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Abstract One way in which the human immunodeficiency virus (HIV-1) replicates within a
host is by infecting activatedCD4+T-cells, which then produce additional copies of the virus.
Evenwith the introduction of antiretroviral drug therapy, which has been very successful over
the past decade, a large obstacle to the complete eradication of the virus is the presence of
viral reservoirs in the form of latently infected CD4+ T-cells. We consider a model of HIV
infection that describes T-cell and viral interactions, as well as, the production and activation
of latently infected T-cells. Upon determining equilibrium states of the latent cell model, the
local and global asymptotic behavior of solutions is examined, and the basic reproduction
number of the system is computed to be strictly less than that of the corresponding three-
component model, which omits the effects of latent infection. In particular, this implies
that a wider variety of parameter values will lead to viral eradication as t → ∞ due to
the appearance of latent CD4+ T-cells. With this realization we discuss possible alternative
notions for eradication and persistence of infection other than traditional dynamical tools.
These results are further illustrated by a number of numerical simulations.

Keywords HIV-1 · Mathematical model · Latently infected T-cells · Antiretroviral
therapy · Global asymptotic stability

Introduction

The majority of cells infected with the human immunodeficiency virus (HIV-1) are activated
CD4+T-cells. Once infected, these cells produce additional copies of virus, thereby prolong-
ing the infection. Upon detecting such an infection, the immune system mounts a complex
adaptive response, controlling the virus population to a limited extent. Further control is
available in the form of antiretroviral drugs, such as reverse transcriptase inhibitors (RTIs)
and protease inhibitors (PIs) [17]. If such drugs are taken with sufficient frequency, the virus
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population is largely limited and remains below the level of detection [6]. However, antiretro-
viral therapy (ART) cannot fully eradicate the virus, as viral rebound occurs once therapy
is interrupted [1,12] A number of factors have been proposed to explain this viral rebound.
Most notably, it has been suggested that HIV lay dormant within a number of reservoirs. Pri-
mary among these reservoirs are latently infected CD4+T-cells [2]. Though latently infected
T-cells exist in the body with a much lower frequency than susceptible CD4+T-cells, the
reservoir appears to decay very slowly, with a half-life measured between 6 and 48 months
[27].Although infected, these cells do not produce newvirions until activated, thus potentially
providing a longer-lived hiding place where the virusmay evade control by either the immune
system or antiretroviral treatment [2]. Consequently, in this paper, we analyze amathematical
model that includes latent infection and examine the control of infection by ART. We also
assume that such latent T-cells exist significantly longer than productively infected CD4+
T-cells. Ultimately, we will show that a mathematical analysis of the most basic latent model
demonstrates that the inclusion of such cells increases the likelihood for viral clearance only
as t → ∞, under the traditional approach of analyzing the basic reproduction number and
the associated stability of equilibria. While this will seem intuitive from a modeling perspec-
tive, as described later, it also appears contradictory to the widely-held notion that latently
infected T-cells are an important mechanism for the inability of ART to eradicate an estab-
lished infection.What this really implies is that standardmathematical tools are insufficient to
realistically describe the dynamics of HIVwhen latent cells are considered. Instead, onemust
focus on the rate of decay of the infection, which is significantly slowed by the latent T-cell
population.

A number of authors have studied the biological aspects of mathematical models con-
cerning HIV dynamics that consider latently infected cells. Notably, Callaway and Perelson
[4] studied low-level viremia, Rong and Perelson [29] modeled viral blips and showed that
a latent reservoir could produce viral transients when activated by infection, while Sedaghat
et al. [32] employed a simple model for the dynamics of the latent reservoir to show that its
stability was unlikely to stem from ongoing replication during ART. In each of these studies,
a reduced or linearized mathematical analysis was performed, but the nonlinear behavior
of the associated model was not fully elucidated. In the current study, we describe latently
infected cells using a separate compartment, as did these authors, by assuming that a pro-
portion of newly-infected cells become latently infected upon contact with the virus, but that
they are not productively infected until they leave the latent state, which occurs at a rate α

proportionate to the size of the latent cell population. We note that the effects of viral muta-
tion, which may continuously change model and parameter values, and the possible spatial
dependence of parameters are ignored. Using this model, we study the influence of the latent
reservoir on the persistence of HIV infection and viral rebound. Our results provide a new
perspective on themethods ofmathematical and stability analysis for viral and latent reservoir
persistence.

The paper proceeds as follows. In the next section, we will review some known results
concerning the standard three-component model of HIV dynamics. After this, we introduce
an additional population representing latently infected CD4+ T-cells, and study the effects
that these cells have on the structure and behavior of the long-time dynamics of the model.
Next, we discuss the ramifications of our results and, in particular, the need to construct more
precise notions of viral eradication and persistence. The penultimate section contains proofs
of the theorems contained within previous sections. In the final section, we conclude with a
discussion of our results.

123

Author's personal copy



Differ Equ Dyn Syst (July 2016) 24(3):281–303 283

The Three-Component Model

In general, the modeling of HIV dynamics in vivo is complicated by the appearance of
spatial inhomogeneities, which can arise from various reservoirs, such as those occurring
within lymphatic tissues [19,26]. Even when such inhomogeneities are ignored, however,
these systems are often described to a sufficient degree by systems of ordinary differential
equations that include no spatial dependence. We begin by considering a three-component
model for the evolution ofwithin-host HIV, that does not include spatial fluctuations or effects
due to long-lived infected or latently infected cells. This model has been widely-accepted
as a descriptive representation for the basic dynamics of HIV [3,24,37]. It represents the
populations of three components in a fixed volume at a given time t : T (t), the number of
CD4+ T-cells that are susceptible to HIV-1 infection, I (t) the number of infected T-cells that
are actively producing virus particles, and V (t) the number of free virions. These quantities
approximately satisfy the system of ordinary differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= λ − dT T − kT V,

d I

dt
= kT V − dI I,

dV

dt
= NdI I − dV V .

(1)

Here λ is the recruitment rate of susceptible T-cells and dT is their mortality rate. The constant
k represents the rate of infection, which is included within a bilinear mass action term, while
dI is the death rate of productively infected cells and dV is the clearance rate of free virus.
The parameter N is the burst size, i.e. the total number of virions produced by an infected
cell during its life span.

