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a b s t r a c t 

Traditional interpolation techniques for particle tracking include binning and convolutional formulas that use 

pre-determined (i.e., closed-form, parameteric) kernels. In many instances, the particles are introduced as point 

sources in time and space, so the cloud of particles (either in space or time) is a discrete representation of the 

Green’s function of an underlying PDE. As such, each particle is a sample from the Green’s function; therefore, 

each particle should be distributed according to the Green’s function. In short, the kernel of a convolutional 

interpolation of the particle sample “cloud ” should be a replica of the cloud itself. This idea gives rise to an 

iterative method by which the form of the kernel may be discerned in the process of interpolating the Green’s 

function. When the Green’s function is a density, this method is broadly applicable to interpolating a kernel density 

estimate based on random data drawn from a single distribution. We formulate and construct the algorithm 

and demonstrate its ability to perform kernel density estimation of skewed and/or heavy-tailed data including 

breakthrough curves. 
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. Introduction 

In many applications, discrete samples of a continuous, and poten-

ially complex, random process are generated as output, even though

 continuous solution is desired. Some examples are given by particle-

racking of passive solute transport (e.g., Fernàndez-Garcia and Sanchez-

ila, 2011; Pedretti and Fernàndez-Garcia, 2013; Siirila-Woodburn

t al., 2015; Carrel et al., 2018 ), reactive particle transport (e.g., Ding

t al., 2012; 2017; Schmidt et al., 2017; Sole-Mari et al., 2017; Sole-

ari et al., 2019; Sole-Mari and Fernàndez-Garcia, 2018; Benson et al.,

019; Perez et al., 2019; Engdahl et al., 2017; 2019 ), and Monte Carlo

nd Bayesian simulation (e.g., Taverniers et al., 2020 ). In short, many

f the quantities used by hydrologists are probability density functions

hat are constructed by users, even thought there is no concrete and

ccepted methodology for their construction. A long history of statis-

ical estimation has sought to best-fit some continuous density func-

ion to a sequence of random samples, including maximum likelihood

stimation ( Brockwell and Davis, 2016 ) and kernel density estimation

 Silverman, 1986 ). The former assumes a functional density form and

stimates its parameters, while the latter fits a continuous function to

iscrete data. Tests of functional fits or other statistical properties may

e conducted later. In hydrology (and many other sciences), the un-
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erlying processes being simulated may be sufficiently uncertain that a

unctional form for the density function cannot be assumed, and kernel

ensity estimation is preferred. 

Given a true underlying pdf 𝑓 ( 𝑥 ) , kernel density estimation is based

n the convolution-like interpolation (or extrapolation) of discrete ran-

om data { 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 } with some kernel function 𝐾( 𝑥 ) producing the

stimated pdf 

 ( 𝑥 ) = 

1 ∑𝑛 
𝑖 =1 𝑤 𝑖 

𝑛 ∑
𝑗=1 

𝑤 𝑗 

ℎ 𝑗 
𝐾 

( 

𝑥 − 𝑋 𝑗 

ℎ 𝑗 

) 

, (1)

here 𝑤 𝑗 are weights associated with data points 𝑋 𝑗 (which could be

rior “concentrations ” that come from binning), ℎ 𝑗 are “bandwidths ”

ssociated with the kernel applied at each data point, and 𝐾 is some pre-

etermined, non-negative function with the requirement ∫ 𝐾( 𝑥 ) 𝑑𝑥 = 1
i.e., 𝐾 is a pdf). For random samples, the weights are equal constants

hat cancel from expression Eq. (1) , resulting in a factor of 1∕ 𝑛 . The

ommon forms of 𝐾 are relatively simple (e.g., triangles or standard

aussians) and yield estimates of 𝑓 ( 𝑥 ) with different properties such as

egularity (i.e., number of derivatives) or compact support. Kernels that

re symmetric around 𝑥 = 0 are most commonly used (but certainly not

lways, see Hirukawa, 2018 ), inasmuch as the eventual form of 𝑓 ( 𝑥 ) ,
ncluding skewness or heavy tails, are unknown a priori . 
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It is well known that a pre-chosen kernel (such as a standard Gaus-

ian) does not perform well if all of the bandwidths are chosen to be the

ame size Silverman (1986) . Where data is more dense, the kernel band-

idths must be made smaller. This has led to “adaptive bandwidths ”

hat are adjusted based on the apparent or estimated density at the data

oints. Higher estimated density values at data points are given smaller

andwidths. But one may ask, should the functional form of the ker-

el also be adjusted based on the estimated density? We suggest (and

rovide evidence in Appendix C ) that the optimal kernel should be the

ame shape as the underlying true density, which is best estimated by

he interpolated density. But clearly, the estimated density changes if the

ernel shape changes, therefore an iterative procedure is required. We

efine this procedure in Section 3 after a brief review of kernel density

stimation in Section 2 . A series of examples are given in Sections 4 and

 , and we conclude in Section 6 . 

. Classical bandwidth selection 

Intuitively, one would like to choose a bandwidth as small as possi-

le, because the convolution adds the variance of the kernels to the data

tself. On the other hand, as ℎ → 0 , the kernels become delta functions

nd continuity of 𝑓 ( 𝑥 ) disappears. Additionally, the choice of ℎ 𝑖 will de-

end strongly on both the eventual shape of 𝑓 ( 𝑥 ) and the availability of

andom samples in any interval [ 𝑥, 𝑥 + Δ𝑥 ] . This has led to expressions

hat balance the bias and variance of the estimates ( Silverman, 1986 )

hat we review here and re-derive in Appendix A . A common place to

tart is to minimize the mean integrated squared error (MISE) between

he estimated and unknown, real densities given by 

ISE = 𝔼 
[ 
∫ ( 𝑓 ( 𝑥 ) − 𝑓 ( 𝑥 )) 2 𝑑𝑥 

] 
. (2)

aking the expectation inside the integral and realizing that the mean

quared error of an estimate is composed of squared bias and variance

erms, one finds 

 [( 𝑓 − 𝑓 ) 2 ] = ( 𝔼 [ 𝑓 ] − 𝑓 ) 2 + 𝔼 [( 𝑓 − 𝔼 ( 𝑓 )) 2 ] , 

hich gives a target functional for minimization. Typically, a truncated

aylor series is used to derive asymptotic ( ℎ → 0 , nh → ∞) expressions

or the bias and variance that depend on the properties of the kernel

nd underlying density ( Silverman, 1986 ). This process ( Appendix A )

esults in approximations for the bias 

( 𝑥 ) = bias [ 𝑓 ( 𝑥 )] = 𝔼 [ 𝑓 ( 𝑥 )] − 𝑓 ( 𝑥 ) = 

ℎ 2 

2 
𝑓 ′′( 𝑥 ) 𝜇2 ( 𝐾) +  ( ℎ 3 ) , (3)

nd variance 

ar [ 𝑓 ( 𝑥 )] = 𝔼 [( 𝑓 − 𝔼 ( 𝑓 )) 2 ] = 

1 
𝑛ℎ 

𝑓 ( 𝑥 ) ∫ 𝐾 

2 ( 𝑥 ) 𝑑𝑥 +  

(
( 𝑛ℎ ) −2 

)
. (4)

ll other things held equal, letting ℎ → 0 minimizes bias, but vari-

nce grows without bound (i.e. accuracy increases but smoothness de-

reases), while letting ℎ grow large decreases the variance of estimates,

ut accuracy is sacrificed. Minimizing the sum gives a value for the op-

imal global bandwidth 

 0 = 

( 

𝑑 ∫ 𝐾 

2 ( 𝑥 )d 𝑥 
𝑛 ( 𝜇2 ( 𝐾)) 2 ∫ ( 𝑓 ′′( 𝑥 )) 2 d 𝑥 

) 1∕( 𝑑+4) 

(5)

here 𝑑 is the number of dimensions of the random variable ( 𝑑 = 1
erein). Notice that a finite second moment 𝜇2 ( 𝐾) is necessary to use

his method in the estimation of the optimal bandwidth; we remove that

equirement herein (Appendices A–C). Without any information at all,

t is common to assume Gaussian 𝑓 ( 𝑥 ) and Gaussian kernels, in which

ase a constant global bandwidth is used with size 

 0 ≈ 1 . 06 𝑛 −1∕5 �̂�, (6)

here �̂� is the sample variance. Greater data density means smaller

andwidth (until as 𝑛 → ∞, ℎ → 0 ). Because this estimation of finite
0 

2 
 0 is based, in part, on an assumption of ℎ 0 → 0 , we might expect signif-

cant error in any estimate of the global bandwidth value using Eq. (5) .

ndeed, an exact value of ℎ 0 can instead be derived using the Fourier

ransform ( Appendix B ), and we show that the result in Eq. (6) can be

ignificantly erroneous. 

Furthermore, it is largely recognized (e.g., Silverman, 1986 ) that

he local data density is a better indicator of bandwidths that should

e uniquely defined at each data point. In regions where data den-

ity is smaller, the bandwidth should be greater. There are several

ethods used to estimate local data density (e.g., Silverman, 1986 ;

u et al., 2007 ; Sole-Mari and Fernàndez-Garcia, 2018) . For example,

ilverman (1986) shows that for large 𝑛, the local data density can be

pproximated by the value of the estimated pdf, so that an adaptive

andwidth can be estimated by 

 𝑖 = ℎ 0 𝜆𝑖 = ℎ 0 

( 

𝑓 ( 𝑋 𝑖 ) 
𝐺 

) − 𝜉
, (7)

here the tilde indicates some intermediate estimate of the density, and

he normalization factor 𝐺 is the geometric mean of estimated density

alues, namely 

 = exp 
( 

1 
𝑛 

𝑛 ∑
𝑖 =1 

ln 𝑓 ( 𝑋 𝑖 ) 
) 

. (8)

he exponent 0 ≤ 𝜉 ≤ 1 is an empirical weighting factor shown to be 0.5

nder ideal conditions ( Abramson, 1982 ). 

In a novel way, Pedretti and Fernàndez-Garcia (2013) investigated

he use of the adaptive kernel methods ( Eqs. (5) , (7) , and (8) ) for interpo-

ating breakthrough curves (BTCs) for simulated push-pull, single-well

ests with trapping in relatively immobile (low-velocity) zones. These

TCs are noteworthy for their thin early tails and fat late tails, or rapid

steep) early breakthrough and delayed, power-law decline of concen-

ration. Importantly, Pedretti and Fernàndez-Garcia (2013) found that

djusting the bandwidth based only on particle density tended to overly

roaden the early BTCs in order to more properly represent the late

ail. Pedretti and Fernàndez-Garcia (2013) then imposed a restriction

n broadening the kernel bandwidth based on whether particles (con-

entrations) in Eq. (1) occurred early or late in the BTC. This, of course,

eans that the user must decide how the bandwidths must be adjusted.

ut this is simply a side effect of choosing, a priori , a non-physical and

ymmetric kernel. If each particle were treated as a single realization of

he Green’s function, then its highly skewed kernel would transfer little

ass to earlier portions of the BTC, and no adjustment may be needed.

e investigate that possibility here. 

