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a b s t r a c t 

Several Lagrangian methodologies have been proposed in recent years to simulate advection-dispersion of so- 

lutes in fluids as a mass exchange between numerical particles carrying the fluid. In this paper, we unify these 

methodologies, showing that mass transfer particle tracking (MTPT) algorithms can be framed within the context 

of smoothed particle hydrodynamics (SPH), provided the choice of a Gaussian smoothing kernel whose band- 

width depends on the dispersion and the time discretization. Numerical simulations are performed for a simple 

dispersion problem, and they are compared to an analytical solution. Based on the results, we advocate for the 

use of a kernel bandwidth of the size of the characteristic dispersion length 𝓁 = 
√
2 𝐷Δ𝑡 , at least given a “dense 

enough ” distribution of particles, for in this case the mass transfer operation is not just an approximation, but in 

fact the exact solution, of the solute’s displacement by dispersion in a time step. 
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. Introduction 

In recent years, a number of Lagrangian numerical schemes have

een proposed to simulate advection-dispersion processes in fluids.

ome of these approaches rely exclusively on traditional random walks

o simulate dispersion ( Benson and Meerschaert, 20008; Benson et al.,

017; Bolster et al., 2016a; Bolster et al., 2016b; Ding et al., 2012;

ing and Benson, 2015; Ding et al., 2017; Paster et al., 2013; Paster

t al., 2014; Schmidt et al., 2017; Sole-Mari et al., 2017, Sole-Mari

nd Fernàndez-Garcia, 2018 ), whereas a second class represents disper-

ion through mass transfer between particles that carry a given amount

f fluid ( Herrera et al., 2009,Herrera and Beckie,Benson and Bolster,

016; Schmidt et al., 2018a ). Other authors have hybridized random

alks with mass transfer ( Engdahl et al., 2017; Herrera et al. ) in an

pproach that allows partitioning of total dispersion between mixing

simulated by mass transfer) and non-mixed spreading (simulated via

andom walks). Mass-transfer algorithms can be further subdivided into

wo groups. The first group ( Herrera et al., 2009,Herrera and Beckie )

erives the mass exchange rates from the well-established smoothed

article hydrodynamics (SPH) method ( Gingold and Monaghan, 1977 ),

hich, besides solute transport, has been used in a variety of
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pplications ( Monaghan, 2012 ) such as astrophysics, fluid dynamics,

nd solid mechanics. A second group of approaches, often referred to

s mass transfer particle tracking (MTPT) algorithms ( Benson and Bol-

ter, 2016; Schmidt et al., 2018a ), derive the mass-exchange rate from

tochastic rules governing the co-location probability of particles mov-

ng via dispersion. To date, a relationship between these two method-

logies for mass transfer has not been established. In this paper we

nalytically derive the connection between the SPH and MTPT con-

entions and show that, for specific kernel choices and provided that

quivalent normalization and averaging conventions are used, the SPH

nd MTPT approaches are numerically equivalent. Additionally, for the

xed choice of a Gaussian kernel, we investigate the effect of differ-

ng bandwidth choices on deviations from the analytical, well-mixed

olution. 

. The link between SPH and MTPT 

The SPH approach to approximating dispersion can be summarized

y following ( Herrera et al., 2009, Herrera and Beckie ). Therein, the

ollowing equation describes the time evolution of the concentration,

 i ( t ), carried by a numerical particle labeled 𝑖 = 1 , .., 𝑁, assuming that
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ll particles contain the same amount of fluid: 

