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1. Introduction

A plasma is a partially or completely ionized gas. Nearly all (approximately 99.9%) of the
matter in the universe exists in the state of plasma, as opposed to a solid, fluid, or a gaseous
state. Such a form of matter occurs if the velocity of individual particles in a material
achieves an enormous magnitude, perhaps a sizable fraction of the speed of light. Hence all
matter, if heated to a significantly great temperature, will enter a plasma state. In terms
of practical use, plasmas are of great interest to the energy, aeronautical, and aerospace
industries among others, as they are used in the production of electronics, (plasma) engines,
and lasers, as well as, in harnessing the power of nuclear energy. Plasmas are widely used
in solid state physics since they are great conductors of electricity due to their free-flowing
abundance of ions and electrons. When a plasma is of low density or the time scales of
interest are sufficiently small, it is deemed to be “collisionless”, as collisions between particles
become infrequent. Many examples of collisionless plasmas occur in nature, including the
solar wind, galactic nebulae, the Van Allen radiations belts, and comet tails.

The fundamental equations which describe the time evolution of a collisionless plasma
are given by the Vlasov-Maxwell system:

(VM)



∂tf + v · ∇xf + (E + v ×B) · ∇vf = 0

ρ(t, x) =
∫
f(t, x, v) dv, j(t, x) =

∫
vf(t, x, v) dv

∂tE = ∇×B − j, ∇ · E = ρ

∂tB = −∇× E, ∇ ·B = 0.

Here, f represents the density of (positively-charged) ions in the plasma, while ρ and j are
the charge and current density, and E and B represent electric and magnetic fields generated
by the charge and current. The independent variables, t ≥ 0 and x, v ∈ R3 represent time,
position, and velocity, respectively, and physical constants, such as the charge and mass
of particles, as well as, the speed of light, have been normalized to one. In the presence
of large velocities, relativistic corrections become important and the corresponding system
to consider is the relativistic analogue of (VM), denoted by (RVM) and constructed by
replacing v with

v̂ =
v√

1 + |v|2
in the first equation of (VM), called the Vlasov equation, and in the integrand of the
current j. General references on the kinetic equations of plasma dynamics, such as (VM)
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and (RVM), include [4] and [8]. Over the past twenty-five years significant progress has
been made in the analysis of (RVM), specifically, the global existence of weak solutions
(which also holds for (VM); see [2]) and the determination of conditions which ensure global
existence of classical solutions (originally discovered in [5], and later in [6], and [1]) for the
Cauchy problem. Additionally, a wide array of information has been discovered regarding
the electrostatic versions of both (VM) and (RVM) - the Vlasov-Poisson and relativistic
Vlasov-Poisson systems, respectively. These models do not include magnetic effects within
their formulation, and the electric field is given by an elliptic, rather than a hyperbolic
equation. This simplification has led to a great deal of progress concerning the electrostatic
systems, including theorems regarding global existence, stability, and long-time behavior of
solutions; though a global existence theorem for classical solutions in the relativistic case
has remained elusive. Independent of these advances, many of the most basic existence and
regularity questions remain unsolved for (VM). The main difficulty which arises is the loss
of strict hyperbolicity of the kinetic system due to the possibility that particle velocities
v may travel faster than the propagation of signals from the electric and magnetic fields,
which do so at the speed of light c = 1.

Often a remedy to the lack of progress on such a problem is to reduce the dimensionality of
the system. Unfortunately, posing the problem in one-dimension (i.e., x, v ∈ R) eliminates
the relevance of the magnetic field as the Maxwell system decouples, yielding the one-
dimensional Vlasov-Poisson system:

(VP)


∂tf + v∂xf + E∂vf = 0

∂xE =
∫
fdv.

The lowest-dimensional reduction which includes magnetic effects is the so-called “one-and-
one-half-dimensional” system which is constructed by taking x ∈ R but v ∈ R2. Surprisingly,
the question of existence remains open even in this case. Thus, in order to study this
question, but keep the problem posed in a one-dimensional setting, we consider the following
nonlinear system of hyperbolic PDE:

(SVM)

{
∂tf + v∂xf +B∂vf = 0
∂tB + ∂xB = −

∫
f(t, x, v)dv.

