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The kinetics of the self-assembly of nanocomponents into a virus, nanocapsule, or other composite
structure is analyzed via a multiscale approach. The objective is to achieve predictability and to
preserve key atomic-scale features that underlie the formation and stability of the composite
structures. We start with an all-atom description, the Liouville equation, and the order parameters
characterizing nanoscale features of the system. An equation of Smoluchowski type for the
stochastic dynamics of the order parameters is derived from the Liouville equation via a multiscale
perturbation technique. The self-assembly of composite structures from nanocomponents with
internal atomic structure is analyzed and growth rates are derived. Applications include the assembly
of a viral capsid from capsomers, a ribosome from its major subunits, and composite materials from
fibers and nanoparticles. Our approach overcomes errors in other coarse-graining methods, which
neglect the influence of the nanoscale configuration on the atomistic fluctuations. We account for the
effect of order parameters on the statistics of the atomistic fluctuations, which contribute to the
entropic and average forces driving order parameter evolution. This approach enables an efficient
algorithm for computer simulation of self-assembly, whereas other methods severely limit the
timestep due to the separation of diffusional and complexing characteristic times. Given that our
approach does not require recalibration with each new application, it provides a way to estimate
assembly rates and thereby facilitate the discovery of self-assembly pathways and kinetic dead-end
structures. © 2009 American Institute of Physics. �DOI: 10.1063/1.3134683�

I. INTRODUCTION

Self-assembly is the natural and spontaneous organiza-
tion of simple components into larger patterns or structures
without human intervention. This phenomenon occurs fre-
quently within nature and technology and can involve com-
ponents from a variety of scales, from the molecular to the
macroscopic.1,2 In this article, the self-assembly of a com-
posite structure from nanoscale components is analyzed us-
ing a multiscale approach. Biological systems that self-
assemble for which the present approach is designed include
the viral capsid, ribosome, and cytoskeleton. Opal is a geo-
logical composite, and engineered composite materials have
great promise as short materials. The self-assembly of these
systems typically takes place on millisecond or longer times-
cales. As atomic collisions and vibrations occur on the
10−14 s scale, their collective influence drives self-assembly,
while their dynamics are simultaneously affected by the
slower processes. The fast processes act at the atomic scale,
whereas those at the nanoscale involve the coherent motion
of thousands or more atoms simultaneously. Thus, from both
the temporal and spatial perspectives, self-assembly has mul-
tiscale character. The objective of this study is to show how
laws of self-assembly can be derived via a multiscale analy-
sis of the basic laws of molecular physics �notably the Liou-

ville equation� for systems describable as a set of N classical
atoms evolving under the influence of an interatomic force
field. More specifically, we rigorously derive an equation for
the stochastic dynamics of variables describing the self-
assembling nanocomponents and show how this develop-
ment leads to a theory free from recalibration with each new
application.

It is envisioned that the theory developed here will pro-
vide a framework for analyzing a variety of self-assembly
phenomena, including

�a� dimerization and the formation of other protein com-
plexes,

�b� formation of viruses, ribosomes, and other bionano-
structures,

�c� construction and loading of nanocapsules for drug,
gene, or siRNA delivery,

�d� creation of macromolecular circuits or cytoskeletal
structures,

�e� formation of engineered composite materials, and
�f� creation of geological composites, such as opal.

Viral capsid self-assembly is of particular interest to the
medical and engineering industries. Antiviral strategies have
been proposed with the aim of interfering with the growth of
viral infection by targeting the assembly of viruses using
antiviral therapeutics.3 The self-assembly mechanism of viral
capsids has also been applied to synthesize functionalized
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supramolecules,4 which can then be utilized as molecular
containers for engineered nanomaterial synthesis.5–9 Such
self-assembling systems are key aspects of great scientific
and technical interest so that a conceptual and computational
advance in self-assembly theory could have a broad, practi-
cal impact.

In this study, we focus on self-assembly of objects from
nanocomponents, such as viral capsids from capsomers or
opal from silica spheres �although its formation is not self-
limiting�. In these cases, each assembling nanocomponent
consists of many atoms so that the behavior of individual
components has mixed atomic-chaotic and coherent charac-
ter. Such mixed behavior systems have the character of
Brownian motion. Therefore, the evolution of such a self-
assembling system can be described as the result of inter-
scale cross-talk. Atomic fluctuation provides the entropies
for free energy driving forces, as well as stochastic forces to
overcome energy barriers and create Brownian motion. Con-
versely, the coherent aspects �order parameters� of these sys-
tems, notably their nanoscale architecture, modify the statis-
tical proportions of the atomistic fluctuations. This interscale
cross-talk creates the feedback loop suggested in Fig. 1.