The behavior of solutions to these equations has previously been analyzed in great detail
[3,34,37,38]. In particular, it is known that exactly two steady states exist, which we will
write in the form (T, I, V ), namely an uninfected equilibrium

EN I :
(

λ

dT
, 0, 0

)

and an infected equilibrium

EI :
(

λ

dT R0
,
dT dV
kNdI

(R0 − 1),
dT
k

(R0 − 1)

)

,

where

R0 = λkN

dV dT

is the basic reproduction number of the system. The stability properties of these steady states
are also well-known and depend only upon the single parameter R0. In particular, one can
study the linearized analogue of (1) and prove the local asymptotic stability of EN I if R0 ≤ 1
and the local asymptotic stability of EI if R0 > 1 [38]. This result effectively states that
for starting values of the populations which are close enough to the given equilibria, the
solutions will tend to the respective equilibrium point as t → ∞. Additionally, the global
asymptotic stability of these equilibria is known. In [20] it was shown that initial populations
are irrelevant in determining the long term dynamics of the solution. More specifically, if
R0 ≤ 1, then for any initial population of uninfected cells, infected cells, and virions the
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Fig. 1 A representative solution of (1) with parameter values stated in Table 1. The initial T-cell population
is T (0) = 4 × 105, while the initial viral load is V (0) = 105, and I (0) = 0 as in [4]. In this example, the
system tends to the infected equilibrium as t → ∞ because R0 = 2.087

solutions of (1) tend to EN I as t → ∞. Contrastingly, if R0 > 1 the same result holds for
the infected equilibrium EI . Figure 1 displays a representative graph of solutions for which
R0 > 1 and hence viral infection persists.

Inclusion of Latently-Infected Cells

Though (1) describes the basic mechanisms which account for the spread of HIV, it lacks
the ability to describe the latent stage of a specific subpopulation of infected T-cells. Many
studies [7,9,10] have determined that upon infection and transcription of viral RNA into
cell DNA, a fraction of CD4+ T-cells fail to actively produce virus until they are activated,
possibly years after their initial infection. Such cells may possess a much longer lifespan
than their counterparts, and are termed latently infected. Upon activation, latently infected
cells do become actively productive, and hence begin to increase the viral load through viral
replication. A basic model of latent cell activation was initially developed to examine cell
populations that contribute to the viral decline that occurs after administration of antiretroviral
therapy [23]. However, within [23] and other articles by related authors [24,29,30], the
mathematical analysis of the model is performed under a number of limiting assumptions,
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including a constant background population of susceptible T-cells and perfect efficacy of
anti-retroviral drugs. Thus, we focus on determining (and proving) the resulting nonlinear
dynamics without these assumptions.

As for (1) we consider a model describing T-cells that may be susceptible or infected.
In addition, we let L(t) represent the new population of latently infected T-cells that cannot
produce virions at time t but begin to do so once they are activated by recall antigens.With this
addition, the previously described three-component model now contains four components
and is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= λ − dT T − kT V,

d I

dt
= (1 − p)kT V + αL − dI I,

dL

dt
= pkT V − αL − dL L ,

dV

dt
= NdI I − dV V .

(2)

Here, p ∈ (0, 1) is the proportion of infections that lead to the production of a latently
infected T-cell, rather than a productively infected T-cell, and α is the rate at which latently
infected cells transition to become actively productive. Additionally, dL is the rate at which
latent cells are cleared from the system. Figure 2 displays a representative graph of solutions
to (2). We note that the oscillations of T, I , and V seem quite damped in comparison to those
of Fig. 1.
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Fig. 2 A representative solution of (2) with parameters from Table 1. The initial values are T (0) = 4× 105,
V (0) = 105, and I (0) = 0 as in [4], and L(0) = 0. In this example, the system tends to the infected equilibrium
as t → ∞ because RL = 2.027. In comparison to Fig. 1, oscillations within the populations are strongly
damped
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Model Parameters

In this section and the previous one, we have adopted parameter values from other studies. A
few of these parameters possess generally agreed upon values, including λ, dT , dI , and dV .
However, it should be noted that λ and dT are typically estimated for healthy individuals,
and thus may not be reliable estimates to describe HIV patients, especially those who expe-
rience impaired thymic function [18]. Obviously, there are many parameters, and these are
summarized within Table 1, along with descriptions of the variables, their associated units,
and references from which parameter values stem.

The parameter that displays themost uncertaintywithin the literature is the viral infectivity
k which fluctuates by an order of magnitude from 2.4× 10−8 ml/day [24,29] to 2.7× 10−7

ml/day [36]. The value we utilize here is at the low end of this range and stems from [24].
Biologically relevant values of the in vivo burst size N are also somewhat uncertain. Estimates
based on counting HIV-1 RNA molecules in an infected cell vary between hundreds and
thousands [15,16,29], and estimates based on viral production have been as high as 5× 104

[5,11]. Here, we choose N = 2,000 HIV-1 RNA/cell as reported in [16].
Parameters that stem specifically from (2) are generally not well-known. In particular,

the activation rate α varies from study to study, but based on previous work [4,18], we use
α = 0.01 per day. Similarly, the removal rate of latently infected cells, dL , has been discussed
as anywhere from 10−3 per day [29] to 0.24 per day [36]. Hence, we chose a value with this
range, namely dL = 4 × 10−3 per day, as reported within [14]. The proportion p of cells
which are categorized as latent upon becoming infected also differs throughout recent studies,
ranging from 1.5× 10−6 in [4] to 0.1 in [36]. In this case, we utilize the latter value so as to
emphasize changes in (1) due to the latent cell population. Initial conditions of the proposed
model are chosen tomatch clinically observed decay characteristics of the latent reservoir and
the virus population. In particular, we utilize values similar to [4], namely T (0) = 4 × 105,

Table 1 Variable and parameter values for (1) and (2)

Variable Units Description Value Reference

T (t) Cells ml−1 Susceptible CD4+ T-cells – –

I (t) Cells ml−1 Actively infected CD4+ T-cells – –

L(t) Cells ml−1 Latently infected CD4+ T-cells – –

V (t) Virions ml−1 Infectious virions – –

λ ml−1 day−1 Production rate of CD4+ T-cells 104 [4]

dT day−1 Death rate of susceptible T cells 0.01 [21]

dI day−1 Death rate of actively infected T cells 1 [22]

dV day−1 Clearance rate of virions 23 [28]

k ml day−1 Rate of infection of susceptible cells 2.4 × 10−8 [24]

N – Burst rate of actively infected T-cells 2,000 [16]

dL day−1 Death rate of latent cells 4 × 10−3 [14]

α day−1 Activation rate of latent cells 0.01 [4]

p – Proportion of latent infection 0.1 [36]

εRT – Efficacy of RT inhibitor Varies –

εPI – Efficacy of protease inhibitor Varies –
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I (0) = 0, L(0) = 0, and V (0) = 105. Next, we analyze properties of solutions to (2) so as
to compare their dynamics and large time behavior with solutions of (1).