. Iterative algorithm 

We show ( Appendix C ) that asymptotically as 𝑛 → ∞, to minimize

he MISE, the kernel applied to each random sample should be a scaled

ersion of the underlying true density itself. This suggests that for a rea-

onably large number of data 𝑛, the kernel 𝐾 should be made function-

lly similar to the estimated density 𝑓 , as this is the best representation

f the true density 𝑓 . Of course the shape of the density is not known

 priori , so the shape of the kernel must be learned during the estima-

ion process. We seek to find 𝑓 to best approximate 𝑓, and we find 𝑓 

hrough successive intermediate estimates that we call 𝑓 . Our proposed

lgorithm discovers the kernel shape and size recursively according to

he following steps: 

1. Build an initial candidate 𝑓 0 ( 𝑥 ) using constant bandwidth ℎ 0 and

standard Gaussian kernel 𝐾( 𝑥 ) = (2 𝜋) −1∕2 exp (− 𝑥 2 ∕2) in Eq. (1) . 

2. Use 𝑓 0 ( 𝑥 ) to interpolate values at data points 𝑓 ( 𝑋 𝑖 ) . 
3. Use the values 𝑓 ( 𝑋 𝑖 ) in Eq. (7) to estimate adaptive bandwidths ℎ 𝑖 for

the Gaussian kernel and re-estimate 𝑓 1 ( 𝑥 ) . This would end classical

estimation. Set counter 𝓁 = 1 . 
4. Use 𝑓 𝓁 ( 𝑥 ) as the new kernel 𝐾 𝓁 ( 𝑥 ) = 𝑓 𝓁 ( 𝑥 ) . 
5. Adjust kernel 𝐾 𝓁 to have zero mean and unit “width ”. 
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6. Use 𝑓 𝓁 ( 𝑥 ) to interpolate values at data points 𝑓 ( 𝑋 𝑖 ) . 
7. Use the values 𝑓 ( 𝑋 𝑖 ) in Eq. (7) to estimate adaptive bandwidths ℎ 𝑖 

for the new kernel 𝐾 𝓁 ( 𝑥 ) . 
8. Use new kernel function 𝐾 𝓁 and bandwidths ℎ 𝑖 to estimate 𝑓 𝓁+1 ( 𝑥 )

using Eq. (1) . 

9. Return to step 4 until desired closure between 𝑓 𝓁+1 ( 𝑥 ) and 𝑓 𝓁 ( 𝑥 ) .
Upon closure, 𝑓 𝓁+1 ( 𝑥 ) is the best estimate of 𝑓 ( 𝑥 ) . 

The potentially tricky parts of the algorithm are associated with steps

, 4, 5, and 7. For step 1, the distributional qualities of the data are

nknown, so we use a Fourier transform algorithm to estimate the data

ensity function (see Eq. (17) in the Appendix). By assuming a Gaussian

ernel, the initial ℎ 0 can be easily estimated. For step 4, it is important to

se a numerical domain for 𝑥 that is wider than the data values, so that

he kernel may extrapolate sufficiently before the smallest data point

nd after the largest. Furthermore, for widely-spaced and sparse data,

he density of calculated points in 𝑥 must also be chosen to provide

ufficient resolution. For step 5, it is not always clear that the mean

nd standard deviation exist or are the proper scaling metrics for the

terated kernel. A simple example is a stable density, which may have

iverging moments, and also rescale differently from, say, a Gaussian

ensity. Here, we suggest using the interquartile range of the data and

he kernel for a reasonably close and reliable estimate of the scale of

any different density functions. For step 7, we are now using a kernel

hat is thought to resemble the underlying density, so using 𝐾 → 𝑓 or

 in Eqs. (3) –(5) and (7) will give different values of , ℎ 0 etc. More on

hese points is provided below. 

In order to find a “standard ” kernel from the previous iteration’s

ensity estimate 𝑓 , the kernel must have zero mean (so that the sub-

equent addition of kernels has the same mean as the data). The width

f the kernel should be standardized, such as normalizing by a scale

actor equal to the standard deviation of the data or central second mo-

ent of 𝑓 . However, many densities have diverging second moments,

o a robust method must be found for situations in which the under-

ying density is unknown. A quick survey of the interquartile range

IQR) and the scale factor of many densities shows reasonably similar

elationships. For finite-variance distributions we find, for example, the

aussian has 𝜎 ≈ IQR ∕1 . 35 ; the exponential 𝜎 ≈ IQR ∕1 . 1 ; the Laplace

≈ IQR ∕0 . 98 . Infinite variance distributions with closed-form distribu-

ion functions (characterized by scale parameter 𝜎) include the sym-

etric Cauchy with 𝜎 ≈ IQR ∕2 and the maximally-skewed, 1/2-stable

évy density with 𝜎 = IQR ∕9 . Using MATLAB’s routine for calculating

he CDF of a stable law, we find that, for a maximally-skewed 1.5-stable,

≈ IQR ∕2 . 13 . With the exception of the Lévy density, it is a reasonable

pproximation to say that the “width ” of the density function may be

tandardized using 𝜎 ≈ IQR ∕1 . 5 . Therefore, in the following, to arrive at

 “standard ” density from the data-kernel, we numerically integrate the

ntermediate density 𝑓 𝓁−1 to find IQR = 𝑥 0 . 75 − 𝑥 0 . 25 , where 

 𝑧 = min 

{ 

𝑥 𝑗 
|||| Δ𝑥 

𝑛 ∑
𝓁=1 

𝑓 𝓁−1 ( 𝑥 𝑗 ) ≥ 𝑧 

} 

nd simply shift and rescale the experimental density by its first moment

 1 and a generic multiple of the IQR so that 

 𝓁 ( 𝑥 ) = 

1 
( IQR ∕1 . 5) 

𝑓 𝓁−1 

( 

𝑥 − 𝑚 1 
( IQR ∕1 . 5) 

) 

. 

As noted before, the kernel is allowed to change after each iteration,

nd this kernel is checked against the previous iteration’s kernel. Itera-

ion is terminated when the kernel converges and the difference between

he density estimated with those kernels in successive approximations

s sufficiently small. Here, we choose to discontinue the algorithm when

he 𝐿 

2 difference between successive iterations is less then 10 −9 , where

 

2 = 

√ √ √ √ Δ𝑥 
𝑛 ∑

𝑖 =1 

|||𝑓 𝓁 ( 𝑥 ) − 𝑓 𝓁−1 ( 𝑥 ) 
|||2 . (9)
o

3 
If the 𝐿 

2 difference is found to increase between iterations, this indi-

ates too large a global bandwidth ℎ 0 (assuming that one starts with a

onservatively large value from the Fourier-transform procedure). The

oo-large value of ℎ 0 makes the kernel itself too smooth and also gives

t too large a scale based on the IQR, so convergence will not occur. In

ractice, there may be a range of ℎ 0 values that leads to convergence

ased on some numerical threshold of the 𝐿 

2 norm, so some care needs

o be used when adjusting ℎ 0 . When the initial ℎ 0 estimate is far from

he correct range, one may decrease ℎ 0 by a factor of 0.9. As the algo-

ithm gets nearer the correct kernel and ℎ 0 , the minimum of Eq. (9) gets

rogressively smaller, and there is a danger of overshooting the opti-

al ℎ 0 , so the algorithm slows the adjustment of ℎ 0 by incrementally

oving the factor toward unity. After ℎ 0 is adjusted, iteration resumes.

n practice, if the minimum 𝐿 

2 ( Eq. (9) ) reached for a given ℎ 0 is on

he order of 10 −4 , the value of ℎ 0 is reasonably far from the optimal

nd may be decreased by about 10%. Each order-of-magnitude improve-

ent in the 𝐿 2 convergence is accompanied by moving the factor 2%

loser to unity. We also add that other ℎ 0 estimators can be used that

ay underestimate the optimal ℎ 0 , and so the same procedure to ad-

ust the value is done in reverse, say starting with an adjustment factor

f 1.1 that decreases toward unity based on minimum 𝐿 

2 norm seen

ith any ℎ 0 value. Examples can be seen in the matlab code provided

t https://github.com/dbenson5225/kernel- density- estimation 

Another important consideration is the construction of the set of

oints at which the density is calculated. Through some experimenta-

ion we find that an optimal set of points is made from a union of (1)

 set of appropriately-spaced points between a desired minimum and

aximum that is larger than the measured data range and (2) the set

f actual random data values 𝑋 𝑖 . The first set is important so that suf-

cient interpolation between widely-spaced data is made. The second

et is (sometimes) important so that the weights are accurately calcu-

ated within Eq. (7) . We experimented with neglecting the second set

nd simply interpolating the density at points 𝑥 𝑖 from points in the first

et, but for “spiky ” densities, the results depend too much on the den-

ity of points that are specified. If the number of points at which the

ensity is calculated becomes large, it is a simple matter to parallelize a

arge part of the procedure, because the calculation of 𝑓 ( 𝑥 ) in Eq. (1) is

ndependent for any 𝑥 value. 

. Examples 

We investigate the iterative algorithm versus classical (assumed

aussian kernel) methods for four types of data: (1) symmetric and thin-

ailed; (2) maximally-skewed and exponentially-tailed, (3) Symmetric

nd heavy, power-law tailed; and, (4) maximally skewed and heavy,

ower-law-tailed. The last is chosen because BTC data are strictly pos-

tive and often observed to fall off like 𝑥 −1− 𝛼, where 𝛼 is on the or-

er of 0.5. We also investigate how well the estimators perform over

 large realization of random samples and a range of population sizes

 = {100 , 1000 , 10 , 000} , inasmuch as large particle numbers (and ran-

om arrival times) are typically used. In each case we use estimates of

he MISE to measure bias and variance of the estimated density versus a

nown density on a regular grid in 𝑥 . A numerical estimate of the MISE

s given by an ensemble mean of the 𝐿 

2 norm, namely 

ISE = 

Δ𝑥 
𝑀 

𝑀 ∑
𝑚 =1 

𝑛 ∑
𝑗=1 

|𝑓 𝑚 ( 𝑥 𝑗 ) − 𝑓 ( 𝑥 𝑗 ) |2 , 
or a set of 𝑀 realizations of data with an underlying density 𝑓 and the

orresponding estimates of the density 𝑓 𝑚 on a common grid of estima-

ion points 𝑥 𝑗 with spacing Δ𝑥 . For each of the examples, we generate

 = 100 independent realizations of data from known distributions in

rder to estimate the densities and resulting MISE ( Table 1 ). 

https://github.com/dbenson5225/kernel-density-estimation
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Table 1 

Computed ensemble MISE for various kernel estimates from 

100 realizations of 1000 random variables. The first row is 

for uniform initial bandwidth ℎ 0 . The second is for single-pass 

application of adaptive bandwidth ℎ ( 𝑥 𝑖 ) . The third is iterated 

Gauss kernel until closure. The fourth is data-based kernel iter- 

ated to closure. 

