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Abstract

Mathematical modeling of biological systems is crucial to effectively and efficiently developing treatments
for medical conditions that plague humanity. Systems of differential equations are the traditional tools used
to theoretically describe the spread of disease within the body. In this project we consider the dynamics of
the Human Immunodeficiency Virus (HIV) in vivo during the initial stages of infection. Both mathematical
and biological results support the idea that contact with the HIV retrovirus does not automatically imply
permanent infection. Given factors such as the CD4+ T-cell growth rate, infection rate, and viral clearance
rate, it is possible to correctly predict the end viral state in a deterministic model. While this is useful,
such a model lacks the randomness inherent in physical processes and parameter estimation. To account for
this, our project examines both discrete and continuous stochastic models for the early stages of HIV infec-
tion. These models are crafted using the knowledge of biological interactions and fundamental mathematical
principles. We also examine the well-known three-component deterministic model in greater detail, proving
existence and uniqueness of the solutions. Furthermore, we prove that solutions remain biologically meaning-
ful, i.e., are positivity preserving, and perform a thorough stability analysis for the equilibrium states of the
system. Finally, we develop two new stochastic models and obtain extensive numerical results to measure the
probability of infection given the transmission of the virus to a new individual. To simulate the dynamics of
the virus, we employ a number of computational methods for ordinary and stochastic differential equations,
including Runge-Kutta methods and the Euler-Maruyama scheme.

Keywords: mathematical biology, stochastic differential equations, HIV, differential equations.
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CHAPTER 1

Introduction

The human body has been studied for hundreds of years, and the knowledge accumulated to date
includes the intricate molecular level mechanisms that determine how a virus infects cells and reproduces.
This information is necessary to develop treatments for maladies ranging from Hepatitis to the Human
Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS). An understanding of the
accumulation of millions of these interactions across a timescale of medical relevance permits the creation
of better treatment methods. As recently as fifty years ago, this could only be done via experiment and
repeated trials. Today, through the advent of high speed computing, viral kinetics can be simulated using
mathematical models. We can utilize our current understanding of molecular and cellular dynamics, describe
them in mathematical terms, and simulate interactions within the body many thousands of times to examine
the course of a virus from initial infection to a long-term steady state. In this particular project, we will
derive a mathematical model of HIV infection within a single human host, examine it, simulate it, and
improve upon it.

The general principle behind any sort of mathematical model is to examine closely the interactions
between the quantities being analyzed. We begin with a small number of initial axioms, and then follow the
implications of these axioms thoroughly to their conclusion. As a basis for our model, we use the general
biological understanding of HIV dynamics that is widely-accepted and well studied. The following will be a
brief non-technical discussion of the populations and interactions that impact the modeling of HIV within
the body.

There are many biological operators involved in the interaction between HIV and cells within the human
body. We deal with a small portion of these populations. The first group is a subset of the population of
lymphocytes, which in turn are a type of white blood cell. This subset is known as CD4+ T-cells, or helper
T-cells. These T-cells have a variety of functions, including secreting substances that stimulate the immune
system, acting as memory agents for the immune system, and regulating the immune response. In short,
CD4+ T-cells detect and direct immune system responses to invading bacteria and viruses. Without them,
the body suffers from opportunistic infections that are greater in severity and duration than they would be
if the CD4+ T-cells were otherwise not present. HIV, which refers in this case to the virus, not the disease
or symptoms associated with it, is a retrovirus that infects helper T-cells. The virus, which is significantly
smaller than the T-cell (120 nanometers in diameter compared with 7 micrometers in diameter), breaches
the cell wall and transports its RNA into the T-cell nucleus, where it may remain dormant for a time. Upon
activation, the T-cell ceases its function as part of the immune system and instead produces additional copies
of HIV. These infected T-cells, along with the healthy T-cells and free floating HIV, are the populations
with which we are concerned, and will appear within our mathematical model.

The second aspect of the model’s creation involves incorporating the interactions between these popu-
lations and deriving their corresponding mathematical representation. For each population, we need only
concern ourselves with the ways in which the population is increased and how members of this group are
removed. Healthy T-cells are created from stem cells in the bone marrow, and mature in the thymus. While
production of T-cells does decrease with the aging of the human body, it is considered constant in this
project for two reasons. First, there is no method other than this production that can possibly affect T-cell
creation, and second, the time scale of interest within the model is sufficiently small to consider the T-cell
production rate as constant. When considering removal of these cells, we note that T-cells do age and, in
time, die. Within the model, we assume that each T-cell lives for roughly the same amount of time, and
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thus, the death rate does not vary over the entire population. Instead, the overall number of T-cells lost in
a group over a certain period of time is proportional to the number of T-cells within the group. The other
mechanism through which the population of healthy T-cells may decrease is through infection. In consid-
ering the effects of infection, we utilize an interaction term that arises from the widely-used “mass action
principle” to describe the transfer which occurs between populations when the virus infects healthy T-cells.
This mass action term represents the idea that the rate of interaction, or infection, is directly proportional to
the product of the participating populations, namely those of virions (or virus particles) and healthy T-cells.
This completes the interactions for the healthy T-cells. We note that the only way to add to the population
of infected T-cells is for the HIV virus particle to physically infect healthy T-cells. Beyond this, there is
no other way of creating an infected T-cell. Thus, in our mathematical model we can use the same mass
action term to describe the removal of the healthy T-cells and the addition of infected T-cells. Similar to
the healthy T-cells, infected T-cells die off or are cleared by the immune system at a rate proportional to
the size of their current population. The virus, while produced from the infected T-cell, does not cause the
destruction of the infected T-cell. Thus, we do not need to include such a transition within the model.

While the virus production rate does differ from cell to cell, we can assume that the aggregate rate
is constantly proportional to the population of infected T-cells. This is the only mechanism by which the
virus can be created. Contrastingly, there are two manners in which the virus can be removed, or cleared,
from the body. The first is through viral infection of T-cells. The act of infecting a healthy T-cell must
technically remove a virus particle from the population of viruses that can infect further T-cells. However,
when considering the overall population quantities, the number and rate of viruses lost this way is minute
compared to other methods of creation and destruction. Hence, we will omit this possibility from the model.
The second method of removal is known as viral clearance. It is the removal by the body of individual
virus particles, and is performed at a rate proportional to the current amount of virus particles within the
body. With these interactions, we can construct differential equations that model the rates of change of
these populations by utilizing the assumptions discussed above.

For all of the interactions we have described, the rates of change were proportional to a population.
In the equations that follow, we endow each of these interactions with a proportionality constant, in the
necessary units to guarantee that each term within the equation is measured in organisms (cells or virions)
per unit time. For instance, the creation rate of the healthy T-cells will be represented by the constant
λ > 0, whose unit of measurement is T-cells per unit time. Analogously, the rate coefficient for the creation
of infected T-cells is measured in unites that are the inverse of virus particles multiplied by a unit of time.
Thus, when we sum up the interactions for each population, we arrive at a growth rate. Mathematically,
the rate of change of a quantity is given by its derivative, and hence a differential equation results. In our
case, the system is known as the Three Component Model (3CM) [16].

Before stating the equations, we attach variable names to each of the populations under consideration.
In the notation used, the population of healthy T-cells is denoted by T , the infected T-cells by I, the virus
population by V , and the derivative of any population X with respect to time is indicated by dX

dt , as is
standard. There are six different proportionality constants, given in the table below.

Coefficient Relevant Biological Process Mean Value Units

λ Healthy T-cell growth 0.1089 cells
day

µ Healthy T-cell death 0.01089 1
day

k Infection 1.179 ×10−3 1
virions×day

δ Infected T-cell death .3660 1
day

p Virus production 1426.8 virons
cells×day

c Viral clearance 3.074 1
day

We note several important characteristics of these coefficients. Since the coefficients are taken from
biological considerations, we assume that they are all nonnegative, and we fix their units such that the
end result of each equation is ultimately represented in units of cell

time or virons
time . The units for each T-cell

population is simply “cells”, while the units for the virus population is “virons”.
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Figure 1.1. Illustration of 3CM

When we combine the multiple interactions that govern the change in population of the healthy T-cells,
including their natural growth rate, natural death rate, and infection rate, we arrive at the differential
equation

(1)
dT

dt
= λ− µT − kTV.

This equation mathematically describes the biological interactions presented above. A similar equation is
derived for the infected T-cells, namely

(2)
dI

dt
= kTV − δI.

Here, it is important to note that the “kTV ” terms in the first and second equations represent the same
interaction and yield the same number of cells transferred from the healthy T-cell population to the infected
T-cell population. This occurs because the transfer of cells between these populations occurs at a one to one
ratio.

Next, we consider the rate of change of the virus population and derive the corresponding differential
equation to represent its dynamics:

(3)
dV

dt
= pI − cV.

The diagram (1) gives a visual representation of the differential equations. We see each of the populations
within a circle, while the arrows running to and from each circle describe how they interact and change.

Of course, the unknown populations within these equations depend upon one another, and hence they
are not examined independently. Just as the interaction of populations within the body serves to connect the
behavior of virions and T-cells, the functions within the differential equations above are also coupled. They
describe, for instance, the notion that an increase within the virus population will cause a similar increase
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within the infected T-cell population. Because of these interactions, we study the equations together and
look at properties of the system of three equations, rather than an isolated equation. Thus, the equations
together are known as the “Three Component Model.”

(3CM)



dT

dt
= λ− µT − kTV

dI

dt
= kTV − δI

dV

dt
= pI − cV.
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CHAPTER 2

The Deterministic Three Component Model

2.1. Existence and Uniqueness of Solutions

The most fundamental step in examining the Three Component Model is to show that a solution to the
initial-value problem does, in fact, exist, and that this solution is unique. To prove this, we utilize the classic
theorem of Picard and Lindelöf, which is stated in [3].

Theorem 2.1.1 (Picard-Lindelöf). Let n ∈ N and y0 ∈ Rn be given. Assume the function f : Rn×R→
Rn is locally Lipschitz in its first argument and continuous in its second argument. Then there exist t∗ > 0
and a unique function y : [0, t∗]→ Rn satisfying

y′(t) = f(y(t), t)

for every t ∈ [0, t∗] and the initial condition y(0) = y0.

In the case of the three component model, we have:

(4) y =

TI
V

 and the autonomous system f(y) =

λ− µT − kTVkTV − δI
pI − cV


We note that since f has a continuous, bounded derivative on any compact subset of R3 that f is locally

Lipschitz in y. Hence, by the Picard- Lindelöf Theorem, there exists a unique solution, y(t), to the ordinary
differential equation y′(t) = f(y(t), t) on some time interval [0, t∗].

2.2. Gronwall’s Inequality and Applications to the Three Component Model

Gronwall’s inequality is a tool of mathematical analysis that allows us to bound solutions of differential
equations. In many cases, we cannot explicitly obtain formulas for solutions, so it must suffice to derive
bounds on their growth. Gronwall’s Inequality permits us to do just this.

2.2.1. Gronwall’s Inequality.

Theorem 2.2.1. Let [a, b] be an interval and f and g be continuous functions on [a, b] with f differentiable
on [a, b]. If f satisfies the differential inequality:

(5)
df

dt
= f ′(t) ≤ f(t)g(t)

for every t ∈ [a, b] then

(6) f(t) ≤ f(a)e
∫ t
a
g(s)ds

for every t ∈ [a, b].

The proof to this theorem is well known, and can be found in [6].
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2.2.2. Application to the Three Component Model.

Theorem 2.2.2 (Boundedness and Positivity for the Deterministic Three Component Model). Let t0 > 0
be given. In the three component model, if the initial conditions satisfy T (0) > 0, I(0) > 0, and V (0) > 0,
then for all t ∈ [0, t0], T (t), I(t), and V (t) will be bounded and remain positive.

Proof. We assume that T (t), I(t), and V (t) initially have positive values. From the previous theorem,
there exists a t∗ such that the solution exists on [0, t∗].Let us denote by T ∗ the largest time t for which
T (t) > 0, I(t) > 0, and V (t) > 0, or more precisely

T ∗ = sup{t ∈ [0, t∗] : T (s), I(s), V (s) > 0 for all s ∈ [0, t]}.

Then on the interval [0, T ∗] we can make estimations stemming from Gronwall’s inequality.
Recall that all constants in the equations are positive. Using Gronwall’s inequality, we can place lower

bounds on dI
dt and dV

dt .

dI

dt
= kTV − δI ≥ −δI

and
dV

dt
= pI − cV ≥ −cV

Using an integrating factor, we rewrite these differential inequalities to find

I(t) ≥ e−δt > 0

for t ∈ [0, T∗] and

V (t) ≥ e−ct > 0

for t ∈ [0, T ∗]. Similarly, we can place an upper bound on dT
dt :

dT

dt
= λ− µT − kTV ≤ λ.

Solving for T yields:

T (t) ≤ T (0) + λt ≤ c1(1 + t).

Define the constant c1 such that c1 ≥ max(λ, T (0)). We can sum the equations for dI
dt and dV

dt and place
bounds on this sum so that

d

dt
(I + V ) = kTV − δI + cV − pI ≤ kTV + pI.

