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Abstract. When particle speeds are large the motion of a collisionless
plasma is modeled by the relativistic Vlasov Maxwell system. Large
time behavior of solutions which depend on one position variable and
two momentum variables is considered. In the case of a single species of
charge it is shown that there are solutions for which the charge density
(ρ =

R
fdv) does not decay in time. This is in marked contrast to results

for the non-relativistic Vlasov Poisson system in one space dimension.
The case when two oppositely charged species are present and the net
total charge is zero is also considered. In this case, it is shown that the

support in the first component of momentum can grow at most as t
3
4 .

1. Introduction

Consider the relativistic Vlasov-Maxwell system:

∂tf
α + v̂α1 ∂xf

α + eα (E1 + v̂α2B) ∂v1f
α + eα (E2 − v̂α1B) ∂v2f

α = 0,

ρ(t, x) =
∫ ∑

α

eαfα(t, x, v)dv, j(t, x) =
∫ ∑

α

eαfα(t, x, v)v̂αdv,

E1(t, x) =
1
2

∫ x

−∞
ρ(t, y)dy − 1

2

∫ ∞
x

ρ(t, y)dy,

∂tE2 + ∂xB = −j2, ∂tB + ∂xE2 = 0,

(1.1)
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for α = 1, . . . , N . Here, t ≥ 0 is time, x ∈ R is the first component of posi-
tion, and v = (v1, v2) ∈ R2 contains the first two components of momentum.
Hence, dv = dv2dv1 and the v integrals are understood to be over R2. fα

gives the number density in phase space of particles of mass mα and charge
eα. Velocity is given by

v̂α =
v√

(mα)2 + |v|2
,

where the speed of light has been normalized to one. The effects of collisions
are neglected.

The initial conditions{
fα(0, x, v) = fα0 (x, v) ≥ 0, α = 1, . . . , N,
E2(0, x) = E20(x), B(0, x) = B0(x),

are given where it is assumed throughout the paper that fα0 ∈ C1
0 (R3) is non-

negative and compactly supported and that E20, B0 ∈ C1
0 (R) are compactly

supported. When the neutrality condition,∫∫ ∑
α

eαfα0 dv dx = 0,

holds, we will refer to this as the neutral case. A major goal of this paper
is to compare the neutral case with the monocharge case, which may be
obtained from (1.1) by setting N = 1. In the monocharge case we will drop
α and write, for example, f = fα = f1 and take eα = e1 = 1, mα = m1 = 1.

Choose C0 such that fα0 , E20, B0 vanish (for all α) if |x| ≥ C0. The letter
C will denote a positive generic constant which may depend on the initial
data (but not t, x, v) and may change from line to line, whereas a numbered
constant (such as C0) has a fixed value. We also define the characteristics,
(Xα(s, t, x, v), V α(s, t, x, v)), of fα by

dXα

ds
= V̂ α1 , Xα(t, t, x, v) = x

dV α1
ds

= eα
(
E1(x,Xα) + V̂ α2 B(s,Xα)

)
, V α1 (t, t, x, v) = v1

dV α2
ds

= eα
(
E2(s,Xα)− V̂ α1 B(s,Xα)

)
, V α2 (t, t, x, v) = v2.

(1.2)

Theorem 1.1. In the neutral case there is a constant, C, such that

C ≥
∫ t

0

[
E2

1 + (E2 −B)2 +
∫ ∑

α

fα
(√

(mα)2 + |v|2 − v1

)
dv
]∣∣∣

(τ,x−t+τ)
dτ
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+
∫ t

0

[
E2

1 + (E2 +B)2 +
∫ ∑

α

fα
(√

(mα)2 + |v|2 + v1

)
dv
]∣∣∣

(τ,x+t−τ)
dτ,

(1.3)

for all t ≥ 0, x ∈ R. In the monocharge case there is a constant, C, such
that

C(C0 + t− x) ≥
∫ t

0

[
(E2−B)2 + f

(
√

1 + |v|2 − v1)2√
1 + |v|2

dv
]∣∣∣

(τ,x−t+τ)
dτ (1.4)

for x < C0 + t and,

C(C0 + t+ x) ≥
∫ t

0

[
(E2 +B)2 + f

(
√

1 + |v|2 + v1)2√
1 + |v|2

dv
]∣∣∣

(τ,x+t−τ)
dτ (1.5)

for −C0 − t < x.