Analysis and Properties of Solutions

As a first step, we can say with certainty that biologically reasonable values of the parameters
give rise to positive populations assuming that at some earlier point (perhaps at the initial
time) the populations possessed positive values.

Theorem 1 Assume all constants in (2) are nonnegative and the initial values T (0), I (0),
L(0), and V (0) are positive. Then, the solutions of (2), namely T (t), I (t), L(t), and V (t)
exist, are unique, and remain bounded on the interval [0, t∗] for any t∗ > 0. Additionally,
each function remains positive for any t ≥ 0.

Of course, the requirement of initial positivity is not completely necessary since we may
translate or rescale the time variable to alter the initial time. Hence, what is necessary for the
theorem to hold is that all populations must attain positive values at some time. This result
provides some general validation for the model since it implies that negative population
values cannot occur if one begins with biologically reasonable (i.e., positive) values.

Next, we proceed as for (1) and investigate equilibrium states of (2) and their stability
properties. Solving the nonlinear system of algebraic equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = λ − dT T − kT V,

0 = (1 − p)kT V + αL − dI I,

0 = pkT V − αL − dL L ,

0 = NdI I − dV V .

(3)

for the unknown constants T, I, L , and V in terms of the parameters λ, k, p,α, N , dT , dI , dL ,
and dV , we find the existence of exactly two steady states.

Writing these in the form (T, I, L , V ), they are

EN I :
(

λ

dT
, 0, 0, 0

)

,

EI :
(

λ

dT RL
,
dT dV
kNdI

(RL − 1),
pλ

RL(dL + α)
(RL − 1),

dT
k

(RL − 1)

)

.

As before, we denote the uninfected equilibrium by EN I and the infective equilibrium by
EI . Notice that the limiting values of T, I , and V for the infective state are of the same form
as those of (1), with RL replacing the role of R0. Additionally, we see that if RL = 1, then
the equilibria coincide, and if RL < 1, then the infected equilibrium corresponds to negative
values which, in view of Theorem 1, cannot be obtained from biologically relevant initial
data.

By studying the linearized version of the system, we may examine the local stability of
these equilibria and find that their behavior mimics that of (1).

Theorem 2 If RL ≤ 1, then the uninfected equilibrium is locally asymptotically stable.
If RL > 1 then the uninfected equilibrium is an unstable saddle point, and the infected
equilibrium is locally asymptotically stable.

Therefore, if RL ≤ 1 and population values begin within a sufficiently close distance of EN I ,
then they will tend to EN I as t → ∞. Contrastingly, if RL > 1 and initial populations are
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sufficiently close to EI , they will tend to EI in the long run. Theorem 2 also emphasizes the
crucial feature that equilibria are not stable simultaneously, that is, bistability of EN I and EI

does not occur. Furthermore, it expresses that the qualitative behavior of system (2) changes
exactly when RL transitions from less than one to greater than one, and hence a bifurcation
occurs at RL = 1.

The final theorem of the section demonstrates the stronger result that initial values of these
populations have no effect on their long term (t → ∞) limiting values.

Theorem 3 If RL ≤ 1, then the uninfected equilibrium is globally asymptotically stable. If
RL > 1, then the infected equilibrium is globally asymptotically stable.

This analysis reveals one very important fact about the overall system: the end states of
populations are only dependent on the value of RL , and not any other parameter or initial
value. If RL is greater than one, then the system tends to EI , an end state with a non-zero
population of infected cells and virions, but if RL is less than one, then the final equilibrium
is EN I , which contains neither virions nor infected T-cells.

The most important feature of these results is the explicit formula for RL , which can be
related exactly to the basic reproductive number of the three-component model (1). In order
to investigate the differences between the two reproductive ratios, we define the quantity

Q := RL

R0
= (1 − p)dL + α

dL + α
. (4)

Notice that Q depends only upon the three new parameters included within (2), namely the
activation ratio α, proportion of cells which become latent upon infection p, and the death
rate of latent cells dL . Additionally, if the proportion p of infections which produce latently
infected T-cells is identically zero, then RL = R0. However, since we consider p ∈ (0, 1)
we find

Q <
dL + α

dL + α
= 1

and the relationship

RL < R0

follows directly. Thus, the reproduction number of the latent cell model (2) is strictly less than
that of the standard three-component model (1). Therefore, the stability of the the uninfected
state is enhanced by the inclusion of the latently-infected cell population. Namely, there
are more values of λ, dT , dI , dV , k and N which correspond to RL ≤ 1 than R0 ≤ 1.
From a modeling standpoint, this result is somewhat intuitive. Because (2) assumes that a
fraction of newly infected cells become latently infected and the latter can only activate
(becoming actively productive) or die, the average number of infected cells generated by the
introduction of a single infected cell into a susceptible system is decreased in comparison
to a model without latently infected cells, namely (1). Hence, one should expect that the
basic reproduction number, representing this average number of infected cells, does in fact
decrease. Another consequence of this result is that there exist a number of parameter values
for which R0 > 1 but RL ≤ 1, and in such cases the solutions of (1) tend to EN I while those
of (2) tend to EI as t → ∞. Clearly, the converse (R0 ≤ 1 but RL > 1) is not possible by
the above inequality. In fact, we may rewrite the ratio of reproductive numbers as

Q = 1 − pdL
dL + α
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so that the difference between R0 and RL is greatest for large values of p and dL , but small
values of α. With the representative parameter values given in Table 1, we see that

RL ≈ 5.978 and R0 ≈ 6.154.

