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1. Dedication and introduction. We represent three generations of students: Bob

Glassey, Walter’s student finishing at Brown in 1972, Jack Schaeffer, Bob’s student fin-

ishing at Indiana University in 1983, and Steve Pankavich, Jack’s student finishing at

Carnegie Mellon in 2005. We have all thrived professionally from our association with

Walter and are delighted to dedicate this note to him on the occasion of his 70th birthday.

The problem we study below concerns the asymptotic behavior of solutions, an area to

which Walter has contributed greatly.

The motion of a collisionless plasma is described by the Vlasov–Maxwell system. If

we neglect magnetic effects we then have the Vlasov–Poisson system (VP). We can also

consider the effect of large velocities and solutions to the relativistic Vlasov–Poisson

system (RVP). We will study both systems in one space and one momentum dimension

with two species of oppositely charged particles. We further assume that each system is

neutral , which means that the average value of the density ρ vanishes (see below). The
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Vlasov–Poisson system (VP) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf + v ∂xf + E(t, x) ∂vf = 0,

∂tg +
v

m
∂xg − E(t, x) ∂vg = 0,

ρ(t, x) =

∫
(f(t, x, v)− g(t, x, v)) dv,

E(t, x) =
1

2

(∫ x

−∞
ρ(t, y) dy −

∫ ∞

x

ρ(t, y) dy

)
.

(1.1)

Here t ≥ 0 is time, x ∈ R is position, v ∈ R is momentum, f is the number density in

phase space of particles with mass one and positive unit charge, while g is the number

density of particles with mass m > 0 and negative unit charge. The effect of collisions is

neglected. The initial conditions

f(0, x, v) = f0(x, v) ≥ 0

and

g(0, x, v) = g0(x, v) ≥ 0

for (x, v) ∈ R
2 are prescribed. We assume that f0, g0 ∈ C1(R2) are nonnegative, com-

pactly supported and satisfy the neutrality condition∫∫
f0 dv dx =

∫∫
g0 dv dx. (1.2)

Using the notation

v̂m =
v√

m2 + v2
,

we can write the relativistic Vlasov–Poisson system (abbreviated RVP) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf + v̂1 ∂xf + E ∂vf = 0,

∂tg + v̂m ∂xg − E ∂vg = 0,

ρ(t, x) =

∫
(f − g) dv,

E(t, x) =
1

2

(∫ x

−∞
ρ dy −

∫ ∞

x

ρ dy

)
.

(1.3)

Global existence and regularity are known for solutions of (1.1) and (1.3). Both f(t, ·, ·)
and g(t, ·, ·) are compactly supported for all t ≥ 0. There is scant literature regarding

the large time behavior of solutions. Some time decay is known for the three-dimensional

analogue of (1.1) ([6], [7], [9]). Also, there are time decay results for (1.1) (in dimension

one) when the plasma is monocharged (set g ≡ 0) ([1], [2], [12]). In this work two

species of particles with opposite charge are considered; thus the methods used in these

references do not apply. References [3], [4], and [5] are also mentioned since they deal

with time-dependent rescalings and time decay for other kinetic equations. We will take

m = 1 below. A full description of these results will appear in [10].

First we sketch the derivation of an identity for solutions to (1.1) from which we can

conclude that certain positive quantities are integrable in t on the interval [0,∞). This

identity also extends to (1.3), but the results are weaker. Unfortunately, these identities
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are very “one-dimensional”; that is, they do not seem to easily generalize to higher

dimension. Moreover, it is not clear if there is an extension which allows for more than

two species of particles.

Here are the results we have obtained. The classical equations for (VP) are

ft + vfx + Efv = 0, gt + vgx − Egv = 0,

where Ex = ρ =
∫
(f − g) dv. Let

F (t, x) =

∫
f(t, x, v) dv, G(t, x) =

∫
g(t, x, v) dv.

Then ρ = F −G. We will show that∫ ∞

0

∫
E2(F +G) dx dt < ∞.

From this it will follow in the nonrelativistic case that∫ ∞

0

∫
(F 4 +G4) dx dt < ∞,

while the corresponding result for solutions to (RVP) is

∫ ∞

0

(∫ (
F (t, x)

7
4 +G(t, x)

7
4

)
dx

)4

dt < ∞.

The local charges for solutions to both systems will satisfy for any fixed R > 0

lim
t→∞

∫
|x|<R

F (t, x) dx = lim
t→∞

∫
|x|<R

G(t, x) dx = 0.

Finally, for solutions to (1.1) or (1.3) we can show that

lim
t→∞

‖E(t, ·)‖∞ = 0.

2. Results. We first derive a general identity which holds for both (VP) and (RVP).

From the above definitions and (VP) we have

Ft = −
∫
(vfx + Efv) dv = −∂x

∫
vf dv

and thus

∂t

∫ x

−∞
F (t, y) dy = −

∫
vf(t, x, v) dv,

with a similar result for g. Multiply the f equation in (VP) by v ·
∫ x

−∞ F (t, y) dy and

integrate over v:∫
vft

∫ x

−∞
F (t, y) dy dv +

∫
v2fx

∫ x

−∞
F (t, y) dy dv +

∫
vfvE

∫ x

−∞
F (t, y) dy dv = 0.
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Write this as I + II + III = 0. Then

I = ∂t

[∫
vf

∫ x

−∞
F (t, y) dy dv

]
−
∫

vf dv

∫ x

−∞
Ft(t, y) dy (2.1)

= ∂t

[∫
vf

∫ x

−∞
F (t, y) dy dv

]
+

(∫
vf dv

)2

, (2.2)

II = ∂x

[∫
v2f

∫ x

−∞
F (t, y) dy dv

]
−
∫

v2f · F (t, x) dv,

and after integrating by parts in v

III = −∂x

[
1

2
E(t, x)

(∫ x

−∞
F (t, y) dy

)2
]
+

1

2
ρ(t, x)

[∫ x

−∞
F (t, y) dy

]2
.