The proof of this theorem relies on conservation of energy and of momen-
tum (in the monocharge case) and is contained in Section 2.

Theorem 1.2. In the neutral case there is a constant, C, such that

|v2| ≤ C + C
√
t− |x|+ C0,

on the support of fα for every α. In the monocharge case there is a positive
constant, C, such that

|v2| ≤ C + C
√

(t+ C0)2 − x2,

on the support of f .

The proof of Theorem 1.2 is in Section 3.

Theorem 1.3. There are solutions of the monocharge problem for which
there exist x0 ∈ R and C > 0 such that∫ ∞

x0+t
ρ(t, x)dx > C, (1.6)

for all t ≥ 0. Furthermore, there exists C > 0 such that

‖ρ(t, ·)‖Lp(R) > C,

for all t ≥ 0 and p ∈ [1,∞].

The second assertion of Theorem 1.3 follows from (1.6) by using Hölder’s
inequality:

C <

∫ C0+t

x0+t
ρ(t, x)dx ≤ ‖ρ(t, ·)‖Lp(R)(C0 − x0)1− 1

p .
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The proof of Theorem 1.3 is contained in Section 4. In [8] an analogous, but
more detailed, result is obtained for the relativistic Vlasov Poisson system
(which may be obtained from (1.1) by setting E2 = B = 0).

Theorem 1.4. For the neutral problem there is a constant, C, such that

|v1| ≤ C + Ct
1
2 (t− |x|+ 2C0)

1
4 , (1.7)

on the support of fα for every α.

The proof is in Section 5. A similar, but different, estimate is obtained in
[8] for the relativistic Vlasov Poisson system. Also, note that (1.7) rules out
an estimate like (1.6). If (1.6) held, then there would be characteristics for
which fα 6= 0 and

Xα(t, 0, x, v) ≥ x0 + t, (1.8)
for all t ≥ 0. Then by (1.7) and (1.8)

|V α
1 (t, 0, x, v)| ≤ C + Ct

1
2 ,

so

1− V̂ α
1 (t, 0, x, v) =

1 + (V α
2 )2√

1 + |V α|2(
√

1 + |V α|2 + V α
1 )

≥ 1
2(1 + |V α|2)

≥ C

1 + t
,

and

C ln(1 + t) ≤
∫ t

0

(
1− V̂ α

1 (s, 0, x, v)
)
ds = t−Xα(t, 0, x, v) + x ≤ x− x0

for all t ≥ 0.
Finally, Section 6 contains the proof of the following.

Theorem 1.5. In both the neutral and monocharge cases there are no non-
trivial steady solutions with fα, E2 and B compactly supported.

The global existence in time of smooth solutions to (1.1) is shown in
[9] when a neutralizing background density is included. Adaptation of the
essential estimate from [9] to the current situation is briefly discussed in
Section 2. Global existence has been shown in two dimensions, [11], and two
and one-half dimensions, [10], but is open for large data in three dimensions.
Some time decay is known for the classical Vlasov Poisson system in three
dimensions ([12], [14], [15]). Additionally there are time decay results for the
classical Vlasov Poisson system in one dimension ([1], [2], [7], [17]). For decay
results on the relativistic Vlasov Poisson system, see [7] and [13]. References
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[3], [4], and [5] are also mentioned since they deal with time dependent
rescalings and time decay for other kinetic equations. We also cite [6] and
[16] as general references on mathematical kinetic theory.

A main point to this article is that the non-decay stated in Theorem 1.3
is in marked contrast to the decay found in [1], [2], and [17]. In [1], [2] and
[17] the problem studied is non-relativistic. Hence, there is no a priori upper
bound on particle speed and this leads to dispersion. In this paper (and also
[8]), particle speeds are bounded by the speed of light and this limits the
dispersion.

2. Conservation Laws

Define

e =
∫ ∑

α

fα
√

(mα)2 + |v|2dv +
1
2
|E|2 +

1
2
B2,

m =
∫ ∑

α

fαv1dv + E2B,

` =
∫ ∑

α

fαv1v̂
α
1 dv −

1
2
E2

1 +
1
2
E2

2 +
1
2
B2.

