
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Math. Meth. Appl. Sci. 2007; 30:529–548
Published online 23 October 2006 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/mma.796
MOS subject classification: 35 L 60; 35Q 99; 82C 21; 82C 22; 82D 10

Local existence for the one-dimensional Vlasov–Poisson
system with infinite mass

Stephen Pankavich∗,†

Department of Mathematics, Indiana University, Bloomington, IN 47401, U.S.A.

Communicated by W. Sprößig

SUMMARY

A collisionless plasma is modelled by the Vlasov–Poisson system in one dimension. We consider
the situation in which mobile negative ions balance a fixed background of positive charge, which is
independent of space and time, as |x | → ∞. Thus, the total positive charge and the total negative charge are
both infinite. Smooth solutions with appropriate asymptotic behaviour are shown to exist locally in
time, and criteria for the continuation of these solutions are established. Copyright q 2006 John Wiley
& Sons, Ltd.
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INTRODUCTION

Consider the following simplified model of a collisionless plasma, using the Vlasov–Poisson
system in one dimension. Let F : R → [0, ∞) and f0 : R × R → [0, ∞) be given, and seek a
function f : [0,∞) × R × R → [0,∞) such that

�t f + v�x f − E�v f = 0

�(t, x)=
∫

(F(v) − f (t, x, v)) dv

E(t, x) = 1

2

(∫ x

−∞
�(t, y) dy −

∫ ∞

x
�(t, y) dv

)

f (0, x, v)= f0(x, v)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)
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530 S. PANKAVICH

where t ∈ [0,∞) denotes time, x ∈ R denotes space, and v ∈ R denotes momentum. Here, f gives
the density in phase space of mobile negative ions, while F describes a number density of positive
ions which form a fixed background. We seek solutions for which f (t, x, v)→ F(v) as |x |→∞.
Precise conditions which ensure local-in-time existence of such solutions to (1) are given in
Section 1.

To this end, we wish to proceed in a manner similar to [1], which proved the existence of a local-
in-time solution to the three-dimensional analogue of (1). In that paper, the existence argument
hinged upon showing that � decayed faster than |x |−3. In the same vein, the main difficulty of this
paper arises in showing � decays rapidly enough in |x |, in this case, better than |x |−1. A crucial
difference between these arguments, however, lies in the decay rates of the other functions. Let
g= F − f . In the three-dimensional problem it is well known that E , g and ∇g decay at a rate of
|x |−2. For (1), none of the analogous terms are initially known to tend to zero for large x . Indeed,
of these terms only �x g can be shown to do so. One important part of the existence proof in [1]
relied upon Lemmas 1 and 5 of that paper generating the estimate

� ≈
∫

E · ∇g dv ≈ |x |−4

Due to the differing behaviour of E and∇g in (1), this estimate does not hold in the one-dimensional
problem. Instead, since neither E nor ∇g are known to decay in space, it is unclear as to the
a priori behaviour of �. This difficulty is remedied through the use of Lemma 4. Regardless, it is
worth noting that due to a loss of spatial decay in each function, (1) contains additional difficulties
to those encountered in the three-dimensional problem, and many of the techniques used in [1]
cannot be utilized here.

The Vlasov–Poisson system has been studied extensively in the case where F(v)= 0 and
solutions tend to zero as |x |→∞, mostly with respect to the three-dimensional problem. Most
of the literature involving the one-dimensional Vlasov–Poisson system focus on time asymptotics,
such as [2, 3]. Much more work has been done concerning the three-dimensional problem. Smooth
solutions were shown to exist globally in time in [4] (refined in [5]) and independently in [6].
Important results preliminary to the discovery of a global-in-time solution include [7, 8]. A complete
discussion of the literature concerning the Vlasov–Poisson system may be found in [9], and more
recently [10].

A good deal of progress has also been made on the infinite mass problem for the Vlasov–Poisson
system, this being the three-dimensional analogue of (1). Other than [1], smooth solutions were
shown to exist globally in time for the case of a radial field in [11]. A priori bounds on the
charge and current densities were established in [12], assuming F(v) is suitably smooth, radial
and decreasing. Finally, using the bounds derived in [12], a unique global-in-time smooth solution
was shown to exist in [13] for an arbitrary electric field, assuming F is compactly supported.
Hence, our assumptions on data will mimic that of [1] and [13].

