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Abstract. A one-dimensional, collisionless plasma given by the Vlasov-Poisson system is considered and
the stability properties of periodic steady state solutions known as Bernstein-Greene-Kruskal (BGK) waves
are investigated. Sufficient conditions are determined under which BGK waves are linearly unstable under
perturbations that share the same period as the equilibria. It is also shown that such solutions cannot
support a monotonically decreasing particle distribution function.

1 Introduction

A plasma is a partially or completely ionized gas, in which
the motion of unbound ions generates electric and mag-
netic fields that strongly affect individual particle motion.
When a plasma is of low density or the time scales of inter-
est are sufficiently small, it is deemed to be “collisionless”,
as collisions between particles become infrequent. Many
examples of collisionless plasmas occur in nature, includ-
ing the solar wind, galactic nebulae, and comet tails.

One fundamental, one-dimensional model of collision-
less plasma dynamics is given by a system of partial dif-
ferential equations known as the Vlasov-Poisson system:

∂tf + v∂xf − E∂vf = 0

∂xE = 1 −
∫
fdv.

⎫⎪⎬
⎪⎭ . (VP)

Here f = f(t, x, v) represents the distribution of electrons
in the plasma, while E = E(t, x) is the self-consistent elec-
tric field generated by ions and electrons. The independent
variables, t > 0 and x, v ∈ R represent time, position, and
velocity, respectively. Instead of studying a large collection
of ionic species interacting with the electrons, the density
of ions is given by a neutralizing background, normalized
to 1 in the equations above.

Of course, the study of plasmas has been an extremely
rich area within both the physics and applied mathematics
communities for decades. Early work regarding the stabil-
ity and instability of plasmas includes [1–6]. More recent

� Contribution to the Topical Issue “Theory and Applica-
tions of the Vlasov Equation”, edited by Francesco Pegoraro,
Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

a e-mail: pankavic@mines.edu

studies of one-dimensional plasma dynamics include [7–11]
while for general references regarding the Vlasov equation
and models in kinetic theory, such as (VP) and its elec-
tromagnetic counterpart, the Vlasov-Maxwell system, we
mention [12–14].

In the current study we are interested in the stability
properties of time-independent solutions of the system.
More specifically, we wish to study well-known steady
states called BGK waves. In 1957, Bernstein et al. [15]
showed the existence of an infinite family of exact solu-
tions to (VP) that have come to be known as BGK waves.
Since then, the stability or instability of these solutions
has been of great interest to the plasma physics and ap-
plied mathematics communities [10,16–19]. In particular,
recent experimental identifications of electrostatic solitary
waves in space plasmas have provided further justification
for the study the properties of such steady states. A BGK
wave is a steady solution of the form

f̊(x, v) = μ

(
1
2
v2 + φ(x)

)

E̊(x) = φ′(x)

⎫⎪⎬
⎪⎭ (1)

where φ is a periodic solution of

φ′′(x) = 1 −
∫
μ

(
1
2
v2 + φ(x)

)
dv. (2)

In reference [9] the stability properties of such solutions to
(VP) were studied. There it was determined that any BGK
wave is linearly unstable with respect to multi-periodic
perturbations, that is, perturbations whose periods are
integer multiples (2 or greater) of the period of the steady
state φ. Unfortunately, such a general result in the singly-
periodic case, in which the perturbation and BGK wave
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possess the same period, remains unknown and does not
seem likely. As the author states in reference [9], one can-
not hope that all periodic BGK waves are unstable with
respect to such perturbations. Instead, the stability prop-
erties may depend delicately on the specific BGK wave
of interest. To date little information regarding this ques-
tion is known, though some results concerning weakly-
inhomogeneous solutions have been obtained [18,19]. The
main focus of our paper, then, is to determine sufficient
conditions under which these BGK waves (μ, φ) are lin-
early unstable due to singly-periodic perturbations.

As Lin constructed a strong framework for studying
the problem, we will follow many of the assumptions and
previous results developed in reference [9]. To be pre-
cise, we make the following assumptions on the BGK
waves (1)–(2) throughout:

(i) μ ∈ C1(R) is nonnegative.
(ii) μ satisfies the condition of neutrality, i.e.