Three aspects of self-assembling systems of specific in-
terest are the following.

�1� The assembly self-limits its size, in contrast to precipi-
tation wherein growth of a solid is only limited by the
number of available components.

�2� The structures are hierarchical both in their architecture
�atoms make proteins, proteins make capsomers, and
capsomers make viral capsids� and in their growth ki-
netics �small subunits form substructures, which then
assemble into more extensive ones�.

�3� These systems can best be understood via an analysis
that integrates processes communicating across mul-
tiple scales in both space and time.

Multiscale analysis is a way to study systems that simul-
taneously involve processes on widely separated time and
length scales. It has been of interest since the work on
Brownian motion by Einstein.10–21 In these studies, Fokker–
Plank �FP� and Smoluchowski equations are derived either
from the Liouville equation or via phenomenological argu-

ments for nanoparticles without internal atomic-scale struc-
ture. Recently, we advanced this approach by accounting for
atomic-scale internal structure, introducing a general set of
structural order parameters characterizing nanoscale features
of the system, establishing a way to include these variables
in the analysis without violating the number of degrees of
freedom, and incorporating specialized ensembles con-
strained to fixed values of the order parameters. The latter
ensembles enable us to construct the average forces and fric-
tion coefficients in the equations of stochastic order param-
eter dynamics.22–29

The objective of multiscale analysis is to arrive at sto-
chastic equations for a reduced number of variables. Key
atomic-scale detail is preserved via the aforementioned prob-
ability distribution for atomistic configurations. Thus, the ob-
jective is not to follow a given atomic-scale scenario for
system evolution but rather to coevolve the order parameters
and the atomic-scale configuration probability density �see
Fig. 1�.

Advances in the theory of chemical kinetics are relevant
to self-assembly. Multiscale analysis of the Liouville equa-
tion for reacting hard spheres11,12,14 shows that when the
probability for reactive collision is small, one can develop a
perturbation expansion in the reactive part of the Liouville
operator. This operator generates transitions upon collision
when a given criterion on the line-of-centers kinetic energy
is met. Such a theory holds for condensed systems and ac-
counts for the environment of a colliding pair of particles by
taking the transition probability to depend on particles near a
given colliding pair. A major difference between this and the
present study is that the end product of these reactive events
is not an aggregate but rather a pair of particles, one or both
of which have altered identity due to the reactive collision.
The hypothesis on which the present study is based is that
one can formulate an analogous multiscale approach for an
N-atom system evolving under a continuous N-atom poten-
tial and not by a hard-sphere model with a reactive transition
probability. The key to our approach in this regard is that one
can identify order parameters that are slowly varying in time.
The order parameters we introduce characterize the coherent
dynamics of the self-assembling nanocomponents.

Simulations of the dynamics of self-assembly involving
molecular or nanoscale components have been performed us-
ing molecular dynamics �MD�.30–32 Additionally, “lumped”
or “coarse-grained” methods33,34 have been utilized to simu-
late the behavior of these and other biomolecular systems.
The objective of these methods is to introduce a reduced set
of variables �e.g., lumped clusters of atoms� and use heuristic
arguments or calibration with experimental data to fit the
interaction between these lumped elements. We wish to dis-
tinguish between a fully coded multiscale approach as
adopted here �in Sec. III� and these other simulation meth-
ods. Consider the feedback loop in Fig. 1. Here it is sug-
gested that nanoscale features of the system �described via
order parameters� can affect the probability distribution for
atomistic fluctuations. In turn, these fluctuations create the
entropy and the average forces that drive order parameter
evolution. This suggests that a computational approach to
self-assembly should coevolve the order parameters and the

FIG. 1. Order parameters characterizing nanoscale features affect the rela-
tive probability of the atomistic configurations, which, in turn, mediate the
forces driving order parameter dynamics. This feedback loop is central to a
complete multiscale understanding of nanosystems and the true nature of
their structural transitions and other dynamics.
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average forces acting on them. In contrast, coarse-grained or
lumped methods provide an algorithm for computing forces
on aggregates of atoms without accounting for the instanta-
neous value of the order parameters, thus ignoring the feed-
back loop in Fig. 1. In addition to accounting for this inter-
action, the present multiscale approach provides a guideline
for choosing the correct set of order parameters �e.g., the size
of the aggregate of atoms constituting the lumped element�.

The multiscale theory presented here is strongly based
on an intuition regarding variables, which characterize the
long-time behavior of the system, i.e., over times much
greater than those of atomic collisions and vibrations. These
are generally collective variables, which represent the coher-
ent dynamics of many atoms simultaneously. Multiscale
theory enables one to capture the interplay of the coherent,
many-atom, and chaotic individual-atom dynamics. The in-
tuitive starting point of the theory notwithstanding our devel-
opment provides a self-assembling test, notably that certain
correlation functions have long-time tails.35–37 If these are
present they provide an indication that the proposed list of
order parameters is not complete, i.e., there are other order
parameters that couple to them strongly.