A short computation reveals that

∂te+ ∂xm = 0, (2.1)
and

∂tm+ ∂x` = 0. (2.2)

Using (2.1), the divergence theorem yields

0 =
∫ t

0

∫ x+t−τ

x−t+τ
(∂τe+ ∂ym) dy dτ (2.3)

=
∫ t

0
(e+m)

∣∣∣
(τ,x+t−τ)

dτ +
∫ t

0
(e−m)

∣∣∣
(τ,x−t+τ)

dτ −
∫ x+t

x−t
e(0, y)dy.

Note that

e±m =
∫ ∑

α

fα
(√

(mα)2 + |v|2 ± v1

)
dv +

1
2
E2

1 +
1
2

(E2 ±B)2 ≥ 0,

and that

|j2| ≤
∫ ∑

α

fα
|v2|√

(mα)2 + |v|2
dv ≤ C

∫ ∑
α

fα
(√

(mα)2 + |v|2 ± v1

)
dv.
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In the neutral case (2.3) yields

C ≥
∫ x+t

x−t
e(0, y)dy =

∫ t

0
(e+m)

∣∣∣
(τ,x+t−τ)

dτ+
∫ t

0
(e−m)

∣∣∣
(τ,x−t+τ)

dτ. (2.4)

In the monocharge case, since E1 is not compactly supported, (2.3) only
yields

Ct ≥
∫ t

0
(e+m)

∣∣∣
(τ,x+t−τ)

dτ +
∫ t

0
(e−m)

∣∣∣
(τ,x−t+τ)

dτ.

It follows that

|E2|+ |B| ≤ C + C

∫ t

0
|j2(τ, x+ t− τ)| dτ + C

∫ t

0
|j2(τ, x− t+ τ)| dτ

≤ C + Ctp, (2.5)

where p = 0 in the neutral case and p = 1 in the monocharge case. Global
existence of smooth solutions follows in both cases as in [9].

Consider the monocharge case now. Bounds independent of t may be
obtained by also using (2.2). For x0 < C0 the divergence theorem yields

0 =
∫ t

0

∫ C0+τ

x0+τ
[∂τ (e−m) + ∂y(m− `)] dy dτ

=
∫ t

0
[e− 2m+ `]

∣∣∣
(τ,x0+τ)

dτ +
∫ C0+t

x0+t
(e−m)

∣∣∣
(t,y)

dy

−
∫ t

0
[e− 2m+ `]

∣∣∣
(τ,C0+τ)

dτ −
∫ C0

x0

(e−m)
∣∣∣
(0,y)

dy.

Note that

e− 2m+ ` =
∫ ∑

α

fα
(
√

(mα)2 + |v|2 − v1)2√
(mα)2 + |v|2

dv + (E2 −B)2

is nonnegative and vanishes on y = C0 + τ (since E1 canceled). Hence,

C(C0 − x0) ≥
∫ C0

x0

(e−m)
∣∣∣
(0,y)

dy (2.6)

=
∫ t

0
(e− 2m+ `)

∣∣∣
(τ,x0+τ)

dτ +
∫ C0+t

x0+t
(e−m)

∣∣∣
(t,y)

dy.

Similarly,

e+ 2m+ ` =
∫ ∑

α

fα
(
√

(mα)2 + |v|2 + v1)2√
(mα)2 + |v|2

dv + (E2 +B)2
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is nonnegative and vanishes on y = −C0 − τ and

0 =
∫ t

0

∫ x0−τ

−C0−τ
[∂τ (e+m) + ∂y(m+ `)] dy dτ ;

this leads to

C(x0 + C0) ≥
∫ x0

−C0

(e+m)
∣∣∣
(0,y)

dy (2.7)

=
∫ t

0
(e+ 2m+ `)

∣∣∣
(τ,x0−τ)

dτ +
∫ x0−t

−C0−t
(e+m)

∣∣∣
(t,y)

dy,

for x0 > −C0. Theorem 1.1 now follows from (2.4), (2.6), and (2.7).

3. Bounds on v2 Support

Define

A(t, x) =
∫ x

−∞
B(t, y)dy,

and note that
∂tA+ ∂xA = −(E2 −B),

∂tA− ∂xA = −(E2 +B),
so

A(t, x) = A(0, x− t)−
∫ t

0
(E2 −B)

∣∣∣
(τ,x−t+τ)

dτ

= A(0, x+ t)−
∫ t

0
(E2 +B)

∣∣∣
(τ,x+t−τ)

dτ.