Recall that we have a bound on T , so we can substitute:

d

dt
(I + V ) ≤ kc1(1 + t)V + pI ≤ c2(1 + t)(I + V )

where c2 ≥ max(kc1, p). Solving the differential equation yields

(I + V )(t) ≤ (I(0) + V (0) + c2)et
2

≤ c3et
2

for t ∈ [0, T ∗] where c3 ≥ 3 max((I(0), V (0), c2). Since I(t) is positive, we can place an upper bound on V :

c3e
t2 ≥ (I + V )(t) ≥ V (t)

We also know that since V (t) is positive, so is I(t).

c3e
t2 ≥ (I + V )(t) ≥ I(t)

With these bounds in place, we can now examine T (t):

dT

dt
= λ− µT − kTV ≥ −µT − kTV ≥ −µT − kc3et

2

T

≥ −c4(1 + et
2

)T



2.3 Gronwall’s Inequality and Applications to the Three Component Model 11

for t ∈ [0, T ∗], where c4 ≥ max(µ, kc3). Shifting that last term to the other side of the equation yields

dT

dt
+ c4(1 + et

2

)T ≥ 0

Since we know
d

dt
(T (t) + ec4

∫ t
0

(1+eτ
2
dτ)) ≥ 0,

then we find

(7) T (t) ≥ T (0)e−c4
∫ t
0

(1+eτ
2
dτ) > 0

for t ∈ [0, T ∗].
Thus, the values of T , I, and V stay strictly positive for all of [0, T ∗], including the time T ∗. By

continuity, there must exist a t > T ∗ such that T (t), I(t), and V (t) are still positive. This leads to a
contradiction, and shows that T , I, and V are strictly positive on the entire interval [0, T ∗]. Additionally, on
this same interval, all of the functions remain bounded, so the interval of existence can be extended further.
In fact, the bounds on T , I, and V derived above hold on any compact time interval. Thus, we may extend
the time interval on which the solution exists to [0, t0] for any t0 > 0 and from the above argument, the
solutions remain both bounded and positive on [0, t0]. �

With this knowledge, we remain secure in the soundness of our model and know with certainty from a
mathematical perspective that it retains biological validity. This also shows that once infected, it is entirely
possible that the virus may continue to exist beneath a detectable threshold without doing any damage.

2.3. Stability and Equilibrium of the Deterministic Three Component Model

2.3.1. Equilibria of the System. In order to fully understand the three component model, it is
necessary to first study the equilibrium points.

Definition 2.3.1. Consider the differential equation y′(t) = f(y(t), t). A point is an equilibrium point
if y′(t) = f(y(t), t) = 0 for all t ∈ R.

In our case, an equilibrium point is a set of three values corresponding to (T, I, V ) with the property
that if the system begins at these values, it will remain there indefinitely. In other words, the populations
are unchanging from those values, so the rate of change for each population is zero. Knowing that d

dt is zero
is what allows us to solve for the precise values. In the case of the Three Component Model, there exist
exactly two equilibrium points. We discover them by setting dT

dt ,dIdt , and dV
dt equal to zero and solving the

resulting equations for T , I, and V . From a biological perspective, we can categorize these points to be when
the HIV virus is either extinct from the body, i.e., I = V = 0, or when the virus persists within the body
(I 6= 0, V 6= 0) as t grows large.

2.3.2. Determining Equilibrium Values. The first such equilibrium exists when I = 0 and V = 0.
This results in a simplification of the above system of equations to:

(8) 0 = λ− µT,
which in turn shows that the ordered triplet (T, I, V ) = (λµ , 0, 0) is an equilibrium solution. This particular

equilibrium point is also known as viral extinction, since there are no virus particles or infected cells. We
will refer to this point as P1.

To find the second equilibrium, we assume I 6= 0 and V 6= 0. After setting dT
dt = dI

dt = dV
dt = 0, solving for

I in the second equation reveals that I = kTV
δ while solving for I in the third equation gives I = cV

p , It follows

that since V 6= 0, T = cδ
pk . Substituting this value of T into the first equation yields V = pλ

cδ −
µ
k and further

substitution shows I = λ
δ −

µc
kp . Thus, there is a second equilibrium at (T, I, V ) = ( cδpk ,

λ
δ −

µc
kp ,

pλ
cδ −

µ
k ). Since

there are distinct presences of virus particles and infected T-cells, we refer to this point as viral persistence
and abbreviate the point as P2. In terms of biology, we can say P1 is the case in which an infection exists for
a short period of time, then is removed from the body by natural means. The virus does not persist. The
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second case, where the system of equations tends to P2, denotes that situation where the body is unable to
clear the infection by itself. If this ends up being the case, than after a certain period of time, the Three
Component Model loses its applicability as the infection takes a deeper hold on the body. More complex
models, which consider latent infection, effects of macrophages, or cytotoxic immune response, are then
required to describe the spread of HIV within the body and its development towards AIDS.

If the system takes on the values of P1 or P2 at any time, it will remain at those points indefinitely.
Unless the initial conditions for the system are set at an equilibrium, in general, the system may not actually
obtain these values. Instead, the system will likely approach them asymptotically, tend to infinity, or cycle
between certain values. In the case of the Three Component Model, we will see that the system approaches
each equilibrium asymptotically. This is a concept known as asymptotic stability:

Definition 2.3.2. An equilibrium solution y∗ to an ordinary differential equation

y′(t) = f(y(t), t)

is said to be (locally) asymptotically stable if

lim
t→∞

|y(t)− y∗| = 0

whenever the initial values y0 are sufficiently close to y∗.

For linear ODEs, it is well-known that the stability properties depend only upon the eigenvalues of the
system. However, our model (3CM) is nonlinear, and thus we must rely on linearization and a theorem of
Hartman & Grobman [7] to unify the behavior of the linear and nonlinear systems.

2.3.3. Linearization and the Jacobian of the System. Linearization is a key concept when exam-
ining the equilibrium stability of a system of differential equations. In this case, we approximate the system
of differential equations with a linear system at the points P1 and P2. This stability analysis perturbs the
system from equilibrium and examines if the system returns to the original equilibrium. In order to linearize
the system we need to first compute the Jacobian matrix for the system. If a system, S, consists of n
functions of m variables, i.e., F1(x1, ..., xm), ..., Fn(x1, ...xm) then the Jacobian matrix, JS , is a matrix of the
partial derivative of each function with respect to each variable:

JS =


∂F1

∂x1
. . . ∂F1

∂xm
...

. . .
...

∂Fn
∂x1

. . . ∂Fn
∂xm


The matrix JS provides a linear approximation of a system at any given point, and when evaluated at

an equilibrium point P , JS(P ) also encodes information above the nonlinear system.
It is necessary to evaluate a Jacobian matrix at both P1 and P2 and examine its corresponding eigen-

values, since analysis of the eigenvalues of the Jacobian matrix evaluated at a equilibrium gives insight into
the stability properties of that equilibrium. Specifically, if the eigenvalues of the Jacobian matrix at a point
have negative real parts, then that point is classified as an attractor, meaning small perturbations from the
equilibrium result in the system returning to that point over time. On the other hand, if one or more of
the eigenvalues have positive real part, then small perturbations from equilibrium result in magnifications
of those disturbances, and the system shifting away from the point. This point would then be known as a
“repeller.” For a more detailed look at eigenvalues and their effects on systems of differential equations, see
[10].

In the case of (3CM), the Jacobian matrix is given by

J3CM =

−kV − µ 0 −kT
kV −δ kT
0 p −c


It is possible to determine the signs of the eigenvalues of the Jacobian using a theorem of Routh and Hurwitz
[8,14].
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2.3.4. Routh-Hurwitz Theorem.

Theorem 2.3.3 (Routh-Hurwitz Criteria for a Characteristic Polynomial). Given the polynomial P (x) =
xn + a1x

n−1 + · · · + an−1x + an where each ai is a constant real coefficient, define the n Hurwitz matrices
using the coefficients ai:

H1 =
[
a1

]
, H2 =

[
a1 1
a3 a2

]
, H3 =

a1 1 0
a3 a2 a1

a5 a4 a3

 , ...,

Hn =



a1 1 0 0 . . . 0
a3 a2 a1 1 . . . 0
a5 a4 a3 a2 . . . 0
a7 a6 a5 a4 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . an


All of the roots of P (x) have negative real part if and only if the determinants of all of the Hurwitz matrices
are positive.

If we consider the case n = 3, this theorem simplifies significantly: Given the polynomial x3 + a1x
2 +

a2x+ a3, the three Hurwitz matrices are as follows:

H1 =
[
a1

]
, H2 =

[
a1 1
a3 a2

]
, H3 =

a1 1 0
a3 a2 a1

0 0 a3


If the determinants of H1, H2, and H3 are all positive, then the roots of the characteristic equation, i.e.,

the eigenvalues, are all negative or have negative real parts. We can, in fact, make further simplifications.

Corollary 2.3.4. Based on the Routh-Hurwitz criteria, if a1 > 0, a1a2 > a3, and a3 > 0 then all of
the eigenvalues have negative real part, implying that this particular equilibrium is asymptotically stable.

Proof. Since Det(H1) = a1, Det(H2) = a1a2 − a3, and Det(H3) = a1a2a3 − a3
2, it is equivalent to the

Routh-Hurwitz criteria to say that:

(1) a1 > 0, so that Det(H1) is positive
(2) a1a2 > a3, so that Det(H2) is positive, and
(3) a3 > 0, so that Det(H3)is positive.

This last statement follows from the first two. Since a1a2 > a3, and Det(H3) = a1a2a3−a2
3 = a3(a1a2−

a3), we see that a3(a1a2 − a3) is positive if and only if a3 > 0.
�

As we will see below, the signs of the roots of this polynomial depend only on a single number known
as the reproductive constant, R. Therefore, it is sufficient to examine R = kpλ

cδµ and the effect it has on

the coefficients of the characteristic equation to determine how R influences stability of equilibrium. This
means that in a deterministic model, we can simply examine the value of this coefficient to determine viral
persistence or extinction. This is a remarkable result, and estimates of the persistence of HIV upon initial
infection have been made solely by Monte-Carlo simulations generating different R-values [17].

2.3.5. The Relation between R and Equilibrium Stability. Here, we state two theorems that
demonstrate the relationship between the R-value and which equilibrium is asymptotically stable.

Theorem 2.3.5. P1 is an asymptotically stable equilibrium if and only if R is less than 1.
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Proof. Evaluating the Jacobian at P1 = (λµ , 0, 0) results in

J3CM (P1) =

−µ 0 −kλµ
0 −δ kλ

µ

0 p −c


The characteristic equation of J3CM (P1) is:

(−µ− x)

(
(−δ − x)(−c− x)− kpλ

µ

)
= 0

which expands to:
x3 + a1x

2 + a2x+ a3 = 0

where

a1 = c+ δ + µa2 = cδ + cµ+ δµ− kpλ

µ
a3 = cδµ− kpλ.

If the eigenvalues have negative real part, then the Routh-Hurwitz criteria are satisfied, which implies
that a3 > 0. This means cδµ− kpλ > 0 and it follows that cδµ > kpλ leading to 1 > kpλ

cδµ = R. Simply put,

an asymptotically stable equilibrium at P1 implies that R < 1.

Conversely, if R < 1, then a3 > 0, and since all the coefficients are positive, it is clear that a1 > 0.
Additionally, since cδµ > kpλ, then cδ > kpλ

µ and a2 = cδ+ cµ+ δµ− kpλ
µ > cδ+ cµ+ δµ− cδ = cµ+ cδ. So,

a1a2 = (c+ δ + µ)

(
cδ + cµ+ δµ− kpλ

µ

)
> (c+ δ + µ)(cµ+ δµ) > cδµ > cδµ− kpλ = a3

that is, R < 1 implies P1 is an asymptotically stable equilibrium for (3CM). �

Thus, “R < 1” and “P1 is an asymptotically stable attracting equilibrium” are equivalent statements

Theorem 2.3.6. P2 is an asymptotically stable equilibrium if and only if R is greater than one.

Proof. The analysis for P2 = ( cδpk ,
λ
δ −

µc
kp ,

pλ
cδ −

µ
k ) is similar to that of P1. The analysis begins by

linearizing the system (3CM) about P2 and examining the characteristic equation. The Jacobian is slightly
more complicated in this case:

J3CM (P2) =

−k(pλcδ −
µ
k )− µ 0 −k( cδpk )

k(pλcδ −
µ
k ) −δ k( cδpk )

0 p −c



=

−(kλpcδ ) 0 −( cδp )
kλp
cδ − µ −δ cδ

p

0 p −c


and results in the characteristic equation(

−kλp
cδ

− x
)(

(−δ − x)(−c− x)− cδ)
)

+
−cδ
p

(
kλp

cδ
− µ

)
p = 0

with expanded form
x3 + a1x

2 + a2x+ a3 = 0

where

a1 = c+ δ +
kλp

cδ
a2 =

kλp

δ
+
kλp

c
a3 = kλp− cδµ.

Since the Routh-Hurwitz criteria apply in this case as well, it is sufficient to show that R > 1 implies
a1 > 0, a1a2 > a3, and a3 > 0 and vice versa.
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It is clear that if the Routh-Hurwitz criteria are satisfied then R > 1, since a3 = kλp− cδµ > 0⇔ kλp >
cδµ⇔ kλp

cδµ = R > 1. Additionally, since all the coefficients in the system are positive, a1 will be positive as

well. Finally,

a1a2 =

(
c+ δ +

kλp

cδ

)(
kλp

δ
+
kλp

c

)
> kpλ > kpλ− cδµ = a3.