Depending on the importance of coherent inertial dy-
namics and friction effects, the result of multiscale theory is
an equation of either FP or Smoluchowski type for the sto-
chastic dynamics of the order parameters. We have devel-
oped the following six-step procedure for the analysis of
multiscale systems.23,24,26,27,29

Step 1. The system is described in terms of N classical atoms
interacting via a potential. Order parameters � are
set forth to characterize the nanoscale features of the
system. Newton’s equations and statistical argu-
ments are used to show that the order parameters
evolve on timescales that are long relative to that of
atomic vibrations or collisions. It is similarly deter-
mined whether or not the momenta � associated
with � are slowly varying under conditions of inter-
est. In this way the system has a dual description,
i.e., � �and �� versus �, the set of 6N atomic posi-
tions and momenta.

Step 2. The probability density � for the state � at time t is
hypothesized to have dual dependence on � �both
directly and through � and possibly ��. Importantly,
� �and �� are not additional dynamical variables,
and it is through this hypothesis that one accounts
for the multiple ways � depends on �. Our approach
avoids the tedious algebra needed to ensure there are
only 6N degrees of freedom, which arises in other
approaches wherein one removes selected atomistic
variables so that the sum of the number of order
parameters and the remaining variables is kept at 6N.
Instead, our ��� ,� ,� , t� formulation expresses the
distinct dependencies of � that capture the multiscale
character of the N-atom system.

Step 3. Given the dual dependence of � on �, a small pa-
rameter � naturally emerges such that the chain rule
and Newton’s equations imply that the Liouville
equation takes the form �� /�t= �L0+�L1+ . . .��,

where the operators L0 ,L1 , . . . involve partial de-
rivatives with respect to �, �, and � when acting on
�. Introducing differing timescales, the Liouville
equation takes the multiscale form

�
n=0

�

�n� �

�tn
− Ln�� = 0, �1�

where tn=�nt introduces a set of times natural for
each of a set of processes. For example, t0 changes
by one unit in 10−14 s, while t1 changes by one unit
in a microsecond. The operator Ln is the contribution
to the Liouville operator that is O��n� and emerges
naturally due to the character of the order param-
eters, length and mass ratios, interatomic force
fields, and other physical factors, which appear in
the Liouville equation.

Step 4. An expansion of � in powers of � is introduced and
the Liouville equation in its multiscale reformulation
is solved order-by-order.

Step 5. The lowest order solution is assumed to reflect the
near-equilibrium conditions relevant for many self-
assembly problems since the system has come to a
steady state for the atomistic variables. Hence, this
solution is taken to be independent of the time vari-
able t0, which is designed to capture atomistic fluc-
tuations. The Liouville equation implies that the
lowest order probability density depends on � only
through � �and ��. As no further information is
known about the lowest order distribution, an en-
tropy maximization principle is used, resulting in the
construction of a set of possible distributions, each
of which are applicable under distinct experimental
conditions.28

Step 6. The solution to the Liouville equation at various or-
ders in � is examined. By asserting that the nth order
solution is well-behaved for large time and upon de-
riving a conservation law for the time evolution of
the reduced probability density �depending only on
� and possibly �� from the Liouville equation, a
generalized FP or Smoluchowski equation is ob-
tained. In this derivation, we do not ensure solvabil-
ity conditions by integrating out the atomistic vari-
ables �e.g., the direct dependence of � on ��. Such a
traditional approach leads to ambiguities when one
wishes to use an all-atom description of the system
and notably of the nanoscale subsystems of interest
here. Rather, we use the Gibbs hypothesis, which
states that “the long-time and ensemble averages are
equal near equilibrium.”

In the next section, this six-step procedure is developed
in which � is not slowly varying to arrive at a theory of the
self-assembly of nanocomponents into a composite. Implica-
tions for the numerical simulation of self-assembly are ex-
plored as well in Sec. III. Finally, conclusions are drawn
from the analysis and simulations in Sec. IV
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II. ALL-ATOM MULTISCALE ANALYSIS OF AN
M-NANOCOMPONENT SELF-ASSEMBLING SYSTEM

The interaction between assembling nanocomponents
occurs via interatomic forces. Thus, the natural description is
all-atom in detail. Nonetheless, one envisions self-assembly
of nanocomponents into a composite structure as the
nanometer-scale migration and rotation of the components
into preferred configurations, followed by angstrom-scale ad-
justments and deformations as components fit together and
bind. Thus, such a self-assembling system has multiscale
character including the atomic scale of minor adjustments,
rapid fluctuation, and interatomic forces, in addition to the
long spatiotemporal scale dynamics of migration and rotation
of nanocomponents. With this physical picture of the inter-
play between atomistic and nanoscale dynamics, we formu-
late the self-assembly problem in terms of the dynamics of N
classical atoms while simultaneously accounting for the dy-
namics of the M slowly moving �relative to atomic fluctua-
tions� nanocomponents that self-assemble into the composite
structures of interest.