𝐾𝑒𝑟𝑛𝑒𝑙 Normal Exponential Cauchy 1.5-Stable 

Gauss w/ ℎ 0 0.0013 0.157 0.0279 0.0197 

Gauss w/ ℎ 𝑖 0.0012 0.135 0.0243 0.0118 

Gauss iter. 0.0016 0.127 0.0231 0.0100 

𝑓 iter. 0.0014 0.073 0.0150 0.0020 
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.1. Gaussian data 

We start with Gaussian random variables, in which the data kernel

hould (nearly) converge to an a priori Gaussian kernel, because the

nderlying data that builds the data-kernel is Gaussian. Indeed, for a

arge number of data points (1000), the iterated KDE for the data-based

nd Gaussian-based kernel are nearly identical, even in the extreme tails

 Fig. 1 ). This example shows the robust nature of the estimation, inas-

uch as the Gaussian kernel uses the exact width of the kernel 𝜎 = 1 ,
hile the iterated kernel uses a general width estimate of IQR ∕1 . 5 . In
ctuality, the width of a Gaussian is 𝜎 = IQR ∕1 . 34 . It is worth noting

hat closure to the final kernel usually takes between 5 and 7 iterations.

urthermore, because the value of ℎ 0 is not set exactly (which would

equire identifying the data as Gaussian before interpolating), the iter-

ted kernels have similar magnitudes of MISE as single-pass adaptive

aussian kernels and convolution with a single value of ℎ 0 ( Table 1 ). 

.2. Exponential data 

Next, we use a shifted exponential (the arbitrary shift is added to

nsure functionality of the code) with density function 

( 𝑥 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

1 
𝜎
exp 

( 

− 

𝑥 − 𝜇 + 1∕ 𝜎
𝜎

) 

, for 𝑥 ≥ 𝜇 − 1∕ 𝜎

0 , else . 

This density has arbitrary mean 𝜇 and variance 1∕ 𝜎2 . In the plots

hat follow we set 𝜇 = 0 and 𝜎 = 1 . For this skewed density it becomes

lear that a symmetric (Gaussian in this case) kernel is not an effective

nterpolant ( Fig. 2 ). While Silverman (1986) suggests using a skewed

say, lognormal) kernel for this kind of data, our method does not rely

n interpretation and user intervention for kernel selection. And while

 Gaussian kernel is not particularly useful for this kind of data, the

terated data-based kernel typically has MISE of about half that of the

aussian ( Table 1 ). Because the underlying optimal ℎ 0 is much smaller

han that estimated from assuming a Gaussian kernel, the iterations do

ot converge (and in fact tend to diverge) until ℎ 0 decreases several

imes, requiring on the order of 30 or more iterations for 1000 data

oints. 

.3. Cauchy data 

Heavy-tailed data present a problem for kernel density estimation be-

ause of the extremes that may accompany the data. This leads to very

ide spacing between extreme data points and difficulty interpolating

he density here. This also means that the 𝑥 -discretization of the kernel

ust use a large number of points in order to represent the near-origin

spikiness ” of the density as well as the very long range. The existence of

ne or two super-extreme values can lead to numerical problems. In our

00-realization ensemble of 1000 Cauchy data points, two realizations

ailed to converge in 100 iterations with the data-based kernel because

f data values in the 50,000 range. A typical realization shows that the
4 
onverged data-based kernel tends to both interpolate between, and ex-

rapolate beyond, extreme values better than the Gaussian kernel, but

till represents the fine-scale near the origin where most of the data re-

ide ( Fig. 3 ). In the ensemble, the MISE estimated for the data-based

ernel is substantially less than for the Gaussian kernels ( Table 1 ). 

.4. Maximally-skewed 𝛼-stable data 

Stable random variables (RV) are characterized (among many other

ays) as those to which sums of IID random variables converge

 Samorodnitsky and Taqqu, 1994 ). Sums of finite-variance RVs converge

o (are in the domain of attraction of) a Gaussian, which is itself a stable

V. When, for some constant 0 < 𝛼 < 2 , only those moments of order

and greater are infinite (such as for Pareto (power-law) distributed

Vs), then those RVs are in the domain of attraction of a 𝛼-stable. These

Vs arise in hydrology quite naturally, because they describe waiting

imes that a particle might take when trapped in a sequence of fractal

mmobile zones (see Schumer et al., 2003; Benson et al., 2013 ). Depend-

ng on the skewness parameter, one or both of the tails of a 𝛼-stable

ensity function decay like ∼ |𝑥 |−1− 𝛼 ; therefore all moments of order 𝛼

nd greater diverge. The density is only expressible in closed-form for

 few instances, but most statistical packages will readily calculate the

ensity to any desired tolerance and generate sequences of the random

ariable. Here, we choose a maximally-skewed, standard 1.5-stable for

nalysis, using the parameterization in the MATLAB statistics package

also called the 0-parameterization in Nolan, 2018 ). The ensemble MISE

or the data-based kernel is about 1/5 that of the iterated Gaussian ker-

el, suggesting that both the heavy-tailed and skewed nature of this

xample is especially well-suited to our proposed method ( Fig. 4 ). 

. Particle breakthrough (concentration) data 

The creation of “breakthrough curves ” (BTC) from particle-tracking

imulations is a tricky proposition. Classically, histograms are used,

hich means manually choosing either constant or variable bin sizes and

ocations. The variance of the estimated density is inversely proportional

o bin size, total number of particles, and the estimated concentration

 Chakraborty et al., 2009 ), and the histogram-based density is discontin-

ous and may frequently be zero when particle arrival times are widely

eparated, especially in the late-time tail. The zeros make comparison

o non-zero data difficult (e.g., using weighted least-squares), so several

ethods are typically used to create a non-zero PDF interpolation. 

The first set of constructions of arrival time pdfs, which we will

all “naive estimators ” is based on simple linear interpolation of ar-

ival times. For example, one may construct (by several means) an em-

irical cumulative distribution function (ECDF) that is strictly increas-

ng and, then make a non-zero empirical PDF using finite differences

n the ECDF. In particular, order the particle arrival times of 𝑁 parti-

les 𝑇 1 , 𝑇 2 , … 𝑇 𝑁 

and at each point the ECDF ( 𝑇 𝑖 ) = 𝑖 ∕ 𝑁 . Then the em-

irical PDF is EPDF (( 𝑇 𝑖 +1 + 𝑇 𝑖 )∕2) = ( ECDF ( 𝑇 𝑖 +1 ) − ECDF ( 𝑇 𝑖 ))∕( 𝑇 𝑖 +1 −
 𝑖 ); 𝑖 = 1 ..𝑁 − 1 . The ECDF can also use a regularly spaced time grid and

ount numbers of particles arriving between grid points (i.e., bins), and

mpty bins are neglected, once again giving a strictly increasing ECDF.

n this section, we compare these two naive estimators to the iterative

ernel-based techniques developed in this paper along with prior de-

erministic kernel-based methods ( Fernàndez-Garcia and Sanchez-Vila,

011; Pedretti and Fernàndez-Garcia, 2013 ). 

For particle arrival times, we solved for the hydraulic head 𝐻 in

he steady-state groundwater flow equation ∇ ⋅𝐾∇ 𝐻 = 0 in 2-D using

nite-differences on a square 128 × 128 m grid with constant grid

iscretization of 1 × 1 m ( Fig. 5 a). The hydraulic conductivity 𝐾 is

 scalar log-Normal random variable with a mean of ln ( 𝐾) = 1 , stan-

ard deviation of ln ( 𝐾) = 4 , and an exponential autocorrelation func-

ion for ln ( 𝐾) with correlation length of 5 m. The left and right bound-

ries 𝑥 = 0 and 𝑥 = 128 are Dirichlet with 𝐻 = 1 and 𝐻 = 0 , respectively.

he top and bottom boundaries 𝑦 = 0 and 𝑦 = 128 are Neumann with
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Fig. 1. (a) Semilog and (b) linear plots of itera- 

tively estimated densities for a single realization of 

1000 Gaussian data points using data-based ker- 

nel (black symbols) and Gaussian-based kernels 

(red curves). Also shown are the single-pass Gaus- 

sian kernel estimate (green curves) and 20-bin his- 

tograms. Blue dashed line is underlying “true ” den- 

sity function. (For interpretation of the references 

to color in this figure legend, the reader is referred 

to the web version of this article.) 

𝜕  

𝑣  

a  

a  

t  

c  

𝐷  

d  

t  

v  

n  

m  

p  

p  

t  

p

 𝐻∕ 𝜕 𝑦 = 0 . The resulting velocities take the solved 𝐻 field and apply

 = − 𝐾∇ 𝐻∕ 𝜙, where 𝜙 is assumed a constant porosity of unity, once

gain using finite-differences. These velocities vary in magnitude from

bout 3 × 10 −7 to 2.1 m/d ( Fig. 5 a). Particles are placed in a line near

he left boundary and each particle’s position vector tracked via a dis-

retized Ito equation 𝑋( 𝑡 + Δ𝑡 ) = 𝑋( 𝑡 ) + ( 𝑣 + ∇ ⋅ ( 𝐷)) + 

√
2Δ𝑡 𝐵 , where

 = ( 𝐷 𝑚 + 𝐴 𝑇 |𝑣 |) 𝐼 + ( 𝐴 𝐿 − 𝐴 𝑇 ) 𝑣𝑣 𝑇 ∕ |𝑣 | is a dispersion tensor that has a

ecomposition 𝐷 = 𝐵 𝐵 

𝑇 ,  is an independent 2-D standard normal vec-
5 
or, 𝐷 𝑚 = 8 × 10 −5 m 

2 /d is molecular diffusion, 𝐴 𝑇 = 10 −3 m is trans-

erse dispersivity, and 𝐴 𝐿 = 5 × 10 −3 m is longitudinal dispersivity. The

umber of particles placed in any cell is proportional to the velocity

agnitude in that cell (i.e., a flux-weighted source). A plot of particle

ositions at elapsed times of 1 and 250 days (just before arrival of first

article at the right-hand side) suggests the wide range of arrival times

hat can be expected. We ran simulations using 500, 5000, and 50,000

articles to judge the efficacy of density estimates. 
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Fig. 2. (a) Semilog and (b) linear plots of it- 

eratively estimated densities for a single re- 

alization of 1000 shifted Exponential data 

points using data-based kernel (black symbols) 

and Gaussian-based kernels (red curves). Also 

shown are the single-pass Gaussian kernel es- 

timate (green curves) and 20-bin histograms. 