SECTION 1

We let p>1 be given and use the following notation. Denote

R(x)= R(|x |)=
√
1 + |x |2
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ONE-DIMENSIONAL VLASOV–POISSON SYSTEM WITH INFINITE MASS 531

For given functions h : R2 → R and � : R → R, we will use the norms

‖h‖∞ = sup
z∈R2

|h(z)|

‖�‖p = ‖�Rp(x)‖L∞(R)

and

‖|h|‖= ‖h‖∞ + ‖�vh‖∞ + ‖�xh‖p +
∥∥∥∥
∫

h dv

∥∥∥∥
p

but never use the L p norm (for p finite). For example, we will write ‖�(t)‖p for the ‖ · ‖p norm
of x → �(t, x).

In order to study the above system, we will assume the following conditions hold throughout

(A-1) f0 ∈C1(R2) is non-negative with compact v-support and for x, v ∈ R

|(F − f0)(x, v)| + |�v(F − f0)(x, v)|�CR−p(x)

(A-2) F ∈C3(R) is non-negative and there is W ∈ (0,∞) such that for |v|>W

F(v) = 0

(A-3) ‖|(F − f0)|‖ is finite.

From these assumptions, local-in-time existence follows.

Theorem 1
Assuming (A-1)–(A-3) hold, there exist �>0 and f ∈C1([0, �] × R2) satisfying (1) with
‖|(F − f )(t)|‖�C for t ∈ [0, �]. Moreover, f is unique.

In addition, we may continue the local-in-time solution as long as this norm remains bounded.

Theorem 2
Assume (A-1)–(A-3) hold. Let T>0 be given and f be a C1 solution of (1) on [0, T ] × R2. If

‖|(F − f )(t)|‖�C

on [0, T ], then we may extend the solution to [0, T + �] for some �>0 where ‖|(F − f )(t)|‖ is
bounded on [0, T + �].

In order to combine the proofs of Theorems 1 and 2, let f (T ) = f0 if T = 0 and for T>0, let
f (T ) be the solution assumed to exist in Theorem 2. For �>0 and r>1, define

C=C(�, r) := { f ∈C1([0, T + �] × R2) :

f (t, x, v) = f (T )(t, x, v) if t ∈ [0, T ]

and ‖|(F − f )(t)|‖�r if t ∈ [0, T + �]}

Copyright q 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:529–548
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532 S. PANKAVICH

We take

r�1 + sup
t∈[0,T ]

‖|(F − f )(t)|‖

and 0��� 1
r for the remainder of the paper.

For f ∈C, define

g = F − f (2)

� =
∫

g dv (3)

E = 1

2

(∫ x

−∞
�(t, y) dy −

∫ ∞

x
�(t, y) dy

)
(4)

Further define F[ f ] = f̃ by⎧⎨
⎩

f̃ (t, x, v)= f (T )(t, x, v), t ∈ [0, T ]
�t f̃ + v�x f̃ − E�v f̃ = 0, t ∈ [T, T + �]

(5)

Then,

g̃= F − f̃

and

�̃ =
∫

g̃ dv

In Section 2, we will choose r and � such that F : C→C, and use this to show that an
iterative sequence converges, thus proving Theorems 1 and 2. Unless it is stated otherwise, we will
denote by ‘C’ a generic constant which changes from line to line and may depend upon f0, F, T ,
or supt ∈ [0,T ] ‖|(F − f )(t)|‖, but not on t, x, v, r or �. When it is necessary to refer to specific
constants, we will use superscripts. For instance, C (1) will always denote the same value.

Define

I (t − T ) =
{
0, t�T

1, t>T

Then, by definition, f ∈C implies

‖�(t)‖p�C(1 + r I (t − T )) (6)

for all x ∈ R and t ∈ [0, T + �]. Therefore, given t ∈ [0, T + �] and x ∈ R, we find

|E(t, x)|�‖�(t)‖p

(∫
R−p(y) dy

)
�C‖�(t)‖p (7)
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ONE-DIMENSIONAL VLASOV–POISSON SYSTEM WITH INFINITE MASS 533

Thus, for t ∈ [0, T + �], we find∫ t

0
‖E(s)‖∞ ds�C

∫ t

0
(1 + r I (s − T )) ds�C(1 + r�)�C =:C (1) (8)

and the field integral is uniformly bounded. Define the characteristics, X (s, t, x, v) and V (s, t, x, v),
as solutions to the system of ordinary differential equations

�
�s

X (s, t, x, v) = V (s, t, x, v)

�
�s

V (s, t, x, v)=−E(s, X (s, t, x, v))

X (t, t, x, v) = x

V (t, t, x, v) = v

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

We will make use of the following lemma which results merely from this bound on the time
integral of the field.

Lemma 1
Let t ∈ [0, T + �], s ∈ [0, t], and x ∈ R be given. Then, for any v ∈ R

|v| − C (1)�|V (s, t, x, v)|�|v| + C (1)

In particular, for |v|>2C (1)

1
2 |v|�|V (s, t, x, v)|� 3

2 |v|
The following lemma is a crucial tool used in showing decay (at a rate of |x |−p) of the charge

density, �.