∫
μ

(
1
2
v2

)
dv = 1.

(iii) μ′ decays at infinity, i.e. there is γ > 1 and C > 0
such that

|μ′(y)| ≤ C

1 + |y|γ .

(iv) We arrange the period of φ in a specific manner. Let
Pφ be the minimal period of the solution φ from (2)
so that

φ(x) = φ(x+ Pφ)

for every x ∈ R and define the quantities

φ− = min
x∈[0,Pφ]

φ(x)

φ+ = max
x∈[0,Pφ]

φ(x).

Then, without loss of generality we may rearrange
the starting point to impose conditions on the values
of φ so that it satisfies:

φ(0) = φ(Pφ) = φ+,

φ

(
Pφ

2

)
= φ−,

φ(x) = φ(Pφ − x), ∀x ∈ [0, Pφ].

Additionally, without loss of generality we can take
φ to be strictly decreasing on the interval

[
0, Pφ

2

]
.

With this structure in place, we will show that (2) cannot
possess solutions for which μ is strictly decreasing. More
importantly, we will show in subsequent sections that,
while one cannot hope that all such solutions to (1)–(2)
are linearly unstable with respect to Pφ-periodic perturba-
tions, conditions do exist which guarantee their instability
at the linear level. To be more precise further definitions
are needed. For μ given above we define the function

q(x) =
∫
μ′

(
1
2
v2 + φ(x)

)
dv

and let λ0 < 0 be the smallest eigenvalue, with corre-
sponding first eigenfunction ψ0 ∈ H2(0, Pφ), of the Sturm-
Liouville [20] problem

ψ′′(x) + (q(x) + λ)ψ(x) = 0

with ψ(0) = ψ(Pφ) = 0. We will prove that if q satisfies

∫ 1
2Pφ

0

(q(x) + λ0)
(
q(x) +

4
3
λ0

)
|ψ0(x)|4dx < 0 (v)

the BGK wave (μ, φ) must be linearly unstable with re-
spect to perturbations of period Pφ. In particular, this
demonstrates that for a BGK wave to be stable, the val-
ues of q cannot be essentially localized within the interval
[−λ0,− 4

3λ0]. Our main results will be stated precisely in
the next section, after deriving the specific partial differ-
ential equations that a perturbation must satisfy.

2 Linearized perturbation equations
and main results

To begin this section, we first derive the system of PDEs
that perturbations of (VP) must satisfy so that we may
study their behavior. To determine the stability properties
of these solutions we consider the initial value problem
with time dependent perturbations of the form:

f(t, x, v) = μ

(
1
2
v2 + φ(x)

)
+ F (t, x, v)

E(t, x) = φ′(x) + β(t, x).

Using these quantities in (VP) yields equations for the
perturbations, namely

∂tF + vφ′μ′ + v∂xF − (φ′ + β)vμ′ − (φ′ + β)∂vF = 0

φ′′ + ∂xβ = 1 −
∫
μ(e)dv −

∫
F (t, x, v)dv.

Since (μ, φ) is a time-independent solution to (VP), these
equations simplify and we arrive at

∂tF + v∂xF − φ′∂vF = vβμ′ + β∂vF

∂xβ = −
∫
Fdv

⎫⎪⎬
⎪⎭ . (3)

Notice that the system of partial differential equations (3)
is nonlinear due to the appearance of the β∂vF term. We
focus on studying the linearized system, so we remove this
term, which yields

∂tF + v∂xF − φ′∂vF = vβμ′

∂xβ = −
∫
Fdv

⎫⎪⎬
⎪⎭ (4)

for unknown perturbations of both the distribution func-
tion F (t, x, v) and the field β(t, x). This linearized sys-
tem of PDE then constitutes the equations under study.

http://www.epj.org


Eur. Phys. J. D (2014) 68: 363 Page 3 of 7

Thus, the main question of interest is whether solutions
(F, β) tend to zero over long times, thereby leading the
solution (f,E) of (VP) to tend to the BGK waves, or
whether solutions to (4) may remain large over time,
thereby causing f and E to stay far from equilibrium.
Our first result shows that exponentially growing and de-
caying modes of (4) must occur in pairs of opposite sign.