Blue dashed line is underlying “true ” density 

function. (For interpretation of the references 

to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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The data-based kernel estimates developed in this work are remark-

bly similar for the different particle numbers on a linear plot ( Fig. 5 b).

wo naive estimates of the EPDF using 50,000-particle arrival times

 Fig. 5 f) show considerable noise at late time due to wide separation

f late particle arrival times. This effect can be counteracted by using
6 
uch larger particle numbers (e.g., Labolle et al., 1996; Kang et al.,

017; Carrel et al., 2018 ). This computational burden may be reduced

n the case of particle-tracking simulations for conservative solutes be-

ause they are highly parallelizable ( Rizzo et al., 2019 ). However, non-

inearly reacting solutes have yet to be parallelized in three-dimensions
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Fig. 3. (a) Semilog and (b) linear plots of it- 

eratively estimated densities for a single real- 

ization of 1000 Cauchy data points using data- 

based kernel (black symbols) and Gaussian- 

based kernels (red curves). Also shown are 

the single-pass Gaussian kernel estimate (green 

curves) and uniform 20-bin histograms. Blue 

dashed line is underlying “true ” density func- 

tion. (For interpretation of the references to 

color in this figure legend, the reader is referred 

to the web version of this article.) 
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d  
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t  
 Engdahl et al., 2019 ). The naive estimators also do not have density

eight before the first particle arrival because the ECDF is zero for any

ime before the first particle. This is a commonly accepted, but ulti-

ately incorrect, feature: as the number of particles becomes larger (or

oes to infinity in the case of kernel density estimates) the empirical
7 
ensity of early arrivals should grow. In other words, by calculating the

ensity on a time grid from zero to 10 6 days, the only imposed constraint

s that the first arrival is non-negative. The early-time density estimates

or larger particle numbers have greater probability for early time than

he 500-particle, which can be identified using logarithmic time axes
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Fig. 4. (a) Semilog and (b) linear plots of iter- 

atively estimated densities for a single realiza- 

tion of 1000 maximally-skewed, 1.5-stable data 

points using data-based kernel (black symbols) 

and Gaussian-based kernels (red curves). Also 

shown are the single-pass Gaussian kernel es- 

timate (green curves) and uniform 20-bin his- 

tograms. Blue dashed line is underlying “true ”

density function. (For interpretation of the ref- 

erences to color in this figure legend, the reader 

is referred to the web version of this article.) 
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 Fig. 5 d and e). The late-time tail estimates are smoothly interpolated

nd very close for all three particle numbers ( Fig. 5 e) until some time

fter the final particle arrival time in the 500-particle simulation, when

hat tail starts to drop somewhat compared to the higher particle num-

ers. The 500-particle density is smoothly extrapolated over 50 times
8 
onger than the final arrival because of the kernel shape. Overall, it is

air to say that the 5000-particle simulation gives similar enough results

o the 50,000-particle simulation that the latter is superfluous. 

A serious problem with the kernel density estimates is that the time

rid along which the density (hence kernel for subsequent iterations)
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Table 2 

Computed values of global bandwidth ℎ 0 for the particle-tracking 

data using either 500, 5000, or 50,000 particles. FT denotes Fourier- 

transform routine in Appendix C . Plug-in refers to method of 

Engel et al. (1994) . Iterated refers to values from the iterated ker- 

nel and ℎ 0 method from Section 5 . Values in days. 

𝑀𝑒𝑡ℎ𝑜𝑑 500 5000 50,000 

FT 2033 2981 2370 

Plug-in 108 50 22 

Iterated 256 267 253 
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eeds to be quite large. The density is “spiky ” enough to warrant a grid

ize of about 20 days or less, and the last particle arrives on the order of

0 6 days, so a linearly partitioned grid is a vector on the order of 50,000

o 100,000 elements, making the convolutions quite slow. Convergence

s also slow because of the high skewness, so the estimates are computa-

ionally expensive. Because of this we looked at two alternatives: (1) use

f a log-spaced discretization grid (which was used to generate Fig. 5 ),

nd (2) the ad-hoc correction of Pedretti and Fernàndez-Garcia (2013) ,

hich is detailed immediately. 

.1. Experiments with the universal adaptive bandwidth of Pedretti and 

ernàndez-Garcia (2013) 

These authors recognize that early arrival tails of a BTC are often

uch thinner than late-arrival tails and seek to adjust the bandwidth

ssigned to early versus late data accordingly. The authors choose to use

he smaller global bandwidth ℎ 0 at smaller 𝑇 𝑖 that relatively smoothly

ransitions to the density-adjusted value for later data. There are an un-

imited number of possible schemes to do this. Pedretti and Fernàndez-

arcia (2013) suggest constructing the ECDF ( 𝑇 𝑖 ) , which is monotoni-

ally increasing with arrival time 𝑇 𝑖 , and constructing a variable band-

idth at each point by taking a weighted average of the single global

andwidth ℎ 0 and the classical adaptive bandwidth: 

 2 ( 𝑇 𝑖 ) = (1 − ECDF ( 𝑇 𝑖 )) ℎ 0 + ECDF ( 𝑇 𝑖 ) × ℎ 𝑖 , (10)

here ℎ 2 is their “universal global bandwidth ” (UAB), and ℎ 𝑖 is

he adaptive bandwidth given in Eq. (7) . Pedretti and Fernàndez-

arcia (2013) choose a standard Gaussian kernel in their paper so we

o the same here. This leaves only the selection of the global band-

idth ℎ 0 as a potential difference in the implementation. Pedretti and

ernàndez-Garcia (2013) use a code supplied by Engel et al. (1994) that

ses a prescribed kernel to interpolate data points to predict the value

f ∫ 𝑓 ′′( 𝑥 ) 𝑑𝑥 only once, prior to estimation of 𝑓 ( 𝑥 ) . This value is used

n (5) to get a value of ℎ 0 . We have shown above that there are several

pproaches to arriving at a value of ℎ 0 to be used in Eqs. (5) and (10) .

or example, we may use the Fourier methods in Appendix C . 

We apply the UAB method using fixed estimates of ℎ 0 from the plug-

n method and from our Fourier-transform method ( Fig. 6 ). Once again

e calculate the densities on time points made from a union of two sets:

1) a set of 20,000 logarithmically-spaced time points between zero and

0 6 days and (2) the set of actual arrival times. For the 50,000 parti-

le simulation, our Fourier transform algorithm gives ℎ 0 = 2370 days.

he plug-in method of estimating (5) from Engel et al. (1994) , used by

edretti and Fernàndez-Garcia (2013) , gives an estimated ℎ 0 = 22 days

 Table 2 ). The fact that these two estimates differ by two orders-of-

agnitude is remarkable by itself and points to the potential errors of

 priori ℎ 0 estimates. Using a Gaussian kernel with these estimates and

he UAB (10) gives clearly over-smoothed and under-smoothed density

stimates ( Fig. 6 a). The under-smoothing by the plug-in value of ℎ 0 used

n the UAB is shown by the failure to interpolate between the many late-

ime arrivals (due to the relatively narrow Gaussian kernels there), while

he over-smoothing of the initial Fourier ℎ is shown by the relatively
0 

9 
igh weight of the near-zero arrival time PDF. Similar discrepancies are

een in both the densities and values of ℎ 0 from the FT and plug-in meth-

ds for the other particle numbers ( Table 2 ). Also shown in Table 2 and

ig. 6 a–c are the intermediate, iterated values of ℎ 0 that accompany the

teration of the kernels from Section 5 . 

This analysis of BTC did not allow an assessment of which model had

he better “fit ” because the underlying true density was unknown. The

article arrival-time data have several features common to the 1.5-stable

ensity used in Section 4.4 including thin leading (early-time) tail, fat

railing tail, and a high degree of skewness. We applied the UAB method

sing a standard Gaussian kernel and the iterated kernel algorithm de-

eloped in this paper to data taken from a known maximally-skewed,

.5-stable distribution with one caveat: to eliminate one variable, in

oth methods we use the ℎ 0 from the plug-in method ( Engel et al., 1994 ),

s did Pedretti and Fernàndez-Garcia (2013) . An ensemble of 100 data

ealizations, each with 1000 random variables, were generated to calcu-

ate the ensemble mean MISE using Eq. (4). These values were 1 . 1 × 10 −4 
nd 1 . 5 × 10 −4 for the UAB and iterated kernels approaches, respectively.

he UAB method paired with the plug-in ℎ 0 clearly does a good job in

he areas around the peak ( Fig. 7 a,b), where the densities have the great-

st weight in Eq. (4). Similar to the BTC data above, the UAB method

ucceeds in re-creating the thin leading tail of the 1.5-stable density, but

ails to interpolate between large data values or extrapolate beyond the

argest data value ( Fig. 7 a,b). The iterated kernel method outperforms

he Gauss-kernel method of Pedretti and Fernàndez-Garcia (2013) in

oth interpolating and extrapolating the large-data tail ( Fig. 7 c,d), but

oes tend to put too much density weight on the thin-tailed small data

alues relative to the known, real density. One might also conclude that

he UAB method could be combined with the iterated kernel method to

chieve good estimates of both the early and the late tails. Indeed, iter-

ting the kernel function until closure and then applying the UAB does

ive essentially identical late tail estimates and steeper early tail esti-

ates (red curve, Fig 7 c), although we note that the estimated MISE

sing the UAB and the iterated kernel was about 20% worse due to

lightly poorer fits around the peak. Of course using the UAB requires

nspection of the data to decide whether this adjustment is appropriate.

It is interesting to note that the plug-in estimates of ℎ 0 use a method

hat evaluates the integrals in Eq. (5) based only on data values. Our

ethod of iterating the kernel recognizes that the “best ” estimate of the

rue density 𝑓 ( 𝑥 ) ≈ 𝑓 ( 𝑥 ) evolves, and that ∫ 𝑓 ′′( 𝑥 ) 𝑑𝑥 might be improved

sing intermediate values of 𝑓 ( 𝑥 ) . We implemented this procedure by

epeatedly estimating ∫ 𝑓 ′′( 𝑥 ) 𝑑𝑥 by finite differences and trapezoidal

ntegration. The new value of ℎ 0 was then used in the UAB ( Eq. (10) )

ntil closure was reached. In all cases, the value of ℎ 0 that was estimated

as smaller than the one-time plug-in estimate and the overall MISE was

orse, so those density estimates are not shown. 

Finally, in the context of fitting models to data, seeking to minimize

he MISE is not always the most appropriate choice. Any kernel den-

ity estimate constitutes a model of the data, and the classical measures

f model fit should apply, including maximum likelihood estimation

MLE) and entropy considerations that include parametric and computa-

ional parsimony (e.g., Akaike, 1974 ; Benson et al., 2020) . In particular,

hakraborty et al. (2009) make an argument that the variance of con-

entration values in a binned density estimate would have a variance

roportional to the estimated concentration, and that those variances,

hile dependent upon each other, could be treated independently. In

he present case, we conjecture that an MLE would seek to minimize an

ntegrated weighted squared difference of the estimated and real den-

ities, where the weights are 1∕ 𝑓 ( 𝑥 ) . Applying this formula to the data

n this section returned machine infinities for the UAB method using

aussian kernels because of the machine zeros for the estimates of the

ensity in many places (e.g., Fig. 7 a,b). The iterated kernel returned fi-

ite values for all realizations in the ensemble with an average weighted

ISE of 0.02. From a standpoint of comparing some estimated BTC to

eal data, this coincides with a desire to have good interpolations of

article-tracking simulations on the low concentration tails. 
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Fig. 5. (a) 50,000-particle simulation positions at 𝑡 = 1 day (red) and 250 days (blue) on a gray-scale quilt of log-velocity magnitude. Mean flow is left-to-right. (b) 

through (e) Plots of estimated arrival-time densities (breakthrough curves) using differently scaled axes for 500, 5000, and 50,000 particle simulations. The densities 

are estimated using the data-based kernel. (f) Plots of naive estimators based on construction the ECDF: blue lines use all arrivals, orange lines use binned data, 

which smooths the plot where multiple arrivals are found in each bin. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

10 
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Fig. 6. Log-log plots of estimated arrival-time densities (breakthrough 

curves) using UAB of Pedretti and Fernàndez-Garcia (2013) with different 

values of ℎ 0 estimated either by Fourier transform (black), or Plug-in method 

Engel et al. (1994) (red). Also shown as blue dashed lines on the plots are 

the curves from Fig. 5 e that use our iterated kernel (and iterated ℎ 0 ) method. 