Lemma 2
Assume that E : R → R is C1 and there exists B > 0 such that

|E(x)|�B

and

|E′(x)|�BR−p(x)

for all x ∈ R. Also, assume H : R → R is C2
c . Then,∣∣∣∣

∫
E(X (s, t, x, v))H ′(V (s, t, x, v)) dv

∣∣∣∣�CBR−p(x)

for all x ∈ R and 0�s�t�T + �.

We will postpone the proofs of all lemmas until Section 3.
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534 S. PANKAVICH

SECTION 2

Let us estimate ‖�̃(t)‖p. Define

D = �t + v�x − E�v (10)

Then,

Dg̃= −EF ′ (11)

so that

�̃(t, x)= �0(t, x) −
∫ t

0

∫
E(s, X (s, t, x, v))F ′(V (s, t, x, v)) dv ds (12)

where

�0(t, x)=
∫

(F − f0)(X (0, t, x, v), V (0, t, x, v)) dv

Since �x E = �, we use (6) and (7) in Lemma 2 to find∣∣∣∣
∫ t

0

∫
E(s, X (s, t, x, v))F ′(V (s, t, x, v)) dv ds

∣∣∣∣�
∫ t

0
C(1 + r I (s − T ))R−p(x) ds

�C(1 + r�)R−p(x)

�CR−p(x) (13)

Then, to estimate �0, we use (A-1) and (A-2) to conclude that F − f0 has compact
v-support. Let PV := sup{|v| : ∃x ∈ R such that (F − f0)(x, v) 
= 0} and define Pv := PV + C (1).
Using Lemma 1 for |v|>Pv , we find |V (0)|>PV and thus (F − f0)(X (0), V (0))= 0. It follows
that (F − f0)(X (0), V (0)) has compact support as a function of v. Now, assume |v|�Pv . For
|x |>2(Pv + C (1))(T + �), we again use Lemma 1 to find

|X (0, t, x, v)|�|x | −
∫ t

0
|V (�)| d��|x | − (Pv + C (1))(T + �)�1

2
|x |

and thus R−p(X (0))�R−p( 12 |x |)�CR−p(x). In addition, for |x |�2(Pv + C (1))(T + �), we have
R−p(X (0))�C�CR−p(x). Therefore, we find for any x ∈ R

R−p(X (0))�CR−p(x)

Hence, we find

|�0(t, x)| �
∫

|v|�Pv

CR−p(X (0, t, x, v)) dv

�CR−p(x)

Using this and (13), we find

|�̃(t, x)|�CR−p(x) (14)

Copyright q 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:529–548
DOI: 10.1002/mma



ONE-DIMENSIONAL VLASOV–POISSON SYSTEM WITH INFINITE MASS 535

and thus

‖�̃(t)‖p�C

Now, we estimate g̃, �v g̃, and �x g̃. First, we use (A-2), (A-3), and (8) in (11), after integrating
along characteristics, to find

|g̃(t, x, v)| � |(F − f0)(X (0), V (0))| +
∫ t

0
|E(s, X (s))||F ′(V (s))| ds

�C + ‖F ′‖∞
(∫ t

0
|E(s, X (s))| ds

)

�C

Using D defined by (10), we have

D(�x g̃) = �x E(�v g̃ − F ′) = �(�v g̃ − F ′)

and

D(�v g̃) =−(�x g + EF ′′) (15)

Then, using (6), (7), and (A-2), we find

|D(�x g̃)|�CR−p(x)(1 + r I (t − T ))(1 + |�v g̃|) (16)

and

|D(�v g̃)|�C(1 + r I (t − T ))(1 + |�x g̃|) (17)

Denoting
G̃(s)= (|�v g̃| + |�x g̃|)(s, X (s), V (s))

we combine (16) and (17) and integrate along characteristics to find

G̃(t)�G̃(0) + C
∫ t

0
(1 + r I (s − T ))(1 + G̃(s)) ds

By Gronwall’s inequality and (A-3), we find

G̃(t)�C(1 + G̃(0))�C

and it follows that for any t ∈ [0, t + �]
‖g̃(t)‖∞ + ‖�v g̃(t)‖∞ + ‖�x g̃(t)‖∞�C (18)

For the remainder of the section, we will need to estimate terms which involve v-integrals of g̃.
Thus, the following lemma will be useful.

Lemma 3
For any f ∈C, define f̃ by (5) and g̃= F − f̃ . Then, Qg̃(t) defined by

Qg̃(t) = sup{|v| : ∃x ∈ R, � ∈ [0, t] such that g̃(�, x, v) 
= 0} (19)

is bounded for all t ∈ [0, T + �].