�

Thus, R > 1 implies that P2 is an asymptotically stable equilibrium, and in fact, is both a necessary
and sufficient condition. This analysis reveals one very important fact about the overall system: the long
term behavior of the system depends only on the value of R. If R is greater than one, then the system tends
towards an end state with a non-zero population of infected cells and virions (persistence), but if R is less
than one, then the final equilibrium is a state with no virus or infection (extinction). Finally, we remark
that in the rare event that R = 1, the equilibria P1 and P2 are identical. From the analysis above, then, it
follows that this joint equilibrium is also locally asymptotically stable.

The figure (2.1) serves as an example that illustrates what the equilibriums looks like when R changes.
The top graph shows what happens when R is less than one, while the lower graph shows what happens when
R is greater than one. While the coefficients are not biologically relevant, the figure remains mathematically
accurate.

Figure 2.1. Graphs of the 3CM with illustrative coefficients for R < 1(top) and R > 1(bottom).
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2.4. Numerical Results

The simulation of the Three Component Model was developed in MATLAB, and there were several
different paths taken to get final probability distributions, and each of them differ in their method of com-
putation.

2.4.1. General Method of Coding. All of the code used to simulate the Three Component Model
shares the same basic characteristics. In each individual trial, initial conditions and coefficients are chosen,
the R-value is calculated, then the system of equations is simulated. This is done deterministically, discretely,
or stochastically. The end states of each simulation are recorded and compared with the viral detection
threshold, and in some cases, we determine to what degree, if any, correlation exists between the end state,
the R-value, and the initial conditions. We also examine what the average sample path and average end
states look like.

Initialize code

Start individual trial,
set coefficients, set

IC, calculate R-value

Simulate the
Equations!!!!

Collect end state data

Calculate average
path and end state

Analyze the data
Determine correlation

to R-value and
Initial Conditions

Compare with viral
detection threshold

Some more analysis?

Figure 2.2. A flow chart representation of the functions involved in coding

2.4.2. Common Features of Simulations. There are several functions used in MATLAB that are
common to nearly every simulation. They all stem from a specially designed random number generator.
This function permits the generation of normal distributions that are truncated on one or both ends. Known
as truncatednormal.m throughout the project, we use this function to create positive or non-negative
coefficients and initial conditions that are both statistically representative and biologically meaningful. There
are child functions of this random number generator that create truncated normally distributed starting
conditions and coefficients.

In addition to functions used throughout all the simulations, several numerical values remain the same
regardless of the method of simulation used. For instance, there exists a lowest possible amount of virus
detectable by medical technology. 40-75 virus particles per micro-liter of blood is the range of values given
by scientific literature We use this lower value, 40 particles

µL as our threshold. We also run each simulation
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from initial infection to sixty days beyond that point. At that point, the populations are stable, and a
determination of viral extinction can be made.

Coding the three component model deterministically, while not fully representative of the randomness
inherent in real life, still offers two distinct advantages. First, this type of simulation is straightforward from
a computational perspective, and second, this simulation allows us to isolate the effects of coefficients and
initial conditions to a much greater degree than permissible in the stochastic simulations. Since we recall that
the equations for the deterministic model and for the expected value of the stochastic model are the same,
we can imagine this simulation as looking at the average of an infinite number of stochastic simulations.

2.4.3. The Basic Deterministic Model. The Deterministic Model, when simulated in its most basic
sense, is simulated over one set of coefficients and initial conditions. The system of differential equations,
along with the initial values and time interval over which it is to be simulated are given to the MATLAB
function ode45.m, which uses a fifth order Runge-Kutta method to generate the sample path for each
population. With one trial, it is a simple matter to compare the end virus population to the detection
threshold and determine persistence or extinction from that.

Figure 2.3. Two simulations of the deterministic 3CM with mean standard ICs

Figure 2.3 shows what one run of the deterministic code looks like. The red line represents the detectable
virus threshold. Note that this demonstrates the two possible end states for the system. We can either have
viral persistence, as demonstrated by the lower set of figures, or we can have viral extinction, as demonstrated
by the upper set of figures. These figures used the values of the coefficients that would maximize and minimize
R, in order that a clear distinction could be made about how these coefficients affect the end results.

2.4.4. Deterministic Model with Random Valued Coefficients. The next step in modeling the
deterministic system is to randomize the coefficients used in the equations. We recall that these coefficients
vary from person to person, and are representative of various biological traits. Because of this, certain
restrictions and conditions are placed upon them. First, we know that in order to be biologically meaningful,
we must have these values be positive. It would make no sense, for instance, for the T-cell growth rate to be
inherently negative. Second, we assume these values to be normally distributed. Therefore, when we draw
upon these coefficients, we take the mean and standard deviation given by existing data, and use a function
in MATLAB designed to draw a random value from a truncated normal distribution.
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For each of 10000 trials, we generate a set of coefficients from these truncated normal distributions. With
these values, the standard initial conditions, and the standard time interval, we use the built in MATLAB
function ode45.m again to computationally solve the deterministic system. We record the sample paths for
each run, and those with R-values greater than one are colored in cyan (or light blue), while those sample
paths whose equations have R-values less than one are colored magenta (or purple).

Figure 2.4. 1000 simulations of the deterministic model with different coefficients. Stan-
dard IC

In the end, the code gives an array of data consisting ofthe end population values and the R-value for each
trial . We place the data into histograms to give a better idea of how many end states reach which value.
Again, when we look at the viral end states, the red line represents the detection threshold. In this particular
example, we see that we have over 2000 cases (2140 to be exact) in which the virus population is undetectable
after sixty days.

Figure 2.5. 1000 simulations of the deterministic model with different coefficients. Stan-
dard IC

Of the coefficient sets generated, 211 had corresponding R-values less than one. This is similar to the
results of Tuckwell and Shipman [17], whose estimation for R-values of less than one ranged around 2%. For
all of these sets, the end virus population was beneath the detectable threshold.
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CHAPTER 3

Stochastic Differential Equations and Ito’s Lemma

3.1. The Birth Death Model

While knowledge of the deterministic Three Component Model is useful, our goal is to extend this to a
stochastic model. In order to construct the stochastic three component model, we first create a stochastic
model of a simpler system. This will serve to illustrate some ideas and demonstrate that they are special
cases of general theorems we use later to create a stochastic model of the Three Component Model.

A stochastic system better represents the randomness inherent in everyday life. When used with one
set of coefficients, the deterministic model tells us what happens to one patient one time after an initial
infection. On the other hand, with a stochastic model, we see the probability distribution of this one person’s
viral state. This is a much more valuable piece of information, because from it, we can see not only which
end states are more likely, but how likely they are.

Let’s begin by considering the ordinary differential equation:

(9)

dX

dt
= bX − dX

X(0) = x0

where b, d > 0 and x0 ≥ 0. This is known as the birth-death model.

3.1.1. A random walk related to the birth-death model. We wish to create a random walk that
behaves in such a way that the expected value of the random walk at time t is related to the differential
equation (9). To do this, we first define a discrete time random walk X(t) that starts at a given point x0 and
assume that over a given time interval, ∆t, the value of X(t) can increase by some amount, ∆x , decrease
by ∆x, or remain the same. If we start at a given time t and population x, the next time step is given by:

(10) X(t+ ∆t) ∈ {X(t) + ∆x,X(t)−∆x,X(t)}

We refer to these population changes, either positive or negative, as spatial changes, and each of these
possibilities of spatial change has a probability associated with it. Define P+(t) to be the probability of
a positive spatial change over a time step ∆t starting from time t, define P−(t) to be the probability of a
negative spatial change over a time step ∆t starting at time t, and define P0(t) to be the probability of no
change over a time step ∆t starting at time t. In other words, if we let P(e) denote the probability of the
event e then

(11)
P+(t) = P(X(t+ ∆t) = X(t) + ∆x)
P−(t) = P(X(t+ ∆t) = X(t)−∆x)
P0(t) = P(X(t+ ∆t) = X(t))

The values of the probabilities are chosen such that they match the differential equation of the birth death
model, and are given by P+(t) = bX(t)∆t, P−(t) = dX(t)∆t, and P0(t) = 1 − (P+(t) + P−(t)). Note that
we cannot a priori guarantee that P+, P− and P0 are a probability distribution. However, we proceed with
a formal calculation. Let us assume that it is possible to choose ∆t, in such a way that P+ +P− is less than
one, and as such, P+(t) + P−(t) + P0(t) = 1. These values were chosen so that the expected value of each
step satisfies E[X(t+ ∆t)−X(t)] = (b− d)∆x. We will see this later on.
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Since this model is discrete and the value of X at each time step only depends on the value at the
previous step, we know that if X(t + ∆t) = x, there are only three possibilities that can lead to this state,
namely:

(1) The value of X(t) increased so that

X(t) = x−∆x and X(t+ ∆t) = x

(2) The value of X(t) decreased so that

X(t) = x+ ∆x and X(t+ ∆t) = x

(3) The value of X(t) remained the same so that

X(t) = x and X(t+ ∆t) = x.

It is important to note that these events are disjoint, and X(t + ∆t) = x is the union of these events.
Therefore, the probability of the event X(t + ∆t) = x is equal to the sum of the probabilities of the these
three events. We have:

(12)
P(X(t+ ∆t) = x) = P(X(t+ ∆t) = x ∩X(t) = x−∆x)

+ P(X(t+ ∆t) = x ∩X(t) = x+ ∆x)
+ P(X(t+ ∆t) = x ∩X(t) = x)

Since P(A|B) = P(A∩B)
P(B) , it follows that P(A ∩B) = P(A|B)P(B), and because of this,

(13)
P(X(t+ ∆t) = x ∩X(t) = x−∆x) =

P(X(t+ ∆t) = x|X(t) = x−∆x)P(X(t) = x−∆x)

From above, we know that P(X(t + ∆t) = x|X(t) = x −∆x) is the same as P+(t), and similarly for P−(t)
and P0(t). The above equations then reduce to:

(14)
P(X(t+ ∆t) = x) = P(X(t) = x−∆x)(P+(t))

+ P(X(t) = x+ ∆x)(P−(t))
+ P(X(t) = x)(P0(t))

Recall the definition of expected value:

Definition 3.1.1. Consider a random variable X that has possible outcomes x1, . . . , xn with correspond-
ing probabilities p1, . . . , pn. The expected value of X is given by E[X] =

∑n
i=1 pixi.

Define Y (t) := X(t+ ∆t)−X(t). We have,

E[Y (t)|X(t) = x] = (x+ ∆x− x)bx∆t+ (x−∆x− x)dx∆t

+ (x− x)(1− bx∆t− dx∆t)

= ∆xbx∆t−∆xdx∆t+ 0(1− bx(∆t)− dx(∆t))

= ∆xbx∆t−∆xdx∆t

= (b− d)x∆x∆t

Now consider the infinitesimal mean

lim
∆t→0

E[Y (t)|X(t) = x]

∆t
= (b− d)x∆x
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We can do the same computations with the second moment, where Y (t) is defined as above:

E[Y (t)2|X(t) = x] = (x+ ∆x− x)2bX(t)∆t+ (x−∆x− x)2dx∆t

+ (x− x)2(1− bx∆t− dx)(∆t)

= (∆x)2bx∆t+ (∆x)2dx(∆t) + 0(1− bx∆t− dx∆t)

= (b+ d)x(∆x)2∆t

E[Y (t)2|X(t) = x]

∆t
= (b+ d)x(∆x)2

Then consider the infinitesimal second moment:

lim
∆t→0

E[Y (t)2|X(t) = x]

∆t
= (b+ d)x(∆x)2

3.1.2. A Partial Differential Equation associated with the Random Walk. Define v(x, t) to be
P(X(t) = x|X(0) = x0). We find

v(x, t+ ∆t) = v(x−∆x, t)P+(t) + v(x+ ∆x, t)P−(t) + v(x, t)P0(t)

Replacing with the values for P+(t), P−(t), and P0(t) yields:

v(x, t+ ∆t) = v(x−∆x, t)bX(t)∆t+ v(x+ ∆x, t)dX(t)∆t

+v(x, t)(1− (b+ d)X(t)∆t)

Subtract v(x, t) from both sides, divide by ∆t, and recall that at time t, X(t) = x:

(15)

v(x, t+ ∆t)− v(x, t)

∆t
= v(x−∆x, t)bx+ v(x+ ∆x, t)dx

+v(x, t)(b+ d)(x)

Define a new function, w given by w(x, t) = xv(x, t) and rewrite (15):

v(x, t+ ∆t)− v(x, t)

∆t
= bw(x−∆x, t) + dw(x+ ∆x, t) + (b+ d)w(x, t)

= b(w(x−∆x, t)− w(x, t))

+ d(w(x+ ∆x, t)− w(x, t))

From Taylor’s Theorem, we know in that general for any continuous function with continuous derivatives,
denoted f , we have

(16) f(x−∆x) = f(x)−∆xfx(x) +
(∆x)2

2
fxx(x) +O((∆x)3)

The term O((∆x)3) indicates that the expansion continues, but the value of the remainder depends on (∆x)3

and is close to 0 when ∆x is small, as it is in this case. So we can expand as above to find,

w(x±∆x)− w(x, t) = ±(∆x)wx(x, t) +
(∆x)2

2
wxx(x, t) +O((∆x)3).