(a) 50,000-particle simulation. (b) 5000-particle simulation. (c) 500-particle 

simulation. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

11 
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Fig. 7. Plots of density estimates from a single realization of 1000 maximally-skewed, 1.5-stable data points (a) Log-log and (b) Semi-log plots using Gaussian kernels 

and weights given by Eq. (7) and UAB of Pedretti and Fernàndez-Garcia (2013) ; (c) log-log and (d) semilog plots using iterated, data-based kernels developed in 

section, also using weights given by Eq. (7) and UAB. The value of global bandwidth ℎ 0 is held the same and given by plug-in formula of Engel et al. (1994) . 
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. Conclusions and recommendations 

The application of an optimal, iterative algorithm for kernel density

stimation (using an evolving, data-based kernel) is possible with a few

aveats. First, because the underlying data density is, in general, un-

nown, a method is needed to estimate a MISE-minimizing global band-

idth ℎ 0 . We show that a Fourier-transform based method can obtain

n unbiased estimate for any kernel, and the exact value for a Gaussian

ernel. This Gaussian kernel “starts ” the new algorithm by generating

 first continuous estimate of the density. This density is then used to

onstruct the kernel for subsequent density estimates. Second, creating a

standard ” kernel based on the current iterated density estimate requires

n estimate of the scale parameter of the density. We use a value based

n the interquartile range divided by 1.5. This value is intermediate for

everal known densities and works well for a range of known densities.

hird, because the final iterated version does not use a Gaussian kernel,

he initial estimate of ℎ 0 will necessarily be in error. 

We show that for some common densities, the Fourier-transform es-

imate of ℎ 0 will err on the large side. Furthermore, we show for a wide

ange of densities that the estimate of ℎ 0 ∼ 𝑛 − 𝛾 , with 𝛾 being a mini-

um for Gaussian data and increasing systematically as the tails become
12 
eavier (including exponential and power-law). Therefore, the iterative

cheme allows ℎ 0 to decrease if the algorithm fails to demonstrate con-

ergence. As expected, for Gaussian data, the data-based kernel con-

erges rapidly to a form similar to that given by the Gaussian kernel.

or skewed and/or heavy-tailed data, convergence is slower and only

ccurs when ℎ 0 is allowed to decrease toward its actual, optimal value

or range). 

Overall, the data-based, iterated kernel gives significantly smaller

nsemble MISE than either (1) an iterated (adaptive bandwidth) Gaus-

ian kernel, (2) a single-pass adaptive bandwidth Gaussian kernel, and

3) a single-pass Gaussian kernel with a single global value of ℎ 0 . The

ew algorithm is clearly better when the “non-Gaussian ” aspects of the

nderlying data increase, including skewness and heavy (exponential or

ower-law) tails. When applied to particle arrival times that are heavy-

ailed, the iterated kernel kernel and ℎ 0 provide smooth and continuous

nterpolation and extrapolation of widely spaced late-time arrivals even

hen few particles (5000) are used. The iterated kernel approach does

ver-smooth the early time data, and the UAB approach can be used to

hin the estimated early-time tail. If a particle-tracking model is used

o compare to real data (whose measurement times will not necessarily

orrespond to particle arrival times), the methods developed here will
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e key to providing good interpolations between a simulation’s widely-

paced late time arrivals. 

The derivation of the optimal kernel and global bandwidth solved a

inimization problem for one variable ℎ 0 based on kernel shape and the

ourier transform of actual data ( Appendix C ). A more difficult prob-

em of optimizing a separate ℎ 𝑖 for each data point may be possible

sing cluster identification ( Wu et al., 2007 ) or multi-Gaussian kernel

ocalization techniques ( Sole-Mari and Fernàndez-Garcia, 2018 ). These

ethods would eliminate the potentially dubious Taylor-series-based as-

umptions of the power-law weighting scheme used in Eq. (7) to adjust

ach data point’s bandwidth. We leave this for a future paper. 
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ppendix A. Mathematical background 

The idea of optimal global bandwidth ( Silverman, 1986 ) stems from

sing a truncated Taylor series to represent the terms in the MISE. We

egin with the fact that the expectation of the density estimate con-

tructed from a set of independent observations is the sum of the expec-

ations of the weights associated with each observation so that 

 [ 𝑓 ( 𝑥 )] = 

1 
𝑛 

𝑛 ∑
𝑗=1 

𝔼 
[ 
1 
ℎ 
𝐾 

( 

𝑥 − 𝑋 𝑗 

ℎ 

) ] 
= ∫

1 
ℎ 
𝐾 

( 

𝑥 − 𝜉

ℎ 

) 

𝑓 ( 𝜉) 𝑑𝜉. (11)

imilarly, we compute the variance as 

ar [ 𝑓 ( 𝑥 )] = Var 

[ 

𝑛 ∑
𝑗=1 

1 
𝑛ℎ 

𝐾 

( 

𝑥 − 𝑋 𝑗 

ℎ 

) 

] 

= 

𝑛 ∑
𝑗=1 

1 
𝑛 2 

Var 

[ 
1 
ℎ 
𝐾 

( 

𝑥 − 𝑋 𝑗 

ℎ 

) ] 

= 

1 
𝑛 ∫

( 

1 
ℎ 
𝐾 

( 

𝑥 − 𝜉

ℎ 

) ) 2 
𝑓 ( 𝜉) 𝑑𝜉

− 

1 
𝑛 

( 

∫
1 
ℎ 
𝐾 

( 

𝑥 − 𝜉

ℎ 

) 

𝑓 ( 𝜉) 𝑑𝜉
) 2 

. 

o

13 
he bias at any point is 

( 𝑥 ) = 𝔼 [ 𝑓 ( 𝑥 )] − 𝑓 ( 𝑥 ) = ∫
1 
ℎ 
𝐾 

( 

𝑥 − 𝜉

ℎ 

) 

𝑓 ( 𝜉) 𝑑𝜉 − 𝑓 ( 𝑥 ) 

= ∫ 𝐾( 𝑧 ) 𝑓 ( 𝑥 − ℎ𝑧 ) 𝑑𝑧 − 𝑓 ( 𝑥 ) 

= ∫ 𝐾( 𝑧 )( 𝑓 ( 𝑥 − ℎ𝑧 ) − 𝑓 ( 𝑥 )) 𝑑𝑧. 

ith this, the MISE is written as 

MISE = ∫ 𝐵( 𝑥 ) 2 𝑑𝑥 + ∫ Var [ 𝑓 ( 𝑥 )] 𝑑𝑥 

= ∫
( 

∫ 𝐾( 𝑧 )( 𝑓 ( 𝑥 − ℎ𝑧 ) − 𝑓 ( 𝑥 )) 
) 2 

𝑑 𝑧𝑑 𝑥 

+ 1 
𝑛 

( 

∫ ∫
1 
ℎ 2 

𝐾 

( 

𝑥 − 𝜉
ℎ 

) 2 

𝑓 ( 𝜉) 𝑑𝜉𝑑𝑥 

− ∫
( 

∫
1 
ℎ 
𝐾 

( 

𝑥 − 𝜉
ℎ 

) 

𝑓 ( 𝜉) 𝑑𝜉
) 2 

𝑑𝑥 

) 

. 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(12) 

he bias contribution is simply the effect of the kernel smoothing on the

eal density, which does not depend on the sample size 𝑛 . The variance

bviously grows smaller as 𝑛 increases and (not completely obviously) as

 increases. This expression is difficult to minimize exactly, although for

oth 𝐾 and 𝑓 Gaussian, the convolutions yield Gaussians and an exact

esult may be computed ( Silverman, 1986 ). The vast majority of work

one with KDE is to use asymptotic expansions of certain functions, with

ome questionable assumptions regarding their validity and application.

or example, the density at 𝑥 − ℎ𝑧 is typically approximated for ℎ𝑧 → 0 ,
ven though the goal is to find a finite ℎ and 𝑧 may be arbitrarily large

n the integral. Still, using a truncated Taylor series, namely 

 ( 𝑥 − ℎ𝑧 ) = 𝑓 ( 𝑥 ) − ℎ𝑧𝑓 ′( 𝑥 ) + 

1 
2 
ℎ 2 𝑧 2 𝑓 ′′( 𝑥 ) +  ( ℎ 3 ) 

ives 

( 𝑥 ) = − ℎ𝑓 ′( 𝑥 ) ∫ 𝑧𝐾( 𝑧 ) 𝑑𝑧 + 

1 
2 
ℎ 2 𝑓 ′′( 𝑥 ) ∫ 𝑧 2 𝐾( 𝑧 ) 𝑑𝑧 +  ( ℎ 3 ) 

= − ℎ𝑓 ′( 𝑥 ) 𝜇1 ( 𝐾) + 

1 
2 
ℎ 2 𝑓 ′′( 𝑥 ) 𝜇2 ( 𝐾) +  ( ℎ 3 ) , 

here 𝜇𝑛 ( 𝐾) denotes the 𝑛 th moment of the kernel. Clearly, using a zero-

ean (i.e., symmetric or properly shifted) kernel eliminates the first

erm on the RHS, and indeed, letting ℎ → 0 eliminates bias altogether,

ut at the cost of increasing the noise in the estimate. Assuming a finite

ean and proper shifting, the squared bias is simply (after truncation

f higher-order terms) 

𝐵( 𝑥 ) 2 𝑑𝑥 ≈ 1 
4 
( ℎ 2 𝜇2 ( 𝐾)) 2 ∫ ( 𝑓 ′′) 2 𝑑𝑥. 