Hence, the change in systembehavior caused by the difference between the reproduction num-
bers appears somewhat negligible, as both values are significantly larger than their respective
bifurcation points. Additionally, Q = 0.97 in this case, so that the relative difference between
R0 and RL is merely

R0 − RL

R0
= 1 − Q = 3%.

Exactly quantifying this relative change, however, is difficult since many of the parameter
values of Table 1, in particular k, p, α, and dL , are not well-established, and hence this
percentage could be much larger or perhaps even smaller. For example, if we utilize the
smallest value of α = 3× 10−3, stemming from [24], and the largest values of p = 0.1 [36]
and dL = 0.24 [24], then a simple computation shows that Q = 0.9. Hence, the relative
difference between reproductive ratios could possibly be as large as 10 %, though more
conservative estimates of the associated parameters place this value between 1 % and 5 %.

Regardless of the quantified distinction between the reproductive ratios, it seems some-
what counterintuitive that RL < R0, especially since so many authors [1,2,6,7,9,10,18,19,
23,29,33] have detailed the large degree to which latent reservoirs contribute to the increased
persistence of HIV infection via viral rebound after treatment with ART. Hence, the result of
the mathematical analysis, namely that the effects of latent infection reduce the basic repro-
ductive ratio, seems to contradict this theory. However, aswe previously stated, the alterations
in the mathematical model explain this effect. Additionally, the reproductive ratio is but one
parameter, and so it seems unlikely that this particular metric will completely determine the
realistic behavior of the system. In fact, a more detailed analysis of the behavior of solu-
tions over the timescales of biological relevance, rather than considering only the limiting
behavior as t → ∞, will demonstrate the shortcomings of the basic reproductive ratio. We
illustrate this using the effects of antiretroviral therapy and some associated computational
results within the next section.

Antiretroviral Therapy

In order to further contrast these two models and the effects of the latent cell population,
we will introduce additional parameters to represent the application of antiretroviral therapy.
The inclusion of ART will allow us to determine the range of drug efficacies that distinguish
between the limiting dynamics of (1) and (2) and further elucidate the differing behaviors of
the two models.

Two classes of antiretroviral drugs are often used to reduce the viral load and limit the
infected T-cell population. One class is known as Reverse Transcriptase Inhibitors (RTIs),
which prevent the reverse transcription of viral RNA to DNA. The other category is Pro-
tease Inhibitors (PIs), which prevent HIV-1 protease from cleaving the HIV polyprotein into
functional units, thereby causing infected cells to produce immature virus particles that are
not capable of infecting additional cells. In this way, RTIs serve to reduce the rate of infec-
tion of activated CD4+ T-cells within the model, whereas PIs decrease the number of new
infectious virions that are produced. Both drugs thus diminish the propagation of the virus
[17,31]. While we expect that latently infected cells may absorb PIs and that such cells, when
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activated, will produce noninfectious virus, we will instead assume that PIs have no effect
on the proportion of cells that are latently infected. This is in line with some experimental
findings, that suggest that antiretroviral drugs do not effectively block replication of virus
from the latent reservoir [8]. Hence, in our model, susceptible T-cells may be inhibited with
either RTIs, or PIs, or they may become infected. Infected cells may be inhibited with PIs,
and cells inhibited with one drug may be inhibited with the other. In the presence of these
two inhibitors, the model equations (2) are modified to become:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= λ − dT T − k(1 − εRT )T VI ,

d I

dt
= (1 − p)k(1 − εRT )T VI + αL − dI I,

dL

dt
= pk(1 − εRT )T VI − αL − dL I,

dVI

dt
= N (1 − εP I )dI I − dV VI .

(5)

where εRT , εP I ∈ [0, 1] are the efficacies of RTIs and PIs, and VI represents the population
of infectious virions. We may include the number of non-infectious virions VN I , with the
total viral load V = VI + VN I , but VN I decouples from the remaining equations, and hence
plays no role in the evolution of the system.

To compute the steady states and basic reproduction number for (5), we may reproduce
the analysis of (2), but clearly the new terms are introduced only where the parameters k and
N appear. Thus, we need only replace k with k(1 − εRT ) and N with N (1 − εP I ). The new
basic reproduction number then becomes

Rε
L = kN (1 − ε)λ

dT dV
· (1 − p)dL + α

dL + α
, (6)

where we define the quantity ε = εRT + εP I − εRT εP I , so that

1 − ε = (1 − εRT )(1 − εP I ).

Since (5) is identical to (2) with the minor change in parameter values described above,
Theorems 2 and 3 hold for (5) with the corresponding value Rε

L instead of RL .
Writing the corresponding viral steady state for (5) we find

V = dT RL

k
(1 − εP I ) − dT

k(1 − εRT )

and we notice that its partial derivative

∂V

∂εRT
= − dT

k(1 − εRT )2

is large, especially when εRT ≈ 1. Thus, V is sensitive to small changes in εRT at large
efficacies, and this sensitivity increases with the efficacy of the RTI. Hence, this model
does not realistically describe the persistence of low-level viremia in patients on reverse
transcriptase inhibitors, as previously addressed within [29]. However, we note that

∂V

∂εP I
= −dT RL

k
,
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which is constant for all values of εP I , and does not possess the same sensitivity. Thus, to
simplify the analysis, we will assume throughout that only PIs are used, and hence ε = εP I

while εRT = 0. We note, however, that the analysis with RT inhibitors could be performed
in a similar manner.

Upon incorporating the use of antiretroviral drugs into (1), the system becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= λ − dT T − k(1 − εRT )T VI ,

d I

dt
= k(1 − εRT )T VI − dI I,

dVI

dt
= N (1 − εP I )dI I − dV VI .