The right hand side of (16) then becomes

b((−∆x)wx(x, t) +
(∆x)2

2
wxx(x, t)) + (d)((∆x)wx(x, t) +

(∆x)2

2
wxx(x, t)) +O((∆x)3)

which reduces to (d− b)(∆x)wx(x, t) + (b+ d)( (∆x)2

2 wxx(x, t)). From this position, we are left with:

(17)
v(x, t+ ∆t)− v(x, t)

∆t
= (d− b)(∆x)wx(x, t) + (b+ d)

(
(∆x)2

2
wxx(x, t)

)
+O((∆x)3).
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We note that this equation looks very similar to a discretized version of the partial differential equation

(18)
∂v

∂t
= − ∂

∂x

(
(d− b)xv(x, t)

)
+

1

2

∂2

∂x2

(
(b+ d)xv(x, t)

)
In fact, taking the limit as ∆t and ∆x tend to zero in a specific way, one can recover this equation exactly.
Additional details can be found in [1].

3.1.3. Transitioning from a PDE to a Stochastic Differential Equation. From [1], we get that
for small ∆t and ∆x, the probability distributions in the partial differential equation above are approximately
the same as the probability distributions for solutions to the discrete stochastic process. Therefore, the
discrete stochastic process that models this ordinary differential equation is:

(19) dX(t) = (b− d)X(t)dt+
√

(b+ d)X(t)dWt

Later on in the paper, the terms Wt and dWt will be defined and explained in more detail, but for now, we
can consider them to be the added “randomness” to the system.

From [16], we know something similar. If we are given a discrete system, and desire a stochastic
differential equation of the form:

(20) dX(t) = F (X)dt+G(X)dWt,

then the F term consists of the infinitesimal mean from the discrete system and the G term is the infinitesimal
second moment. Therefore, if we desire a stochastic differential equation for the three component model,
the best place to start is to discritize the system.

3.2. Brownian Motion

3.2.1. Stochastic Processes. In order to more realistically describe situations seen in real life, some
models include stochastic processes. In order to define a stochastic process we begin with the definition of
a probability space, then move on to define a random variable, and finally a stochastic process.

Definition 3.2.1 (Probability Space). A probability space is a triple (Ω, U, P ) consisting of

(1) A sample space Ω, which is a set that consists of all possible outcomes.
(2) A σ-algebra U . A σ-algebra is a collection of subsets of Ω that contains the empty set ∅, Ω, and is

closed under countable unions and complements.
(3) A probability measure P : U → [0, 1] such that if U1, U2, · · · ∈ U are mutually disjoint, then

P (∪∞k=1Uk) =
∑∞
k=1 P (Uk).

This definition of a probability space allows us to define a random variable:

Definition 3.2.2 (Random Variable). Given a probability space (Ω, U, P ), a random variable is a
function X : Ω→ R such that for all r ∈ R, the set {ω|X(ω) ≤ r} ∈ U

We can view a stochastic process as a random variable indexed by time.

Definition 3.2.3 (Stochastic Process). Given a probability space (Ω, U, P ), a stochastic process is a
function X : Ω× R→ R such that for each t ∈ R, X(t) = Xt is a random variable.

3.2.2. Sample Path. With this in mind, we can define a sample path.

Definition 3.2.4 (Sample path). Let X : Ω × R → R be a stochastic process. For each ω ∈ Ω the
function t 7→ X(ω, t) is called a sample path.

Since Xt consists of a set of random variables indexed by time, the sample path of Xt for ω would be
the collection of values Xt(ω). This is a function from time to the possible outcomes of Xt. We can now
define a continuous stochastic process.

Definition 3.2.5 (Continuous Stochastic Process). A continuous stochastic process is a stochastic pro-
cess such that for every ω ∈ Ω, Xω(t) is a continuous function for t ∈ [a, b].
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3.2.3. Brownian Motion. The most basic stochastic process is Brownian motion, which is also known
as the Wiener process. Originally used to describe the motion of particles suspended within a fluid, Brownian
motion is named after the botanist Robert Brown. In the late nineteenth century, he observed that pollen
floating in water appeared to move about in a random manner. When he replaced the pollen with inorganic
material, he noticed that the motion persisted. Upon plotting the motion over time, he noticed that it
appeared to have no tangent anywhere, and regardless of the magnification or scale, the motion appeared
random. This motion was later described by Albert Einstein to be caused by molecular level forces on the
particle. These impacts on the aggregate cancel each other out, but at any particular time, it is highly
likely that one side of the particle is experiencing more force than the other. This causes the particle to
move about. Mathematically, this process was described first by Norbert Wiener, after whom the process
is named. We abbreviate the Wiener process W (t) or Wt for each t ∈ [0, T ]. This process possesses three
important and distinctive properties:

(1) W (0) = 0
(2) W (t) is normally distributed with mean 0 and variance t.
(3) For any sequence 0 = t0 < t1, < · · · <, tn = T , the random variables W (t1) − W (t0),W (t2) −

W (t1), . . . ,W (tn)−W (tn−1) are independent.

We can consider Brownian motion to be the limit of a symmetric random walk as both the spatial size
and time step go to zero, or perhaps consider it to be the integral of noise independent of frequency.

It is important to note that for each t, W (t) is a random variable, with expected value 0. However, if we
were to graph several different sample paths of W (t), we would note that they have entirely different graphs.

Figure 3.1 traces out different sample paths for Brownian Motion from time t = 0 to t = 1000. We note
that the spread or variance in each path grows with time. Each solid black line represents one standard
deviation away from the mean. If we were to graph more sample paths, and observe at any given time their
value, we would see that the distribution of the values at that time closely resembled a normal distribution.
This is visible in the histogram drawn from the end values.

3.3. Stochastic Integration

A stochastic differential equation (SDE) is an equation of the form

dX(t) = F (X(t), t)dt+G(X(t), t)dWt,

where F,G are functions and Wt is Brownian motion. In order to give proper meaning to the above equation
we would need to develop a significant amount of theory that is outside the scope of this project and a
typical undergraduate syllabus.

Instead we will settle for a more heuristic approach and provide references. The manuscript of Evans
[4] is particularly good.

We can gain some insight into the SDE by discretizing it:
Examining the discrete case, we see a stochastic differential equation takes the form

(21) X(t+ h) = X(t) + hdX = X(t) + F (X(t), t)h+G(X(t), t)(Wt+h −Wt)

Recall from the definition of Brownian Motion that the term Wt+h − Wt is a normally distributed
random variable with mean 0 and variance h. A stochastic differential equation is typically given in the form
dX = Fdt+GdW , where X is the unknown stochastic process, F is a deterministic, or drift function, and
G is a random, or diffusion term. Both F and G can be functions of X(t) and t, and exist in the following
function spaces:

• L1(0, T ) is the space of stochastic processes F such that E
[∫ T

0
|F |dW

]
< +∞

• L2(0, T ) is the space of stochastic processes G such that E
[∫ T

0
G2dW

]
< +∞
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Figure 3.1. Several sample paths of Brownian Motion with the curves x =
√
t and x = −

√
t

outlining the standard deviation (top), and a histogram of the distribution of Brownian
Motion increments (bottom).

As noted in [4], these spaces must include the additional technical condition that the stochastic processes
be progressively measurable. We omit details related to this point and instead refer the reader to [4] for
further details.

When dealing with stochastic differential equations, we will have a time interval, [0, T ], and see terms
such as “dX = Fdt + GdW”, where X, F and G are stochastic processes, with X,F ∈ L1([0, T ]) and
G ∈ L2([0, T ]). This dX term has no intrinsic meaning, but rather, implies that given two values, s and
r ∈ [0, T ],

(22) X(s)−X(r) =

∫ s

r

Fdt+

∫ s

r

GdW

In order to understand what this actually means, we should break the differential down into its component
parts. The left side of the equation is simple. It simply subtracts the value of the stochastic process X at
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time r from the value of X at s. Remember that both of these evaluations are random variables. The right
side of the equation consists of two parts:

∫ s
r
Fdt and

∫ s
r
GdW . We shall examine each of these separately.

Recall in ordinary calculus how integrals were introduced. After choosing a large number of steps n

and partitioning the interval [r, s] into t0 = r, t1 = r + s−r
n , t2 = r + 2(s−r)

n , . . . , tn = s, the integral was
approximated by Riemann sums so that

(23)

∫ s

r

fdt ≈
n−1∑
k=0

f (tk)
s− r
n

.

Something similar can be done for a stochastic process F (t) integrated with respect to time. We discretize
the time interval into small parts and evaluate the process at each point of the partition. The resulting
integral appears identical to that above

(24)

∫ s

r

Fdt ≈
n−1∑
k=0

F (tk)
s− r
n

.

but, contrasting with an ordinary integral, however, the result of this integration is now a random variable,
not a real number. Similarly for

∫ s
r
GdW , we can approximate the integral as defined by Evans [4]:

(25)

∫ s

r

GdW ≈
n−1∑
k=0

G(tk)(Wtk+1
−Wtk).

Note that this is also a random variable.
Just as in ordinary calculus not all functions F,G can be integrated as above. Certain technical as-

sumptions must be made about the adaptability of the stochastic process X to the filtration generated by
Brownian motion. These ideas are beyond the scope of this project.

3.3.1. Basic properties. There are two fundamental properties of the Ito integral that we need.
The first property tells us that if we have any function in L1([0, T ]) integrated with respect to Brownian

Motion, then the expected value of the integral is zero. In other words,

(26) E

[(∫ T

0

FdW

)]
= 0

The second is the Ito Isometry. The Ito Isometry is an important relation between dW and dt, and it
permits us to use a heuristic that is vital in our coding methods.

Theorem 3.3.1 (Ito Isometry).

(27) E

(∫ T

0

FdW

)2
 = E

[∫ T

0

F 2dt

]

The proof is given in [4]. Additionally, an important special case of this theorem arises when F ≡ 1,
namely

(28) E

(∫ T

0

dW

)2
 = T − 0 = T

This leads to the heuristic dW ≈
√
dt or dt ≈ dW 2, which will be used for various calculations.
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3.3.2. Stochastic Calculus. Based on previous discussion, there are several properties of stochastic
differentials worth exploring. The first is that the differentiation operator is linear. So given two stochastic
processes, X and Y , then we can compute the differential of any linear combination d(aX+bY ) = a dX+b dY
where a, b ∈ R. This is identical to what we see in ordinary calculus.

Contrastingly, the product rule for stochastic calculus differs from ordinary calculus. Given two stochastic
processes, X1 and X2, such that dX1 = F1dt+G1dW and dX2 = F2dt+G2dW , we find

(29) d(X1X2) = X1dX2 +X2dX1 +G1G2dt.

3.4. Ito’s Lemma

With everything above, we can state Ito’s Lemma. Ito’s Lemma, which is also known as Ito’s Formula,
is one of the most important results in stochastic calculus because it allows us to find solutions for stochastic
differential equations, by providing an analogous version of the Chain Rule. We will use the Ito Isometry
to develop a partial differential equation to solve for the probability distribution of the stochastic three
component model at any time.

The formal statement of Ito’s Formula follows:

Theorem 3.4.1 (Ito’s Lemma). Suppose that X is a stochastic process with differential

(30) dX = Fdt+GdW

with F ∈ L1([0, T ]) and G ∈ L2([0, T ]). Assume that a function u : R × [0, T ] → R is continuous with

continuous first order partial derivatives and a continuous second order partial derivative ∂2u
∂x2 . Define the

stochastic process

(31) Y (t) := u(X(t), t).

The stochastic differential for Y is then

(32)
dY = ∂u

∂t dt+ ∂u
∂xdX + 1

2
∂2u
∂x2 dt

= (∂u∂t + ∂u
∂xF + ∂2u

∂x2G
2)dt+ ∂u

∂xGdW

The proof for Ito’s Lemma is actually remarkably simple, and an outline of the steps involved follows:

(1) By using the stochastic product rule and mathematical induction, prove Ito’s Formula for functions
of the form Y (t) := u(X(t), t) = (X(t))n.

(2) Use the fact that all functions are limits of polynomials to prove Ito’s Formula for functions that
are polynomials of X(t) or t, that is a function that is of the form P (X(t)) = cn(X(t))n +
cn−1(X(t))n−1 + · · ·+ c1(X(t)) + co.

(3) Use the product rule to prove Ito’s Formula for separable functions of X(t) and t, that is, for a
function u(X(t), t) = f(X(t))g(t).

(4) Use the above facts to show that if any sequence of polynomials, Yn = un(X(t), t) converges to a

function Y = u(X(t), t) (with the derivatives ∂un
∂t , ∂un

∂x , and ∂2un
∂x2 likewise converging to ∂u

∂t , ∂u
∂x ,

and ∂2u
∂x2 ), then the differentials dYn converge to dY .

3.4.1. Multi-dimensional Ito’s Formula. Extending Ito’s Lemma to a multidimensional state re-
quires some additional assumptions. Assume

(1) W(t) = [W1(t), . . . ,Wn(t)] is an n-dimensional Brownian motion. Each Wi can be, but is not
necessarily independent from every other Wi.

(2) G(t) is an Mn×m valued stochastic process, meaning for each input t, an n×m matrix of random
variables is the output.

(3) F(t) is an Rn valued stochastic process. For each input (t), a vector of length n of random variables
is the result.

(4) F and G are in the spaces
[
L1([0, T ])

]n
and

[
L2([0, T ])

]n×m
respectively. This means that for

each index chosen, the individual process that generates the value for that index is in the one
dimensional L-space.
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Then we can say that an Rn valued stochastic process X(t) = [X1(t), . . . , Xn(t)] over the time interval
[0, T ] satisfying the property

(33) X(s)−X(r) =

∫ s

r

Fdt+

∫ s

r

GdW

with s, r ∈ [0, T ], F ∈ [L1([0, T ])]n, and G ∈ [L2([0, T ])]n×n has the stochastic differential

(34) dX = Fdt+ GdW

which means that

(35) dXi = Fidt+

m∑
j=1

Gi,jdWj i = 1, . . . , n.