Copyright q 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:529–548
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536 S. PANKAVICH

Continuing with the estimate of ‖|g̃|‖, we use (16) and (18), and integrate along characteristics
to find

|�x g̃(t, x, v)|�|�x g̃(0, X (0), V (0)| + C
∫ t

0
(1 + r I (s − T ))R−p(X (s)) ds

By the definition of Qg̃(t), we find that for |x |>2(T + �)Qg̃(T + �), we have

|X (s, t, x, v)|�|x | −
∫ t

s
|V (�)| d��|x | − (T + �)Qg̃(T + �)�1

2
|x |

and thus R−p(X (s))�R−p( 12 |x |)�CR−p(x). In addition, for |x |�2(T + �)Qg(T + �), we have
R−p(X (s))�C�CR−p(x). Therefore, we find that for any x ∈ R

R−p(X (s))�CR−p(x)

We use this and (A-3) to find

|�x g̃(t, x, v)|�CR−p(x)

and therefore

‖�x g̃(t, x, v)‖p�C (20)

Collecting (14), (18), and (20) we find

‖|g̃(t, x, v)|‖�C (2) (21)

We take r�C (2) and conclude that f̃ ∈C and F : C→C.
Next, let f, �, E, f̃ , and �̃ be as before and for h ∈C, define

gh = F − h

�h =
∫

gh dv

Eh = 1

2

(∫ x

−∞
�h(t, y) dy −

∫ ∞

x
�h(t, y) dy

)

h̃ =F[h]
g̃h = F − h̃

and

�̃h =
∫

g̃h dv

We estimate ‖�̃(t)− �̃h(t)‖p so that we may apply a uniform bound to the iterates defined later.
As before, we consider D defined by (10) and find

D( f̃ − h̃) = (E − Eh)�v h̃ = (E − Eh)(F
′ − �v g̃h)

Copyright q 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:529–548
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ONE-DIMENSIONAL VLASOV–POISSON SYSTEM WITH INFINITE MASS 537

So, we have

(�̃ − �̃h)(t, x) =
∫ t

0

∫
(E − Eh)(s, X (s))F ′(V (s)) dv ds

−
∫ t

0

∫
(E − Eh)(s, X (s))�v g̃h(s, X (s), V (s)) dv ds (22)

where X (s) and V (s) are defined by (9). Since f, h ∈C, we use (6) and (7) to find

|(E − Eh)(t, x)|�C‖�(t) − �h(t)‖p

and

|�x (E − Eh)(t, x)|�C‖�(t) − �h(t)‖p R
−p(x)

Using Lemma 2, we have∣∣∣∣
∫

(E − Eh)(s, X (s))F ′(V (s)) dv

∣∣∣∣�C‖(� − �h)(s)‖p R
−p(x)

Thus, it follows that∣∣∣∣
∫ t

0

∫
(E − Eh)(s, X (s))F ′(V (s)) dv ds

∣∣∣∣�C

(∫ t

0
‖(� − �h)(s)‖p ds

)
R−p(x) (23)

To estimate the remaining portion of (22), we will use:

Lemma 4
For 0�s�t�T + � and x ∈ R,∣∣∣∣

∫
(E − Eh)(s, X (s))�v g̃h(s, X (s), V (s)) dv

∣∣∣∣�C‖(� − �h)(s)‖p R
−p(x)

It follows from Lemma 4 that∣∣∣∣
∫ t

0

∫
(E−Eh)(s, X (s))�v g̃h(s, X (s), V (s)) dv ds

∣∣∣∣�C

(∫ t

0
‖(�−�h)(s)‖p ds

)
R−p(x) (24)

Using (23) and (24) in (22), we find

‖(�̃ − �̃h)(t)‖p�C (3)
(∫ t

0
‖(� − �h)(s)‖p ds

)
(25)

Now, define the first iterate by

f (0)(t, x, v)=
⎧⎨
⎩

f (T )(t, x, v) if t ∈ [0, T ]
f (T )(T, x, v) if t ∈ [T, T + �]

Copyright q 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:529–548
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538 S. PANKAVICH

Then, for k = 0, 1, 2, 3, . . . , assuming f (k) is known, define

g(k) = F − f (k)

�(k) =
∫

g(k) dv

E (k) = 1

2

(∫ x

−∞
�(k)(t, y) dy −

∫ ∞

x
�(k)(t, y) dy

)

f (k+1) =F[ f (k)]

Since f (0), f (1) ∈C, we have

‖(�(1) − �(0))(t)‖p�C (4) I (t − T )