Theorem 1. Let λ ∈ R be given. Then, equation (4) pos-
sesses a solution of the form

F (t, x, v) = eλtF(x, v)

β(t, x) = eλtΨ(x)

if and only if it possesses a solution of the form

F (t, x, v) = e−λtF(x,−v)
β(t, x) = e−λtΨ(x).

Proof (Theorem 1). The result of the theorem follows from
the time-reversible Hamiltonian nature of (4) (see [21] for
a more general result concerning the Vlasov equation). In
this case, we merely utilize the specific forms of solutions
to the linearized equation. Namely, using

F (t, x, v) = eλtF(x, v)

β(t, x) = eλtΨ(x)

within (4), we see that this is a solution if and only if

λF(x, v) + v∂xF(x, v) − φ′∂vF(x, v) = −ψ′vμ′

ψ′′(x) =
∫

F(x, v)dv

⎫⎪⎬
⎪⎭ . (5)

Next, we instead impose

F (t, x, v) = e−λtF(x,−v)
β(t, x) = e−λtΨ(x)

within (4) and find

−λF(x,−v) + v∂xF(x,−v) + φ′∂vF(x,−v) = −ψ′vμ′

ψ′′(x) =
∫

F(x,−v)dv.

Then, writing w = −v in the first equation and removing
a negative sign in front of each term, we find

λF(x,w) + w∂xF(x,w) − φ′∂vF(x,w) = −ψ′wμ′

which is identical to the first equation of (5) under the
relabeling w = v. Changing variables using w = −v within
the integral of the second equation then yields the second
equation of (5). Therefore, the two solutions satisfy the
same system of equations, and the proof is complete.

Therefore, one cannot expect asymptotic stability of
solutions as all decaying modes must give rise to a growing
mode. We note, however, that Theorem 1 does not guar-
antee the existence of either solution, and this is the focus
of the remainder of the paper. Our main result concern-
ing the linear instability of periodic BGK waves (1)–(2),
is stated precisely in the following theorem.

Theorem 2. Let f̊ and E̊ be the periodic BGK solutions
of (VP) described by (1) with period Pφ. Assuming condi-
tions (i)–(v), there is λ > 0 and a solution of the form

F (t, x, v) = eλtF(x, v)

β(t, x) = eλtΨ(x)

to the linearized perturbation equations (4) where F(·, v)
is a Pφ-periodic function for every v ∈ R, and Ψ = −ψ′
with ψ ∈ H2(0, Pφ).

Hence, there exists a growing mode for the linearized
perturbation equations with period Pφ, and from Theo-
rem 1 one can construct a corresponding decaying mode
from this solution, as well. Many authors have investi-
gated questions in this vein under specific conditions on
the function q, for instance, see references [22,23] for re-
sults concerning single-well and convex functions, respec-
tively. In the case of Theorem 2, the properties of q greatly
depend on the local behavior of the distribution function
μ and potential φ, and even for different single-well or
convex profiles, assumption (v) may be satisfied or fail to
hold. Regarding the proof, the main idea hinges on utiliz-
ing an equivalent formulation of the problem developed in
reference [9]. Prior to stating the lemma containing this
result, we first construct the characteristic curves for the
particles in (4). Hence, define the curves X(s, x, v) and
V (s, x, v), which we shall often abbreviate as X(s) and
V (s), respectively, as solutions of the system of ordinary
differential equations

∂X

∂s
= V (s, x, v),

X(0, x, v) = x,

∂V

∂s
= −φ′(X(s, x, v)),

V (0, x, v) = v

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
. (6)

From the definition of these curves, we can immediately
construct an invariant of the physical system, namely the
particle energy

e =
1
2
v2 + φ(x) =

1
2
V (s)2 + φ(X(s))

which is independent of the time variable s. This is ob-
tained by multiplying the equation for ∂V

∂s in (6) by V (s)
and expressing the remaining terms as a total derivative in
s. Throughout, we will denote both the particle energy and
the exponential function by e, leaving the reader to dif-
ferentiate between them due to context. For instance, we
will often write μ(e) in the future instead of μ(1

2v
2 +φ(x))

or μ(1
2V (s)2 + φ(X(s))) even though the three terms are

equivalent. With this in hand, we may now summarize
the previous work of [9] in the context of singly-periodic
perturbations of BGK waves.