𝑑𝐶 𝑖 

𝑑𝑡 
= 2 

𝑁 ∑
𝑗=1 

�̂� 𝑖𝑗 

𝜌𝑖𝑗 

(
𝐶 𝑖 − 𝐶 𝑗 

)
𝐹 
(
𝑿 𝑖 − 𝑿 𝑗 ; ℎ 

)
. (1)

ere, N is the number of particles, X i is the position of particle i , and

 ( r ; h ) is a radial function satisfying 

 𝐹 ( 𝒓 ; ℎ ) = ∇ 𝑊 ( 𝒓 ; ℎ ) , (2)

ith W representing a radially symmetric, translation-invariant kernel

ith bandwidth h . Additionally, �̂� 𝑖𝑗 is the effective dispersion coeffi-

ient that, in the isotropic but spatially variable case, reduces to 

̂
 𝑖𝑗 ∶= 𝑔 

(
𝐷 ( 𝑿 𝑖 ) , 𝐷 ( 𝑿 𝑗 ) 

)
, (3)

here g is an averaging function (e.g., arithmetic or harmonic average).

he quantity ̂𝜌𝑖𝑗 , defined by 

�̂�𝑗 ∶= 𝑔 
(
𝜌𝑖 , 𝜌𝑗 

)
, (4) 

( 𝑿 ; ℎ ) ∶= 

𝑁 ∑
𝑘 =1 

𝑊 

(
𝑿 − 𝑿 𝑘 ; ℎ 

)
, 𝜌𝑞 ∶= 𝜌

(
𝑿 𝑞 ; ℎ 

)
, 𝑞 = 𝑖, 𝑗, (5) 

s an average of the particle densities estimated at X i and X j . A popular

hoice for g , in this case, is the arithmetic average. Note that we make

xplicit the previously suppressed dependence of ̂𝜌𝑖𝑗 on the locations of

he particles, 𝑿 𝑖 , 𝑖 = 1 , … , 𝑁, and the parameter h , which represents the

andwidth of the kernel function W . 

In the specific case that W ( r ; h ) is a Gaussian kernel with the form 

 ( 𝒓 ; ℎ ) = 

(
2 𝜋ℎ 2 

)− 𝑑∕2 exp ( 

− 

|𝒓 |2 
2 ℎ 2 

) 

, (6)

here d is the number of spatial dimensions, we have 

 ( 𝒓 ; ℎ ) = − 

1 
ℎ 2 

𝑊 ( 𝒓 ; ℎ ) . (7)

ubstituting (7) into (1) , integrating the expression (first-order explicit),

nd then rearranging, we arrive at 

 𝑖 ( 𝑡 + Δ𝑡 ) = 𝐶 𝑖 ( 𝑡 ) + 

𝑁 ∑
𝑗=1 

𝛽𝑖𝑗  𝑖𝑗 

(
𝐶 𝑗 ( 𝑡 ) − 𝐶 𝑖 ( 𝑡 ) 

)
, (8)

n which we define 

𝑖𝑗 ( ℎ ) ∶= 

𝓁 2 
𝑖𝑗 

ℎ 2 
, 𝓁 𝑖𝑗 ∶= 

√ 

2 ̂𝐷 𝑖𝑗 Δ𝑡 , (9) 

 𝑖𝑗 ( ℎ ) ∶= 

𝑊 

(
𝑿 𝑖 − 𝑿 𝑗 ; ℎ 

)
𝜌𝑖𝑗 ( ℎ ) 

. (10) 

ere, we once again denote the dependence of 𝛽 and  on h because,

or a different kernel bandwidth choice, these quantities will be altered

orrespondingly. Note that 𝓁 ij in (9) is equal to the characteristic dis-

ance of the average dispersion of particles i and j in a time step Δt . 