The detailed configuration of the system is described in
terms of the positions of the N atoms r� = �r�1 , . . .r�N	 and the

centers of mass �CMs� R� = �R� 1 , . . .R� M	 of the M nanocompo-
nents. Each of the N atoms is either a constituent of a nano-
component or of the host medium. We do not consider the
orientation of the nanocomponents to be slow variables for
simplicity �although it is accounted for via r��. In this view, r�
accounts for the detailed, rapidly fluctuating all-atom con-
figuration and thereby captures steric and energetic con-
straints on self-assembly. In contrast, R� accounts for the co-
herent migration of the assembling nanocomponents and
thereby the diffusion-limitation on assembly.

The introduction of both r� and R� is necessary to express
the multiscale character of the N-atom probability distribu-
tion �. The r� ,R� duality reflects the simultaneous presence of
the short scale of individual atomic fluctuations �occurring
over 10−14 s� and the long scale of migration into position on
a self-assembling structure �often occurring on the timescale
of seconds or longer�.

Let P� k be the total momentum of nanocomponent
k �=1,2 , . . . ,M�. The momenta and the CMs are expressed in
terms of the atomic variables via

R� k = �
i=1

N

�ikmir�i/mk
c, �2�

P� k = �
i=1

N

�ikp� i, �3�

where �ik=1 if atom i is in unit k and is zero otherwise, mi,
p� i, and r�i are the mass, momentum, and position of atom i,
respectively, and mk

c=�i�ikmi is the total mass of nanocom-
ponent k. The atomic variables will be used extensively and
are henceforth denoted by ��=�p�1 ,r�1 , . . . p�N ,r�N	�.

When characterizing the statistics of the rapidly fluctu-
ating atomistic behaviors, it is essential to consider the con-
ditions to which the system is subjected. Several cases have
been studied in the context of nanosystem multiscale

dynamics,28 including isothermal and isoenergetic condi-
tions. Here, we consider a system that is maintained isother-
mal by a continuous exchange of energy with a constant
temperature bath. The total energy H is written as

H = �
i=1

N
p� i

2

2mi
+ V�r�1, . . . r�N� , �4�

where V�r�1 , . . .r�N� is the N-atom potential. It is assumed for
the isothermal case that the average value of the energy 
H�
is known. The isoenergetic and mixed ensembles studied
earlier28 could also be investigated within the context of self-
assembly in the manner outlined below. The ultimate conse-
quence of this analysis is a Smoluchowski equation for the
stochastic dynamics of R� , representing the domination of in-
ertial effects in the motion of the CMs by frictional ones.

We introduce the parameter � defined to be the ratio of
the mass m of a typical atom to that of a typical nanocom-
ponent mc. For simplicity, we develop the formalism with all
nanocomponents having identical mass mc so that mk

c=m /�
for all k. As the nanocomponents �e.g., viral capsomers� are
considered to be large in size relative to an atom, � is small.

We define the reduced probability density � via

��R� ,t� =� d��	�R� − R� ������,t� , �5�

where 	�R� −R� �� is a 3M-fold Dirac delta function and R� k
� is

the value of the CM of nanocomponent k evaluated in the
integration variables ��. The main goal of this section is to
derive an equation for �, which describes the dynamics of
the R� variables so that the large-scale behavior of the N-atom
system, usually determined by �, can be characterized
merely by the evolution of �. We proceed by determining a
conserved kinetic equation for � in terms of � using the fact
that � obeys the Liouville equation

��

�t
= L�; L = − �

i=1

N � p� i

mi
•

�

�r�i

+ F� i •
�

�p� i
� . �6�

Here F� i is the force on atom i. We then use this to derive an
equation for the evolution of � via an approximate expres-
sion for � that is valid for small �. Integrating by parts and
using Eq. �6�, one obtains

��

�t
= −

�

m
�
k=1

M
�

�R� k

•� d��	�R� − R� ��P� k
�� �7�

to describe the time evolution of the reduced probability den-
sity �.