Since the field equation in (SVM) is hyperbolic, we denote it with a magnetic field variable
B, as opposed to the electric field E of (VP) which satisfies an elliptic equation. Notice
that these equations retain the main difficulty of (VM), namely the interaction between
characteristic particle velocities v and constant field velocities c = 1. The system (SVM) is
supplemented by given initial data

(IC)
f(0, x, v) = f0(x, v),

B(0, x) = B0(x)

where f0 ∈ C1
c (R2) and B0 ∈ Lip(R). Here, t ≥ 0 is again time, x ∈ R is space, v ∈ R is

momentum (and velocity since the mass has been normalized), f = f(t, x, v) represents the
density of ions in phase space (x, v) over time, and B = B(t, x) is effectively a magnetic field.
We wish to prove the local-in-time existence of a unique solution in the space of Lipschitz
functions.

Theorem 1.1. There exists T > 0 and unique functions f ∈ Lip([0, T ] × R2), B ∈
Lip([0, T ]× R→ R) such that f and B satisfy (SVM) and (IC).
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1.1. Notation. In order to prove the theorem, we begin by defining the following norms.
For f ∈ C(R2), we define

‖f‖∞ = sup
x,v
|f(x, v)|.

Similarly for B ∈ C(R), we use

‖B‖∞ = sup
x
|B(x)|

where the norms on the domains R2 and R are distinguished by context. Furthermore, we
will use

‖f‖Lip = inf{c : |f(x, v)− f(y, u)| ≤ c
√
|x− y|2 + |v − u|2, ∀x, y, v, u ∈ R}

for any f ∈ Lip(R2) and the analogous definition for function which have domain R. Finally,
for any T > 0 and f ∈ C([0, T ];Lip(R2)) we define the norm

‖f‖L = sup
t∈[0,T ]

‖f(t)‖Lip.

Each will be utilized in the local existence proof to follow. Additionally, we define the
supremum of the velocity support of a given ion distribution by

Pf (t) := sup{|v| : ∃x such that f(t, x, v) 6= 0}.

Before beginning the proof of Theorem 1.1, we first derive some a priori estimates on
functions which satisfy (SVM) with (IC).

2. A priori bounds

We begin by estimating the magnetic field, assuming the ion distribution and initial data
are known in advance.

Lemma 2.1. Let T > 0, B0 ∈ Lip(R), and f ∈ Lip([0, T ] × R2) be given. Consider
B ∈ Lip([0, T ]× R) to be the unique solution of the linear Cauchy problem{

∂tB + ∂xB = −
∫
fdv

B(0, x) = B0(x).

then, for every t ∈ [0, T ]

(1) ‖B(t)‖∞ ≤ ‖B0‖∞ + 2
∫ t

0

Pf (s)‖f(s)‖∞ds

and

(2) ‖B‖L ≤ ‖B0‖Lip + 2‖f‖L
∫ T

0

Pf (s)ds.

Proof. We will use the method of characteristics. Let χ(s, t, x) : [0, T ] × [0, T ] × R → R
satisfy 

∂

∂s
χ(s, t, x) = 1

χ(t, t, x) = x.
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Then χ is linear in s and so it must satisfy χ(s, t, x) = s− t+ x. Using this we see

d

ds
B(s, s− t+ x) = ∂tB(s, s− t+ x) + ∂xB(s, s− t+ x)

= −
∫
f(s, s− t+ x, v)dv

= −
∫ Pf (s)

−Pf (s)

f(s, s− t+ x, v)dv

Integrating with respect to s from 0 to t yields

(3) B(t, x) = B(0, x− t)−
∫ t

0

∫ Pf (s)

−Pf (s)

f(s, s− t+ x, v)dvds.