Lemma 1 ([9]). Let λ > 0 be given. There exists a non-
trivial solution to (4) of the form

F (t, x, v) = eλtF(x, v)

β(t, x) = eλtΨ(x)
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if the functional L[ψ] defined by

L[ψ] : =
∫ Pφ

0

[
|ψ′(x)|2 −

∫
μ′(e)dv|ψ(x)|2

]
dx

+
∫ ∞

φ+

μ′(e)
1
Pf

(∫ Pφ

0

ψ(y)√
2(e− φ(y))

dy

)2

de

+ 2
∫ φ+

φ−
μ′(e)

1
Pt

(∫ Pφ−α

α

ψ(y)√
2(e− φ(y))

dy

)2

de,

satisfies L[ψ] < 0 for some ψ ∈ H1(0, Pφ). Here, α ∈[
0, 1

2Pφ

]
is the unique point in the interval such that

φ(α) = e, for a given e ∈ [φ−, φ+], while

Pf =
∫ Pφ

0

1√
2(e− φ(y))

dy,

Pt =
∫ Pφ−α

α

1√
2(e− φ(y))

dy.

Additionally, F and Ψ are given by

F(x, v) = μ′(e)
(∫ 0

−∞
λeλsψ

(
X(s)

)
ds− ψ(x)

)
(7)

and Ψ = −ψ′, where where X(s) is the spatial solution of
the characteristic equations (6).

We refer the reader to reference [9] for the details of
the proof, but we can also briefly sketch the main ideas.
More specifically, utilizing the form of a growing mode
solution (F, β) from Theorem 2 within the linearized per-
turbation equations, it is a straightforward computation
to show that (4) has a solution if and only if Aλψ = 0 for
an associated family of Hermitian dispersion operatorsAλ.
With this, [9] proves the continuity of Aλ with respect to
λ > 0 and positivity of Aλ as λ → +∞, while the condi-
tion of Lemma 1, namely L[ψ] < 0, guarantees that Aλ is
negative as λ→ 0+. Hence, an application of the Interme-
diate Value Theorem then implies the existence of a value
of λ > 0 for which Aλψ = 0. To keep technical details
to a minimum, we will omit a complete description of the
dispersion operator Aλ and focus instead on proving the
condition L[ψ] < 0.

Figure 1 contains a representation of the periodic wave
φ and displays the associated periods of the particles oc-
curring within L[ψ]. In view of Lemma 1, we can now see
that the sign of μ′(e) may play a large role in the stability
of solutions. For instance, if μ′(e) ≤ 0 for e ∈ [φ−,∞) one
could guarantee the last two expressions in L[ψ] remain
non-positive while choosing ψ to minimize the first inte-
gral. However, as we will show, BGK waves cannot support
such distribution functions, meaning μ′(e) cannot remain
non-positive for all energies e ∈ [φ−,∞).

Theorem 3. Assume conditions (i)–(iv) hold and the
BGK wave (μ, φ) satisfies (2), then

q(x) =
∫
μ′

(
1
2
v2 + φ(x)

)
dv > 0

for some x ∈ [0, Pφ]. In particular, μ cannot satisfy
μ′(e) ≤ 0 for all e ∈ [φ−,∞).

e � Φ�

Φ�x�

Φ��e�Φ�

e � Φ�Α� � Φ�PΦ�Α�

Α PΦ�Α
1
2 PΦ PΦ

x

Φ�

Φ�

Fig. 1. A representative graph of the potential φ(x) for the
BGK waves of (1)–(2). The particles are divided into free parti-
cles (with period Pf ), whose energy lies completely above the
dashed line (e > φ+) and hence above the graph of φ, and
trapped particles (with period Pt), whose energy lies on or be-
low the dashed line (φ− ≤ e ≤ φ+) and intersects the graph
of φ. For the latter, the symmetry of φ implies that the dotted
line denoting the particle energy must intersect the graph of φ
in exactly two points within the interval [0, Pφ]. One of these
points (denoted by α) must be less than 1

2
Pφ and the other, at

the reflected point Pφ − α, must be greater than 1
2
Pφ.