To close this conserved equation, we develop an ap-
proximation to � by first adopting an ansatz on the depen-
dence of �, i.e., ��� ,R� , t�. In this way, we make the assump-
tion that � depends on � both directly and, via R� , indirectly.
This does not imply that R� is an additional set of dynamical
variables, rather, the ansatz states that � depends explicitly
on the nanoscale variables in addition to the atomic variables
in the system. As shown earlier23,24,27 this enables us to
account for the full intrananocomponent internal atomistic
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dynamics, where other studies ignored the internal atomistics
of a nanoparticle. Using this ansatz and the chain rule, the
Liouville equation �Eq. �6�� implies that

�
n=0

�

�n ��

�tn
= �L0 + �L1�� , �8�

L0 = − �
i=1

N  p� i

mi
•

�

�r�i

+ F� i •
�

�p� i
� , �9�

L1 = − �
k=1

M
P� k

m
•

�

�R� k

. �10�

Here, we introduce the scaled time variables tn �recall from
Sec. I that tn=�nt� so that an order-by-order analysis of the
problem may be conducted in �. Our analysis proceeds by
constructing solutions of the multiscale Liouville equation
�Eq. �8�� as an expansion in �,

� = �
n=0

�

�n�n. �11�

Upon the insertion of Eq. �11�, we proceed by analyzing
Eq. �8� to each order in �.

To lowest order we seek quasiequilibrium solutions, i.e.,
statistical states for which �0 is independent of t0. Thus �0

satisfies L0�0=0. Since L0 involves derivatives with respect
to � at constant R� , any function of R� and conserved variables
�i.e., H� satisfies this quasiequilibrium condition. To arrive at
an objective solution to the lowest order problem, we use an
entropy maximization approach to construct �0.23,24 With this
�0 takes the form27

�0 =
e−
H

Q�R� ,
�
W�R� ,t�� � �̂W , �12�

Q =� d��	�R� − R� ��e−
H�
, �13�

where H� is the total energy expressed in terms of �� and
W�R� , t�=�d��	�0. Here, �̂ is the lowest order conditional
probability density for � given a value of R� , while Wd3MR is
the probability that the system is in a configuration with the
CMs of the nanocomponents in a small volume element
d3MR about R� . The collection of times t�= �t1 , t2 , . . .	 is de-
signed to chronolize the progression of processes on a se-

quence of increasingly long timescales. The entropy Ŝ asso-
ciated with the conditional probability �̂ is given by the
integral of −k
�̂ ln �̂ over all acceptable states, i.e., weighted
by 	�R� −R� ��. As noted earlier,27 this and a similar expression
for the average of H yield the free energy F�R� ,
� and imply
that ln Q=−
F. As gradients of Q will be shown to drive the
coherent dynamics of R� , it is seen that self-assembly in an
isothermal system is driven by free energy differences, as
expected.

In the analysis that follows, we use the Gibbs hypoth-
esis. Let 
�� be the average of a quantity ��� ,R� � over � as
weighted by �̂ and at constant R� , i.e.,


�� =� d��	�R� − R� ���̂����,R� �� . �14�

According to the Gibbs hypothesis as reformulated here, “the
time-average of any dynamical variable evolving via L0 is
equal to its R� -constrained �̂-weighted average,”

lim
t0→�

1

t0
�

−t0

0

dt�e−L0t�� = 
�� . �15�

To O��� the Liouville equation implies that

� �

�t0
− L0��1 = − � �

�t1
− L1��0. �16�

This admits the solution

�1 = eL0t0A1 − �
0

t0

dt0�e
L0�t0−t0��� �

�t1
− L1��0 �17�

for initial data A1�� ,R� � �i.e., �1 at t0=0�. The choice of A1 is
critical. For example, if we introduce a shock wave through
A1, then � will have short �t0� scale dynamics, and thus �
will not satisfy a simple equation of slow evolution, meaning
that our physical picture and the types of phenomena of in-
terest are quasiequilibrium in character. Shock waves and
other such states of the system are inconsistent with the ini-
tial data of interest here. Using the expression for L1, the
lowest order solution �0, and the change in variables t�= t0�
− t0, one obtains

�1 = eL0t0A1 − �̂t0
�W

�t1
− �̂�

k=1

M �
−t0

0

dt�e−L0t�P� k

m

�� �

�R� k

− 

f�k��W , �18�

where 
f�k�=−�F /�R� k is the total averaged force on the kth
nanocomponent.