(7)

with associated basic reproduction number

Rε
0 = kN (1 − ε)λ

dT dV
. (8)

As for (5), the stability results for (1) contained in an earlier section hold for (7) by replacing
R0 with Rε

0. Comparing the two values Rε
0 and Rε

L , we see that their ratio is again Q given
by (4), so that Rε

L = QRε
0. As before, since Q < 1 we find Rε

L < Rε
0 and even with the

incorporation of ART, the latent cell population decreases the basic reproduction number of
the system. With the representative parameter values given in Table 1, we see that the basic
reproduction numbers associated with (5) and (7) are

Rε
L ≈ 2.027(1 − ε) and Rε

0 ≈ 2.087(1 − ε).

Hence, the critical drug efficacy (i.e, the efficacy needed in order for the uninfected state to be
realized) for (7) is εcrit0 = 0.521, which only differs mildly from the value of the critical drug
efficacy for (5), namely εcritL = 0.506. Thus, the antiretroviral therapy must attain an efficacy
only 3 % greater in order to achieve the analogous effect. From this analysis, it would seem
that the establishment of a latent reservoir should not strengthen a continued infection since
the drug efficacy necessary to drive the system to an uninfected equilibrium is actually less
for (5) than for (7). This result seems to greatly contradict the known issues that scientists
have faced regarding the eradication of the viral reservoir. However, the resolution of these
seemingly opposing viewpoints is made quite clear by precise numerical simulations.

As an illustrative example of the difference in long-timedynamics between the twomodels,
we may choose values of ε which yield Rε

0 > 1 and Rε
L < 1 and measure their corresponding

behavior. A representative simulation is presented in Fig. 3. To differentiate between the
corresponding viral loads, we will denote the infectious virus population associated with
(7) by V3CM(t) and its latent model analogue by VLatent(t) as in the figure. In this case,
we choose ε = 0.519 and find Rε

0 = 1.003 and Rε
L = 0.974. Hence, from the known

results of the section concerning three-component model and Theorem 3, we may deduce
that V3CM(t) → dT

k (Rε
0 − 1) ≈ 2 × 103 as t → ∞, while VLatent(t) → 0 as t → ∞.

However, one can distinctly see from Fig. 3 that the early decay rate of V3CM is much greater
than that of VLatent.

Notice that the effects of latent infection do not influence the viral load for the first thirty
days of treatment as V3CM(t) and VLatent(t) follow the same approximate trajectory during this
time period.However, once the latently infectedT-cell population grows sufficiently large, the
effects are tremendous. Throughout the first 3 years of continuous treatment, V3CM diminishes
greatly, past 10−10 in fact, while VLatent remains O(1) even up to day 1,000. Certainly this
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Fig. 3 Viral loads for (5) and (7) with parameter values given in Table 1 and ε = 0.519. This value of ε yields
Rε
0 = 1.003 and Rε

L = 0.974, respectively. The inset figure includes the viral behavior for t ∈ [0, 6000] days

seems strange as Rε
0 > 1 implies a persistent virus population must develop for (7) and

RL < 1 dictates the eventual elimination of the viral population for the latent model. Within
the inset figure, it can be seen that the behavior predicted by the basic reproduction numbers
does eventually occur, that is, values of V3CM rebound and tend to a positive equilibrium,
while those of VLatent continue their slow, steady decline to eradication. Unfortunately, these
events occur nearly 15 years after the introduction of ART and well outside the timescale of
biological relevance. Hence, it appears that the values of Rε

0 and Rε
L alone cannot provide

sufficient information to account for the realistic biological dynamics of the model due to
the change in timescales and decay rates introduced by the latent cell population. A better
estimate of the behavior would certainly be given by the rates of decay to eradication, but
precise estimates on these quantities are more difficult to obtain analytically. Instead, we
examine a slightly different metric of viral persistence or clearance.

The feature of viral clearance that one must capture here is not just the decay of the viral
load, but a sufficiently rapid speed of decay so as to be realized within a time period of
biological relevance. Hence, we consider a specific value of the virus population to represent
clearance, and proceed to study the minimum arrival time of the viral load to that value. In
this vein, we define the functions

Pn(r) = inf

{

t > 0 : log10
(

V3CM(t)

)

≤ −n for Rε
0 = r

}

and

Qn(r) = inf

{

t > 0 : log10
(

VLatent(t)

)

≤ −n for Rε
L = r

}

.

We note that either of these functions may become infinite if the population of virions fails
to reach the prescribed value for any positive time. For example, P5(2) = Q5(2) = ∞, since
neither viral load obtains a value as small as 10−5 for a corresponding reproductive ratio of
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2, while P5(0.6) ≈ 25 and Q5(0.6) ≈ 1, 000 as represented in Fig. 4. Unlike the stability
of equilibria, the values of Pn(r) and Qn(r) will depend upon the initial population values
that are chosen. Within the present study, however, we will continue to utilize the initial
populations of previous sections to serve as a representative example.

We first select the value of 10−5 copies per ml for our definition of viral eradication and
study the associated times to eradication provided by the functions P5 and Q5. Namely, what
we are assuming is that once the viral population is suitably dilute—in this case less that
10−5 copies per ml—then the infection has been cleared and no rebound can occur. Figure 4
provides a comparison of P5 and Q5 for differing values of Rε

0 and Rε
L , respectively. Though

their general shapes are quite similar, the associated time periods differ dramatically. Typical
values of P5 range from 20 to 100 days, while the majority of values of Q5 range between
1,000 and 3,000 days. As can be seen in Fig. 4, even if the efficacy of the RT inhibitor, ε,
approaches 100 %, and thus Rε

0 approaches zero, V3CM requires around 15 days to reach a
value of 10−5. In this same situation, Rε

L approaches zero, but VLatent requires nearly 500–
1,000 days to reach a value of 10−5. Thus, even for values of Rε

L which are significantly less
than one, we see that it would require nearly 3 years for the viral load to reach this threshold
due to the influence of latent infection. In addition, we see that V3CM will reach values of
10−5 even if Rε

0 > 1, and this will occur within 100 days, almost ten times faster than it
would take VLatent to reach the same value for a constant drug efficacy around 90 %.