Then, we use (25) to find

‖(�(2) − �(1))(t)‖p�C (3)C (4)(t − T )I (t − T )

and

‖(�(3) − �(2))(t)‖p�C (4) 1
2 (C

(3)(t − T ))2 I (t − T )

This can be repeated and using induction, for any k = 0, 1, 2, 3, . . . , we have

‖(�(k+1) − �(k))(t)‖p�
C (4)

k! (C (3)(t − T ))k I (t − T )

Finally, for m, n ∈ Z+ with m>n, we have

‖(�(m) − �(n))(t)‖p �
m−1∑
�=n

‖(�(�+1) − �(�))(t)‖p

�
(
m−1∑
�=n

C (4)

�! (C (3)(t − T ))�

)
I (t − T )

Thus, �(k) is Cauchy with respect to the norm

‖�‖ = sup
t∈[0,T+�]

‖�(t)‖p

Using this estimate with (7), we may conclude that E (k) is Cauchy in L∞([0, T + �] × R). Define
X (k)(s, t, x, v) and V (k)(s, t, x, v) by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dX (k)

ds
= V (k), X (k)(t, t, x, v)= x

dV (k)

ds
= −E (k)|(s,X (k)(s)), V (k)(t, t, x, v) = v

(26)
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ONE-DIMENSIONAL VLASOV–POISSON SYSTEM WITH INFINITE MASS 539

Then, since f (n), f (m) ∈C, we use the Mean Value Theorem to find

|(X (n) − X (m))(s)| + |(V (n) − V (m))(s)|

�
∫ t

s
(|(V (n) − V (m))(�)| + |E (n)(�, X (n)(�)) − E (m)(�, X (m)(�))|) d�

�
∫ t

s
(|(V (n) − V (m)(�))| + |E (n)(�, X (n)(�)) − E (n)(�, X (m)(�))|

+ |E (n)(�, X (m)(�)) − E (m)(�, X (m)(�))|) d�

�
∫ t

s
(|(V (n) − V (m)(�))|+‖�(n)(�)‖p|(X (n)−X (m))(�)|) d�+‖E (n)−E (m)‖L∞([0,T+�]×R)

�‖E (n) − E (m)‖L∞([0,T+�]×R) + C
∫ t

s
(|(X (n) − X (m))(�)| + |(V (n) − V (m)(�))|) d�

Using Gronwall’s inequality, we have for 0�s�t�T + �

|(X (n) − X (m))(s)| + |(V (n) − V (m))(s)|�C‖E (n) − E (m)‖L∞([0,T+�]×R)

Thus, X (k) and V (k) are uniformly Cauchy. Then, by definition of the iterates,

f (k+1)(t, x, v)= f0(X
(k)(0, t, x, v), V (k)(0, t, x, v))

So, define

f (t, x, v)= lim
k→∞ f0(X

(k)(0, t, x, v), V (k)(0, t, x, v)) (27)

Then, since f (k) ∈C and thus ‖�(k)(t)‖p�C , we use (A-3), Lemma 1, and the Bounded Conver-
gence Theorem to define

� = lim
k→∞ �(k) = lim

k→∞

∫
(F − f (k)) dv =

∫
(F − f ) dv

Similarly, define

E = lim
k→∞ E (k) = lim

k→∞
1

2

(∫ x

−∞
�(k)(t, y) dy −

∫ ∞

x
�(k)(t, y) dy

)

and use Lebesgue’s Dominated Convergence Theorem to conclude that (4) holds. Define

X = lim
k→∞ X (k)

and

V = lim
k→∞ V (k)
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It follows from (26) and the field bound that (9) holds. Also, from (27), we have

f (t, x, v)= f0(X (0, t, x, v), V (0, t, x, v)) (28)

and thus

f (t, x, v)= f (s, X (s, t, x, v), V (s, t, x, v)) (29)

for all s ∈ [0, t]. Finally, f (k) ∈C for each k implies � is Lipschitz in x and thus E is C1 in x .
We may use (5) and Lemma 1 to conclude that E is continuous in t . Thus, we see that X and V
are C1 from (9), f is C1 from (28), and f satisfies the Vlasov equation from (29).

In order to show uniqueness, we let f, h ∈C be given solutions with f (0, x, v) = h(0, x, v) =
f0(x, v) for all x, v ∈ R. Then, since f, h ∈C solve (1) we use (25) to conclude

‖(� − �h)(t)‖p�C(t − T )I (t − T )

We may repeatedly apply (25) and use induction to find for every k ∈ N

‖(� − �h)(t)‖p�
C (4)

k! (C (3)(t − T ))k I (t − T )

This implies

‖(� − �h)(t)‖p = 0

Therefore, � ≡ �h , E ≡ Eh and by uniqueness of characteristics, f ≡ h. Thus, the proofs of
Theorems 1 and 2 are complete.