Taking the supremum over all x ∈ R, we conclude

sup
x
|B(t, x)| ≤ sup

x
|B(0, x)|+ 2

∫ t

0

Pf (s) sup
x,v

f(s, x, v)ds

or

‖B(t)‖∞ ≤ ‖B0‖∞ + 2
∫ t

0

Pf (s)‖f(s)‖∞ds

which proves (1). Further, from (3)

B(t, x)−B(t, y) = B0(x−t)−B0(y−t)−
∫ t

0

∫ Pf (s)

−Pf (s)

(f(s, s− t+ x, v)− f(s, s− t+ y, v)) dvds

for every x, y ∈ R. So, taking x 6= y, we have

|B(t, x)−B(t, y)|
|x− y|

=
|B0(x− t)−B0(y − t)|

|x− y|
+
∫ t

0

∫ Pf (s)

−Pf (s)

|f(s, s− t+ x, v)− f(s, s− t+ y, v)|
|x− y|

dvds.

Since

|x− y| = |(x− t)− (y − t)| = |(s− t+ x)− (s− t+ y)|,

this yields

|B(t, x)−B(t, y)|
|x− y|

≤ ‖B0‖Lip +
∫ t

0

∫ Pf (s)

−Pf (s)

‖f(s)‖Lipdvds

≤ ‖B0‖Lip + 2
∫ t

0

Pf (s)‖f‖Lds

≤ ‖B0‖Lip + 2‖f‖L
∫ T

0

Pf (s)ds.

Taking the infemum over such values of x and y shows (2). �

With this result, we can now estimate the Lipschitz norms of the resulting characteristic
curves induced by the magnetic field.
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Lemma 2.2. Let T > 0 and B ∈ Lip([0, T ]×R) be given and define X,V ∈ Lip([0, T ]2×R2)
as the unique solutions to the system of ODEs with Cauchy data

∂

∂s
X(s, t, x, v) = V (s, t, x, v)

∂

∂s
V (s, t, x, v) = B(s,X(s, t, x, v))

X(t, t, x, v) = x

V (t, t, x, v) = v

then

(4) ‖X‖L + ‖V ‖L ≤ 2 [1 + T max{1, ‖B‖L}(‖X‖L + ‖V ‖L)] .

Proof. First observe from the characteristic ODEs

X(s, t, x, v) = x−
∫ t

s

V (τ, t, x, v)dτ

and

V (s, t, x, v) = v −
∫ t

s

B(τ,X(τ, t, x, v))dτ.

Thus, we have

X(s, t, x, v)−X(s, t, y, v) = x− y −
∫ t

s

(V (τ, t, x, v)− V (τ, t, y, v)) dτ,

X(s, t, x, v)−X(s, t, x, u) = −
∫ t

s

(V (τ, t, x, v)− V (τ, t, x, u)) dτ,

V (s, t, x, v)− V (s, t, y, v) = −
∫ t

s

(B(τ,X(τ, t, x, v))−B(τ,X(τ, t, y, v))) dτ,

and

V (s, t, x, v)− V (s, t, x, u) = v − u−
∫ t

s

(B(τ,X(τ, t, x, v))−B(τ,X(τ, t, x, u))) dτ.

Taking absolute values yields,

|X(s, t, x, v)−X(s, t, y, v)| = |x− y|+
∫ t

s

|V (τ, t, x, v)− V (τ, t, y, v)| dτ

≤ |x− y|(1 +
∫ t

s

‖V ‖Ldτ)

≤ |x− y|(1 + T‖V ‖L)

and similarly for the difference in v

|X(s, t, x, v)−X(s, t, x, u)| =
∫ t

s

|V (τ, t, x, v)− V (τ, t, x, u)| dτ

≤ |v − u|
∫ t

s

‖V ‖Ldτ

≤ |v − u|T‖V ‖L.
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We proceed analogously for the velocity characteristics, so that

|V (s, t, x, v)− V (s, t, y, v)| =
∫ t

s

|B(τ,X(τ, t, x, v))−B(τ,X(τ, t, y, v))| dτ

=
∫ t

s

|B(τ,X(τ, t, x, v))−B(τ,X(τ, t, y, v))|
|X(τ, t, x, v)−X(τ, t, y, v)|

· |X(τ, t, x, v)−X(τ, t, y, v)|dτ

≤ |x− y|
∫ t

s

‖B‖L‖X‖Ldτ

≤ T |x− y|‖B‖L‖X‖L,

and

|V (s, t, x, v)− V (s, t, x, u)| ≤ |v − u|+
∫ t

s

|B(τ,X(τ, t, x, v))−B(τ,X(τ, t, x, u))| dτ

≤ |v − u|(1 +
∫ t

s

‖B‖L‖X‖Ldτ)

≤ |v − u|(1 + T‖B‖L‖X‖L).