The Gibbs hypothesis is used to show that for �1 to be

well-behaved as t0→�, �W /�t1 must vanish since 
P� k�, the

�̂-weighted average of P� k, is zero.27 Notice that 
P� k�=0 be-

cause P� k is a sum of atomic momenta, and computing the
�̂-weighted average of p� i using Eq. �14�, one finds 
p� i�=0 for
every i. If A1 contains direct � dependence, then � will
contain t0 dependence. Thus, we conclude that A1 only de-
pends on � via R� for self-consistency. With this, one obtains

�1 = A1 −
�̂

m
�
k=1

M �
−t0

0

dt�e−L0t�P� k �

�R� k

− 

f�k��W , �19�

completing the O��� analysis of the Liouville equation.
At this point, it is standard to conduct an O��2� analysis

and obtain an equation for W by imposing that �2 is well-
behaved as t0→�. However, it can be seen from the evolu-
tion Eq. �7� for � that the O��2� behavior of �� /�t is cap-
tured by determining � to O��� only. Proceeding in this
manner and noting that �→W as �→0, we obtain the fol-
lowing Smoluchowski-type equation for �. To O��2�,

194115-5 Self-assembly of nanocomponents J. Chem. Phys. 130, 194115 �2009�

Downloaded 04 Jun 2009 to 129.107.75.3. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



��

�t
= − �2 �

�R�
• J� − �2�J�A

�R�
, �20�

J�k = − �
l=1

M

D�� kl �

�R� l

− 

f�l��W , �21�

D�� kl =
1

m2�
−t0

0

dt�
P� ke
−L0t�P� l� , �22�

for diffusion tensors D�� kl and where J�A

= �J1x
A ,J1y

A ,J1z
A , ¯JMx

A ,JMy
A ,JMz

A 	 and

Jk
A =� d��	�R − R��PkA1. �23�

The diffusion coefficients Dkl and the thermal-average forces


f�k� can depend strongly on. R�
Note that the above equation for �� /�t is not closed in

�. Expanding � in powers of �, one can show from the
above analysis that �0=W and �1=A1. Thus, if the equation
is to be closed in �, then A1=0. In summary, we obtain

��

�t
= − �2 �

�R�
• J , �24�

J�k = − �
l=1

M

D�� kl �

�R� l

− 

f�l��� . �25�

It should be noted that the condition A1=0 is implied by the
freedom one has to assert that the initial state of the system is
determined by �0. Other initial data can be analyzed wherein
A1�0. Furthermore, A1 need not be chosen in order to guar-
antee that �2 is well-behaved. The Gibbs hypothesis will en-
sure this. Hence, higher-order expansions in � can be per-
formed without violating the conditions on the boundedness
of �n for n�1.

III. SIMULATING SELF-ASSEMBLY

Direct simulation of nanocomponent self-assembly into
composite structures is limited by CPU time requirements
even when a coarse-grained model is used. One of the rea-
sons is that timesteps over which the nanocomponents would
move an appreciable distance �i.e., greater than an angstrom�
likely lead to unphysical overlapping configurations that
would never arise if small, but impractical, timesteps were
used. The difficulty is particularly acute when self-assembly
from initially widely separated nanocomponents is of
interest—i.e., the components must move thousands of ang-
stroms on the average, but there will commonly be an over-
lap created for at least one pair of components so that the
entire collection must be halted to allow for a timestep that
would avoid such an overlap. For nanometer size compo-
nents, the mismatch between their diameter and the
angstrom-range of the interaction between points on the sur-
face of an interacting pair introduces a similar overlap diffi-
culty, i.e., components must rearrange via moves of nano-
meter size, even though the motions per timestep should be
less than the interaction length.

The multiscale analysis developed in the previous sec-
tion yields a Smoluchowski equation for the stochastic dy-
namics of the order parameters. For practical simulation,
Langevin equations can be derived from the Smoluchowski
equation in Sec. II38 wherein the forces and friction coeffi-
cients are calculated via MD simulations; the latter includes
key atomic details necessary to arrive at calibration-free
modeling of self-assembly. The difficulty arising from the
need to avoid overlapping configurations is overcome as fol-
lows. The objective here is not to fully demonstrate the com-
putational multiscale approach in Sec. II, but rather to pro-
vide a simulation method inspired by the multiscale
perspective that overcomes this difficulty. In what follows,
we will discuss our new multiscale simulation method and
demonstrate it for the self-assembly of spherical particles
without internal coordinates. Even though this approach is
specifically designed to account for atomic details �i.e., for
the internal coordinates of a nanoparticle�, simplifying the
problem as such will make it possible to compare our results
with a traditional Langevin simulation within a reasonable
amount of time and on a single-processor workstation.

The multiscale approach developed in Sec. II suggests
this apparent difficulty arises because of a misinterpretation
of the Langevin equation. The driving forces in the set of
Langevin equations equivalent to the Smoluchowski Eqs.
�24� and �25� are thermal-averages and not bare forces. The
Langevin equations, in simplified version for illustrative pur-
poses here, take the form38

− �k
dR� k

dt
+ 
f�k� + A� k = 0� , �26�

for k=1,2 , . . . ,M in the M nanocomponent system; �k is a

friction coefficient related to the diffusion tensors D�� kl in Sec.