With these definitions in mind, we can state Ito’s Lemma for n-dimensional stochastic processes.

Theorem 3.4.2 (Ito’s Lemma in n dimensions). Suppose that X is a stochastic process with differential

(36) dX = Fdt+ GdW

where F ∈
[
L2([0, T ]

]n
and G ∈

[
L2([0, T ])

]n×m
. Assume that a function u : Rn× [0, T ]→ Rn is continuous

with continuous first order partial derivatives ∂u
∂xi

(i = 1, ..., n) and continuous second order partial derivatives
∂2u

∂xi∂xj
(i, j = 1, . . . , n). Then

(37) d(u(X(t), t)) =
∂u

∂t
dt+

n∑
i=1

∂u

∂xi
dXi +

1

2

n∑
i=1

n∑
j=1

∂2u

∂xi∂xj

m∑
l=1

Gi,lGj,l

The proof follows a very similar line of reasoning as the one dimensional formula and will not be discussed
here. Instead, see [12] for further details.

3.5. The Fokker-Planck Equation

Solving stochastic differential equations can be difficult at times, while solving ordinary differential and
partial differential equations is a field of study with a much broader base. Therefore, if we can reduce a
stochastic differential equation to a partial differential equation, we may be able to gain additional insight
into the behavior of the SDE.

The concept that draws the connection between the PDE and the SDE is the notion of the probability
density of a stochastic process. As in the discussion of Ito’s Lemma, if we are dealing with a function of time
and a stochastic process, the probability density will also be a function of time and the values the stochastic
process takes on. Before we begin, it is important to distinguish between a stochastic process X(t) and its
probability density p(x, t). We know that at any given time t for which the stochastic process X is defined,
evaluating X at t results in a random variable. The probability density, p(x, t) at this same time t gives the
distribution of the random variable X(t).

Now, if we consider the stochastic differential equation

(38) dX = Fdt+GdW

and the function

(39) Y (t) = u(X(t), t)

with the following conditions:

(40)
u, ∂u∂t ,

∂u
∂x ,

∂2u
∂x2 ∈ C∞0 (R)
F ∈ L1[0, T ]
G ∈ L2[0, T ]
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where C∞0 (R) is the space of continuous functions with an arbitrarily large number of continuous derivatives
that tend to zero at infinity, then we know that from Ito’s Lemma:

(41)
dY = ∂u

∂t dt+ ∂u
∂xdX + 1

2
∂2u
∂t2 G

2dt

=
(
∂u
∂t + ∂u

∂xF + 1
2
∂2u
∂x2G

2
)
dt+ ∂u

∂xGdW

If we apply our understanding of the stochastic differential to these terms and recall that the expected
value of a process integrated with respect to dW is 0, the following is a result of taking the expected value
of both sides of the equation for Y :

(42)
dE[Y ]

dt
= E

[
∂u

∂t
+
∂u

∂x
F +

1

2

∂2u

∂x2
G2

]
Defining the probability distribution p(x, t) of the stochastic process X as above and replacing the expected
value term with its definition results in

(43)
d

dt

∫ ∞
−∞

p(x, t)u(x, t)dx =

∫ ∞
−∞

p(x, t)

(
∂u

∂t
+
∂u

∂x
F +

1

2

∂2u

∂x2
G2

)
dx

Rearranging the equation and changing some notation simplifies it slightly

(44)

∫ ∞
−∞

(
∂(pu)

∂t
− p∂u

∂t
− pF ∂u

∂x
− 1

2
pG2 ∂

2u

∂x2

)
dx = 0

Integration by parts yields the following

p
∂u

∂t
=

∂(pu)

∂t
− u∂p

∂t∫ ∞
−∞

pF
∂u

∂X
dx = upF |∞−∞ −

∫ ∞
−∞

u
∂(pF )

∂X
dx∫ ∞

−∞
pG2 ∂

2u

∂X2
dx = −u∂(pG2)

∂X

∣∣∣∣∞
−∞

+

∫ ∞
−∞

u
∂(pG2)

∂X2
dx(45)

Since u and ∂u
∂x ∈ C∞0 (R), when evaluated at infinity, they are zero. With these facts in mind, we can

further reduce the above to

(46)

∫ ∞
−∞

u

(
∂p

∂t
+
∂(pF )

∂X
− 1

2

∂2(pG2)

∂X2

)
dx = 0

As the above equation will hold true for every u ∈ C∞0 (R), this implies that

(47)
∂p(x, t)

∂t
= −∂(p(x, t)F (x, t))

∂x
+

1

2

∂2(p(x, t)G2(x, t))

∂x2
.

This final equation is known as the forward Kolmogorov (or Fokker-Planck) equation for probability
distributions of solutions to stochastic differential equations. This particular equation is one-dimensional.
More generally, we have the multi-dimensional equation as follows, with the following stipulations:

(1) W(t) is an n-dimensional Brownian motion
(2) G(t) is an Mn×m real valued stochastic process
(3) F(t) is an Rn valued stochastic process
(4) F and G are in the spaces [L1([0, T ])]n and [L2([0, T ])]n×m respectively.
(5) p(x, t) is the probability distribution at time t for the stochastic differential dX = Fdt+ GdWt.

Then p satisfies the following partial differential equation:

(48)
∂p(x, t)

∂t
= −

n∑
i=1

∂

∂x
[p(x, t)Fi(x, t)] +

1

2

n∑
i=1

n∑
j=1

∂2

∂x2

[
p(x, t)

n∑
k=1

GikGjk

]
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With sufficient computing power, and a well-structured numerical method, this equation would allow us
to supersede the Monte Carlo simulations for determining the end probability density of three component
SDE. However, since it would require large amounts of computing power and another programming language,
this particular method of solution was bypassed.
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CHAPTER 4

Stochastic Modeling

4.1. Creating the Stochastic Model

In the previously described birth death model, a differential equation was derived. From this differential
equation, we were able to create a stochastic model. This was done by noting that when a discrete walk of
the population is known, the infinitesimal expected value and second moment of the change of state matrix
provide the drift and variance terms included in the stochastic differential equation. In this section, we
present the analogous derivation for (3CM).

4.1.1. State Changes and Probability. Recall the three component model:

(3CM)



dT

dt
= λ− µT − kTV

dI

dt
= kTV − δI

dV

dt
= pI − cV

The first step in creating a stochastic version of this model is to discretize the system. This is done using
random walks on the state space of values of T , I, and V . We start by defining three discrete random walks
that correspond to the populations: T (t) will refer to a random walk on the population of healthy T-cells,
I(t) will refer to a random walk on the population of infected T-cells, and V (t) will refer to a random walk
on the virus population. Since we are imposing a discrete-valued model, each of the populations must take
on a non-negative integer value, and all changes across any time interval ∆t will be an integer. If we shrink
∆t sufficiently, then we can assume that over the time period ∆t, only one state change occurs, and that
state change will alter the populations by +1,−1 or 0.

It is rather simple to list the possible state changes of the vector [T (t), I(t), V (t)]T and match them with
their respective biological meaning. Each state change will be denoted by ∆Si = [a, b, c]T , where a, b, and
c take values of either +1,−1 or 0. The following table gives all the possible state changes, their value, and
their biological interpretation:

∆Si [a, b, c]T Biological Interpretation
∆S1 [1, 0, 0]T Production of a Healthy T-cell
∆S2 [−1, 0, 0]T Death of a Healthy T-cell
∆S3 [−1, 1, 0]T Infection of a Healthy T-cell
∆S4 [0,−1, 0]T Death of an Infected T-cell
∆S5 [0, 0, 1]T Production of a Virus
∆S6 [0, 0,−1]T Destruction of a Virus
∆S0 [0, 0, 0]T No Change

In a manner similar to that of the birth-death model given earlier, each of these possible state changes
has an associated probability, derived from the differential equations of the three component model. They
are given as follows:
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∆Si pi
∆S1 λ∆t
∆S2 µT (t)∆t
∆S3 kT (t)V (t)∆t
∆S4 δI(t)∆t
∆S5 pI(t)∆t
∆S6 cI(t)∆t

∆S0 1−
6∑
i=1

pi

4.1.2. Expected Value and Second Moment. It is known that the expected value of a random
variable is given by the average of each of the possible values the variable can assume, weighted by their
corresponding probabilities. If there are n possible events, and the probability of event Yi is pi, then
E[Y ] =

∑n
i=1 piYi. In this case, it is necessary to find the expected value of the change of state vector, and

we do this below. Note that similar to the calculation in the birth-death process, there are parallels between
the expected value and the ordinary differential equation. If we divide by ∆t in the expected value, we have
a term that looks like the derivative dX

dt on the left, while the right sides of the equations are the same.

(49) E[∆S|T (t) = α, I(t) = β, V (t) = γ] =

6∑
i=0

pi∆Si =

λ− µα− kαγkαγ − δβ
pβ − cγ

∆t

The second moment matrix, which measures how closely each variable in the system changes with respect
to each other, is given in a similar way to the expected value:

(50) E
[
(∆S)(∆S)T

]
=

6∑
i=0

pi(∆Si)(∆Si)
T

As calculated from the values given above:

(51) E
[
(∆S)(∆S)T |T (t) = α, I(t) = β, V (t) = γ

]
=

λ+ µα+ kαγ −kαγ 0
−kαγ kαγ + δβ 0

0 0 pβ + cγ

∆t

4.1.3. Cholesky Factorization. The second moment is included in the stochastic model under a
square root, so it is necessary to compute the matrix equal to (E

[
(∆S)(∆S)T |T (t) = α, I(t) = β, V (t) = γ

]
)

1
2 .

In this case, we used a method of factorization known as the Cholesky Factorization.

Theorem 4.1.1 (Cholesky Factorization). A real, symmetric matrix A is positive definite if and only if
A can be decomposed into A=LLT , where L is a unique, real, lower triangular matrix with strictly positive
diagonal entries.

Computationally, this matrix is not difficult to find. We know that L is of the form:

(52) L =

l1,1 0 0
l2,1 l2,2 0
l3,1 l3,2 l3,3


Therefore,
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E
[
(∆S)(∆S)T |T (t) = α, I(t) = β, V (t) = γ

]
= LLT

=

l1,1 0 0
l2,1 l2,2 0
l3,1 l3,2 l3,3

l1,1 l2,1 l3,1
0 l2,2 l3,2
0 0 l3,3


=

(l1,1)2 l1,1l2,1 l1,1l3,1
l2,1l1,1 (l2,1)2 + (l2,2)2 l2,1l3,1 + l2,2l3,2
l3,1l1,1 l3,1l2,1 + l3,2l2,2 (l3,1)2 + (l3,2)2 + (l3,3)2


If we make the following change of variables from the variance matrix

E
[
(∆S)(∆S)T |T (t) = α, I(t) = β, V (t) = γ

]
=

λ+ µα+ kαγ −kαγ 0
−kαγ kαγ + δβ 0

0 0 pβ + cγ


=:

x y 0
y z 0
0 0 w


then we arrive at the following equations

(l1,1)2 = x l2,1l1,1 = y

(l2,1)2 + (l2,2)2 = z l3,1l1,1) = 0

l3,1l2,1 + l3,2l2,2 = 0 (l3,1)2 + (l3,2)2 + (l3,3)2 = w.

These equations reduce to

l1,1 =
√
x l3,1 = 0

l2,1 =
y√
x

l3,2 = 0

l2,1 =

√
z − y2

x
l3,3 =

√
w

This leads to the lower triangular matrix

L =


√
λ+ µα+ kαγ 0 0
−kαγ√

λ+µα+kαγ

√
(kαγ + δβ)− (−kαγ)2

λ+µα+kαγ 0

0 0
√
pβ + cγ


With this lower triangular matrix and the derivation of its component parts, we can now efficiently cal-

culate the square root of the second moment matrix. This added efficiency allows us to run more simulations
effectively and produce better results.

4.2. A SDE based on the Discrete Model

Before we can model a stochastic process for HIV, we must first rigorously define such a process and
prove it to be representative of this biological phenomena. We already have a clear idea of the situation we
seek to model. This comes from the discrete model shown earlier; therefore, we base the properties of the
stochastic model on the properties of the discrete model.

Recall from the previous section that at time t, the state change ∆S possesses the following two prop-
erties:

(1) E[∆S|T (t) = α, I(t) = β, V (t) = γ] =

λ− µα− kαγkαγ − δβ
pβ − cγ


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(2) E
[
(∆S)(∆S)T |T (t) = α, I(t) = β, V (t) = γ

]
=

λ+ µα+ kαγ −kαγ 0
−kαγ kαγ + δβ 0

0 0 pβ + cγ


We desire to create a stochastic process with the same properties.

4.2.1. Infinitesimal Mean and Second Moment. From [16], we know that we can create a stochas-
tic differential equation for the three component model from the discrete model by using the infinitesimal
means as the coefficients for the dt or “drift” term and using the second moment for the dWt or “diffusion”
terms.

In the previous section, we calculated the expected value, or mean and the second moment of the discrete
model. From this point, based on the results of Tuckwel and LeCorfec [16], we can use the infinitesimal
mean and second moment to generate a stochastic differential equation. These infinitesimal mean and second
moment are computed by taking the standard mean and second moment calculations, than dividing by ∆t
and taking the limit as ∆t goes to zero. In this way, they are computed over an “infinitesimally small”
period of time.