We now consider, for the sake of comparison, the MTPT algorithm

riginally formulated by Benson and Bolster (2016) , further discussed

n Schmidt et al. (2018a) , and given by 

 𝑖 ( 𝑡 + Δ𝑡 ) = 𝐶 𝑖 ( 𝑡 ) + 

1 
2 

𝑁 ∑
𝑗=1 

 𝑖𝑗 

(
𝐶 𝑗 ( 𝑡 ) − 𝐶 𝑖 ( 𝑡 ) 

)
, (11)

here  𝑖𝑗 is the probabilistic weighting function for a mass transfer from

article j to particle i , with the form 

 𝑖𝑗 = 

𝑃 ( 𝑿 𝑖 − 𝑿 𝑗 ) 
𝜌𝑖𝑗 

. (12)

ere, the function P is the probability density for the co-location of

articles i and j , moving via dispersion, 

 ( 𝑿 𝑖 − 𝑿 𝑗 ; 𝐷, Δ𝑡 ) = 

(
4 𝜋( 𝐷 𝑖 + 𝐷 𝑗 )Δ𝑡 

)− 𝑑∕2 exp [ 

− 

|𝑿 𝑖 − 𝑿 𝑗 |2 
4( 𝐷 𝑖 + 𝐷 𝑗 )Δ𝑡 

] 

(13) 
109 
≡ 𝑊 

(
𝑿 𝑖 − 𝑿 𝑗 ; 

√ 

2( 𝐷 𝑖 + 𝐷 𝑗 )Δ𝑡 
)

= 𝑊 

( 

𝑿 𝑖 − 𝑿 𝑗 ; 
√ 

4 ̂𝐷 𝑖𝑗 Δ𝑡 
) 

= 𝑊 

(
𝑿 𝑖 − 𝑿 𝑗 ; 

√
2 𝓁 𝑖𝑗 

)
, 

here D k ≔D ( X k ), and 𝜌𝑖𝑗 is a normalizing factor that has classically

een chosen to be 𝜌j , as in (5) , with ℎ = 

√
2 𝓁 𝑖𝑗 , in order to make the ma-

rix  (with i, j th entry  𝑖𝑗 ) a left stochastic matrix (i.e., a matrix where

ll columns sum to 1). However, this does not guarantee that  𝑖𝑗 =  𝑗𝑖 .

ence, the concentration increase (or decrease) at particle i due to its

nteraction with particle j by (11) may not match the decrease (or in-

rease) at particle j due to interaction with particle i . As a consequence

f this asymmetry, normalization by ̃𝜌𝑖𝑗 = 𝜌𝑗 may not impose exact mass

onservation. Also, in the original paper Benson and Bolster (2016) , Eqs.

11) is formulated in terms of solute masses instead of concentrations,

hich are, in this case, interchangeable since all particles carry an equal

mount of fluid. 

Comparing Eqs. (8) and (11) , it is evident that the co-location

robability-based mass exchange algorithm of Benson and Bolster

2016) is numerically equivalent to the SPH formalism for 𝛽𝑖𝑗 = 1∕2 for

ll 𝑖, 𝑗 = 1 , … , 𝑁, with the standard deviation associated with particle

o-location by dispersion used for the bandwidth of W in (6) . Note that,

ccording to (9) and (10) , imposing a constant value for 𝛽 ij implies that

he kernel bandwidth h will change with the positions of particles i and

 for spatially-variable dispersion and will depend on Δt , as can be seen

rom (13) . 

Expressions (8) and (11) can be written in a general matrix-vector

orm as 

 ( 𝑡 + Δ𝑡 ) = 𝑨 ( 𝑡 ) 𝑪 ( 𝑡 ) , (14) 

here C i ≔C i , and 

 ∶= 𝑰 + 

[
𝜷◦ − diag 

([
𝜷◦ 

]
𝟏 
)]
. (15)

bove, I is the N ×N identity matrix, 1 is an N ×1 vector of ones, ∘ de-

otes the entrywise, or Hadamard, product, diag ( 𝒙 ) is a square matrix

ith the entries of x on its main diagonal, and the i, j th entries of the

atrices 𝜷 and  are 𝛽 ij and  𝑖𝑗 , respectively. Note that, as mentioned

bove and elsewhere (see Schmidt et al., 2018a ), choosing ̃𝜌𝑖𝑗 to be 𝜌j in

12) ensures that  (denoted as  in (15) ) is a left stochastic matrix (but

ot necessarily symmetric). On the other hand, we note from (15) that

f  is symmetric, then A is also symmetric with rows and columns that

um to 1, guaranteeing conservation of mass. Thus, a better normaliza-

ion approach is to choose ̃𝜌𝑖𝑗 to be ̂𝜌𝑖𝑗 , as in (4) , resulting in symmetric

 and mass-conserving A . 