(3.1)

For |x| ≥ C0 + t, |A(t, x)| = |A(0, x− t)| ≤ C, so consider |x| < C0 + t. Then
(3.1) becomes

A(t, x) = A(0, x− t)−
∫ t

max(0,
t−x−C0

2
)
(E2 −B)

∣∣∣
(τ,x−t+τ)

dτ

= A(0, x+ t)−
∫ t

max(0,
x+t−C0

2
)
(E2 +B)

∣∣∣
(τ,x+t−τ)

dτ.

In the neutral case, (1.3) and the Cauchy Schwartz inequality yield

|A(t, x)| ≤ C +

√
t−max(0,

t− x− C0

2
)
√
C ≤ C + C

√
t+ x+ C0,
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and

|A(t, x)| ≤ C +

√
t−max(0,

x+ t− C0

2
)
√
C ≤ C + C

√
t− x+ C0.

Hence,
|A(t, x)| ≤ C + C

√
t− |x|+ C0 (3.2)

follows. For the monocharge case, (1.4) is used in place of (1.3) to obtain

|A(t, x)| ≤ C +

√
t−max(0,

t− x− C0

2
)
√
C(C0 + t− x) (3.3)

≤ C + C
√

(t+ C0)2 − x2.

From (1.2) we have fα (s,Xα(s, t, x, v), V α(s, t, x, v)) = fα(t, x, v) and

V α
2 (s, t, x, v) + eαA(s,Xα(s, t, x, v)) = v2 + eαA(t, x),

for all s, t, x, v. If fα(t, x, v) 6= 0, then

|v2 + eαA(t, x)| = |V α
2 (0, t, x, v) + eαA(0, Xα(0, t, x, v))| ≤ C.

In the neutral case, (3.2) yields

|v2| ≤ C + C
√
t− |x|+ C0. (3.4)

In the monocharge case, (3.3) yields

|v2| ≤ C + C
√

(t+ C0)2 − x2 (3.5)

on the support of fα.
Theorem 1.2 follows from (3.4) and (3.5) but we make one further obser-

vation. On the support of fα |v2 + eαA(t, x)| ≤ C so v2 ∈ (−eαA(t, x) −
C,−eαA(t, x) + C). Thus, the v2 support has bounded measure.

4. Non-decay of ρ in the Monocharge Case

In this section only the monocharge case is considered. Let

M =
∫
ρ(t, x)dx,

and note that

E1 =
1
2

∫ x

−∞
ρ dy − 1

2

∫ ∞
x

ρ dy =
1
2
M −

∫ C0+t

x
ρ dy.

For some x0 ∈ (−C0, C0) define

µ(t) =
∫ C0+t

x0+t
ρ(t, y)dy and E(t) =

∫ C0+t

x0+t
(e−m)

∣∣∣
(t,y)

dy.
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Then
µ′(t) = j1(t, x0 + t)− ρ(t, x0 + t) ≤ 0,

and by (2.1) and (2.2)

E ′(t) = −
∫ C0+t

x0+t
∂y(m− `)dy + (e−m)

∣∣∣
(t,C0+t)

− (e−m)
∣∣∣
(t,x0+t)

= (e− 2m+ `)
∣∣∣
(t,C0+t)

− (e− 2m+ `)
∣∣∣
(t,x0+t)

= −(e− 2m+ `)
∣∣∣
(t,x0+t)

≤ 0.

Suppose that
1
2
M ≥ µ(0), (4.1)

and
1
2

(C0 − x0)(
1
2
M)2 > E(0). (4.2)

Then, for y ≥ x0 + t,

E1(t, y) ≥ E1(t, x0 + t) =
1
2
M − µ(t) ≥ 1

2
M − µ(0) ≥ 0,

so

E(0) ≥ E(t) ≥ 1
2

∫ C0+t

x0+t
E2

1dy ≥
1
2

(C0 − x0)(
1
2
M − µ(t))2,

and hence √
2E(0)
C0 − x0

≥ 1
2
M − µ(t),

and ∫ C0+t

x0+t
ρ dy = µ(t) ≥ 1

2
M −

√
2E(0)
C0 − x0

> 0.