Considering that the biological detection threshold for commercially-available assays is
around 50 viral copies per ml [4,12], one possibility is that the 10−5 threshold above has been
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chosen too small in Fig. 4 to effectively serve as a realistic measure of eradication. Hence, we
consider P1 and Q1 and perform a similar analysis. Figure 5 contains these simulations and
displays a decrease in the time necessary to reach the defined threshold of 10−1. However,
even for a 70 % constant drug efficacy, in which case Rε

L = 0.6, we see that approximately
1 year of continuous ART would still be required to reach a viral load of 0.1 copies per ml
for (5). Additionally, values of P1 remain around 60 for (7) even if Rε

0 is near 1.5, which
exceeds the bifurcation point by nearly 50 %. Thus, if we define viral clearance as a decay
in the viral load to 0.1 copies per ml within six months of treatment, then (7) would require
Rε
0 to be less than 1.5 while (5) would require Rε

L to be less than 0.2. Obviously, a much
wider range of parameter values will yield Rε

0 < 1.5 than Rε
L < 0.2, and we see that the

latent T-cell population does, in fact, extend the period of time during which viremia persists,
even though the behavior as t → ∞, as given by Theorems 2 and 3, may provide seemingly
contrary information.

From this, the biological influence of latent infection becomes clear - the time needed to
decrease the viral load to values fromwhich rebound is unlikely or unable to occur is increased
by a factor of ten or twenty. Hence, the value of the basic reproduction number alone does not
represent a proper definition for viral persistence or eradication, and the functions provided
above Pn(r) and Qn(r), for well-chosen values of n, possess the information required to
better determine the behavior of the infection. Further analysis can be performed for smaller
(and negative) values of n, but the results discussed above are typical. In the next section, we
prove Theorems 1, 2, and 3 regarding the qualitative behavior of the latent infection model.
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Proofs of Main Theorems

With the analysis concluded, we finally prove the main results of the previous sections. In
what follows, C will be used to denote a positive, but arbitrary constant which may change
from line to line. First, we prove the existence, uniqueness, and positivity of solutions.

Proof (Theorem 1) While one may prove that a certain positive set remains invariant under
the flow (as in [13]), this requires assumptions which bound the initial data from above. In
our proof, we utilize a continuity argument instead and do not assume any upper bounds on
initial data. Using the Picard–Lindeloff theorem and the quadratic nature of the equation,
the local-in-time existence of a unique, C1 solution follows immediately. Hence, we will
concentrate on proving positivity of solutions as long as they remain continuous, and this
property will yield bounds on the growth of solutions. From the bounds obtained below, then,
it follows that the solution exists globally and is both unique and continuously differentiable
for all t > 0. Define

T ∗ = sup{t ≥ 0 : T (s), I (s), L(s), V (s) > 0, for all s ∈ [0, t]}.
Since each initial condition is nonnegative and the solution is continuous, there must be an
interval on which the solution remains positive, and we see that T ∗ > 0. Then on the interval
[0, T ∗] we estimate each term.

Lower bounds on I, L , and V instantly follow since the decay terms are linear. More
specifically, we find

d I

dt
= (1 − p)kT V + αL − dI I ≥ −dI I

and thus

I (t) ≥ I (0)e−dI t > 0

for all t ∈ [0, T ∗]. Similarly, for the latent T-cell population

dL

dt
= pkT V − (dL + α)L ≥ −(dL + α)L

and thus

L(t) ≥ L(0)e−(dL+α)t > 0

for all t ∈ [0, T ∗]. The positivity of the virion population follows in the same manner since

dV

dt
= NdI I − dV V ≥ −dV V

and thus

V (t) ≥ L(0)e−dV t > 0

for all t ∈ [0, T ∗]. The positivity of T requires extra effort since it decreases due to the
nonlinearity. We first construct an upper bound on dT

dt as

dT

dt
= λ − μT − kT V ≤ λ

and thus

T (t) ≤ T (0) + λt ≤ C(1 + t).
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Next, we sum the equations for I, L , and V , and by positivity of these functions, obtain upper
bounds on each one. Using the upper bound on T (t), we find

d

dt
(I + L + V ) = kTV + (N − 1)dI I − dL L − dV V ≤ C(1 + t) (I + L + V ) .

By Gronwall’s Inequality, we have

I (t) + L(t) + V (t) ≤ CeCt2

for t ∈ [0, T ∗]. Since I (t) and L(t) are positive on this interval, the same upper bound
follows on V (t) alone. With this, we can now obtain a lower bound on T . We find

dT

dt
= λ − dT T − kTV ≥ −dT T − kTV ≥ −C(1 + eCt2)T

or stated equivalently

dT

dt
+ C(1 + eCt2)T ≥ 0.

It follows that

d

dt

(

T (t)eC
∫ t
0 (1+eCτ2 )dτ

)

≥ 0

and

T (t) ≥ T (0)e−C
∫ t
0 (1+eCτ2 )dτ > 0

for t ∈ [0, T ∗]. Finally, if T ∗ < ∞, then all functions are strictly positive at time T ∗,
contradicting its definition as the supremum of such values. Hence, we find T ∗ = ∞ and the
result follows. 	


Next, we sketch the proof of the local stability results.

Proof (Theorem 2) As is somewhat standard, we proceed by linearizing the system and using
the Routh–Hurwitz criterion to determine conditions under which the linear system possesses
only negative eigenvalues. Then, as a consequence of the Hartman–Grobman Theorem, the
local behavior of the linearized system is equivalent to that of the nonlinear system.

First, we compute the Jacobian evaluated at the uninfected equilibrium EN I =(
λ
dT

, 0, 0, 0
)
, resulting in

J (EN I ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−dT 0 0 − kλ
dT

0 −dI α
k(1−p)λ

dT

0 0 −dL − α
kpλ
dT

0 NdI 0 −dV

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

From this, we compute the associated characteristic polynomial for eigenvalues η

η3 + A1η
2 + A2η + A3 = 0, (9)
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where

A1 = dV + dI + dL + α,

A2 = dI dV + (dL + α)(dI + dV ) − (1 − p)λNkdI
dT

,

A3 = (dL + α)dI dV − λNkdI
dT

((1 − p)dL + α).