II, f�k is the force on component k, and A� k is a random force.
We use a scalar-valued friction coefficient �k �e.g., the maxi-

mal eigenvalue� to approximate D�� kl and simplify the simula-
tions. The 
 � in Eq. �26� represents a Boltzmann-weighted

average. Thus, 
f�k� is the thermal-average force on compo-
nent k and not the bare force. The nanocomponents are con-
stantly fluctuating, and the final coarse-grained structure de-
rived from the Langevin equations represents an average
configuration of the ensemble of fluctuating structures. Thus,
apparently overlapping Langevin configurations are only
overlapping on average. Hence they correspond to a set of
nearby configurations in 3M dimensional space, none of
which is overlapping but may do so on the average.

To account for the apparent-overlap phenomenon, we
consider a Langevin simulation employing the following al-
gorithm. At time t, the Boltzmann-weighted average force on

each nanocomponent k with CM R� k�t� is computed. The con-
figuration at time t+�t for timestep �t is computed using

Rk�t + �t� = Rk�t� + �k�
fk�t�� + Ãk�t�� , �27�

where �k=�t /�k, Ãk is the time-average of Ak over the
time interval �t , t+�t�, and  is the Cartesian index.
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Because of the thermal-averaging implied in the Lange-

vin equation, 
f�k� is computed as follows. For nanocompo-
nent k, a set of small displacements s�k of the CM position

from R� k is generated, and the force f�ks� for each position

R� ks�=R� k�t�+s�k�t� is computed while keeping all other nano-

components, k��k, fixed at R� k��t�. Thus,

f�ks� = − � �U

�R� k

�
R� k=R� ks�,R

�
k��k=R� k��k�t�

, �28�

which is equivalent to

f�ks� = − � �Uk

�R� k

�
R� k=R� ks�,R

�
k��k=R� k��k�t�

, �29�

where U is the total potential energy of the system,

Uk = �
k��k

ukk�, �30�

and ukk� is the pairwise potential between components k and

k�. With this, 
f�k� is approximated as


f�k� �
�
s�k

f�ks�e
−
Uks�

�
s�k

e−
Uks�
, �31�

where 
=1 /kBT and Uks�=Uk�R� ks� ,R�� k� for R�� k

= �R� 1 ,R� 2 , . . .R� k−1 ,R� k+1 , . . .R� M	.

As Uks� diverges for overlapping configurations, non-

physical states do not contribute to 
f�k�. However, this does
not specifically exclude overlapping coarse-grained configu-
rations from occurring, as this overlapping represents a
coarse-grained picture and not the actual configuration itself.
For this reason, Uk, instead of U, is used for calculating the
Boltzmann weight. Otherwise, whenever there exists two or

more overlapping components k� and k� for k� ,k��k, 
f�k�
will vanish regardless of the state of component k.

In the extreme case in which only hard core repulsion
occurs �i.e., there is no attraction�, the coarse-grained dynam-
ics reduces to free diffusion of the particles. However, this
does not mean that hard core effects are lost in the formal-
ism. The hard core excludes very close-encounters �the Bolt-
zmann factor is identically zero for overlapping situations
since the value of the potential at these configurations is
infinity� and reduces the influence of the attractive force on
the thermal-average. In contrast, if particles are uncorrelated,
then the attractive tail would eventually lead to an overlap in
the fine-scale configuration, which in our multiscale formu-
lation has zero probability.

To demonstrate the method, we considered a system con-
sisting of 50 spherical particles, each of 1.2 nm diameter.
The system is initialized with random positions, and a
Lennard–Jones potential is used for the pairwise interaction
ukk�. In particular, the potential diverges as the distance be-
tween closest points on the surfaces of the two particles ap-
proaches zero. �k and the range of sk are kept constant for the
sake of this demonstration. Normally �i.e., for the full com-

FIG. 2. Self-assembly of 50 spherical components of 1.2 nm diameter each. The CM positions are shown at different CPU times. �a� Initial configuration
�time=0�. �b� After 31 min of CPU time. �c� After 1 h and 53 min of CPU time. �d� After 3 h and 40 min of CPU time.
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putational multiscale approach�, �k is calculated via short

MD runs and R� k is updated using a large timestep. Also, the
range of sk is related to �k and �t; in particular, sk is propor-
tional to the square root of the timestep. The simulation ran
for approximately 4 h of CPU time on a one processor desk-
top. Results at different times are shown in Fig. 2.