Hence, Theorem 1.3 follows from (4.1) and (4.2).
To see that there are initial conditions for which (4.1) and (4.2) hold

consider the following: Let fL0 , f
R
0 ∈ C1

0 (R3) be nonnegative and compactly
supported with

fL0 (x, v) = 0 if x ≥ −1,

fR0 (x, v) = 0 if x /∈ (−1, 0),

and
1
2

∫∫
fL0 dv dx ≥

∫∫
fR0 dv dx > 0.
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Let
C0 = sup

{
|x| : fL0 (x, v) 6= 0 for some v

}
,

and
f(0, x, v) = fL0 (x, v) + fR0 (x− C0, v1 −W, v2),

for W > 1. Taking x0 = −1 we have

µ(0) =
∫∫

fR0 dv dx ≤
1
2
M,

which is (4.1). Taking
E2(0, y) = B(0, y) = 0

(and using x0 = −1), we have

E(0) =
∫ C0

x0

[ ∫
f(
√

1 + |v|2 − v1)dv +
1
2
E2

1

]∣∣∣
(0,y)

dy

=
∫ C0

x0

[ ∫
fR0 (y − C0, v1 −W, v2)

1 + v2
2√

1 + |v|2 + v1

dv +
1
2
E2

1

]
dy

≤ C

W
+

1
2

∫ C0−1

x0

(1
2
M − µ(0)

)2
dy +

1
2

∫ C0

C0−1
(
1
2
M)2dy

=
C

W
+
C0 − 1− x0

2

(M2

4
−Mµ(0) + µ2(0)

)
+

1
8
M2

=
C

W
+
C0

2

(M2

4
−Mµ(0) + µ2(0)

)
− x0

8
M2

=
C

W
+
C0 − x0

8
M2 − C0

2
µ(0)(M − µ(0)).

Now, taking W sufficiently large yields (4.2) completing the proof.

5. Bounds on v1 Support in the Neutral Case

In this section we consider only the neutral case. Define

k =
∫ ∑

α

fα
√

(mα)2 + |v|2dv,

and
σ± =

∫ ∑
α

fα
(√

(mα)2 + |v|2 ± v1

)
dv.

Then (2.1) yields ∫
kdx ≤

∫
edx =

∫
e(0, x)dx = C.
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Also (1.3) yields∫ t

0
[σ−(τ, x− t+ τ) + σ+(τ, x+ t− τ)] dτ ≤ C.

These bounds are used in the following.

Lemma 5.1. For all t ≥ 0 and x ∈ R∫ ∑
α

fαdv ≤ C
√
kσ−, (5.1)

and ∫ ∑
α

fαdv ≤ C
√
kσ+. (5.2)

Proof. We will show (5.1); the proof of (5.2) is similar. For any R ≥ 0∫ ∑
α

fαdv ≤
∫
|v|≤R

∑
α

fα dv +
Ck√

1 +R2
.

For |v| ≤ R,√
(mα)2 + |v|2 − v1 =

(mα)2 + v2
2√

(mα)2 + |v|2 + v1

≥ (mα)2

2
√

(mα)2 + |v|2
≥ C√

1 +R2

so∫ ∑
α

fαdv ≤
∫
|v|≤R

∑
α

fαC
√

1 +R2
(√

(mα)2 + |v|2 − v1

)
dv +

Ck√
1 +R2

≤ C
√

1 +R2σ− +
Ck√

1 +R2
.

If 0 < σ− ≤ k, taking R =
√

k
σ−
− 1 leads to (5.1).

If k < σ−, then ∫ ∑
α

fαdv < Ck < C
√
kσ−,

and if σ− = 0, then ∫ ∑
α

fαdv =
√
kσ− = 0.

In all cases (5.1) holds so the proof is complete. �
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Consider a characteristic

(X(s), V (s)) = (Xα(s, 0, x, v), V α(s, 0, x, v)),

of fα (defined in (1.2)) along which fα(s,X(s), V (s)) 6= 0. The idea of the
following estimate is that as long as V1 is large, the integration

V1(t) = V1(t−∆) +
∫ t

t−∆
eα
(
E1 + V̂2(s)B

)∣∣∣
(s,X(s))

ds

is nearly integration on a light cone and (1.3) can be used to obtain an
improved estimate. Define

C1 = sup
{
|v1| : ∃t ∈ [0, 1], x ∈ R, v2 ∈ R with

∑
α

fα(t, x, v) 6= 0
}
,

and suppose that t > 0 and V1(t) > 2C1. Define

∆ = sup
{
τ ∈ (0, t] : V1(s) ≥ 1

2
V1(t) for all s ∈ [t− τ, t]

}
.