The Routh–Hurwitz criterion requires A1, A2, A3 > 0 and A1A2 − A3 > 0. Using the
inequality

(1 − p)(dL + α)

(1 − p)dL + α
= 1 − pα

(1 − p)dL + α
< 1, (10)

and the previous condition RL < 1, we find A1, A2, A3 > 0. Finally, using (10), we see that
A2 > dI dV (1 − RL), and clearly A1 > dL + α. Therefore, we find

A1A2 > dI dV (dL + α)(1 − RL) = A3

and the Routh–Hurwitz criteria are satisfied. Thus, RL < 1 implies that all eigenvalues of
the linearized system are negative, and hence the local asymptotic stability of EN I follows.
Conversely, if RL > 1, then the linearized system possesses at least one positive eigenvalue,
and the equilibrium is unstable.

The analysis for EI is similar to that of EN I and we omit it for brevity. Finally, the local
behavior of the system for RL = 1 is implied by the result of Theorem 3. 	


Lastly, we include a proof of the previously stated global stability theorem.

Proof (Theorem 3) As in [20] for the case of (1), we will prove the global stability using a
Lyapunov function [25]. We will denote the uninfected equilibrium by (T 0, 0, 0, 0). First,
note that the quantity

T (t) − T 0 − T 0 ln

(
T (t)

T 0

)

vanishes when evaluated at T (t) = T 0 and is nonnegative as long as T (t) > 0 by a simple
application of Taylor’s Theorem. Next, define

U (t) = ((1 − p)dL + α)

[

T (t) − T 0 − T 0 ln

(
T (t)

T 0

)]

+ (dL + α)

[

I (t) + 1

N
V (t)

]

+ αL(t).

Notice that U is C1, nonnegative, and tends to infinity as T, I, L , and V do. Additionally,
U is identically zero if and only if it is evaluated at the uninfected equilibrium point. We
compute the derivative along trajectories and find

dU

dt
= ((1 − p)dL + α)

(

1 − T 0

T

)

[λ − dT T − kT V ]

+ (dL + α)

[

(1 − p)kT V + αL − dI I + 1

N
(NdI I − dV V )

]

+α [pkT V − (α + dL)L]
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The I, L , and T V terms all cancel and after using the definition of T 0, we are left with

dU

dt
= ((1 − p)dL + α) (λ − dT T )

(

1 − λ

dT T

)

+
[

((1 − p)dL + α) kT ∗ − (dL + α)
dV
N

]

V

= − (1 − p)dL + α

dT T
(λ − dT T )2 + (dL + α)dV

N
(RL − 1)V .

Thus, under the assumption that RL ≤ 1, we see that dU
dt ≤ 0 for all positive values of

T, I, L , and V , and the global asymptotic stability follows by LaSalle’s Invariance Principle
[35].

Turning to the infected equilibrium, none of the end values are zero, so we denote this
steady state by (T ∗, I ∗, L∗, V ∗) and define

U (t) = ((1 − p)dL + α)

[

T (t) − T ∗ − T ∗ ln
(
T (t)

T ∗

)]

+ (dL + α)

[

I (t) − I ∗ − I ∗ ln
(
I (t)

I ∗

)

+ 1

N

(

V (t) − V ∗ − V ∗ ln
(
V (t)

V ∗

))]

+α

[

L(t) − L∗ − L∗ ln
(
L(t)

L∗

)]

.

As before, this function is nonnegative and identically zero only when evaluated at the
infected equilibrium. Computing the derivative along trajectories yields

dU

dt
= ((1 − p)dL + α)

(

1 − T ∗

T

)

[λ − dT T − kT V ]

+ (dL + α)

[(

1 − I ∗

I

)

((1 − p)kT V + αL − dI I )

+ 1

N

(

1 − V ∗

V

)

(NdI I − dV V )

]

+ α

(

1 − L∗

L

)

[pkT V − (α + dL)L]

= ((1 − p)dL + α) [λ − dT T − kT V ]

+ (dL + α)

[

(1 − p)kT V + αL − dI I +
(

dI I − dV
N

V

)]

+α [pkT V − (α + dL)L] − ((1 − p)dL + α)

[
λT ∗

T
− dT T

∗ − kT ∗V
]

−(dL + α)

[
(1 − p)kT V I ∗

I
+ αL I ∗

I
− dI I

∗ + dI I V ∗

V
− dV V ∗

N

]

+α

[
pkT V L∗

L
− (α + dL)L∗

]

.

Nicely, the I, L , V , and T V terms all vanish and what remains is

dU

dt
= ((1 − p)dL + α)

[

λ − dT T + dT T
∗ − λT ∗

T

]

+ (dL + α)

[

−(1 − p)k
T V I ∗

I
− α

L I ∗

I
+ dI I

∗ − dI
I V ∗

V
+ dV

V ∗

N
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+αL∗ − αpk

dL + α

T V L∗

L

]

=: I + I I.

For I , we factor out a dT T ∗ term and use the form of T ∗ to find

I = (dL + α)dT T
∗
[

RL + 1 − T

T ∗ − RL
T ∗

T

]

= (dL + α)dT T
∗
[

2 − T

T ∗ − T ∗

T
+ (RL − 1)

(

1 − T ∗

T

)]

= (dL + α)dT T
∗
[

2 − T

T ∗ − T ∗

T

]

+ (dL + α)dT T
∗(RL − 1)

(

1 − T ∗

T

)

.

For II, we factor an L∗ term and use the identities

T ∗V ∗ = dL + α

kp
L∗ and NdI I

∗ = dV V
∗

to find

II = (dL + α)L∗
[

α + dI I ∗

L∗ + dV V ∗

NL∗ − (1 − p)k
T V I ∗

L∗ I
− dI I ∗

L∗
I V ∗

I ∗V

− αpk

dL + α

T V

L
− α

L I ∗

L∗ I

]

,

= (dL + α)L∗
[

α + 2((1 − p)dL + α)

p
− (1 − p)(dL + α)

p

T V I ∗

T ∗V ∗ I

− (1 − p)dL + α

p

I V ∗

I ∗V
− α

T V L∗

T ∗V ∗L
− α

L I ∗

L∗ I

]

,

= (dL + α)L∗

p

[

((1 − p)dL + α)

(

2 − I V ∗

I ∗V

)

− (1 − p)(dL + α)
T V I ∗

T ∗V ∗ I

+αp

(

1 − T V L∗

T ∗V ∗L
− L I ∗

L∗ I

)]

.

