts alkalinity, whereas the plots labeled alkalinity in (Arora et al., 2015) (reproduced in Fig. 2) depict “bicarbonate
alkalinity.”
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as compared to merely perturbing the initial concentrations. Fig. 9
shows that alkalinity, Pb, and Siderite are quite sensitive to these spa-
tial perturbations, and all display a high degree of variability
throughout the domain. Physically, this is due to several biotic reac-
tions that consume acetate and an electron donor (e.g., O2, NO3

−, Fe+3,
and SO4

−2) to produce bicarbonate, thereby increasing alkalinity. For
this reason, the primary electron donors, nitrate (NO3

−) and sulfate
(SO4

2−), display a similar degree of variability near the upper boundary
(x=0), and Fe+2 and Pb show a lesser degree of variability, also
mainly focused near the upper boundary. All species display the
greatest variability in concentration where large magnitude gradients,
or fronts, exist, likely because these fronts indicate regions in which a
given species is out of chemical equilibrium after diffusing some small
distance. A sufficiently large gap between immobile particles will slow
down reaction rates in that area because aqueous (mobile) species will
take time to travel some portion of this distance before they can become
“eligible” for reaction. Such reasoning also explains the greater varia-
bility in alkalinity, as compared to other quantities because it displays a

front that spans the entire domain at final time, while nitrate, sulfate,
Fe+2, and Pb are nearly constant throughout much of the domain.

One of the more important aspects of these SP simulations may be
observed most clearly in Fig. 9. In particular, for species that display
relatively stable final time behavior (e.g., pH, nitrate, sulfate, or ferri-
hydrite), their ensemble-mean value closely matches the unperturbed
solution. However, for species that display sharp gradients at final time,
the ensemble mean tends to lag behind the unperturbed solution (in
relation to the direction the species is traveling by diffusion), con-
firming that spatial gaps slow down reaction fronts.

Additionally, in Fig. 8, we see that the depicted concentration
curves are non-smooth, and do not parallel the unperturbed solution, as
they do in Fig. 6. This more closely approximates the noise and varia-
bility we see in the data, which is also non-smooth in space, within a
single sample. In fact, if we compare Figs. 6(f) and 8(f), we see that the
results in Fig. 8(f) more closely capture the oscillation and spread of the
data. As such, it is likely that the true distribution of solids involves a
spatially-perturbed condition that alters mixing, as in the SP case,
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Fig. 8. Selected ensemble results (3 out of 100 realizations–represented by blue, purple, and yellow markers) for 100 randomly-spaced immobile particles and
Δt=25920. Results of individual simulations are depicted. Final time concentrations (t=5 years) of key chemical markers and pH are shown in plots (a)-(f) and
percentage difference between initial and final amounts of secondary iron species is shown in plots (g)-(i). Data from (Arora et al., 2015) is plotted against simulated
results for (a), (d)-(f). Note that (b) depicts alkalinity, whereas the plots labeled alkalinity in (Arora et al., 2015) (reproduced in Fig. 2) depict “bicarbonate
alkalinity.”
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rather than just perturbed concentrations, as in the CP case.

5.2. Geochemical discussion

Even in the relatively simple geochemical system explored here,
heterogeneity can play a role in spatial distribution of geochemical
processes. Pb exhibits the greatest variation in aqueous concentrations
within the original data, likely due to the sorption of Pb to mineral and
organic surfaces controlling the concentrations. In the original mod-
eling of Arora et al. and the modeling performed here, ferrihydrite is the
only mineral surface Pb is allowed to sorb to, and ferrihydrite has a
homogeneous surface area. In natural systems, surface area of ferrihy-
drite can vary, and other mineral or organic surfaces may be available
for metal sorption. Adding additional heterogeneity in these parameters
may permit better fitting of the variations in concentrations, but the
model fits the general distributions with higher concentrations in the
subsurface, decreasing upward toward the water-sediment interface.
For all the parameters evaluated, the biggest differences between un-
perturbed and perturbed simulations are observed around the active
reaction front, where consumption of oxygen through acetate oxidation
changes redox conditions and drives reduction of aqueous Fe+3 and
subsequent dissolution of ferrihydrite. The cascading effect of hetero-
geneity on myriad geochemical processes in a single system is observed
in this case study as well. When comparing simulation results from the
unperturbed case and the immobile particle position perturbation case
(SP), alkalinity shows the largest deviation with higher alkalinity con-
centrations at depth>0.2 m in the perturbed case compared to the
unperturbed case (Fig. 8(b)). The higher concentrations of carbonate
ions at depth lead to more siderite precipitation (Fig. 8(i)). Carbonate is
produced from the oxidation of acetate, suggesting that more acetate is
oxidized and more oxygen is consumed when particles are distributed
heterogeneously (randomly) than when they are distributed homo-
geneously (evenly). As more oxygen is consumed, more iron is reduced
and more ferrihydrite dissolves, releasing Pb into solution and more
sulfate is reduced to HS− and leads to FeS precipitation (Fig. 8(h)).
Heterogeneous distribution of solid phases also impacts the positioning

of the reaction front–in this case with shallower reaction fronts where
minerals are heterogeneously distributed. These results highlight the
importance of considering heterogeneity in geochemical systems when
the spatial distributions of geochemical processes are important e.g.,
(Jung and Navarre-Sitchler, 2018a; Jung and Navarre-Sitchler, 2018b).