Silverman (1986) uses the bias approximation, the substitution 𝑧 =
 𝑥 − 𝜉)∕ ℎ, and another application of Taylor series to reduce the local

ariance term to 

ar [ 𝑓 ( 𝑥 )] ≈ 1 
𝑛ℎ ∫ 𝐾( 𝑧 ) 2 𝑓 ( 𝑥 − 𝑧ℎ ) 𝑑𝑧 − 

1 
𝑛 

(
𝑓 ( 𝑥 ) +  ( ℎ 2 ) 

)2 
≈ 1 

𝑛ℎ ∫ 𝐾( 𝑧 ) 2 
(
𝑓 ( 𝑥 ) − ℎ𝑧𝑓 ′( 𝑥 ) +  ( ℎ 2 ) 

)
𝑑𝑧 +  ( 𝑛 −1 ) 

≈ 1 
𝑛ℎ 

𝑓 ( 𝑥 ) ∫ 𝐾( 𝑧 ) 2 𝑑𝑧, 

hich, when integrated over 𝑥 yields 

Var [ 𝑓 ( 𝑥 )] 𝑑𝑥 ≈ 1 
𝑛ℎ ∫ 𝐾( 𝑧 ) 2 𝑑𝑧. 

All told, this gives a MISE of 

ISE ≈ 1 
4 
( ℎ 2 𝜇2 ( 𝐾)) 2 ∫ 𝑓 ′′( 𝑥 ) 2 𝑑𝑥 + 

1 
𝑛ℎ ∫ 𝐾( 𝑧 ) 2 𝑑𝑧, 

ased on the assumptions of small ℎ, large 𝑛, and 𝑛 ≫ 1∕ ℎ 2 , all of which

re likely to be bad assumptions in practice. Taking 𝑑 ( MISE )∕ 𝑑 ℎ and

etting this expression to zero clearly gives the global estimate Eq. (5) in

ne-dimension. 

https://doi.org/10.13039/100000183
https://doi.org/10.13039/100000001
https://doi.org/10.13039/100006168
https://github.com/dbenson5225/kernel-density-estimation
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ppendix B. Global bandwidth estimation using Fourier methods 

In this section, we implement a method based on the Fourier trans-

orm that will allow us to create an unbiased estimator for the MISE

nd minimize this function in order to select the optimal bandwidth

 . Throughout, we will use the form of the transform common to fast

ourier transform routines, namely 

̂ ( 𝜔 ) = ∫ 𝑒 −2 𝜋𝑖𝜔𝑥 𝑔( 𝑥 ) 𝑑𝑥 

or any sufficiently smooth function 𝑔( 𝑥 ) . Recall that the MISE can be

ritten as the sum of a bias and variance term as in (12) so that 

ISE = ∫ 𝐵( 𝑥 ) 2 𝑑𝑥 + ∫ Var [ 𝑓 ( 𝑥 )] 𝑑𝑥 (13)

here the bias is 

( 𝑥 ) = ∫ 𝐾( 𝑧 ) 𝑓 ( 𝑥 − ℎ𝑧 ) 𝑑𝑧 − 𝑓 ( 𝑥 ) 

nd the variance is given by 

ar [ 𝑓 ( 𝑥 )] = 

1 
𝑛 

[ 

∫
1 
ℎ 2 

𝐾 

(
𝑥 − 𝑧 

ℎ 

)2 
𝑓 ( 𝑧 ) 𝑑𝑧 − 

( 

∫
1 
ℎ 
𝐾 

(
𝑥 − 𝑧 

ℎ 

)
𝑓 ( 𝑧 ) 𝑑𝑧 

) 2 
] 

. 

Using Fourier methods, we first compute the bias term. Taking the

ransform of the bias and making the change of variables 𝑦 = 𝑥 − ℎ𝑧, we

nd 

̂
 ( 𝜔 ) = ∫ ∫ 𝐾( 𝑧 ) 𝑓 ( 𝑥 − ℎ𝑧 ) 𝑒 −2 𝜋𝑖𝑥𝜔 𝑑 𝑧𝑑 𝑥 − 𝑓 ( 𝜔 ) 

= ∫ ∫ 𝐾( 𝑧 ) 𝑓 ( 𝑦 ) 𝑒 −2 𝜋𝑖𝜔 ( 𝑦 + ℎ𝑧 ) 𝑑 𝑦𝑑 𝑧 − 𝑓 ( 𝜔 ) 

= 

( 

∫ 𝐾( 𝑧 ) 𝑒 −2 𝜋𝑖𝜔ℎ𝑧 𝑑𝑧 − 1 
) 

𝑓 ( 𝜔 ) 

= 

(
�̂� ( ℎ𝜔 ) − 1 

)
𝑓 ( 𝜔 ) . 

herefore, by Plancherel’s Theorem, the bias term in Eq. (13) becomes 

𝐵( 𝑥 ) 2 𝑑𝑥 = ∫ �̂� ( 𝜔 ) 2 𝑑𝜔 = ∫
(
�̂� ( ℎ𝜔 ) − 1 

)2 
𝑓 ( 𝜔 ) 2 𝑑𝜔. 

To compute the associated variance term in Eq. (13) , we first split it

nto two parts so that 

Var [ 𝑓 ( 𝑥 )] 𝑑𝑥 = 

1 
𝑛 
( 𝐼 − 𝐼 𝐼 ) . 

The first term is then 

 = 

1 
ℎ 2 ∫ ∫ 𝐾 

(
𝑥 − 𝑧 

ℎ 

)
2 𝑓 ( 𝑧 ) 𝑑 𝑧𝑑 𝑥 

nd satisfies 

 = 

1 
ℎ ∫ ∫ 𝐾( 𝑦 ) 2 𝑓 ( 𝑥 − ℎ𝑦 ) 𝑑 𝑦𝑑 𝑥 

= 

1 
ℎ ∫ 𝐾( 𝑦 ) 2 

( 

∫ 𝑓 ( 𝑥 − ℎ𝑦 ) 𝑑𝑥 
) 

𝑑𝑦 

= 

1 
ℎ 

( 

∫ 𝐾( 𝑦 ) 2 𝑑𝑦 
) ( 

∫ 𝑓 ( 𝜉) 𝑑𝜉
) 

= 

1 
ℎ ∫ 𝐾( 𝑦 ) 2 𝑑𝑦 

ue to the change of variables 𝑦 = ( 𝑥 − 𝑧 )∕ ℎ and then 𝜉 = 𝑥 − ℎ𝑦, as well

s the fact that 𝑓 ( 𝑥 ) is a pdf. To compute 𝐼 𝐼 , we write it as 

𝐼 = ∫ 𝑃 ( 𝑥 ) 2 𝑑𝑥 

here 

 ( 𝑥 ) = 

1 
ℎ ∫ 𝐾 

(
𝑥 − 𝑧 

ℎ 

)
𝑓 ( 𝑧 ) 𝑑𝑧 = ∫ 𝐾( 𝑦 ) 𝑓 ( 𝑥 − ℎ𝑦 ) 𝑑𝑦. 
14 
Of course, the transform of 𝑃 ( 𝑥 ) has already been identified in the

omputation of the integrated bias term. In particular, it is given by 

̂
 ( 𝜔 ) = �̂� ( ℎ𝜔 ) 𝑓 ( 𝜔 ) . 

Using Plancherel’s theorem as before, we find 

𝐼 = ∫ 𝑃 ( 𝜔 ) 2 𝑑𝜔 = ∫ �̂� ( ℎ𝜔 ) 2 𝑓 ( 𝜔 ) 2 𝑑𝜔. 

With this Fourier representation of the bias and variance integrals,

e may explicitly write the MISE in terms of integrals of transformed

unctions, namely 

ISE 𝑛 ( ℎ ) = 

1 
𝑛ℎ ∫ �̂� ( 𝜔 ) 2 𝑑𝜔 + ∫

(
( �̂� ( ℎ𝜔 ) − 1) 2 − 

1 
𝑛 
�̂� ( ℎ𝜔 ) 2 

)
𝑓 ( 𝜔 ) 2 𝑑𝜔. 

(14) 

ote that we have used ∫ 𝐾( 𝑦 ) 2 𝑑𝑦 = ∫ �̂� ( 𝜔 ) 2 𝑑𝜔 in the first term to

rite the MISE depending upon �̂� rather than 𝐾. This derivation is sim-

lar to previous spectral representations of the MISE ( Chiu, 1991; Wu

t al., 2007; Wu and Tsai, 2004 ). 

Unfortunately, this expression still requires knowledge of the Fourier

ransform, 𝑓 ( 𝜔 ) , of the unknown pdf and thus cannot be used to choose

he optimal bandwidth ℎ . Instead, we will rely on an empirical distri-

ution to approximate 𝑓, and thus 𝑓 . Given 𝑛 observations of the distri-

ution 𝑓 ( 𝑥 ) , which are denoted 𝑋 1 , … , 𝑋 𝑛 , we define the empirical (or

bserved) distribution 

 𝑛 ( 𝑥 ) = 

1 
𝑛 

𝑛 ∑
𝑗=1 

𝛿( 𝑥 − 𝑋 𝑗 ) 

o that the corresponding transform of this function is 

 ̂𝑛 ( 𝜔 ) = 

1 
𝑛 

𝑛 ∑
𝑗=1 

∫ 𝑒 −2 𝜋𝑖𝑥𝜔 𝛿( 𝑥 − 𝑋 𝑗 ) 𝑑𝑥 = 

1 
𝑛 

𝑛 ∑
𝑗=1 

𝑒 −2 𝜋𝑖𝜔𝑋 𝑗 . (15)

ow, as 𝑛 → ∞, we find 𝑓 𝑛 → 𝑓 and 𝑓 𝑛 → 𝑓 . In fact, we have an asymp-

otic estimate for the expected value of 𝑓 𝑛 , which implies 

 

[
𝑓 𝑛 ( 𝜔 ) 2 

]
≈

(
1 − 

1 
𝑛 

)
𝑓 ( 𝜔 ) 2 + 

1 
𝑛 

(16)

s 𝑛 → ∞. 

Therefore, by using the empirical distribution, we can define and

tilize an unbiased estimator for the MISE . For fixed 𝑛 ∈ ℕ and any ℎ ≥
 , define 

 𝑛 ( ℎ ) = 

2 
𝑛 ∫ 𝐾( ℎ𝜔 ) 𝑑𝜔 + ∫

[(
1 − 

1 
𝑛 

)
�̂� ( ℎ𝜔 ) 2 − 2 �̂� ( ℎ𝜔 ) 

]
𝑓 𝑛 ( 𝜔 ) 2 𝑑𝜔 

= 

2 
𝑛ℎ 

𝐾(0) + ∫
[(

1 − 

1 
𝑛 

)
�̂� ( ℎ𝜔 ) 2 − 2 �̂� ( ℎ𝜔 ) 

]
𝑓 𝑛 ( 𝜔 ) 2 𝑑𝜔. (17) 

hen, 𝜀 𝑛 ( ℎ ) and MISE 𝑛 ( ℎ ) must attain their minimum values at the same

 . Therefore, given a sample 𝑋 1 , … , 𝑋 𝑛 of 𝑛 draws from 𝑓 ( 𝑥 ) , we define

he optimal bandwidth by 

 𝜀 = 

arg min 
ℎ ≥ 0 𝜀 𝑛 ( ℎ ) . 

Computationally approximating the global bandwidth using this

alue of ℎ 𝜀 is instrumental to the algorithm proposed in Section 2. 