Adding the estimates on X together we find

‖X(s, t)‖Lip ≤ 1 + 2T‖V ‖L,

and taking the supremum over s and t,

‖X‖L ≤ 1 + 2T‖V ‖L.

We do the same for V , which gives us

‖V (s, t)‖Lip ≤ 1 + 2T‖B‖L‖X‖L,

and thus
‖V ‖L ≤ 1 + 2T‖B‖L‖X‖L.

Moreover, we combine the estimates on characteristics so that

‖X‖L + ‖V ‖L ≤ 2 [1 + T max{1, ‖B‖L}(‖X‖L + ‖V ‖L)]

and this completes the proof. �

Here, we note that characteristics will be abbreviated in the future as X(s) and V (s)
respectively. Thus, we will suppress their dependence on t, x, and v for brevity. Next, we
estimate that particle distribution assuming that the field is known.

Lemma 2.3. Let T > 0 and B ∈ Lip([0, T ]×R) be given. Define the characteristics X and
V as in Lemma 2.2 and let f ∈ Lip([0, T ]× R2) be the unique solution to{

∂tf + v∂xf +B∂vf = 0
f(0, x, v) = f0(x, v)

then for all t ∈ [0, T ]

(5) ‖f(t)‖∞ = ‖f0‖∞
and

(6) ‖f‖L ≤ ‖f0‖Lip(‖X‖L + ‖V ‖L).
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Proof. The former result follows from the conservation of ions along characteristics. Using
X and V , we may write the Vlasov equation as
d

ds
f(s,X(s), V (s)) = ∂tf(s,X(s), V (s))+V (s)∂xf(s,X(s), V (s))+B(s,X(s))∂vf(s,X(s), V (s)) = 0.

Integrating with respect to s from 0 to t we obtain,

f(t, x, v) = f(0, X(0), V (0)) = f0(X(0), V (0)).

Hence it follows,
‖f(t)‖∞ = ‖f0‖∞

Further, let us denote for fixed x, y, v, u ∈ R the quantity

R(t) =
√
|X(0, t, x, v)−X(0, t, y, u)|2 + |V (0, t, x, v)− V (0, t, y, u)|2.

Then, estimating the Lipschitz norm of f , we find
|f(t, x, v)− f(t, y, u)|√
|x− y|2 + |v − u|2

=
|f(0, X(0, t, x, v), V (0, t, x, v))− f(0, X(0, t, y, u), V (0, t, y, u))|

R(t)
R(t)
R(0)

≤ ‖f0‖Lip
|X(0, t, x, v)−X(0, t, y, u)|+ |V (0, t, x, v) + V (0, t, y, u)|

R(0)

≤ ‖f0‖Lip
|X(0, t, x, v)−X(0, t, y, u)|√

|x− y|2 + |v − u|2
+ ‖f0‖Lip

|V (0, t, x, v) + V (0, t, y, u)|√
|x− y|2 + |v − u|2

≤ ‖f0‖Lip · ‖X(0, t)‖Lip + ‖f0‖Lip · ‖V (0, t)‖Lip
whence

‖f(t)‖Lip ≤ ‖f0‖Lip‖X‖L + ‖f0‖Lip|V ‖L.
Taking the supremum over t ∈ [0, T ] gives (6). �

3. Local existence and proof of Theorem 1.1

Using the a priori estimates of the previous section, we can now begin to prove the
existence theorem. Since, f0 is given and has compact support, let R0, R1 > 0 be such that
supp(f0) ⊆ [−R0, R0] × [−R1, R1]. For f ∈ Lip([0, T ] × R2) we will refer to the following
properties:

(P1) f(0, x, v) = f0(x, v)

(P2) supp(f(t, ·, ·)) ⊆ [−R0 − 1, R0 + 1]× [−R1 − 1, R1 + 1], ∀t ∈ [0, T ]

(P3) ‖f‖L ≤ 4‖f0‖Lip.
For any T > 0, we define the function space

GT :=
{
f ∈ Lip([0, T ]× R2) : f satisfies (P1)− (P3)

}
.