Note that

V1(t−∆) ≥ 1
2
V1(t) > C1,

so t−∆ > 1 and

V1(t−∆) =
1
2
V1(t) (5.3)

follows. Define XC(s) = X(t) + s− t. Using Theorem 1.2, we have∣∣∣ d
ds

(XC(s)−X(s))
∣∣∣ = 1− V̂1(s)

=
(mα)2 + V 2

2 (s)√
(mα)2 + |V (s)|2

(√
(mα)2 + |V (s)|2 + V1(s)

)
≤ C + C (s− |X(s)|+ C0)

V 2
1 (s)

.

Since s− |X(s)| is increasing, for t−∆ ≤ s ≤ t we have∣∣∣ d
ds

(XC(s)−X(s))
∣∣∣ ≤ C + C (t− |X(t)|+ C0)(

1
2V1(t)

)2 ,

and hence

|XC(s)−X(s)| ≤ C∆(t− |X(t)|+ 2C0)
V 2

1 (t)
. (5.4)
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By (1.3), the Cauchy Schwartz inequality, and (5.1), we have∣∣∣ ∫ t

t−∆
E1(s,X(s))ds

∣∣∣
=
∣∣∣ ∫ t

t−∆
E1(s,XC(s))ds+

∫ t

t−∆

∫ X(s)

XC(s)

∫ ∑
α

eαfαdv dx ds
∣∣∣

≤ C
√

∆ +
∫ t

t−∆

∫ X(s)

XC(s)
C
√
kσ−dx ds.

Now ∫ t

t−∆

∫ X(s)

XC(s)
kdx ds ≤ C∆,

and letting

S(t) =
C∆(t− |X(t)|+ 2C0)

V 2
1 (t)

,

(5.4) and (1.3) yield∫ t

t−∆

∫ X(s)

XC(s)
σ−dx ds ≤

∫ t

t−∆

∫ XC(s)+S(t)

XC(s)
σ−dx ds

=
∫ t

t−∆

∫ X(t)−t+S(t)

X(t)−t
σ−(s, y + s)dy ds

=
∫ X(t)−t+S(t)

X(t)−t

∫ t

t−∆
σ−(s, y + s)ds dy ≤ CS(t).

Hence, the Cauchy Schwartz inequality yields∫ t

t−∆

∫ X(s)

XC(s)
C
√
kσ− dx ds ≤ C

√
∆S(t),

and hence ∣∣∣ ∫ t

t−∆
E1(s,X(s))ds

∣∣∣ ≤ C√∆ + C
√

∆S(t). (5.5)

Next consider ∫ t

t−∆
V̂2(s)B(s,X(s))ds.

Using Theorem 1.2 we have, for t−∆ ≤ s ≤ t,

|V̂2(s)| ≤ C |V2(s)|
V1(s)

≤
C + C

√
s− |X(s)|+ C0

V1(s)
≤
C
√
t− |X(t)|+ 2C0

1
2V1(t)

.
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Hence, by (2.5)∫ t

t−∆

∣∣∣V̂2(s)B(s,X(s))
∣∣∣ ds ≤ C∆

√
t− |X(t)|+ 2C0

V1(t)
. (5.6)

Collecting (5.5) and (5.6) yields

V1(t) = V1(t−∆) +
∫ t

t−∆
eα
(
E1 + V̂2(s)B

)∣∣∣∣
(s,X(s))

ds

≤ V1(t−∆) + C
√

∆ + C
∆
√
t− |X(t)|+ 2C0

V1(t)
,

and with (5.3) this becomes

V1(t) ≤ C
√

∆ + C
∆
√
t− |X(t)|+ 2C0

V1(t)
.

Hence,

V 2
1 (t)− C

√
∆V1(t) ≤ C∆

√
t− |X(t)|+ 2C0,(

V1(t)− C
√

∆
2

)2
≤ ∆

(
C
√
t− |X(t)|+ 2C0 +

C2

4

)
,

and

V1(t) ≤ C
√

∆
2

+

√
∆
(
C
√
t− |X(t)|+ 2C0 +

C2

4

)
≤ C
√

∆
(

1 + (t− |X(t)|+ 2C0)
1
4

)
≤ Ct

1
2 (t− |X(t)|+ 2C0)

1
4 .