SECTION 3

The section which follows is devoted to the proof of Lemmas 1–4.

Proof of Lemma 1
Using (8) and (9), we may conclude

|V (s, t, x, v)| =
∣∣∣∣v +

∫ t

s
E(�, X (�, t, x, v)) d�

∣∣∣∣
� |v| −

∫ t

0
‖E(�)‖∞ d�

� |v| − C (1)

Similarly, we find

|V (s, t, x, v)|�|v| + C (1)

Thus, for |v|>2C (1), we have

1
2 |v|�|v| − C (1)�|V (s, t, x, v)|�|v| + C (1)� 3

2 |v|
and the proof of Lemma 1 is complete. �
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Proof of Lemma 2
Let E∈C1(R), H ∈C2

c(R), and B>0 be given with

|E(x)|�B (30)

and

|E′(x)|�BR−p(x) (31)

for all x ∈ R. Let t ∈ [0, T+�] and s ∈ [0, t] be given. Since H has compact support, let W̃ :=
sup{|v| : H(v) 
= 0} and define C (5) := 2max{C (1), W̃ }. Then, using Lemma 1, we find for |v|>C (5)

that |V (s)|� 1
2 |v|�W̃ , and thus H ′(V (s))= 0. Define

C (6) := (T + �)(C (1) + C (5))

We have for |x |�2C (6)

∣∣∣∣
∫

E(X (s, t, x, v))H ′(V (s, t, x, v)) dv

∣∣∣∣�
∫

|v|�C(5)
B‖H ′‖∞ dv

�CB�CBR−p(x)

Take |x |>2C (6) and write∫
E(X (s, t, x, v))H ′(V (s, t, x, v)) dv

=
∫

|v|�C(5)

[
E(X (s, t, x, v))

(
H ′(V (s, t, x, v)) − H ′

(
v +

∫ t

s
E(�, x) d�

))

+ (E(X (s, t, x, v)) − E(x + (s − t)v))H ′
(

v +
∫ t

s
E(�, x) d�

)

+ d

dv

(
H

(
v +

∫ t

s
E(�, x) d�

)
E(x + (s − t)v)

)

− H

(
v +

∫ t

s
E(�, x) d�

)
d

dv
(E(x + (s − t)v))

]
dv

=: I + II + III + IV

To estimate I, we use the Mean Value Theorem to find �1 between x and X (�) such that

E(�, X (�)) − E(�, x)= �x E(�, �1)(X (�) − x)
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In addition, note that for |v|�C (5), we have using Lemma 1

|�1| � |x | − |X (�) − x |

� |x | −
(∫ t

�
(|v| + C (1)) ds

)

� |x | − (T + �)(C (5) + C (1))

� |x | − C (6)

� 1

2
|x |

Using (6), (30), and Lemma 1 we find

I �CB
∫

|v|�C(5)

∣∣∣∣H ′(V (s, t, x, v)) − H ′
(

v +
∫ t

s
E(�, x) d�

)∣∣∣∣ dv
�CB‖H ′′‖∞

∫
|v|�C(5)

∫ t

s
|E(�, X (�)) − E(�, x)| d� dv

�CB
∫

|v|�C(5)

∫ t

s
|�x E(�, �1)||X (�) − x | d� dv

�CB
∫

|v|�C(5)

∫ t

s
‖�(�)‖p R

−p(�1)

(∫ t

�
|V (�)| d�

)
d� dv

�CBR−p
(
1

2
|x |
)(∫

|v|�C(5)
(|v| + C (1)) dv

)(∫ t

s
(1 + r I (� − T )) d�

)

�CBR−p(x)

To estimate II, we again use the Mean Value Theorem and find �2 between X (s) and x + (s − t)v
such that

E(X (s)) − E(x + (s − t)v) =E′(�2)(X (s) − (x + (s − t)v))

In addition, note that for |v|�C (5), we use Lemma 1 and (8) to find

|�2| � |x + (s − t)v| − |X (s) − (x + (s − t)v)|

� |x | − (T + �)C (5) −
∣∣∣∣
∫ t

s

∫ t

�
E(�, X (�)) d� d�

∣∣∣∣
� |x | − (T + �)(C (5) + C (1))

� 1

2
|x |
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Then, using (A-2), (8), and (31), we find

II�C‖H ′‖∞
∫

|v|�C(5)
|E(X (s, t, x, v)) − E(x + (s − t)v)| dv

�C
∫

|v|�C(5)
|E′(�2)||X (s) − x − (s − t)v| dv

�CB
∫

|v|�C(5)
R−p(�2)