Notice that GT is nonempty as the function f(t, x, v) = f0(x, v) for all t ∈ [0, T ] is certainly
an element of GT . We claim that when equipped with the norm, ‖f‖GT

= sup
t∈[0,T ]

‖f(t)‖∞,

GT is a complete, closed subset of the Banach space Lip([0, T ] × R2) for any T > 0. To
show this, all that must be demonstrated is that GT is complete. If we consider a Cauchy
sequence of functions fn in GT , because we are using the C0([0, T ] × R2) norm and that
space is complete, there exists a limit f ∈ C([0, T ]× R2) such that fn → f uniformly (i.e.,
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in the supremum norm). Certainly, f satisfies conditions (P1) - (P3). In addition, it follows
from Arzelá-Ascoli (cf. [7]) that the uniform limit of Lipschitz functions is also Lipschitz
and will share the same uniform Lipschitz constant as those in the sequence. Thus, f ∈ GT
and the subset is complete.

Next, we will construct a map φ : GT → Lip([0, T ]×R2) as follows. Given f ∈ GT define
B ∈ Lip([0, T ]× R) to be the unique solution of{

∂tB + ∂xB = −
∫
fdv

B(0, x) = B0(x).

From B, define g ∈ Lip([0, T ]× R2) as the unique solution to{
∂tg + v∂xg +B∂vg = 0
g(0, x, v) = f0(x, v)

and let the mapping φ be defined by φ(f) = g. In order to use the Contraction Mapping
Principle, we must prove that for every sufficiently small T > 0, we have φ : GT → GT and
φ is a contraction on this space. The following two lemmas do just this.

Lemma 3.1. There exists T ∗1 > 0 such that for any T ∈ (0, T ∗1 ) we have φ : GT → GT .

Proof. To show this we must show, ‖g‖L ≤ 4‖f0‖Lip and supp(f(t·, ·)) ⊆ [−R0 − 1, R0 +
1]× [−R1− 1, R1 + 1]. Notice that condition (P1) holds by construction of φ. From Lemma
2.3 we know

‖g‖L ≤ ‖f0‖Lip(‖X‖L + ‖V ‖L)

where X and V are the characteristics defined from B in Lemma 2.2. Using Lemma 2.2 we
can reduce the right side to knowledge of the Lipschitz norm of B since

‖X‖L + ‖V ‖L ≤ 2 [1 + T max{1, ‖B‖L}(‖X‖L + ‖V ‖L)] .

Now, utilizing Lemma 2.1 and the fact that f ∈ GT for some T > 0, we find

‖B‖L ≤ ‖B0‖Lip + 2‖f‖L
∫ T

0

Pf (s)ds

≤ ‖B0‖Lip + 2‖f‖LT (R1 + 1)

≤ ‖B0‖Lip + 8‖f0‖LipT (R1 + 1)

Let

T1 = min
{

1
4
,

1
4

[‖B0‖Lip + 2‖f0‖Lip(R1 + 1)]−1

}
.

Then, it follows from the bound on ‖B‖L that

‖X‖L + ‖V ‖L ≤ 2 +
1
2

(‖X‖L + ‖V ‖L)

on the interval [0, T1]. This implies ‖X‖L + ‖V ‖L ≤ 4 and we have,

‖g‖L ≤ 4‖f0‖Lip
where the ‖ · ‖L norm is taken over the interval [0, T1].

To show our support constraint is also satisfied, we compute for characteristics along
which g 6≡ 0,
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Pg(t) : = sup{|v| : ∃x ∈ R with g(t, x, v) 6= 0}
= sup{|v| : ∃x ∈ R with g(0, X(0, t, x, v), V (0, t, x, v)) 6= 0}
= sup{|v| : ∃x ∈ R with f0(X(0, t, x, v), V (0, t, x, v)) 6= 0}

If we invert our characteristics (see [4] for more details) and allow{
y = X(0, t, x, v)

w = V (0, t, x, v)

then it follows that {
x = X(t, 0, y, w)

v = V (t, 0, y, w).