Finally, we justify the claim that 𝜀 𝑛 ( ℎ ) is an unbiased estimator of

he MISE . We first note that by the Fourier inversion property we have 

1 
ℎ 
𝐾(0) = 

1 
ℎ ∫ �̂� ( 𝜔 ) 𝑒 0 𝑑𝜔 = ∫ �̂� ( ℎ𝜔 ) 𝑑𝜔. 

Then, taking the expectation of 𝜀 𝑛 ( ℎ ) and inserting the convergence

esult (16) , we find 

 

[
𝜀 𝑛 ( ℎ ) 

]
= 

2 
𝑛 ∫ �̂� ( ℎ𝜔 ) 𝑑𝜔 + ∫

[(
1 − 

1 
𝑛 

)
�̂� ( ℎ𝜔 ) 2 − 2 �̂� ( ℎ𝜔 ) 

]
𝔼 
[
𝑓 𝑛 ( 𝜔 ) 2 

]
𝑑𝜔 

= 

2 
𝑛 ∫ �̂� ( ℎ𝜔 ) 𝑑𝜔 

+ ∫
[(

1 − 

1 
𝑛 

)
�̂� ( ℎ𝜔 ) 2 − 2 �̂� ( ℎ𝜔 ) 

]((
1 − 

1 
𝑛 

)
𝑓 ( 𝜔 ) 2 + 

1 
𝑛 

)
𝑑𝜔 
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T  

b  

s  
= 

(
1 − 

1 
𝑛 

)
∫ �̂� ( ℎ𝜔 ) 2 

((
1 − 

1 
𝑛 

)
𝑓 ( 𝜔 ) 2 + 

1 
𝑛 

)
𝑑𝜔 

−2 
(
1 − 

1 
𝑛 

)
∫ �̂� ( ℎ𝜔 ) 𝑓 ( 𝜔 ) 2 𝑑𝜔 

= 

(
1− 

1 
𝑛 

)
∫

[
�̂� ( ℎ𝜔 ) 2 

((
1− 

1 
𝑛 

)
𝑓 ( 𝜔 ) 2 + 

1 
𝑛 

)
− 2 �̂� ( ℎ𝜔 ) 𝑓 ( 𝜔 ) 2 

]
𝑑𝜔 

= 

(
1 − 

1 
𝑛 

)
∫

[(
�̂� ( ℎ𝜔 ) 2 − 2 �̂� ( ℎ𝜔 ) − 

1 
𝑛 
�̂� ( ℎ𝜔 ) 2 

)
𝑓 ( 𝜔 ) 2 

+ 

1 
𝑛 
�̂� ( ℎ𝜔 ) 2 

]
𝑑𝜔 

= 

(
1 − 

1 
𝑛 

)[ 
∫

(
( �̂� ( ℎ𝜔 ) − 1) 2 − 

1 
𝑛 
�̂� ( ℎ𝜔 ) 2 − 1 

)
𝑓 ( 𝜔 ) 2 𝑑𝜔 

+ 

1 
𝑛ℎ ∫ �̂� ( 𝜔 ) 2 𝑑𝜔 

] 
= 

(
1 − 

1 
𝑛 

)( 

MISE 𝑛 ( ℎ ) − ∫ 𝑓 ( 𝜔 ) 2 𝑑𝜔 

) 

= 

(
1 − 

1 
𝑛 

)( 

MISE 𝑛 ( ℎ ) − ∫ 𝑓 ( 𝑥 ) 2 𝑑𝑥 
) 

. 

This implies that, modulo a shifting and scaling factor that are both

ndependent of ℎ, the expectation of our estimator is exactly MISE 𝑛 ( ℎ ) .
dditionally, it becomes clear that this function must attain its mini-

um at the same value of ℎ as MISE 𝑛 ( ℎ ) , and modulo a shift we have

 

[
𝜀 𝑛 ( ℎ ) 

]
∼ MISE 𝑛 ( ℎ ) as 𝑛 → ∞. 

ppendix C. Numerical bandwidth estimation 

Next, we outline a numerical approach based on our use of the

ourier transform. Implementing the iterative algorithm of Section 3

o compute the approximate distributon, let us assume that the algo-

ithm converges. Then, due to the relationship between successive iter-

tes and the previous kernel, namely 𝑓 𝓁+1 ( 𝑥 ) and 𝑓 𝓁 ( 𝑥 ) = 𝐾 𝓁 ( 𝑥 ) , the final

ensity and the kernel must converge to the same function as 𝓁 → ∞,

hile the bandwidth must also converge to some value ℎ ∞ > 0 . Then,

enoting the converged iteratively-estimated kernel (based on data) by

 ∞( 𝑥 ) , this function must satisfy the interesting self-similar property

using Eq. (1) ) 

 ∞( 𝑥 ) = 

1 
𝑛 

𝑛 ∑
𝑗=1 

1 
ℎ ∞

𝐾 ∞

( 

𝑥 − 𝑋 𝑗 

ℎ ∞

) 

. 

Additionally, its Fourier transform then satisfies the relationship 

̂
 ∞( 𝜔 ) = 

1 
𝑛ℎ ∞ ∫ 𝑒 −2 𝜋𝑖𝜔𝑥 

𝑛 ∑
𝑗=1 

𝐾 ∞

( 

𝑥 − 𝑋 𝑗 

ℎ ∞

) 

𝑑𝑥 

= 

1 
𝑛ℎ ∞ ∫

𝑛 ∑
𝑗=1 

𝑒 −2 𝜋𝑖𝜔 ( 𝑧ℎ ∞+ 𝑋 𝑗 ) 𝐾 ∞( 𝑧 ) ℎ ∞𝑑𝑧 

= 

1 
𝑛 

𝑛 ∑
𝑗=1 

𝑒 −2 𝜋𝑖𝜔𝑋 𝑗 ∫ 𝑒 −2 𝜋𝑖𝜔𝑧ℎ ∞𝐾 ∞( 𝑧 ) 𝑑𝑧 

= 

1 
𝑛 

𝑛 ∑
𝑗=1 

𝑒 −2 𝜋𝑖𝜔𝑋 𝑗 �̂� ∞( ℎ ∞𝜔 ) 

= 𝑓 𝑛 ( 𝜔 ) �̂� ∞( ℎ ∞𝜔 ) 

ue to (15) . With this and the asymptotic approximation (16) , we have

̂
 ∞( 𝜔 ) = 𝑓 ( 𝜔 ) �̂� ∞( ℎ ∞𝜔 ) +  

( 

1 √
𝑛 

) 

(18)

or 𝑛 suitably large. Evaluating the MISE (14) with the approximation

( 𝑥 ) = 𝐾 ∞( 𝑥 ) and ℎ = ℎ ∞ yields 

ISE 𝑛 ( ℎ ∞) = ∫
(
�̂� ∞( ℎ ∞𝜔 ) − 1 

)2 
𝑓 ( 𝜔 ) 2 𝑑𝜔 +  

(1 
𝑛 

)
or 𝑛 suitably large. Finally, expanding this expression and using the re-

ationship (18) satisfied by the Fourier transforms of the limiting kernel
15 
nd unknown pdf, we find 

ISE 𝑛 ( ℎ ∞) = ∫
(
�̂� ∞( ℎ ∞𝜔 ) 2 𝑓 ( 𝜔 ) 2 − 2 �̂� ∞( ℎ ∞𝜔 ) 𝑓 ( 𝜔 ) 2 + 𝑓 ( 𝜔 ) 2 

)
𝑑𝜔 

+  

(1 
𝑛 

)
= ∫

(
�̂� ∞( 𝜔 ) 2 − 2 �̂� ∞( 𝜔 ) 𝑓 ( 𝜔 ) + 𝑓 ( 𝜔 ) 2 

)
𝑑𝜔 +  

( 

1 √
𝑛 

) 

= ∫ |||�̂� ∞( 𝜔 ) − 𝑓 ( 𝜔 ) |||2 𝑑𝜔 +  

( 

1 √
𝑛 

) 

. 

Therefore, we see that for large 𝑛 the iterative algorithm guarantees

hat the MISE is minimized precisely when the kernel 𝐾( 𝑥 ) converges to

he unknown distribution in the 𝐿 

2 sense. This suggests that when the

lgorithm converges (as 𝓁 → ∞) it must converge to the unknown pdf

( 𝑥 ) because an unbiased estimator for the MISE is minimized at every

tep. 

Furthermore, our analysis now demonstrates the appropriate range

f Taylor series estimates of ℎ, because the exact result can be de-

ived from the Fourier transform. Assume a Gaussian for the kernel

nd also assume a priori that the underlying data are Gaussian (with

ero mean and variance 𝜎2 ), so that �̂� ( 𝜔 ) = exp (−(2 𝜋𝜔 ) 2 ∕2) and 𝑓 ( 𝜔 ) =
xp (− 𝜎2 (2 𝜋𝜔 ) 2 ∕2) . The first integral in Eq. (14) can be computed in sev-

ral ways, but is easily performed by recognizing the form of a Gaussian,

o that 

1 
𝑛ℎ ∫ 𝑒 −(2 𝜋𝜔 ) 

2 
𝑑 𝜔 = 

1 
𝑛ℎ 

1 √
4 𝜋 ∫

1 √
2 𝜋∕(8 𝜋2 ) 

𝑒 

( 
− 𝜔 2 

2∕(8 𝜋2 ) 

) 
𝑑 𝜔 = 

1 
2 
√
𝜋𝑛ℎ 

, 

wing to the fact that the last integral is of a density in 𝜔 . Similarly, the

econd integral in Eq. (14) is 

∫
(
(1 − 1∕ 𝑛 ) �̂� 

2 ( ℎ𝜔 ) − 2 �̂� ( ℎ𝜔 ) 
)
𝑓 2 ( 𝜔 ) 𝑑𝜔 

= ∫
(
(1 − 1∕ 𝑛 ) 𝑒 −(2 𝜋ℎ𝜔 ) 2 − 2 𝑒 −(2 𝜋ℎ𝜔 ) 2 ∕2 

)
𝑒 − 𝜎

2 (2 𝜋𝜔 ) 2 𝑑𝜔 

= ∫
(
(1 − 1∕ 𝑛 ) 𝑒 −( 𝜎2 + ℎ 2 )(2 𝜋𝜔 ) 2 − 2 𝑒 −( 𝜎2 + ℎ 2 ∕2)(2 𝜋𝜔 ) 2 

)
𝑑𝜔 

= 

(1 − 1∕ 𝑛 ) 

2 
√
𝜋( ℎ 2 + 𝜎2 ) 

− 

1 √
𝜋( 𝜎2 + ℎ 2 ∕2) 

here we have rearranged as before to make Gaussian densities (in

 ) for each term. Therefore, the resulting quantity to be minimized

 Silverman, 1986 ) is now 

ISE 𝑛 ( ℎ )= 

1 
2 
√
𝜋𝑛ℎ 

+ 

1 
2 
√
𝜋( 𝜎2 + ℎ 2 ) 

− 

1 
2 𝑛 

√
𝜋( 𝜎2 + ℎ 2 ) 

− 

1 √
𝜋( 𝜎2 + ℎ 2 ∕2) 

. 