∫ t

s

∫ t

�
|E(�, X (�))| d� d�

�CBR−p(x)

By the Fundamental Theorem of Calculus and compact support of H , we find

III= 0

To estimate IV, note that for |v|�C (5)

|x + (s − t)v|�|x | − (T + �)C (5)�|x | − C (6)� 1
2 |x | (32)

Thus, we use (32), (31), and Lemma 1 to estimate IV, which yields

IV�C‖H‖∞
∫

|v|�C(5)
|(s − t)||E′(x + (s − t)v)| dv

�CB
∫

|v|�C(5)
R−p(x + (s − t)v) dv

�CBR−p(x)

Combining the estimates for I–IV, we have

∣∣∣∣
∫

E(X (s)H ′(V (s)) dv

∣∣∣∣�CBR−p(x)

for |x |>2C (6), and the lemma follows. �

Proof of Lemma 3
We must bound Qg̃(t). Define for t ∈ [0, T + �]

Q(t) := sup{|v| : ∃x ∈ R, � ∈ [0, t] s.t. f̃ (�, x, v) 
= 0}
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By (A-1), we know that Q(0) is finite. By the definition of Q(t), if |V (0, t, x, v)|�Q(0), we have
for every y ∈ R,

f0(y, V (0, t, x, v))= 0

But, by Lemma 1, if |v|�2max{Q(0),C (1)}, then
|V (0, t, x, v)|� 1

2 |v|�Q(0)

which implies that f0(y, V (0, t, x, v))= 0. So, if f0(y, V (0, t, x, v)) 
= 0 for some y ∈ R, we
must have

|v|�2max{Q(0),C (1)} (33)

The definition of f̃ implies that f̃ (t, x, v)= f0(X (0, t, x, v), V (0, t, x, v)). So, if f̃ (t, x, v) 
= 0
for some t ∈ [0, T + �], x, v ∈ R, then (33) must hold. Taking the supremum over v of both sides
in (33), we find

Q(t)�2max{Q(0),C (1)}�C

for every t ∈ [0, T + �]. Since F is compactly supported and Qg̃(t) = max{Q(t),W }, it
follows that

Qg̃(t)�C (34)

for all t ∈ [0, T + �], as well. �

Proof of Lemma 4
Let t ∈ [0, T +�], s ∈ [0, t], and x ∈ R be given. Note that by the definitions of E and Eh , we have

�x (E − Eh)(t, x)= (� − �h)(t, x)

In addition, using (6) and (7), we have

|(E − Eh)(t, x)|�C‖(� − �h)(t)‖p (35)

and

|�x (E − Eh)(t, x)|�C‖(� − �h)(t)‖p R
−p(x) (36)

Define C (7) := (T + �)(Qg̃h (T + �) + C (1)). Then, for |x |�2C (7), we use (21) and (35) to find∣∣∣∣
∫

(E − Eh)(s, X (s)) �v g̃h(s, X (s), V (s)) dv

∣∣∣∣�C
∫

|v|�Qg̃h
(s)

‖(� − �h)(s)‖p dv

�C‖(� − �h)(s)‖p

�C‖(� − �h)(s)‖p R
−p(x)
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Now, let |x |>2C (7), and note that for |v|�Qg̃h (s) and � ∈ [0, s], we have

|X (�)| � |x | −
∫ t

�
|V (�)| d�

� |x | −
∫ t

�
(|v| + C (1)) d�

� |x | − (T + �)(Qg̃h (T + �) + C (1))

� |x | − C (7)

Thus, for |v|�Qg̃h (s) and � ∈ [0, s], we have

|X (�)|� 1
2 |x | (37)

Integrating along characteristics in (15), we find

�v g̃h |(s,X (s),V (s)) = �v g̃h |(0,X (0),V (0)) −
∫ s

0
(EhF

′′ + �x g̃h)
∣∣∣∣
(�,X (�),V (�))

d�

Using this, we may write

∫
[(E−Eh)�v g̃h]

∣∣∣∣
(s,X (s),V (s))

dv =
∫

|v|�Qg̃h
(s)

(E − Eh)

∣∣∣∣
(s,X (s),V (s))

×
[
�v g̃h |(0,X (0),V (0))−

∫ s

0
(EhF

′′+�x g̃h)
∣∣∣∣
(�,X (�),V (�))

d�

]
dv

� I + II + III

where

I=
∣∣∣∣∣
∫

|v|�Qg̃h
(s)

(E − Eh)(s, X (s))�v g̃h(0, X (0), V (0)) dv

∣∣∣∣∣
II=

∣∣∣∣∣
∫

|v|�Qg̃h
(s)