Recall that the mean was:

(53) E[∆S|T (t) = α, I(t) = β, V (t) = γ] =

6∑
i=0

pi∆Si =

λ− µα− kαγkαγ − δβ
pβ − cγ

∆t

Dividing by ∆t and taking the limit as ∆t goes to zero gives us the infinitesimal mean:

(54) lim
∆t→0

E[∆S|T (t) = α, I(t) = β, V (t) = γ]

∆t
=

6∑
i=0

pi∆Si =

λ− µα− kαγkαγ − δβ
pβ − cγ


Similarly with the second moment matrix, we can calculate the infinitesimal second moment to be:

(55) lim
∆t→0

E
[
(∆S)(∆S)T |T (t) = α, I(t) = β, V (t) = γ

]
∆t

=

λ+ µα+ kαγ −kαγ 0
−kαγ kαγ + δβ 0

0 0 pβ + cγ


4.2.2. Piecing Together the Stochastic Differential Equation. Since we know stochastic differ-

ential equations are of the form

dX(t) = F (X, t)dt+G(X, t)dWt

Where F is the infinitesimal expected value of the state change and G is the infinitesimal second moment,
we have the stochastic differential equation for the three component model:

d

TI
V

 =

λ− µT − kTVkTV − δI
pI − cV

 dt
+


√
λ+ µT + kTV 0 0

−kTV√
λ+µT+kTV

√
(kTV + δI)− (−kTV )2

λ+µT+kTV 0

0 0
√
pI + cV

 dWt

This also allows us to state the multidimensional Fokker-Planck Equation for the stochastic three com-
ponent model. Since we know that F and G satisfy

(56) F =

λ− µT − kTVkTV − δI
pI − cV

 G =

λ+ µT + kTV −kTV 0
−kTV kTV + δI 0

0 0 pI + cV


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we find from the first half of the equation

(57)

3∑
i=1

Fi(X, t) = (λ− µT − δI + pI − cV )

From the second, if we make the following substitutions for G

G =

λ+ µT + kTV −kTV 0
−kTV kTV + δI 0

0 0 pI + cV

 =

a c 0
c b 0
0 0 d


then we see

3∑
i=1

3∑
j=1

3∑
k=1

GikGjk = (a+ c)2 + (b+ c)2 + d2

= (λ+ µT + kTV − kTV )2 + (kTV + δI − kTV )2 + (pI + cV )2

= (λ+ µT )2 + (δI)2 + (pI + cV )2

= λ2 + 2λµT + (µT )2 + (δI)2 + (pI)2 + 2(pcIV ) + (cV )2

With all of this in mind, we can write the multi dimensional Fokker-Planck equation for the stochastic Three
Component Model:

∂p(x, t)

∂t
= − ∂

∂x
[p(x, t)(λ− µT − δI + pI − cV )]

+
1

2

∂2

∂x2

[
p(x, t)(λ2 + 2λµT + (µT )2 + (δI)2 + (pI)2 + 2(pcIV ) + (cV )2

]
4.3. Existence and Uniqueness of Solutions to SDEs

The end goal of crafting the SDE is to find the solution to the stochastic differential equation, or at
the very least, identify its important properties. Since our model is nonlinear, it’s quite difficult to obtain
an analytic representation of a solution, if one even exists, so we resort to computational means in order
to calculate sample paths of solutions. Regardless of how we attempt to obtain a solution, it is important
to verify that the solution we are searching for exists and is unique. For this, we can use theorems from
Øksendal [12] and Mao [11].

Theorem 4.3.1 (Mao). Assume that the stochastic process X(t) satisfies

(58) dX(t) = f(t,X(t))dt+ g(t,X(t))dWt

with the given initial condition X(0) = X0 ∈
[
L2(Rd)

]n
, where f and g satisfy the following conditions for

some T > 0:

(1) (Local Lipschitz) There exists C > 0 and a compact K ⊂ Rd such that for all t ∈ [0, T ] and all
x, y ∈ K

max
{
|f(t, x)− f(t, y)|2, |g(t, x)− g(t, y)|2

}
≤ C|x− y|2

(2) (Stochastic Monotonicity) There exists C > 0 such that for all (t, x) ∈ [0, T ]× Rd such that

xT f(t, x) +
1

2
|g(t, x)|2 ≤ C(1 + |x|2).

Then, there exists a unique solution X(t) to (58) in
[
L2([0, T ];Rd

]n
For the SDE that we have derived and stated at the end of the previous section, the quadratic nature of

the first and second moments and bounds from the previous chapter allow f and g to satisfy both the local
Lipschitz condition and the Stochastic Monotonicity condition. Hence, we are guaranteed the existence of a
unique solution on some time interval, though we do not control the extent of time over which the solution
is known to exist. A more difficult question that remains unanswered is the global existence of this solution.
That is, can this solution be continued to an arbitrarily large time interval, say [0, T ] for any T > 0, or is
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their a maximal time of existence? This question is, unfortunately, far outside the scope of the thesis, and
hence we will not pursue it further.

Of course, from a modeling or applications perspective, explicitly determining the solution would be
much more helpful and provide an enormous amount of information. Since tools for deriving such solutions
for SDEs of our type are not known, we proceed instead by computing solutions numerically. The next
chapter, then, focuses on numerical methods for approximating solutions to stochastic differential equations,
and more specifically, our three-dimensional stochastic model.
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CHAPTER 5

Numerical Methods

5.1. Numerical Methods of Computation

Solutions to stochastic differential equations are difficult, if not mathematically impossible to determine.
Thus, extended amounts of computation must be done in order to calculate the solution. Methods exist to
approximate solutions to these equations, both over intervals of time and at specific points of time. One
of the most basic ones is Euler’s Method. This particular method is part of a larger group of methods of
approximations known as finite difference methods.

5.1.1. Euler’s Method. Euler’s method is a way of solving differential equations with specific initial
values. Consider a function, x over the time interval [t0, tf ], with its derivative, x′, expressed as a function
of x and time: x′ = f(t, x(t)) and an initial value, x(t0) = x0. Then divide up the time interval into n steps
of size h, such that tk = t0 + kh and tf = t0 + nh Then for each step, x(tk+1) can be approximated by
x(tk) + h · f(tk, x(tk)).

At the end of this these calculations, the error between the actual value of the function and the computed
value of the function is proportional to the step size, h. Therefore, decreasing h will decrease the error by
a proportional amount. However, doing so will increase the number of computations necessary to complete
the method over the entire time interval. Considering the time for each calculation is typically on the order
of seconds, a slight increase in time required might not seem like a significant issue. However, when the same
calculation is required for hundreds or thousands of trials, the impact grows that much larger.

5.1.2. Discretization of the System. Suppose we have a system of n stochastic differential equations
given by

dX = [dX1, . . . , dXn]T = [f1(t,X1(t), . . . , Xn(t)), . . . , fn(t,X1(t), . . . , Xn(t))]T

with the initial conditions

X(0) = [X1(0), . . . , Xn(0)]T ,

and we desire to model the system and acquire a solution for the time interval [0, T ]. The first step would
be to discretize time. Suppose our desire for accuracy of the model within the constraints of the system
lead us to require k time steps. We are then left with the sequence of time values t0 = 0, t1 = T

k , t2 =
2T
k . . . . , tk = T . A commonly used notation is to define ∆t := T

k , so the sequence of time values becomes
t0 = 0, t1 = ∆t, t2 = 2∆t. . . . , tk = k∆t.

From here, it is a simple matter to calculate the vector

dX0 = [f1(0, X1(0), . . . , Xn(0)), . . . , fn(0, X1(0), . . . , Xn(0))]T .

The approximation for X(t1) is given by X(t1) = X(t0) + ∆t · dX0. With X(t1) now known, we repeat the
process for

dX1 = f1(t1, x1(t1), . . . , xn(t1)), . . . , fn(t1, x1(t1), . . . , xn(t1))]T

and use it to calculate X(t2) = X(t1) + ∆t · dX1. This process is repeated through X(tk) and the end result
is a sequence of vectors [X(t0), . . . ,X(tk)] corresponding to the given sequence of time values. These values
can be plotted to give an idea of what the solution looks like, or used computationally for other purposes.
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5.1.3. Application to SDEs. As seen, when we desire to model the solution to an ordinary differential
equation, the computations are quite simple and deterministic. Once you go through them once, you can be
assured that the same results will occur every time. With a stochastic differential equation, the fundamentals
are quite the same. The time interval and function are discretized, and the formula for calculating the next
value of the equation from the previous one is exactly the same. However, when the discretized derivative
for a stochastic process is calculated, it involves a “dW” term. In the discritized sense, we recall that
dW ≈ W (tk+1) −W (tk) and that each difference in W is normally distributed with mean 0 and standard
deviation equal to the time difference. Therefore, we know dW ≈W (tk+1)−W (tk) ∼ N(0, tk+1− tk). Since
most computational software includes a pseudo-random number generator, we can calculate a dW whenever
its necessary. The end result of one run of Euler’s method will then be one sample path of the stochastic
process that solves the stochastic differential equation.

The result of solving a stochastic differential equation is a stochastic process, which yields a random
variable when evaluated at a given point. Therefore, if we were to run two separate trials of Euler’s method
for the same SDE, we are very likely to get two entirely different sample paths. It is necessary to run many
such trials in order to determine the probability distribution of the process over the entire interval and at a
specific point.

5.1.4. Example SDE. The following figure (5.1) is an example of Euler’s method applied to the process
Y = W (t), with the corresponding SDE dY = dW and initial conditions Y (0) = 0. We will consider this over
the interval [0, 1] with step size .001. We will use the properties dW ∼ N(0, 0.001) to aid in our calculations.
The approximation from Euler’s method will then be Y (tk+1) = Y (tk) + ∆t · dW .

Figure 5.1. Plots of Euler’s Method with 10 trials

As we can see, the sample paths begin clustered very closely around the line y = t, but as time increases
they grow more and more spread out, and resemble a normal distribution at the end. (Figure 5.2)
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Figure 5.2. Histogram of end results with 1000 trials

The time required for this rather simple stochastic process is much greater than for the ordinary Euler’s
method. Generation of a random variable is a relatively intensive computational task, and requires non-trivial
amounts of time.

5.2. Boundary Conditions

When dealing with our particular model for HIV population growth within the human body, we must
make some choices regarding our boundary conditions, in order to keep our model in a reasonable realm of
biological accuracy.

5.2.1. Definitions. Boundary conditions come into play when the process being modeled nears a bound
of the values the process can take on. In our model, these boundaries are drawn from the biological interpre-
tation of the model, specifically, they state that none of the populations can drop below zero. This makes
sense, since it is impossible to have negative amounts of a population. Therefore, since the computation of
the model does permit the populations to drop below zero, we must find some way of correcting this. In the
code, these are triggered with if-statements that come into play when a population goes below zero.

Once the population is negative, there are three ways of dealing with it:

(1) Set the population to the boundary level. These boundary conditions are known as absorbing, since
if the population drops below the boundary value, the boundary “absorbs” it.

(2) Set the population to the positive value with the same magnitude as the negative value. These are
reflecting boundary conditions, since it is as if the population bounces off the boundary.

(3) Set the population to some random value between the two above options. This is a stochastic
boundary condition, since it randomly chooses something between the other two.

5.2.2. Boundary Conditions within the Model. This figure (5.3) demonstrates what these bound-
ary conditions would look like. Suppose we have two paths, red and blue, and we desire to have a boundary
at y = 0. If we assign to the red path a reflecting boundary, when the path hits the boundary, as opposed
to continuing on its path (the dotted line), it returns from the direction it came. At this point, the absolute
value of the red solid line and the red dotted line are the same. On the other hand, the blue line has an
absorbing boundary condition. When the blue path impacts the boundary, the path takes the boundary
value and stays at that point for the remainder of the time.

Coding boundary conditions within the model is not complex, but the behavior of the system can be
changed dependent on the type of boundary used. Before delving into the effects the various boundary
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conditions have on the system, it is important to note that the T-cell population in the model is never
actually allowed to hit zero. Rather, the value eps in MATLAB is used. This variable eps is short for
epsilon, and has a value of approximately 2.2204 × 10−16. This near zero value is used in place of zero
because using zero would, in some cases, result in abnormal behavior in the calculations within the code or
cause undesired premature equilibriums in the model.

Figure 5.3. Boundary Conditions

When simulating the equations, both reflecting and the modified absorbing boundary conditions were
applied in the way described above. The two figures (5.4,5.5) demonstrate the results of each of these runs.
The important thing to note in this case is the bimodal distribution of the healthy T-cells in the absorbing
boundary condition figure. Some of the population spikes, then drops off rapidly, while another significant
amount of the population spikes than slowly fades away. This is in direct contrast to the reflecting boundary
conditions, which all see the spike in population, followed by the rapid drop off.
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Figure 5.4. Plots of 3CM (Absorbing Boundary Conditions)



5.3 Coding the Three Component Model 41

Figure 5.5. Plots of 3CM (Reflecting Boundary Conditions)

5.3. Coding the Three Component Model

The simulation of the Three Component Model was developed in MATLAB, and there were several
different paths taken to get final probability distributions, and each of them differ in their method of com-
putation.

5.3.1. The Discrete Simulation. This code simulates the discrete model given in the previous section.
As with all of the code, the basic idea is to determine how the populations change over a time interval, and
run that simulation many times in order to obtain data that can be analyzed in a Monte-Carlo method. We
begin here by defining the number of trials, the length of the time interval, and the number of steps across
the time interval. We also define the state change vectors. Recall from before that these vectors take the
form [x, y, z], where x, y, and z can only take values of +1, −1, or 0.