Thus we conclude,

Pg(t) = sup{|V (t, 0, y, w)| : ∃y with f0(y, w) 6= 0}.

Using the definition of characteristics and integrating over [s, t] gives us

V (t, t, x, v)− V (s, t, x, v) =
∫ t

s

B(τ,X(τ, t, x, v))dτ

Taking t = 0 we have

V (0, 0, x, v)− V (s, 0, x, v) =
∫ 0

s

B(τ,X(τ, 0, x, v))dτ.

If we then let s = t this becomes

V (0, 0, x, v)− V (t, 0, x, v) = −
∫ t

0

B(τ,X(τ, 0, x, v))dτ

or

V (t, 0, x, v)− V (0, 0, x, v) =
∫ t

0

B(τ,X(τ, 0, x, v))dτ ≤
∫ t

0

‖B(τ)‖∞dτ

Hence, for all x, v ∈ R and any characteristics along which f0 6= 0, we have

|V (t, 0, x, v)| ≤ |V (0, 0, x, v)|+
∫ t

0

‖B(τ)‖∞dτ

If we take the supremum over all characteristics such that f0 6= 0 then we have

Pg(t) ≤ Pg(0) +
∫ t

0

‖B(τ)‖∞dτ

Utilizing (1) from Lemma 2.1 we find

‖B(t)‖∞ ≤ ‖B0‖∞ + 2
∫ t

0

Pf (s)‖f(s)‖∞ds.
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So, we consider t ∈ [0, T2] for some T2 > 0 to be determined and estimate the integral above
using (5), (P2), and (P3) since f ∈ GT∫ t

0

‖B(τ)‖∞dτ ≤
∫ t

0

(
‖B0‖∞ + 2

∫ τ

0

Pf (s)‖f(s)‖∞ds
)
dτ

≤
∫ T2

0

(
‖B0‖∞ + 2

∫ T2

0

Pf (s)‖f(s)‖∞ds

)
dτ

≤
∫ T2

0

(
‖B0‖∞ + 2

∫ T2

0

(R1 + 1)‖f0‖∞ds

)
dτ

≤ T2‖B0‖∞ + 2(T2)2(R1 + 1)‖f0‖∞.

We can then take T2 small enough such that T2‖B0‖∞ + 2T2(R1 + 1)‖f0‖ < 1, and because
g(0) = f0, we have

Pg(t) ≤ Pg(0) +
∫ t

0

‖B(τ)‖∞dτ

≤ R1 + 1.

Lastly, let T3 <
1

R1+1 . Since

d

ds
X(s, 0, x, v) = V (s, 0, x, v),

we take a characteristic X(s, t, x, v) along which g 6= 0 and find

X(t, 0, x, v) = X(0, 0, x, v) +
∫ t

0

V (s, 0, x, v)ds

≤ x+
∫ T3

0

(R1 + 1)ds

= x+ T3(R1 + 1)
≤ R0 + 1.

Finally, if we consider T ∗1 < min{T1, T2, T3} then all of the above statements must hold on
[0, T ∗1 ]. Thus, conditions (P2) and (P3) hold for g = φ(f) and for any T ∈ (0, T ∗1 ), we have
φ : GT → GT . �

Next, we show that the mapping we have constructed is indeed a contraction on GT for
T > 0 sufficiently small.

Lemma 3.2. There exists T ∗2 > 0 such that for any T ∈ (0, T ∗2 ), φ is a contraction on GT .

Proof. Let f1, f2 ∈ GT , Let Bi be the solution of{
∂tBi + ∂xBi = −

∫
fidv

Bi(0, x) = B0(x)

and define gi = φ(fi) for i = 1, 2. Then, as in Lemma 2.1, we can write

B1(t, x)−B2(t, x) = B1(0, x−t)−B2(0, x−t)−
∫ t

0

∫ R1+1

−R1−1

(f1(s, s− t+ x, v)− f2(s, s− t+ x, v)) dvds.
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Taking the absolute value and applying the triangle inequality,

|B1(t, x)−B2(t, x)| ≤ |B0(x− t)−B0(x− t)|+
∫ t

0

∫ R1+1

−R1−1

|f1(s, s− t+ x, v)− f2(s, s− t+ x, v)| dvds

≤
∫ t

0

∫ R1+1

−R1−1

‖(f1 − f2)(s)‖∞dvds

≤ 2(R1 + 1)
∫ t

0

‖(f1 − f2)(s)‖∞ds

and we conclude the uniform bound

(7) ‖(B1 −B2)(t)‖∞ ≤ 2(R1 + 1)T sup
s∈[0,T ]

‖(f1 − f2)(s)‖∞

for every t ∈ [0, T ]. Subtracting the g equations we see g1 − g2 satisfies,

∂t(g1 − g2) + v∂x(g1 − g2) +B1∂vg1 −B2∂vg2 = 0.