As can be seen from Fig. 2, the multiscale approach
allowed for self-assembly of nanometer-scale particles
within minutes to a few hours of CPU time on a single-
processor desktop. A direct simulation �i.e., using a brute
force approach� of the same system, starting at the same
initial configuration in Fig. 2�a�, was found to be impractical,
as no assembly was observed within a few hours. This is
because of the timestep restriction imposed to avoid overlap-
ping configurations. The effect of this restriction becomes
more apparent as particle size increases so that the straight-
forward simulation of self-assembly of many large compo-
nents becomes computationally impractical. The system pre-
sented in Fig. 2 was simulated in a highly fluctuating
environment. This led to the expected assembly and disas-
sembly of the nanocomponents in the manner shown. Note
that after the components reassembled �Fig. 2�d��, there were
fewer stray particles. This would not have been possible if
the amplitude of fluctuations was very low. This suggests
that fluctuations can have the dual role of enhancing and
destroying assembly.

To investigate the stability of the final structure in a low

fluctuating environment, another simulation was performed
without the random force. As seen in Fig. 3, the components
reached an assembled structure, even quicker than for the
highly fluctuating environment �less than 30 min�. This final
structure was shown to be stable and no disassembly oc-
curred during the transition from the configuration in Figs.
3�a� and 3�b�. However, the two clusters formed were unable
to coalesce even after the simulation was allowed to run for
3 h. This is reminiscent of the slowing down of condensation
associated with ripening and flocculation.

We also considered larger spherical particles of 5.4 nm
diameter each. Starting with a random initial configuration, a
sequence of simulations using increasing noise amplitude
�ratio=0 /0.5 /0.9� was performed. As concluded for smaller
particles, fluctuations have a dual effect on self-assembly;
while the particles have a better chance of coalescing, noisy
simulations were shown to take longer to reach an interesting
structure. In addition, as the particle size increased, more
CPU time was needed for an assembly to occur.

As demonstrated above, the simulation approach pre-
sented here is able to handle nanometer size systems. How-
ever, in order to explicitly/quantitatively demonstrate its rela-
tive efficiency compared to the brute force approach,
additional small size simulations are performed using both
methods. We considered a system consisting of 50 spherical
particles, each of 2.5 Å in diameter. For the initial configu-
ration of the system, we choose a set of random positions
�Fig. 4�. Results from the brute force and multiscale simula-
tions are shown in Figs. 5 and 6, respectively. Also, in order
to ensure that the results are not due to mere chance, no
external random force was used in both cases. As shown in
Fig. 5, using the brute force method, the first sign of any
clustering appeared after approximately 11 h of CPU time
�Fig. 5�a��, while the simulation was kept running for ap-

FIG. 3. Self-assembly of 50 spherical components of 1.2 nm diameter each.
No random force was applied, and the initial configuration is as in Fig. 2�a�.
�a� After less than 2 min of CPU time. �b� After 1 h and 52 min of CPU
time.

FIG. 4. 50 spherical particles each of 2.5 Å in diameter. Initial configuration
for both brute force simulation �Fig. 5� and multiscale simulation �Fig. 6�.
Average distance from the CM=160.6 Å.
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proximately 2 days in order to obtain the results in Fig. 5�b�.
On the other hand, using the multiscale simulation approach,
clustering started appearing after approximately 0.5 h of
CPU time, while the simulation was allowed to run for 4.5 h
in order to obtain the results shown in Fig. 6. Note that the
results in Fig. 6 correspond to the most probable configura-
tion of the coarse-grained structure obtained. In other words,
in order to interpret the coarse-grained structures, each par-
ticle was allowed to fluctuate around its coarse-grained CM

position, and the fluctuation leading to the lowest energy was
taken as the most probable position for the CM of this par-
ticle.

IV. CONCLUSIONS

The multiscale character of the self-assembly of struc-
tures from nanocomponents was used as a basis on which to
build a kinetic theory. There are several origins of the sepa-
ration between the timescale of atomic vibrations/collisions
and self-assembly. In this study, we focused on inertial ef-
fects, i.e., the large mass of a nanocomponent relative to that
of an atom. This provides a natural vehicle for developing a
multiscale theory leading to the Smoluchowski equation in
Sec. II. However, there are other factors in self-assembling
systems that lead to timescale separation. Steric effects and
the large moment of inertia of nanocomponents can be addi-
tional factors, as can the migration of components into place
from a remote point of origin �i.e., diffusion-limited aggre-
gation� and energy barriers to component attachment. Com-
plexities such as the assembly of multiple types of nanocom-
ponents into a composite, for example, the assembly of a
ribosome, can also be formulated via the method presented
here. All these effects can be integrated into a united multi-
scale approach to self-assembly in a complex intracellular
medium.
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