Once these beginning steps are complete, initial conditions are generated for the first trial. From these
populations, the probability of each state change vector occurring is calculated. Recall that these probabilities
are tied to the differential equation and depend on the population values. Next, a uniform random number
from the interval [0, 1] is generated by MATLAB, and scaled to the interval [0, P ], where P is the sum of
the probabilities. This interval is broken down into subintervals of the form [0, p1), [p1, p1 + p2), . . . , [p1 +
· · · + p8, P ). In this way, the width of each interval is directly proportional to a probability. We determine
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Set Initial Conditions
Define states, set
time interval, set
number of trials

Calculate Probabilities

Choose random
state change

Change population
over timestep. End of

interval?

Plot path, save end
values. Trials

complete?

Plot average path,
create histogram

of end values

yes

yes

nono

Figure 5.6. Flow chart representation of the simulation process

which interval the random number fits into and select the corresponding state change vector to add to the
population. This constitutes one time step.

Once the entire time interval has been crossed, the path is plotted and the end values stored. The process
is repeated for each trial, and at the end of all of the trials, the average plot is created, as is a histogram of
all the end values. In this way, we can determine the percentage of cases in which the end virus level was
beneath detectable concentrations.

The flow chart (figure 5.6) gives a general idea of what is being accomplished in the code. Structurally,
the code contains two nested for−loops, one for the time interval and one for the set of trials.

5.4. Coding Stochastically

Modeling the stochastic version offer advantages not seen in other forms of modeling. Primarily, when
we model stochastically, we get to observe the path each trial takes, as opposed to just observing the average
path. With this, we get a much better idea of the distribution of paths at a given sample time. The downside,
however, is that this modeling is computationally expensive and requires significantly more trials per sample
to get acceptable results.

5.4.1. The Basic Stochastic Model. The basic stochastic simulation uses MATLAB to create thou-
sands of sample paths of the populations over time, with each path using the same set of coefficients and
initial conditions. The actual code bears more resemblance to the discretized simulation than the deter-
ministic one, due to the method of implementing the simulation. For each sample path, or trial, the time
interval is divided in separate intervals. At the endpoint of each interval, the expected change in population
is calculated. This expected value change is the exact same as would have been seen in the deterministic
model. The stochastic model differs, however, with the addition of a variance term. The variance of the
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population change is calculated, and a random vector is generated. The variance matrix is multiplied by
the random vector and added to the expected value. This new population change is then added to the old
population. Once this entire process has been completed over the entire time interval, it is repeated for a
set number of trials. At the end of all the trials, we see the average sample path and the histogram for the
end populations.

Figure 5.7. A simulation of the stochastic model with R=8.18

Again, we note that the green line represents the virus threshold for detection, and that the majority of
paths and the average sample path are below that detection threshold. However, it is incredibly important
to note that not all sample paths fall below there.
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CHAPTER 6

Conclusion

6.1. Results

To conclude the thesis, we will summarize the theoretical, computational, and biological results obtained
within. Details can be found in Chapters 2− 5, but for brevity and completeness, we highlight them below.

6.1.1. Theoretical Results. The theorems obtained in previous chapters provide information about
the model from a mathematical perspective. In addition to verifying facts necessary to complete the math-
ematical analysis of the system, these theorems demonstrate that the model is biologically relevant, and
remains so for all times, and yield insight into necessary methods of simulation. Below is a brief summary
of the main theorems.

Theorem 1 (Existence and Uniqueness of Solution for the Three Component Model). Given initial
conditions T (0), I(0), and V (0) for the Three Component Model, there exists a unique solution T (t), I(t),
and V (t) that satisfies the system of differential equations for all t ≥ 0 and the given initial conditions.

This theorem proves that a solution exists for the Three Component Model and that this solution is
unique for every unique set of initial conditions. This represents a fundamental step in the analysis of this
system of differential equations. While the three component model has been used previously in other studies,
no article within the literature proves this fundamental fact.

Theorem 2 (Positivity of Solution for the Three Component Model). Given initial conditions T (0) > 0,
I(0) >, and V (0) > 0 for the Three Component Model, the unique solution remains bounded for every t ≥ 0
and possesses the property that T (t) > 0, I(t) > 0, and V (t) > 0 for all t ≥ 0.

With the above result, we confirm the biological relevance of the model. This theorem ensures that
given positive initial values of each population, the system will evolve so as to preserve this property, and
population values will remain positive for all later times. Since negative population values are a biological
impossibility - meaning that the number of T-cells or virions within the body should never become negative
- the confirmation that this event is also a mathematical impossibility within our model helps verify the
relevance of our derivation.

Theorem 3. Dependence of the equilibrium on the reproductive constant R Define the reproductive
constant, R by

R =
kλp

cδµ
.

The infective equilibrium is stable if and only if R > 1. In this case, any solution of the three-component
model possesses the property limt→+∞ V (t) > 0 and the viral infection is persistent. Conversely, the non-
infective equilibrium is stable if and only if R ≤ 1. In this case, any solution of the three-component model
possesses the property limt→+∞ V (t) = 0, and the viral infection becomes extinct.

Finally, this last theorem demonstrates that our analysis of the differential equations can be based
solely on an analysis of the coefficients, and in particular, the value of a single parameter R. While this is
mathematically true, the biological applicability of this statement may fail since it can only be determined
that the virus population either persists or becomes extinct as t → ∞. The theorem is unable to tell us at
what rate this occurs, or what the values of the viral population are for earlier time periods. One might
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guess that eventual extinction should generally imply that the viral population remains small even for small
times. However, as we will see, later numerical results indicate that this is not the case.

6.1.2. Numerical Results. Recall that this project simulated the three component model under many
different conditions. The results were discussed previously in the thesis, but are listed here for convenience
and overview.

Model Coefficients Sample Paths R ≤ 1 V (60) < 40virons
µL

ODE Random 10000 211 2140
SDE Mean Valued 10000 0 1417
SDE Random 10000 300 2536

Table 6.1. Values from the differing simulations of ODE and SDE models

Notice that the proportion of trials within our simulation that resulted in R ≤ 1 is much smaller - by
nearly a factor of ten - than those which resulted in viral populations less than 40 virions per µL approximately
two months after the initial infection. Hence, a standard mathematical definition of extinction, namely
limt→∞ V (t) = 0 which (by Theorem 3) is equivalent to R < 1, is insufficient to accurately describe the
behavior of the viral population on the timescales of biological relevance, specifically during the time period
up to a few months after initial infection. Instead, a more precise determination of viral extinction can be
made by measuring whether the virus population will remain below the current detectable threshold of 40
virions per µL, and under this measure, the probability of extinction is much larger. As can be seen by Table
6.1, the probability of extinction by the former measure is only around 2%, while the probability jumps by
a factor of ten to approximately 20− 25% under the latter notion that we have proposed. In some types of
transmission, such as passage of the disease from a mother to an unborn child or through needlesticks , this
percentage is much closer to current estimates of the probability of extinction after initial infection than the
criteria R ≤ 1.

Figure 6.1. Histograms of end state values from ODE w/ RV coefficients
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Figure 6.2. Histograms of end state values from SDE w/ mean coefficients

Figure 6.3. Histograms of end state values from SDE w/ RV coefficients

The histograms (6.1, 6.2, 6.3) display the end population values for each of the healthy T-cells, infected
T-cells, and virions, as described by a particular model. The top set of figures is for the ordinary differential
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equations simulated with random variable coefficients, the middle set of figures is for the stochastic differ-
ential equation simulated with the mean valued coefficients for each of the parameters, and the final set of
histograms is for the stochastic equations simulated with random variable coefficients. There is line drawn
on the histograms for the viral populations. All entries to the left of this bar represent those simulations
that resulted in the number of virus particles being less than 40 virions per µL. This is, as mentioned before,
the biological threshold for persistence.

6.2. Conclusion

Throughout this research, we sought to answer the question: “How does creating a stochastic model
alter results obtained from simulating the Three Component Model?” The idea for the question came from
Tuckwell and Shipman. They found [17] in their simulations of the model of ordinary differential equation
that viral persistence happened at a rate of approximately 2 %. This was done by calculating randomly
generated R values and counting the number above and below one.

In our work, we did three things. First, we redefined the notion of persistence. We note that the end
viral population, V (60), could less than the threshold of detectability permitted by modern science at a
much greater rate than expected by the R value. What does this mean? It indicates that the methods used
by Tuckwell and Shipman are not as accurate as could be hoped for. It makes clear that a full simulation of
the model is required to get accurate data. Therefore, with our second notion of extinction and persistence
stemming from a biological perspective, we can carry out the simulations again.

With full simulation of the ordinary differential equations, we discovered that viral persistence happened
at a rate of roughly ten times that suggested in [17]. This proves rather conclusively that biological persis-
tence and mathematical persistence, while related, are not identical, and simulation is necessary to realize
the full implications of the model. In reality, persistence can happen at a rate of up to 90 %, if the virus
is transmitted by blood, or around 1 % via intercourse [5]. While 2 % from [17] seems to be accurate,
recall that these coefficients were drawn from people with HIV already, and therefore are biased towards
transmission.

Second, we took the mean valued coefficients and simulated the stochastic differential equations for the
Three Component Model. These coefficients give us the “average” person, in a sense, and the stochasticity
allowed us to simulate this person many times, with slight random variations each time. Based on the
coefficients alone, we would expect the virus to persist all of time, but as we demonstrated, a full simulation
would be required. In addition to this, the added stochasticity would incorporate the randomness inherent
in the external world. The virus persisted most of the time, but far from all of it.

Finally, by combining the first and second methods, we simulated the stochastic model with different
sets of coefficients. The results we obtained were similar to those of the first method. Persistence happened
nearly eight times more than would be expected from the coefficients alone. This demonstrates that the
stochasticity also alters the results of the simulation towards a more realistic end.

Stochastic models tell us more than can be told with models based on ordinary differential equations.
We learned that incorporating stochasticity noticeably alters the results we would otherwise expect from
simulation. This, coupled with a different notion of persistence shows us we can improve the model to more
accurately describe real world conditions.

6.3. Areas of Further Study

Further study could be done in a number of areas. The model could be expanded to include anti-
retroviral treatment (HAART), or to include such biological phenomena as the latent cell reservoir. These
models would then more closely resemble the interaction between the virus and the body. From a more
mathematical end, the Fokker-Planck equation described previously with the paper could be solved for the
probability density at the end of the model. Additionally, the stochastic differential equations themselves
could be studied, and analyzed for their stability and equilibrium. This study was only able to examine
existence and uniqueness of solution.
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While the first set of proposed extensions describe ways to expand an accurate model of extinction
probabilities and the second, methods of expanding purely mathematical knowledge, both would be useful
in further efforts to model HIV in its early stages.
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APPENDIX A

Code

A.0.1. Deterministic Code.

ODEs at different coefficient sets:

1 function sol=PopDer(t,P)
2 %P represents a vector of initial populations in the form [T, I, V]
3

4 lambda = 4.3e−2;
5 mu = .020;
6 k = .19e−3;
7 ∆ = .080;
8 p= 98;
9 c= 3.81;

10

11 sol = [lambda−mu*P(1)−k*P(1)*P(3);k*P(1)*P(3)−∆*P(2);p*P(2)−c*P(3)];

1 function sol=PopDer2(t,P)
2 %P represents a vector of initial populations in the form [T, I, V]
3

4 lambda = .2;
5 mu = .0043;
6 k = 4.8e−3;
7 ∆ = .13;
8 p= 7100;
9 c= 2.06;

10

11 sol = [lambda−mu*P(1)−k*P(1)*P(3);k*P(1)*P(3)−∆*P(2);p*P(2)−c*P(3)];
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Generate figures and statistics from deterministic model:

1 clear
2 clc
3 clf
4

5 lambda = .11;
6 mu = .01089;
7 k = .001179;
8 ∆ = .3660;
9 p=1426.8;

10 c=3.074;
11

12 R=(k*lambda*p)/(mu*∆*c)
13

14 [t,y]=ode45(@PopDer,[0,60],[200,0,4e−7]);
15 subplot(2,3,1), plot(t,y(:,1)), xlabel('Time (days)'),ylabel('Healthy T−cells (units?)');
16 subplot(2,3,2), plot(t,y(:,2)), xlabel('Time (days)'),ylabel('Infected T−cells (units?)');
17 subplot(2,3,3), plot(t,y(:,3)), xlabel('Time (days)'),ylabel('Virus ...

(particles/microliter)'), line([0,60],[40,40],'color','r');
18 [t,y]=ode45(@PopDer2,[0,60],[200,0,4e−7]);
19 subplot(2,3,4), plot(t,y(:,1)), xlabel('Time (days)'),ylabel('Healthy T−cells (units?)');
20 subplot(2,3,5), plot(t,y(:,2)), xlabel('Time (days)'),ylabel('Infected T−cells (units?)');
21 subplot(2,3,6), plot(t,y(:,3)), xlabel('Time (days)'),ylabel('Virus ...

(particles/microliter)'), line([0,60],[40,40],'color','r');



CHAPTER A. CODE 52

A.0.2. Deterministic Code with RV coefficients.