Adding and subtracting B2∂vg1,

∂t(g1 − g2) + v∂x(g1 − g2) +B1∂vg1 −B2∂vg1 +B2∂vg1 −B2∂vg2 = 0.

Rearranging we now have,

∂t(g1 − g2) + v∂x(g1 − g2) +B2∂v(g1 − g2) = −(B1 −B2)∂vg1.

Consider, the characteristics X2(s, t, x, v), V2(s, t, x, v) that satisfy

∂

∂s
X2(s, t, x, v) = V2(s, t, x, v)

∂

∂s
V2(s, t, x, v) = B2(s,X2(s, t, x, v))

X2(t, t, x, v) = x

V2(t, t, x, v) = v.

Then we write the equation for g1 − g2 as
d

ds
(g1 − g2)(s,X2(s, t, x, v), V2(s, t, x, v)) = −(B1 −B2)∂vg1(s,X2(s, t, x, v), V2(s, t, x, v))

Integrating over [0, t], this becomes

(g1 − g2)(t,X2(t, t, x, v), V2(t, t, x, v)) = (g1 − g2)(0, X2(0, t, x, v), V2(0, t, x, v))

−
∫ t

0

(B1 −B2)∂vg1(s,X2(s, t, x, v), V2(s, t, x, v))ds

But g1(0, x, v) = g2(0, x, v) = f0(x, v) so (g1 − g2)(0, x, v) = 0. Using this, the bound on
‖g1‖L from (P3), and (7) we have

|(g1 − g2)(t, x, v)| ≤
∫ t

0

|(B1 −B2)(s,X2(s, t, x, v))| · ‖g1(s)‖Lipds

≤
∫ T

0

‖(B1 −B2)(s)‖∞ · ‖g1‖Lds

≤ 2T 2(R1 + 1)‖g1‖L sup
s∈[0,T ]

‖(f1 − f2)(s)‖∞

≤ 8T 2(R1 + 1)‖f0‖Lip‖f1 − f2‖GT
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If we take T ∗2 <
1√

8(R1+1)‖f0‖Lip

, then we see for T < T ∗2 , t ∈ [0, T ], and for all x, v ∈ R,

|(g1 − g2)(t, x, v)| ≤ A‖f1 − f2‖GT

where A < 1. Thus it follows that

‖g1 − g2‖GT
≤ A‖f1 − f2‖GT

and φ : GT → GT is a contraction for all T ∈ (0, T ∗2 ). �

The last lemma is devoted to showing that no solutions of (SVM) other than the ones
that we construct can exist in Lip([0, T ]× R2).

Lemma 3.3. There exists at most one solution to (SVM), for (f,B) ∈ Lip([0, T ] × R2) ×
Lip([0, T ]× R) which satisfy the given initial conditions (IC).

Proof. Suppose that (f1, B1), (f2, B2) ∈ Lip([0, T ]×R2)×Lip([0, T ]×R) are two solutions
to our system. Define

f(t, x, v) := (f1 − f2)(t, x, v)
and

B(t, x, v) := (B1 −B2)(t, x, v).
Then we see

0 = ∂t(f1 − f2) + v∂x(f1 − f2) +B1∂vf1 −B2∂vf2

= ∂tf + v∂xf +B1∂vf1 −B2∂vf1 +B2∂vf2

= ∂tf + v∂xf +B∂vf1 +B2∂vf

If we let X2, V2 be characteristics satisfying

∂

∂s
X2(s, t, x, v) = V2(s, t, x, v)

∂

∂s
V2(s, t, x, v) = B2(s,X2(s, t, x, v))

X2(t, t, x, v) = x

V2(t, t, x, v) = v,

then we have
d

ds
(f(s,X2(s, t, x, v), V2(s, t, x, v)) = −(B∂vf1)(s,X2(s, t, x, v), V2(s, t, x, v)).