We remark that the second statement of the the the-
orem regarding the non-monotonicity of μ(e) has been
shown before within [24,25]. Hence, the signs of the com-
plicated terms in the representation of Lemma 1 depend
very delicately on the behavior of μ′(e). Regardless, we
can eliminate this difficulty by utilizing the BGK waves
and their symmetry to prove Theorem 2.

Proof (Theorem 2). Since the latter terms in the represen-
tation of L[ψ] are complicated, we will construct a specific
choice of ψ ∈ H1(0, Pφ) for which the first piece is neg-
ative and use symmetry to eliminate the contribution of
the last two expressions. To begin, recall (2):

φ′′(x) = 1 −
∫
μ(e)dv.

We take an x-derivative to find

φ′′′(x) = −
(∫

μ′(e)dv
)
φ′(x)

or
φ′′′(x) + q(x)φ′(x) = 0.

Hence, the function u = φ′ satisfies the Sturm-Liouville
problem

u′′(x) + (q(x) + λ)u(x) = 0
u(0) = u(Pφ) = 0

for u ∈ H2(0, Pφ) with corresponding eigenvalue λ = 0.
However, φ attains a maximum at 1

2Pφ and possesses no
other critical points on (0, Pφ). Thus, φ′(1

2Pφ) = 0 and
because φ′ has exactly one root in (0, Pφ), it must be the
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second eigenfunction [20]. Therefore, there exists a first
eigenfunction u0 ∈ H and eigenvalue λ0 < 0 such that

u′′0(x) + (q(x) + λ0)u0(x) = 0 (8)

and u0(0) = u0(Pφ) = 0. Using the symmetry of q, namely
q(Pφ − x) = q(x) for every x ∈ [0, Pφ], we see that the
function ũ0(x) : = u0(Pφ − x) is also a solution of the
Sturm-Liouville problem with the same eigenvalue. Due
to uniqueness of solutions, it follows that there is C ∈ R

such that u0(x) = Cu0(Pφ − x). Evaluating this at the
point x = 1

2Pφ, we see that either C = 1 or u0(1
2Pφ) = 0.

As u0 is the first eigenfunction, it has no roots in (0, Pφ).
Thus, C = 1 and u0(x) = u0(Pφ−x). Since u0 ∈ H2(0, Pφ)
we may take a derivative of this relationship and find that
u′0 satisfies the symmetry condition u′0(Pφ − x) = −u′0(x)
for every x ∈ [0, Pφ]. With these functions in place, define
ψ(x) = u0(x)u′0(x) for x ∈ [0, Pφ]. Using the aforemen-
tioned properties of u0 and u′0, we see that ψ satisfies

ψ(0) = ψ(Pφ) = 0

with ψ(Pφ − x) = −ψ(x) for all x ∈ [0, Pφ]. In addition, ψ
can be extended to the whole space in a smooth manner
by imposing Pφ-periodicity since

ψ′(Pφ) = |u′0(Pφ)|2 + u0(Pφ)u′′0 (Pφ)

= |u′0(Pφ)|2
= |u′0(0)|2
= |u′0(0)|2 + u0(0)u′′0(0)

= ψ′(0).

As u0 ∈ H2(0, Pφ), we see that ψ ∈ H1(0, Pφ) and
is smooth at the endpoints. Furthermore, this function
satisfies

|ψ′|2 − q|ψ|2 = |(u′0)2 + u0u
′′
0 |2 − q|u0u

′
0|2

=
∣∣(u′0)2 − (q + λ0)(u0)2

∣∣2 − q|u0u
′
0|2

= |u′0|4 − 2(q + λ0)|u0u
′
0|2

+ (q + λ0)2|u0|4 − q|u0u
′
0|2

= |u′0|4 − 2λ0(u0u
′
0)

2 + (q + λ0)2|u0|4
− 3q|u0u

′
0|2.