Generate truncated normal distributions

1 function z = truncatednormal(N,mu,sigma,trunc low,trunc high)
2 % truncatednormal: trncated normal random variable generator
3 %
4 % input explanations
5 % N − size of resultant matrix/array
6 % mu − mean of untrncated distribution
7 % sigma − std dev of untruncated distribution
8 % trunc low − low truncation point
9 % trunc high − high truncated point

10 %
11 % output explanation
12 % z − array of size N of truncated random variables with above properties
13 %
14

15 % set the defaults
16

17

18 % If N is not entered, set the default value of N to be 1
19 if (nargin <1) |isempty(N)
20 N=1;
21 end
22

23 %If no mean is given, set it to be 0
24 if (nargin < 2) |isempty(mu)
25 mu=0;
26 end
27

28 %If no standard deviation is given, set it to be 1
29 if (nargin < 3) |isempty(sigma)
30 sigma=1;
31 end
32

33 %If no low end of truncation is given, set it to be negative infinity
34 % prob low is the probability that the the value of the random variable is
35 % less than the truncation point for the given distribution, if trunc low is
36 % empty, set prob low to be zero
37 if (nargin < 4) |isempty(trunc low)
38 trunc low=−inf;
39 prob low=0;
40 else
41 prob low=normcdf((trunc low−mu)/sigma);
42 end
43

44 %If no upper end of trunation is given, set it to be infinity
45 % prob high is the probability that the value of the random variable is
46 % less than the truncaion point. If trunc high is empty, set it to be one.
47 if (nargin < 5) |isempty(trunc high)
48 trunc high=inf;
49 prob high=1;
50 else
51 prob high=normcdf((trunc high−mu)/sigma);
52 end
53

54 % Test for correct order of truncation points
55 if trunc low>trunc high
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56 error 'Must have trunc low less than or equal to trunc high'
57 end
58

59 %Generate a size N standard normal random variable
60 r=rand(N);
61

62 %scale to the interval [plo,phi]
63 r=prob low+(prob high−prob low)*r;
64

65 %Invert using the standard normal
66 z=norminv(r);
67

68 %Rescale and shift using given mean and standard deviation
69 z=mu+sigma*z;
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Generate coefficient sets

1 function [lambda,mu,k,∆,p,c] = CoefCreator;
2 % This function generates random coefficents for use in 3CM.
3

4 % We create the random coefficients based on the data from Stafford, et all
5 % The function "truncatednormal(N,mu,sigma,trunc low,trunc high)" generates
6 % an array of random variables of size N, with mean mu and standard
7 % deviation sigma, truncated to be in the interval [trunc low,trunc high].
8 % The interval of truncation is given to be [0,inf).
9

10

11 % Here we use the max and min values from Stafford et all as the truncation
12 % points.
13

14

15 lambda = truncatednormal(1,.1089,.05727,.043,.20);
16 mu = truncatednormal(1,.01089,.005727,.0043,.020);
17 k = truncatednormal(1,.001179,.001422,.00019,.00480);
18 ∆ = truncatednormal(1,.3660,.193,.13,.80);
19 p = truncatednormal(1,1426.8,2049.36,98,2697);
20 c = truncatednormal(1,3.074,0.64,2.06,3.81);
21 %c=3;
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Ordinary Differential Equations:

1 function sol=Det 3CM(t,P,lambda,mu,k,∆,p,c);
2

3 % This function is the ODE for the deterministic 3CM.
4 % t is time, P is population, coef is the coefficient vector
5

6

7

8 sol = [lambda−mu*P(1)−k*P(1)*P(3);k*P(1)*P(3)−∆*P(2);p*P(2)−c*P(3)];
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Simulate ODE:

1 function Data=ODE Simulator()
2

3 clear
4 clc
5 tic
6

7 % Determine the number of trials
8 trials=100;
9

10 % Create a holding matrix for the end populations and the R value [T I V R]
11 Data=zeros(trials,4);
12

13 % Determine initial conditions
14 IC=[200,0,4e−7];
15

16 % Initialize trials
17 for trial=1:trials;
18

19

20 % Generate Coefficients
21 [lambda,mu,k,∆,p,c] = CoefCreator;
22

23 % Calculate and save R value
24 Data(trial,4)=(k*lambda*p)/(c*∆*mu);
25

26

27 % Solve the ODE
28 % The output is the matrix with time and solution. The imputs are the
29 % function being solved, time span, initial conditions, options, and
30 % other inputs to the function.
31 [t,y] = ode45(@Det 3CM,[0,100],IC,[],lambda,mu,k,∆,p,c);
32

33

34 % Determine how long the solution vector y is
35 length y=length(y);
36

37 % Take the end values of the solution vector to y and store them in data
38 Data(trial,[1:3])=y(length y,:);
39

40 if mod(trial,floor(trials/100))==0
41 fprintf('Percent Completed: %f%%, Time Elapsed: %f seconds \n', trial/trials*100, toc)
42 end
43

44 end
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Plot ODE:

1 clear
2 clc
3 clf
4

5 Data=ODE Simulator;
6

7 hold on
8 subplot(2,2,1), scatter(Data(:,4),Data(:,1)), xlabel('R Value'), ylabel('End T−Cell ...

Population')
9 subplot(2,2,2), scatter(Data(:,4),Data(:,2)), xlabel('R Value'), ylabel('End I−Cell ...

Population')
10 subplot(2,2,3), scatter(Data(:,4),Data(:,3)), xlabel('R Value'), ylabel('End Virus ...

Population')
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A.0.3. Discrete Simulation Code.

1 clear
2 clc
3 clf
4

5

6

7 %Set initial values
8 T0=10000;
9 I0=0;

10 V0=1;
11 InitialValues=[T0,I0,V0];
12

13

14 %Set Coefficients
15 lambda = .272;
16 mu = .00136;
17 K = .00027;
18 ∆ = .33;
19 p=100;
20 c=2;
21

22 %Set number of steps
23 steps=100000;
24

25 %Set total time
26 Time=100;
27

28 %Caclulate time interval
29 t=Time/steps;
30

31 %Generate "Storage" Matrix (will be 3x(Steps+1) sized)
32

33 Population=zeros(steps+1,3);
34 Population(1,:)=InitialValues;
35

36 %Define State Changes
37 S1=[1,0,0];
38 S2=[−1,0,0];
39 S3=[−1,1,0];
40 S4=[0,−1,0];
41 S5=[0,0,1];
42 S6=[0,0,−1];
43 S0=[0,0,0];
44

45

46 %Define number of trials;
47 trials=1000;
48

49 %Set storage matricies for average value and end states
50 Average=zeros(steps+1,3);
51 EndValues=zeros(trials,3);
52

53 %Create a time vector for plotting purposes
54 time=[0:t:Time];
55

56
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57 for trial=1:trials;
58

59 Population(1,:)=InitialValues;
60

61

62

63 for k=1:steps
64 %Calculate probabilities of each state change
65 p1=lambda*t;
66 p2=mu*Population(k,1)*t;
67 p3=K*Population(k,1)*Population(k,3)*t;
68 p4=∆*Population(k,2)*t;
69 p5=p*Population(k,2)*t;
70 p6=c*Population(k,3)*t;
71 psum=(p1+p2+p3+p4+p5+p6);
72 p0=(1−psum)*t;
73

74

75 %Generate a uniform random number, scale it to the sum of probabilities
76

77

78

79

80

81 x=rand*psum;
82

83

84 %State change test
85

86 if x<p1 && x > 0
87 Population(k+1,:)=Population(k,:)+S1;
88 elseif x<p1+p2 && x > 0
89 Population(k+1,:)=Population(k,:)+S2;
90 elseif x<p1+p2+p3 && x > 0
91 Population(k+1,:)=Population(k,:)+S3;
92 elseif x<p1+p2+p3+p4 && x > 0
93 Population(k+1,:)=Population(k,:)+S4;
94 elseif x<p1+p2+p3+p4+p5 && x > 0
95 Population(k+1,:)=Population(k,:)+S5;
96 elseif x<p1+p2+p3+p4+p5+p6 && x > 0
97 Population(k+1,:)=Population(k,:)+S6;
98 else
99 Population(k+1,:)=Population(k,:)+S0;

100 end
101

102

103 %Setting the floor
104

105 %for j=1:3
106 % if Population(k+1,j)<0
107 % Population(k+1,j)=0;
108 % end
109 %end
110

111

112

113

114 end
115

116

117 %Add end state population values to the average to compute the average
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118 %later
119

120 Average=Average+Population;
121

122

123 %Create plots of T,I, and V against time
124 hold on
125 subplot(2,3,1), plot(time,Population(:,1))
126 hold on
127 subplot(2,3,2), plot(time,Population(:,2))
128 hold on
129 subplot(2,3,3), plot(time,Population(:,3))
130

131 %Store end values for display purposes
132

133 EndValues(trial,:)=Population(steps,:);
134

135 end
136

137

138 Average=Average/trials;
139

140 subplot(2,3,1), plot(time,Average(:,1),'r'), xlabel('Time'), ylabel('Healthy T−cells')
141 subplot(2,3,2), plot(time,Average(:,2),'r'), xlabel('Time'), ylabel('Infected T−cells')
142 subplot(2,3,3), plot(time,Average(:,3),'r'), xlabel('Time'), ylabel('Virus Particles')
143 subplot(2,3,4), hist(EndValues(:,1),100, title('Healthy T−Cell Quantity'))
144 subplot(2,3,5), hist(EndValues(:,2),100, title('Infected T−Cell Quantity'))
145 subplot(2,3,6), hist(EndValues(:,3),100, title('Virus Quantity'))
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A.0.4. Stochastic Code.

Simulate and plot ODE with random valued IV:

1 function StochasticSimulator
2

3 clear
4 clc
5 clf
6

7 %We want to go from time t=0 to the end time, t=T. We want to do this in N
8 %steps of length L=T/N. This would be an iterative process. We start with the
9 %populations at time t=0. From there, we can calculate populations at time

10 %L by calculating EV, multiplying it by L and taking VAR, multiplying it by
11 %L, then multiplying that by a dW of unit length. We would start with a
12 %matrix with three columns (for T, I, & V) and N+1 rows.
13

14

15 %Coefficients
16 lambda = .272;
17 mu = .00136;
18 k = .00027;
19 ∆ = .33;
20 p=100;
21 c=2;
22

23 %Initial Values (T,I,V)
24 InitialValues=[200,0,4e−7];
25

26 R=(k*lambda*p)/(c*∆*mu)
27

28 trials=2000;
29 T=60; %Total Time elapsed
30 N=600; % number of trials
31 dt=T/N;
32 time=[0:dt:T];
33 P=zeros(N+1,3);
34 Average=zeros(N+1,3);
35 EndValues=zeros(trials,3);
36 for trial=1:trials;
37 P(1,:)=InitialValues;
38

39

40

41 for i=1:N
42

43 EV=[lambda−mu*P(i,1)−k*P(i,1)*P(i,3);k*P(i,1)*P(i,3)−∆*P(i,2);p*P(i,2)−c*P(i,3)];
44 VAR=[[lambda+mu*P(i,1)+k*P(i,1)*P(i,3), −k*P(i,1)*P(i,3), 0];[−k*P(i,1)*P(i,3), ...

k*P(i,1)*P(i,3)+∆*P(i,2),0];[0,0,p*P(i,2)+c*P(i,3)]];
45

46 dW=[randn;randn;randn];
47 dWt=dW*dtˆ(.5);
48 %A=chol(VAR);
49 A=(VAR)ˆ.5;
50 dP=EV*dt+(A)*dWt;
51 P(i+1,:)=P(i,:)+[dP(1),dP(2),dP(3)];
52

53 %Absorbant Boundrary Conditions
54 %P(i+1, 1) = max( P(i + 1,1), eps) ;
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55 %P(i+1, 2) = max( P(i + 1,2), 0) ;
56 %P(i+1, 3) = max( P(i + 1,3), 0) ;
57

58

59 %Reflective Boundrary Conditions
60 P(i+1, 1) = abs( P(i + 1,1)) ;
61 P(i+1, 2) = abs( P(i + 1,2)) ;
62 P(i+1, 3) = abs( P(i + 1,3)) ;
63

64 end
65

66

67

68

69 %EV=[lambda−mu*P(1)−k*P(1)*P(3);k*P(1)*P(3)−∆*P(2);p*P(2)−c*P(3)];
70 %VAR=[[lambda−mu*P(1)−k*P(1)*P(3), −k*P(1)*P(3), 0];[−k*P(1)*P(3), ...

k*P(1)*P(3)−∆*P(2),0];[0,0,p*P(2)−c*P(3)]]
71

72 hold on
73 subplot(2,3,1), plot(time,P(:,1))
74 hold on
75 subplot(2,3,2), plot(time,P(:,2))
76 hold on
77 subplot(2,3,3), plot(time,P(:,3))
78 Average=Average+P;
79 EndValues(trial,:)=P(N+1,:);
80 end
81

82

83 Average=Average/trials;
84

85 subplot(2,3,1), plot(time,Average(:,1),'r'), xlabel('Time'), ylabel('Healthy T−cells')
86 subplot(2,3,2), plot(time,Average(:,2),'r'), xlabel('Time'), ylabel('Infected T−cells')
87 subplot(2,3,3), plot(time,Average(:,3),'r'), xlabel('Time'), ylabel('Virus Particles')
88 subplot(2,3,4), hist(EndValues(:,1),100, title('Healthy T−Cell Quantity'))
89 subplot(2,3,5), hist(EndValues(:,2),100, title('Infected T−Cell Quantity'))
90 subplot(2,3,6), hist(EndValues(:,3),100, title('Virus Quantity'))
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