(19) 

t suffices to approximate the ℎ 0 that minimizes MISE 𝑛 ( ℎ ) to any numer-

cal tolerance, by taking 𝑑 ( MISE 𝑛 ( ℎ ))∕ 𝑑 ℎ, setting it to zero, and finding

he root of the resulting equation. As expected, the estimate of ℎ 0 based

n Taylor series is worse for smaller data sets (i.e., 𝑛 ≲ 100 ), but as 𝑛

rows large, the Taylor series solution converges to the exact solution

 Fig. 8 ). However, it is important to note that these quantities are the

ptimal bandwidth when both the kernel and the underlying data density

re known to be Gaussian. If the underlying density is unknown, then the

ata are used to construct the quantity to be minimized 𝜀 𝑛 ( ℎ ) in Eq. (17) .

o see how this differs, we can imagine that perfectly Gaussian data is

enerated. Then Eq. (17) evaluates to 

 𝑛 ( ℎ ) = 

2 √
2 𝜋𝑛ℎ 

+ 

1 
2 
√
𝜋( 𝜎2 + ℎ 2 ) 

− 

1 
2 𝑛 

√
𝜋( 𝜎2 + ℎ 2 ) 

− 

1 √
𝜋( 𝜎2 + ℎ 2 ∕2) 

, 

(20) 

hich has a root approximately 4 1∕5 = 1 . 32 larger for large 𝑛 ( Fig. 8 ).

he fact that data are imperfect means that the global bandwidth must

e about 32% to 70% larger (depending on 𝑛 ) to achieve additional

moothing when compared to a completely “perfect ” realization of data.
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Fig. 8. Log-log plots of global bandwidth over data 

scale parameter ( ℎ 0 ∕ 𝜎) versus number 𝑛 of data using 

exact solution for Gaussian data density known a pri- 

ori ( Eq. (20) ) versus Taylor series approximate solution 

( Eq. (6) ) and numerical estimation of Gaussian data 

density ( Eq. (17) ). Also shown are the lower values of 

ℎ 0 ∕ 𝜎 for Cauchy data estimated with Cauchy kernel. 

Fig. 9. Plots of unbiased estimator for 

Fourier-transformed MISE (denoted 𝜀 𝑛 ( ℎ ) ) 
as a function of global bandwidth parame- 

ter ℎ . Plots either assume or use Gaussian 

data with 𝜎2 = 1 and 1000 data points. The 

exact expression Eq. (20) is plotted with 

a thick red curve; the minimum (shown 

with a + sign) is found at ℎ 0 = 0 . 3406 . 
The estimate of ℎ 0 using Taylor series is 

0.266 and is denoted by a circle above the 

curves. Also shown is an ensemble of 50 

curves (in black) wherein for each curve 

1000 IID Gaussian data are generated and 

the density function is estimated by Fourier 

transform Eq. (15) . The ensemble statistics 

of the estimated ℎ 0 were calculated with 

mean ℎ 0 = 0 . 335 , with standard deviation 

of 𝜎ℎ 0 = 0 . 0238 (box above curves denotes 

mean ± 𝜎ℎ 0 ). (For interpretation of the ref- 

erences to color in this figure legend, the 

reader is referred to the web version of this 

article.) 
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For a specific example, we set 𝑛 = 1000 and 𝜎2 = 1 , which produces

n exact optimal global bandwidth (for imperfect data using 𝜀 𝑛 ( ℎ ) in
q. (17) ) of ℎ 0 = 0 . 341 ( Fig. 9 ), whereas the estimate based on Taylor

xpansions gives ℎ 0 = 1 . 06 𝜎𝑛 −1∕5 = 0 . 266 . It is important to see how well

 numerical estimate of the data density gives an estimate of ℎ 0 , rather

han simply assuming a Gaussian density function. We may now com-

are the values of ℎ that are estimated using the Fourier-transformed

ata to form an estimate of the density function (i.e., using Eq. (15) in
16 
q. (17) ) instead of assuming the Gaussian form. Here we show the

esults for 50 independent runs in which 1000 IID Gaussian data are

enerated and the experimental curve generated and ℎ taken at the

urve minimum (black curves in Fig. 9 ). While there is a large verti-

al spread in the curves, the locations of the minima are fairly tightly

onstrained. The mean of 50 values of ℎ 0 is 0.335 (compared to the ex-

ct value of 0.341), and the estimated ℎ 0 have a standard deviation of

.0238. 
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Fig. 10. Slope of power law decline ∼ 𝑛 − 𝛾 of optimal kernel 

bandwidth with particle number for stable distributions with 

different stability parameter 𝛼
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Several other characteristic functions (Fourier transforms of PDFs)

re easily integrated and illustrate the effect of data distribution on es-

imation of ℎ 0 . For example, the standard Cauchy density, defined by 

( 𝑥 ) = 

𝜎

𝜋
(
𝜎2 + 𝑥 2 

) , 
as both divergent variance and mean, and its associated Fourier trans-

orm is given by 

 ̂( 𝜔 ) = exp (−2 𝜋𝜎|𝜔 |) . 
Note that the scale parameter 𝜎 commonly used for stable densities

s not the standard deviation, which is infinite. Assuming that the kernel

as also a perfect copy of the data density, so that 

̂
 ( 𝜔 ) = exp (−2 𝜋|𝜔 |) , 

he MISE becomes (up to an additive factor independent of ℎ ) 

ISE 𝑛 ( ℎ ) = 

1 
2 𝜋𝑛ℎ 

+ 

(
1 − 

1 
𝑛 

) 1 
2 𝜋( ℎ + 𝜎) 

− 

1 

𝜋
(
1 
2 ℎ + 𝜎

) . 

Therefore, calculating the minimum of the MISE (14) means solving

he root of 

𝑑( MISE 𝑛 ) 
𝑑ℎ 

= − 

1 
2 𝜋𝑛 

− 

(
1 − 

1 
𝑛 

) 1 

2 𝜋
(
1 + 

𝜎

ℎ 

)
2 
+ 

2 

𝜋
(
1 + 

2 𝜎
ℎ 

)
2 
. (21)

hese values of ℎ 0 ( 𝑛 ) are significantly smaller than those found for Gaus-

ian data ( Fig. 8 ) and also decline for large 𝑛 approximately like ∼ 𝑛 −1∕3 .

his suggests a numerical procedure for simultaneous estimation of the

ata density and the global bandwidth. The FT estimate of ℎ 0 based on

aussian data is the largest of the estimates ( Fig. 8 ), so we begin with

hat value. If the iterated kernel —based on the estimated density and

sing this ℎ 0 —fails to converge, then we reduce ℎ 0 systematically down

o a minimum given by the Cauchy ℎ 0 . In this procedure, the specifics

f the data distribution need not be known. Simply start with an as-

umption of Gaussian-like smoothness and data density, but allow for

auchy-like sparcity of data (i.e., few very large data). 

We may also consider the Laplace (or double exponential) density

efined by 

( 𝑥 ) = 

1 
2 𝜎

exp 
( 

− 

|𝑥 |
𝜎

) 

, 
17 
hich has mean zero and variance 2 𝜎2 , but does not possess a continuous

erivative at 𝑥 = 0 . The Fourier transform of this function is given by 

 ̂( 𝜔 ) = 

1 
1 + 4 𝜋2 𝜎2 𝜔 

2 . 

If the kernel is similarly distributed so that 

̂
 ( 𝜔 ) = 

1 
1 + 4 𝜋2 𝜔 

2 , 

hen the MISE becomes 

ISE 𝑛 ( ℎ ) = 

1 
4 𝑛ℎ 

+ 

(
1 − 

1 
𝑛 

)
ℎ 2 + 3 ℎ𝜎 + 𝜎2 

4( ℎ + 𝜎) 3 
− 

2 ℎ + 𝜎

2( ℎ + 𝜎) 2 
. 

As before, the minimum of the MISE (14) can be computed by finding

he root of the derivative of this expression, namely 

𝑑( MISE 𝑛 ) 
𝑑ℎ 

= − 

1 
4 𝑛 

(
1 + 

𝜎

ℎ 

)
2 + 

(3 
4 
+ 

1 
4 𝑛 

) ℎ 

𝜎

ℎ 

𝜎
+ 1 

− 

( 3 
4 
− 

1 
4 𝑛 

) ℎ 

𝜎(
ℎ 

𝜎
+ 1 

)
2 
. 

(22) 

he resulting values of ℎ 0 ( 𝑛 ) are again significantly smaller than those

ound for Gaussian data ( Fig. 8 ) and also decline for large 𝑛 approxi-

ately like ∼ 𝑛 −1∕4 . 

Finally, we consider the family of stable distributions, whose density

ay be defined by 

( 𝑥 ) = 

1 
2 𝜋 ∫

∞

−∞
𝑒 
− |𝑐𝑘 |𝛼 (1− 𝑖𝛽𝑠𝑔𝑛 ( 𝑘 ) tan ( 𝜋𝛼2 )) 𝑒 − 𝑖𝑘𝑥 𝑑𝑘 

here 0 < 𝛼 ≤ 2 is the stability parameter, −1 < 𝛽 < 1 is a skewness pa-

ameter and 𝑐 is the scale parameter. The Fourier transform is given

y 

 ̂( 𝜔 ) = 𝑒 
− |2 𝜋𝑐 𝜔 |𝛼 (1− 𝑖𝛽𝑠𝑔𝑛 (− 𝜔 ) tan ( 𝜋𝛼2 )) . 

As before, if the kernel is similarly distributed so that 

̂
 ( 𝜔 ) = 𝑒 

− |2 𝜋𝜔 |𝛼 (1− 𝑖𝛽𝑠𝑔𝑛 (− 𝜔 ) tan ( 𝜋𝛼2 ) 
hen the MISE becomes 

ISE 𝑛 ( ℎ ) = 𝐶 

[ 
2 −1∕ 𝛼
𝑛ℎ 

+ 

( 

1 − 

1 
𝑛 

) ( 

2 ℎ 𝛼 + 2 𝑐 𝛼
) 

−1∕ 𝛼 − 2 
( 

ℎ 𝛼 + 2 𝑐 𝛼
) 

−1∕ 𝛼
] 
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here 

 = ∫
∞

−∞
𝑒 
− |2 𝜋𝜔 |𝛼 (1− 𝑖𝛽𝑠𝑔𝑛 (− 𝜔 ) tan ( 𝜋𝛼2 )) 𝑑𝜔 

As before this can be minimized and, similar to the distributions ex-

lored so far, we find that there is a power law decline ∼ 𝑛 − 𝛾 where 𝛾

epends on 𝛼 as depicted in Fig. 10 . Note that the magnitude of MISE
epends on 𝛼 and 𝛽 through the constant 𝐶, but that this does not im-

act the minimized value. We also note that these calculations may be

ade for other densities but are not shown. Additionally, some of the

ntegrations must be performed numerically as it may be the case that

o closed-form expression for the antiderivative exists. 
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