Thus, combining the rearrangements of I and I I , we find

dU

dt
= (dL + α)dT T

∗
[

2 − T

T ∗ − T ∗

T

]

+ (dL + α)dT T
∗(RL − 1)

(

1 − T ∗

T

)

+ (dL + α)L∗

p

[

((1 − p)dL + α)

(

2 − I V ∗

I ∗V

)

− (1 − p)(dL + α)
T V I ∗

T ∗V ∗ I

+αp

(

1 − T V L∗

T ∗V ∗L
− L I ∗

L∗ I

)]

.

The second term simplifies to combine with those in the third term since

(dL + α)dT T
∗(RL − 1) = (dL + α)L∗((1 − p)dL + α)

p
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and therefore the expression becomes

dU

dt
= (dL + α)dT T

∗
[

2 − T

T ∗ − T ∗

T

]

+ (dL + α)L∗

p

[

((1 − p)dL + α)

(

3 − T ∗

T
− I V ∗

I ∗V

)

− (1 − p)(dL + α)
T V I ∗

T ∗V ∗ I

+αp

(

1 − T V L∗

T ∗V ∗L
− L I ∗

L∗ I

)]

.

Since (1− p)(dL + α) = (1− p)dL + α − αp, we add and subtract αp within the first term
of the second line and place the extra components in the terms on the third line to arrive at

dU

dt
= (dL + α)dT T

∗
[

2 − T

T ∗ − T ∗

T

]

+ (dL + α)L∗

p

[

(1 − p)(dL + α)

(

3 − T ∗

T
− T V I ∗

T ∗V ∗ I
− I V ∗

I ∗V

)

+ αp

(

4 − T ∗

T
− T V L∗

T ∗V ∗L
− L I ∗

L∗ I
− I V ∗

I ∗V

)]

.

Finally, each of the resulting terms above are nonpositive because the arithmetic mean is
greater than the geometric mean, or more specifically,

1

2

(
T

T ∗ + T ∗

T

)

≥
√

T

T ∗ · T
∗
T

= 1,

1

3

(
T ∗

T
+ T V I ∗

T ∗V ∗ I
+ I V ∗

I ∗V

)

≥ 3

√
T ∗
T

· T V I ∗
T ∗V ∗ I

· I V
∗

I ∗V
= 1,

1

4

(
T ∗

T
+ T V L∗

T ∗V ∗L
+ L I ∗

L∗ I
+ I V ∗

I ∗V

)

≥ 4

√
T ∗
T

· T V L∗
T ∗V ∗L

· L I
∗

L∗ I
· I V

∗
I ∗V

= 1.

Hence, dU
dt ≤ 0 for all positive values of T, I, L , and V . As in the uninfected case, the

conclusion then follows directly from LaSalle’s Invariance Principle. 	


Discussion

In order to realistically describe and predict the effects of latentHIV infection,models ofHIV-
1 dynamics and the associated mathematical tools must be capable of explaining the rich set
of dynamics inherent within their formulation.We have explored the steady states and asymp-
totic behavior of the basic three-component model and its well-known variant which includes
the effects of latent infection. A rigorous analysis of the large time behavior of these systems
displays a reduction in the basic reproduction number due to the appearance of the latently
infected T-cell population, and at first glance seems contradictory to the known difficulties of
eradicating the latent reservoir with antiretroviral therapy. After undertaking a more detailed
analysis here, we find that even though the inclusion of latent T-cells allows for a wider range
of parameter values to induce viral eradication as t → ∞, the rate at which this decay occurs
underART is retarded so significantly that, in themajority of cases, the decay could only occur
outside time periods of biological relevance. This analysis highlights two major points. First
and foremost, the latent cell population drastically extends the lifespan of infection. This can
be seen from the rates of decay displayed within the previous section by the functions P and
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Q. However, since this property cannot be detected at the level of the basic reproduction num-
ber, a second major point becomes clear. The standard tools of computing equilibrium states
and the differing conditions underwhich a systemmay tend to these states as t → ∞ is clearly
insufficient to describe, or more importantly predict, the realistic dynamics that these equa-
tions model. Hence, a more refined analysis which investigates not only the end states, but the
rate of propagation to a supposed equilibrium value within a specified time period, is clearly
needed to describe the propagation of HIV, at least when considering the effects of latent
infection.

Of course, our study is not all-inclusive. In attempting to address the question of latently
infected cell reservoirs, we have ignored other potential reservoirs of HIV, such as those
occurring within the brain, testicles, and dendritic cells [6]. The extent of viral replication
in compartments other than resting CD4+T-cells in patients receiving antiretroviral therapy
for extended periods of time has yet to be fully delineated. One may also adapt the model to
account for other viral reservoirs and incorporate the immune system response to a viral load.
In addition, we assumed the use of antiretroviral therapy that included only PIs. Certainly, the
effects of RTIs could also be included, though the picture becomes slightly more complex,
and the results are similar. One can also study effects arising from a number of additional
aspects including

1. A secondary infective population, such as macrophages [13]
2. Pharmacological delays due to drug activation
3. The residual effects of decaying drug efficacy or periodic ART schedules
4. Spatial effects, such as those characterized by diffusionmodels andmultiple compartment

models
5. Uncertainty arising from the measurement of parameter values or fluctuations across

populations of individuals in the form of random coefficients or stochastic differential
equations

6. Successive mutation of HIV virions

That being said, the effects of the latent cell population on viral behavior have been clearly
documented within the current study, and it is greatly expected that even when additional
mechanisms are incorporated within the model, the basic reproduction number will not serve
as a descriptive parameter alone since it only describes the global asymptotic behavior of
populations. Futureworkmust examine the aforementioned issueswithin the context of latent
infection using the exponential decay functions, P and Q, as a refinement of themathematical
analysis detailing the long time behavior of the model.

In conclusion, the dynamics of models that consider latent infection are so complex, even
when spatial fluctuations are ignored, that a single parameter, in this case RL or Rε

L , cannot
possibly dictate the realistic behavior of the corresponding populations. Instead, one must
consider a number of factors including the time of validity inherent within the model, the
average time periods underlying treatment, and the rates of decay associated with the trend
to equilbrium.
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