Similar estimates may be derived if V1(t) < −2C1, thus

|V1(t)| ≤ 2C1 + Ct
1
2 (t− |X(t)|+ 2C0)

1
4

in all cases. Theorem 1.4 follows.

6. Nonexistence of Steady States

Consider the monocharge case first. The dilation identity is
d

dt

(∫∫
fxv1dv dx+

∫
xE2Bdx

)
=
∫∫

f (v1v̂1 + x (E1 + v̂2B)) dv dx

+
∫
x [(−∂xB − j2)B + E2 (−∂xE2)] dx

=
∫∫

fv1v̂1dv dx+
∫
x (ρE1 + j2B) dx−

∫
x
[
∂x

(B2 + E2
2

2

)
+ j2B

]
dx
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=
∫∫

fv1v̂1dv dx+
∫
xρE1dx+

1
2

∫ (
B2 + E2

2

)
dx.

Let

M =
∫∫

fdv dx,

then for R > C0 + t, we have
−M

2
= E1(t,−R) ≤ E1(t, x) ≤ E1(t, R) =

M

2
,

for all x. Hence∫
xρE1dx =

1
2

∫ R

−R
x∂xE

2
1dx =

1
2

(
R
(M

2

)2
− (−R)

(M
2

)2
−
∫ R

−R
E2

1dx
)

=
1
2

∫ R

−R

((M
2

)2
− E2

1

)
dx ≥ 0.

Hence, for f not identically zero,
d

dt

(∫∫
fxv1dv dx+

∫
xE2Bdx

)
≥
∫∫

fv1v̂1dv dx > 0,

and f cannot be a steady solution.
Next, consider a steady solution in the neutral case. Note that from (1.1)

we have ∂xE2 = 0 so E2 = 0 for all x follows. Next note that
d

dx

(∫ ∑
α

fαv1v̂
α
1 dv −

1
2
E2

1 +
1
2
B2
)

=
∫
v1

∑
α

v̂α1 ∂xf
αdv − ρE1 − j2B

= −
∫
v1

∑
α

eα [(E1 + v̂α2B) ∂v1f
α + (E2 − v̂α1B) ∂v2f

α] dv − ρE1 − j2B

=
∫ ∑

α

eαfα (E1 + v̂α2B) dv − ρE1 − j2B = 0,

and hence

2
∫ ∑

α

fαv1v̂
α
1 dv = E2

1 −B2, (6.1)

for all x. If E1(x) = 0 for some x then, since fα ≥ 0,∫ ∑
α

fαv1v̂
α
1 dv = 0 (6.2)
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follows and thus B(x) = 0 and fα(x, v) = 0 for all v. Suppose E1(x0) 6= 0
for some x0. A contradiction will be derived from this and the proof will be
complete.

Choose a < x0 and b > x0 such that E1(x) 6= 0 on (a, b) and E1(a) =
E1(b) = 0. Consider E1(x) > 0 on (a, b). Choose d ∈ (a, b) with

0 < E′1(d) =
∫ ∑

α

eαfα(d, v)dv.

Choose α ∈ {1, . . . , N} and w ∈ R2 such that fα(d,w) > 0 and eα > 0. By
continuity we may take w1 6= 0. Let

(X(s), V (s)) = (Xα(s, 0, d, w), V α(s, 0, d, w)) .

If w1 > 0 define

T = sup {t > 0 : V1(s) ≥ 0 and X(s) ≤ b for all s ∈ [0, t]} .

On [0, T ), X(s) ∈ [a, b] so E1(X(s)) ≥ 0. From (6.1) it follows that

|B(X(s))| ≤ E1(X(s)),

and hence that

V̇1(s) = eα(E1(X(s)) + V̂2(s)B(X(s))) ≥ 0,

and V1(s) ≥ w1 > 0. It follows that T is finite and that X(T ) = b. Hence,

fα(b, V (T )) = fα(d,w) > 0,

which contradicts (6.2). If w1 < 0 define

T = inf {t < 0 : V1(s) ≤ 0 and X(s) ≤ b for all s ∈ [t, 0]} .

It may be shown that T is finite and that X(T ) = b, which again contradicts
(6.2).

A contradiction may be reached in a similar manner if E1 < 0 on (a, b) so
the proof is complete.
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