Now integrate over x:

d

dt

∫ [∫
vf

∫ x

−∞
F (t, y) dy dv

]
dx+

∫ (∫
vf dv

)2

dx−
∫

F (t, x)

∫
v2f dv dx

+
1

2

∫
ρ(t, x)

[∫ x

−∞
F (t, y) dy

]2
dx = 0.

Now, repeat this calculation with f replaced by g and add the two results to derive

d

dt

∫ [∫
vf

∫ x

−∞
F (t, y) dy dv +

∫
vg

∫ x

−∞
G(t, y) dy dv

]
dx

+

∫ (∫
vf dv

)2

dx

−
∫

F (t, x)

∫
v2f dv dx

+

∫ (∫
vg dv

)2

dx

−
∫

G(t, x)

∫
v2g dv dx

+
1

2

∫
ρ(t, x)

([∫ x

−∞
F (t, y) dy

]2
−
[∫ x

−∞
G(t, y) dy

]2)
dx = 0.

The first line is bounded when integrated in time. The second and third lines are non-

positive. Call L the last term above. Then because ρ =
∫
(f − g) dv = F − G and

E =
∫ x

−∞ ρ(t, y) dy =
∫ x

−∞(F −G) dy, we get after a brief calculation

L = −1

4

∫
E2(F +G) dx.

Thus in particular ∫ ∞

0

∫
E2(F +G) dx dt < ∞
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and ∫ ∞

0

∫ [
F (t, x)

∫
v2f dv −

(∫
vf dv

)2
]
dx dt < ∞

∫ ∞

0

∫ [
G(t, x)

∫
v2g dv −

(∫
vg dv

)2
]
dx dt < ∞.

We can use these inequalities directly to establish the L4 estimate. Write

F (t, x)

∫
v2f dv −

(∫
vf dv

)2

as
1

2

∫ ∫
(w − v)2f(v)f(w) dv dw.

Then, from above we know that the quantity

k(t, x) ≡
∫ ∫

(w − v)2f(t, x, v)f(t, x, w) dv dw

is integrable over all x, t. To get the L4 bound we split the integral for F (t, x)2 in the

usual manner:

F (t, x)2 =

∫ ∫
f(v)f(w) dv dw =

∫
|v−w|<R

+

∫
|v−w|>R

≡ I1 + I2.

Therefore, I2 ≤ R−2k(t, x), and in I1∫
|v−w|<R

f(w) dw =

∫ v+R

v−R

f(w) dw ≤ cR.

Thus

I1 ≤ c ·R · F.
Set R = k1/3F−1/3. Then F 4 ≤ ck so F 4 is integrable over all x, t. The result for G is

exactly the same.

Our final results will show that for solutions to the classical VP system (1.1) and RVP

system (1.3), the electric field E tends to 0 in the maximum norm. Here we consider the

former only.

Theorem 2.1. Under the above assumptions consider solutions f, g to (1.1). Then∫ ∞

0

‖E(t)‖3∞ dt < ∞.

Proof. This will follow immediately from the result that

Q(t) :=

∫ ∞

−∞
E2(t, x)

[
F (t, x) +G(t, x)

]
dx

is integrable in time. Indeed because Ex = ρ =
∫
(f − g) dv = F −G, we have

∂

∂x
E3 = 3E2ρ = 3E2(F −G).
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Integrate in x to get

E3(t, x) =

∫ x

−∞
3E2(F −G) dx

so that

|E(t, x)|3 ≤
∫ ∞

−∞
3E2(F +G) dx = 3Q(t), (2.3)

and the result follows as claimed. This can now be exploited to show that the electric

field tends uniformly to 0 as t → ∞.

Theorem 2.2. Let the previous assumptions hold and consider solutions f, g to the

classical (VP) system (1.1). Then

lim
t→∞

‖E(t)‖∞ = 0.

Proof. We will show that

lim
t→∞

Q(t) = 0.

The conclusion will then follow from (2.3). SinceQ(t) is integrable over [0,∞), lim inf Q(t)

= 0. If we can show that Q̇(t) is bounded, we may then conclude the statement of the

theorem. (An alternate proof is given in [10].)

Using Ex = ρ = F −G and Et = −j = −
∫
v(f − g) dv we compute

dQ

dt
= −2

∫
jE(F +G) dx+ 2

∫
ρE

∫
v(f + g) dv dx.

Now, E is uniformly bounded, because by definition in (1.1)

|E(t, x)| ≤
∫ x

−∞
(F +G)(t, x) dx ≤

∫ ∞

−∞
(F +G)(t, x) dx ≤ const.,

where the last inequality follows by conservation of mass. Therefore∣∣∣∣dQdt
∣∣∣∣ ≤ c

∫
(F +G)

∫
|v|(f + g) dv dx.

Define e to be the kinetic energy density,

e(t, x) :=

∫
v2(f + g) dv.

Then by splitting the v integral into sets |v| < R and its complement we get∫
|v|(f + g) dv ≤ ce

2
3 (t, x).

Similarly

F ≡
∫

f dv ≤ ce
1
3 (t, x)

and therefore ∣∣∣∣dQdt
∣∣∣∣ ≤ c

∫
(F +G)e

2
3 dx ≤ c

(∫
(F +G)3 dx

) 1
3 ≤ const.

This concludes the proof. Complete details may be found in [10].
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