Finally, we compute each portion of the representation
given in Lemma 1. For the first integral, we have

∫ Pφ

0

[
|ψ′(x)|2 − q(x)|ψ(x)|2

]
dx

=
∫ Pφ

0

[
|u′0|4−2λ0|u0u

′
0|2+(q+λ0)2|u0|4−3q|u0u

′
0|2

]
dx.

For the first term of the integral, we integrate by parts
and use (8) to yield

∫ Pφ

0

|u′0(x)|4dx =
∫ Pφ

0

(
d

dx
u0(x)

)
(u′0(x))

3dx

= −3
∫ Pφ

0

u0(x)|u′0(x)|2u′′0(x)dx

= 3
∫ Pφ

0

(q(x) + λ0)|u0(x)u′0(x)|2dx.

Notice here that we have utilized the conditions
u0(0) = u0 (Pφ) = 0 to eliminate boundary terms arising
from integration by parts. Hence, we find

∫ Pφ

0

[|ψ′(x)|2 − q(x)|ψ(x)|2] dx
=

∫ Pφ

0

[
λ0|u0u

′
0|2 + (q + λ0)2|u0|4

]
dx.

The first term of this expression can be simplified further
by multiplying (8) by u3

0 and integrating so that

∫ Pφ

0

(q(x) + λ0)|u0(x)|4dx = −
∫ Pφ

0

u′′0(x)(u0(x))3dx

=
∫ Pφ

0

u′0(x)
d

dx

[
(u0(x))3

]
dx

= 3
∫ Pφ

0

|u′0(x)u0(x)|2dx.

Using this along with the even symmetry about 1
2Pφ of

|u0|4 and q, the first piece of the representation satisfies

∫ Pφ

0

[
|ψ′(x)|2 − q(x)|ψ(x)|2

]
dx

=
∫ Pφ

0

[
1
3
λ0(q + λ0)|u0|4 + (q + λ0)2|u0|4

]
dx

=
∫ Pφ

0

(q + λ0)
(
q +

4
3
λ0

)
|u0|4dx.

Now, since ψ is odd about 1
2Pφ, the remaining terms in

the representation of Lemma 1 will vanish. More precisely,
for every e ∈ [φ+,∞) we have

∫ Pφ

0

ψ(y)√
2(e− φ(y))

dy = 0 (9)

and for every e ∈ [φ−, φ+] we have

∫ Pφ−α

α

ψ(y)√
2(e− φ(y))

dy = 0. (10)
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To prove (9), we first decompose the integral into the re-
flected components of ψ,

∫ Pφ

0

ψ(y)√
2(e− φ(y))

dy =
∫ 1

2Pφ

0

ψ(y)√
2(e− φ(y))

dy

+
∫ Pφ

1
2Pφ

ψ(y)√
2(e− φ(y))

dy

= I + II.

Now, computing term II, we change variables z = Pφ − y
and use the symmetry of ψ and φ from (iv) to demonstrate
the cancellation of these terms, so that

II =
∫ Pφ

1
2Pφ

−ψ(Pφ − y)√
2(e− φ(y))

dy

= −
∫ 1

2 Pφ

0

ψ(z)√
2(e− φ(Pφ − z))

dz

= −
∫ 1

2 Pφ

0

ψ(z)√
2(e− φ(z))

dz

= −
∫ 1

2 Pφ

0

ψ(z)√
2(e− φ(z))

dz

= −I.
Hence, adding these terms yields (9). Turning to the justi-
fication of (10), we again divide the interval of integration
about the midpoint 1

2Pφ. Using the symmetry and period-
icity of φ and u, we perform the same change of variables
as above to find
∫ Pφ−α

1
2Pφ

ψ(y)√
2(e− φ(y))

dy = −
∫ Pφ−α

1
2 Pφ

ψ(Pφ − y)√
2(e− φ(y))

dy

= −
∫ 1

2Pφ

α

ψ(z)√
2(e− φ(Pφ − z))

dz

= −
∫ 1

2Pφ

α

ψ(z)√
2(e− φ(z))

dz.