(E − Eh)(s, X (s))
∫ s

0
Eh(�, X (�))F ′′(V (�)) d� dv

∣∣∣∣∣
and

III=
∣∣∣∣∣
∫

|v|�Qg̃h
(s)

(E − Eh)(s, X (s))

(∫ s

0
�x g̃h(�, X (�), V (�)) d�

)
dv

∣∣∣∣∣
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To estimate I, we use (A-1), (35) and (37) to find

I�C‖(� − �h)(s)‖p

∫
|v|�Qg̃h

(s)
R−p(X (0)) dv

�C‖(� − �h)(s)‖pQg̃h (s)R
−p
(
1

2
|x |
)

�C‖(� − �h)(s)‖p R
−p(x)

To estimate II, we write

(E − Eh)(s, X (s))Eh(�, X (�))F ′′(V (�))

= ((E − Eh)(s, X (s)) − (E − Eh)(s, x))Eh(�, X (�))F ′′(V (�))

+ (E − Eh)(s, x)Eh(�, X (�))F ′′(V (�)) (38)

For the first term in (38), we use the Mean Value Theorem and find �3 between X (s) and x such
that

(E − Eh)(s, X (s)) − (E − Eh)(s, x)= �x (E − Eh)(s, �3)(X (s) − x)

In addition, note that for |v|�Qg̃h (s), we use Lemma 1 and (8) to find

|�3| � |x | − |X (s) − x |

� |x | −
∫ t

s
|V (�)| d�

� |x | − (T + �)(Qg̃h (T + �) + C (1))

� |x | − C (7)

� 1

2
|x |

Thus, using (7) and (36), we find∣∣∣∣∣
∫

|v|�Qg̃h
(s)

(E − Eh)(s, X (s)) − (E − Eh(s, x))Eh(�, X (�))F ′′(V (�)) dv

∣∣∣∣∣
�
∫

|v|�Qg̃h
(s)

|�x (E − Eh)(s, �3)(X (s) − x)||Eh(�, X (�))F ′′(V (�))| dv

�C(Qg̃h (s) + C (1))(T + �)‖F ′′‖L∞(R)‖�(�)‖p‖(� − �h)(s)‖p R
−p(�3)

�C‖�(�)‖p‖(� − �h)(s)‖p R
−p(x)
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and therefore,∣∣∣∣∣
∫

|v|�Qg̃h
(s)

(E − Eh)(s, X (s)) − (E − Eh(s, x))Eh(�, X (�))F ′′(V (�)) dv

∣∣∣∣∣
�C‖�(�)‖p‖(� − �h)(s)‖p R

−p(x) (39)

Then, to estimate the second term of (38) we use (7), (35), and (36) in Lemma 2 (with E= (E −
Eh)(s, x)Eh(�, X (�)) and H = F ′) to find∣∣∣∣∣
∫

|v|�Qg̃h
(s)

(E − Eh)(s, x)Eh(�, X (�))F ′′(V (�)) dv

∣∣∣∣∣�C‖�h(�)‖p‖(� − �h)(s)‖p R
−p(x) (40)

Finally, using (6), (39), and (40), we find

II=
∣∣∣∣∣
∫ s

0

∫
|v|�Qg̃h

(s)
(E − Eh)(s, X (s))Eh(�, X (�))F ′′(V (�)) dv d�

∣∣∣∣∣
�
∫ s

0

(∣∣∣∣∣
∫

|v|�Qg̃h
(s)

((E − Eh)(s, X (s)) − (E − Eh)(s, x))Eh(�, X (�))F ′′(V (�)) dv

∣∣∣∣∣
+
∣∣∣∣∣
∫

|v|�Qg̃h
(s)

(E − Eh)(s, x)Eh(�, X (�))F ′′(V (�)) dv

∣∣∣∣∣
)
d�

�C‖(� − �h)(s)‖p

(∫ s

0
‖�h(�)‖p d�

)
R−p(x)

�C‖(� − �h)(s)‖p R
−p(x)

(∫ s

0
(1 + r I (� − T )) d�

)

�C‖(� − �h)(s)‖p R
−p(x)

To estimate III, we use (21), (35), and (37) to find

III�C
∫

|v|�Qg̃h
(s)

‖(� − �h)(s)‖p

(∫ s

0
‖�x g̃h(�)‖p R

−p(X (�)) d�

)
dv

�CQg̃h (s)

(∫ s

0
‖�x g̃h(�)‖p d�

)
‖(� − �h)(s)‖p R

−p
(
1

2
|x |
)

�C‖(� − �h)(s)‖p R
−p(x)

Combining the estimates for I–III, the lemma follows and the proof is complete. �
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