Integrating and using f(0, x, v) = f1(0, x, v)− f2(0, x, v) = 0 for every x, v ∈ R, we have

f(t, x, v) = f(0, X2(0, t, x, v), V2(0, t, x, v))

−
∫ t

0

B(s,X2(s, t, x, v))∂vf1(s,X2(s, t, s, v), V2(s, t, x, v))ds

≤ ‖f1‖L
∫ t

0

‖B(s)‖∞ds

Taking the supremum of both sides we see,

(8) ‖f(t)‖∞ ≤ ‖f‖L
∫ t

0

‖B(s)‖∞ds.

Subtracting the B equations we observe,

∂tB + ∂xB = −
∫
fdv
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and thus
d

ds
B(s, s− t+ x) = −

∫
f(s, s− t+ x, v)dv.

Integrating yields,

B(t, x) = B(0, x− t)−
∫ t

0

∫ Pf (s)

−Pf (s)

f(s, s− t+ x, v)dvds.

Because B(0, x) = B1(0, x)−B2(0, x) = B0(x)−B0(x) = 0 we find

(9) ‖B(t)‖∞ ≤ 2
∫ t

0

Pf (s)‖f(s)‖∞ ds.

Adding (8) and (9) we have,

‖f(t)‖∞ + ‖B(t)‖∞ ≤
∫ t

0

max{‖f‖L, 2Pf (s)} (‖f(s)‖∞ + ‖B(s)‖∞) ds

Since f ∈ Lip([0, T ] × R2) is uniformly bounded and both f1 and f2 inherit the compact
velocity support of f0, there is C > 0 such that

‖f(t)‖∞ + ‖B(t)‖∞ ≤ C
∫ t

0

(‖f(s)‖∞ + ‖B(s)‖∞) ds.

Applying Grönwall’s inequality (cf. [3]), we arrive at

‖f(t)‖∞ + ‖B(t)‖∞ ≤ 0.

So it must follow that f ≡ 0 and B ≡ 0, and thus f1 = f2 with B1 = B2. Hence, we see that
there can be at most one solution to (SVM) within the space of Lipschitz functions. �

We are now at the point where we can apply Lemmas 3.1, 3.2, and 3.3 in order to conclude
by the contraction mapping principal that Theorem 1.1 is true.

Proof of Theorem 1.1. Let T = min{T ∗1 , T ∗2 } and define G = GT . Then, we know from
Lemmas 3.1 and 3.2 that φ is a contraction on G. Because G is a complete, closed subset of
a Banach space, we may apply the contraction mapping principal and conclude that there
exist a unique f = f(t, x, v) ∈ G such that φ(f) = f. Let B = B(t, x) ∈ Lip([0, T ] × R be
the unique solution to

(10)

{
∂tB + ∂xB = −

∫
fdv

B(0, x) = B0(x).

Notice that by Lemma 2.2, since f ∈ Lip([0, T ] × R2), it follows that B is also Lipschitz.
Then, because g = φ(f) = f satisfies{

∂tg + v∂xg +B∂vg = 0
g(0, x, v) = f0(x, v),

we see that (f,B) satisfies

(SVM)

{
∂tf + v∂xf +B∂vf = 0
∂tB + ∂xB = −

∫
f(t, x, v)dv

and

(IC)

{
f(0, x, v) = f0(x, v)
B(0, x) = B0(x)
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where f is the fixed point and B is defined by (10). Further from Lemma 3.3 we know
that (f,B) is the only pair of Lipschitz functions that satisfy (SVM) and (IC). Thus, our
constructed solution is unique in this space. �

4. Conclusion

Future work for this topic includes justifying the existence and uniqueness of classical
solutions, f,B ∈ C1. Also of interest, is the question of global-in-time solutions. Finally,
we are also interested in showing that there are no steady state solutions except f = B ≡ 0
and determining the stability of the zero solution in different Lp norms.
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