Finally, we address the issue of imperfect fit between model and
data, in terms of concentration magnitude (manifesting as horizontal
gaps between model plots and data scatters in the figures). This is at-
tributed to calibration of the geochemical parameters, and the same
result is present, identically, in the results of Arora et al. (Arora et al.,
2015) because we employ the same PHREEQC input file for conducting
geochemical calculations. Calibration of these parameters is not the
goal of this work, and is not something we focus on. We are primarily
interested in how the transport modeling conditions affect the results of
a geochemical model. As such, we see that, given a geochemical model
that fails to capture the variability in data, our perturbed model does
capture the variability caused by imperfect mixing conditions.

6. Conclusions

In this work, we have applied the miRPT algorithm of (Schmidt
et al., 2019) to model a benchmark reactive transport problem invol-
ving heavy metal cycling in lake sediments (the HMLS system). This
system was modeled using Eulerian methods in (Arora et al., 2015), and
those authors achieved favorable and nearly identical results for all
considered methods. However, the smooth curves produced by Eulerian
models fail to capture the variability inherent to the data (see Fig. 2). In
the unperturbed base case implementation (Section 4.2), we first re-
created the results of a corresponding Eulerian model with very close
match. The main differences are a varying resolution of sharp gradients
and differing boundary concentrations of nitrate and sulfate. The
former is typical of varying levels of discretization, and the latter is due
to the influence of time step length on the ability of these species to
reach equilibrium. As such, we conclude that the miRPT model, in the
unperturbed case, is capable of capturing the same behavior as a cor-
responding Eulerian model.
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Fig. 9. Ensemble results (100 realizations) for 100
randomly-spaced immobile particles and
Δt=25920. Concentrations are grouped into 19
bins, and mean values and error bars of± 1
and±2 standard deviations are depicted for each
bin. Final time concentrations (t=5 years) of key
chemical markers and pH are shown in plots (a)-(f)
and percentage difference between initial and final
amounts of secondary iron species is shown in
plots (g)-(i). Note that (b) depicts alkalinity,
whereas the plots labeled alkalinity in (Arora et al.,
2015) (reproduced in Fig. 2) depict “bicarbonate
alkalinity.”
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The primary focus herein was to investigate the impact of im-
perfectly-mixed reactants on the behavior of a complicated geochemical
system. Eulerian models are not as well suited to represent this kind of
physical heterogeneity because they can only do so by increasing dis-
cretization, leading to a more restrictive time step and a greater number
of expensive chemistry calculations during each time step. In contrast,
the Lagrangian model used in this work is uniquely suited to this task
because the number of chemistry calculations per time step can be fixed
by selecting the number of immobile particles within a simulation while
still increasing spatial resolution of aqueous species, practically for free,
by increasing the number of mobile particles that appear. To explore
the effects of imperfect mixing, we perturbed the representation of solid
species in our model using two different approaches. To demonstrate
the typical method for perturbing a reactive transport simulation, in
Section 4.3.1 we randomly varied the initial concentrations of reactants
on evenly-spaced immobile particles. This introduced a noisy initial
condition to the problem and can also be achieved using Eulerian
methods. The results of this perturbed experiment failed to capture the
variability and noise in the data (see Fig. 6), as the variation in results
was relatively minor, and most results smoothly parallel the un-
perturbed solution, which is closely captured by the ensemble mean.
This is because the concentration perturbations initially affect the state
of the system but are quickly mitigated over the course of the simula-
tion, and overall mixing in the system is not affected for large times.

The more interesting result is found in Section 4.3.2, wherein we
spatially perturbed simulations by randomly varying the positions of
immobile particles. This is a method that cannot be explored using
Eulerian methods because neighboring grid points communicate during
every time step, which makes it impossible to create the persistent
zones of poor mixing that are induced by spatial gaps between im-
mobile particles. To be clear, Eulerian methods can certainly employ a
stochastically-perturbed grid to mimic part of this behavior; however,
without the mobile particles that carry the reactants through space,
they will not fully capture this poor mixing due to reactant segregation.
Additionally, introducing the perturbations (of either sort) into the
particle-tracking simulations required no change to the algorithm,
while in the case of Eulerian models, this would be a signifcantly more
complicated endeavor than employing an equally-spaced grid. Finally,
in order to ensure the stability of a spatially-perturbed Eulerian simu-
lation, one would need to choose a time step length corresponding to
the smallest spacing in each grid realization, leading to unpredictable
and possibly prohibitive run times.

The results of the spatially-perturbed experiment are compelling
because we see much wider variation in the intra-ensemble results (see
Fig. 8), and this variance is an important feature of the data that neither
the single-solution Eulerian models, nor the alternative perturbation
method can fully capture. For this reason, the spatial perturbation
method captures an important real-world feature that is neglected by
other modeling and simulation methods. Specifically, we are able to
capture the slowdown in reaction speed that is induced by poorly-mixed
conditions. Ultimately, we conjecture, though it remains to be rigor-
ously proven, that the perturbations in immobile particle position
correspond mathematically to perturbations in the magnitude of dif-
fusion present in the system, a reasonable and necessary modeling
choice when trying to capture the irregular behaviors induced by the
inhomogeneity of porous media.
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