Hence, we conclude (10) by adding these terms.
Finally, from these computations and in view of as-

sumption (v), we find

L[ψ] =
∫ Pφ

0

[
|ψ′(x)|2 −

∫
μ′(e)dv|ψ(x)|2

]
dx

+
∫ ∞

φ+

μ′(e)
1
Pf

(∫ Pφ

0

ψ(y)√
2(e− φ(y))

dy

)2

de

+ 2
∫ φ+

φ−
μ′(e)

1
Pt

(∫ Pφ−α

α

ψ(y)√
2(e− φ(y))

dy

)2

de

= 2
∫ 1

2Pφ

0

(q(x) + λ0)
(
q(x) +

4
3
λ0

)
|u0(x)|4dx < 0.

which proves the main result.

Finally, we conclude with the proof of Theorem 3.

Proof (Theorem 3). Let μ ∈ C1 and φ ∈ C2 satisfying

φ′′(x) = 1 −
∫
μ

(
1
2
v2 + φ(x)

)
dv (11)

and assumptions (i)–(iv) be given. We will take advantage
of the regularity of these functions. Assume q(x) ≤ 0 for
all x ∈ [

0, 1
2Pφ

]
. Using (11), we see that the regularity of

the right side implies that φ ∈ C3 and

φ′′′(x) = −q(x)φ′(x).
Because q assumes only negative values, we see that φ′′′(x)
and φ′(x) must have the same sign for all x ∈ [

0, 1
2Pφ

]
.

From (iv), φ is strictly decreasing on the interval [0, 1
2Pφ]

with a maximum and minimum at φ(0) and φ
(

1
2Pφ

)
, re-

spectively. Thus, φ′(0) = φ′(1
2Pφ) = 0 and φ′(x) < 0

on the interval
(
0, 1

2Pφ

)
. Therefore, φ′′′ ≤ 0 on

(
0, 1

2Pφ

)
and thus φ′′ is decreasing on

(
0, 1

2Pφ

)
. However, from the

above conditions on φ′, we see that φ′ must transition from
decreasing to increasing on some subinterval of

(
0, 1

2Pφ

)
,

and this implies that φ′′ must transition from negative
values to positive values on the same subinterval. Clearly
such a transition cannot occur if φ′′(x) is decreasing for ev-
ery x ∈ (

0, 1
2Pφ

)
and we arrive at a contradiction. There-

fore, there exists x ∈ [
0, 1

2Pφ

]
such that

q(x) =
∫
μ′

(
1
2
v2 + φ(x)

)
dv > 0.

Additionally, this condition cannot be satisfied for any μ
with μ′(e) ≤ 0 for all e ∈ [φ−,∞) and this completes the
proof.

3 Conclusion

In summary, specific conditions were determined that
guarantee the linear instability of periodic BGK waves
for the one-dimensional Vlasov-Poisson system. This re-
sult then limits the variety of BGK waves which may be
stable under singly-periodic perturbations. In particular,
our main results demonstrate that for a BGK wave to be
stable, specific values of a quantity involving the derivative
of the particle distribution function cannot be essentially
localized within a given interval. While this sheds some
light on the nature of BGK waves, it remains unknown
as to whether they are stable or unstable with respect
to general perturbations which share their period. Hence,
it seems that the stability properties of these solutions
greatly depend on the local behavior of the distribution
function and potential. Additionally, it was shown that
modes of the linearized system occur in pairs of opposite
sign, thereby displaying that for every perturbation that
decays exponentially in time there must be a correspond-
ing perturbation that grows exponentially in time. Finally,
it was shown that the particle distribution function cannot
be monotonically decreasing for all energy values, which
also limits the stability properties of these waves.

http://www.epj.org
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