Schmidt et al. (2018a,b) also present a discretized Green’s function

pproach to simulating dispersion by mass transfer. For a time step Δt ,

his algorithm is described as: 

 ( 𝑡 + Δ𝑡 ) =  ( 𝑡 ) 𝑪 ( 𝑡 ) , (16) 

ith 

 𝑖𝑗 ∶= 

𝑊 

(
𝑿 𝑖 − 𝑿 𝑗 , 𝓁 𝑖𝑗 

)
𝜌𝑖𝑗 

; (17) 

here, once again, ̃𝜌𝑖𝑗 is traditionally defined to be 𝜌j as in (5) . We see

hat the matrix  is nearly identical to  for ℎ = 𝓁 𝑖𝑗 (and to  with

wice the square bandwidth), the only difference being the choice of

on-symmetric normalization using ̃𝜌𝑖𝑗 = 𝜌𝑗 . 

We note that, for a sufficiently large N, 
∑𝑁 

𝑗=1 𝑮 𝑖𝑗 ≈

𝜌( 𝒙 ) 𝑊 ( 𝑿 𝑖 − 𝒙 ) 
𝜌( 𝑥 ) 𝑑 𝒙 = 1 which implies diag (  𝟏 ) ≈ 𝑰 . Hence, knowing

hat, for ℎ = 𝓁 𝑖𝑗 ,  ≈  , we see that the discretized Green’s function al-

orithm (16) is also nearly identical to the SPH and particle co-location

xpression given in (14) and (15) , under the constraint that 𝛽𝑖𝑗 = 1 for

ll i, j . Hereafter, for simplicity, we refer to any matrix 𝜷 with all-equal

ntries as a scalar 𝛽. 



G. Sole-Mari, M.J. Schmidt and S.D. Pankavich et al. Advances in Water Resources 126 (2019) 108–115 

Fig. 1. Concentrations at 𝑡 = 4 for example re- 

alizations with evenly-spaced, randomly- 

spaced, and random-walking particles. The 

black line is the analytical solution. For these 

simulations 𝑁 = 255 , Δ𝑡 = 0 . 01 and ℎ = ℎ ∗ in 

each case. The initial condition is a Dirac delta 

positioned at the center of the domain. Note 

that deviations from the analytical solution are 

caused by irregular, and possibly wide, parti- 

cle spacings, due to low particle numbers in 

the non-equally-spaced cases. (For interpreta- 

tion of the references to color in this figure leg- 

end, the reader is referred to the web version 

of this article.) 
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Thus, we have unified the previously divergent approaches to simu-

ating dispersion that are employed by the SPH and MTPT algorithms.

amely, to frame things in the SPH context, the MTPT algorithms hold

he mass-transfer scaling parameter 𝛽 constant (1/2 or 1) and adapt

he kernel, itself, to the magnitude of dispersion over a time step.

his is in contrast to the traditional SPH approach, where the kernel

andwidth is independent from the dispersion magnitude, and often

et to contain a prescribed “number of neighbors ”, either locally or on

verage ( Tartakovsky et al., 2016 ). The kernel is then scaled in ampli-

ude by the parameter 𝛽 ij to capture the magnitude of the dispersion

ction. 

Having established the link, through the parameter 𝜷 in (15) (alter-

atively viewed as the choice of kernel bandwidth h ), between the SPH

nd MTPT formalisms for simulating dispersion in a Lagrangian con-

ext, we next consider the implications of varying this parameter. In the

ollowing section, we conduct some numerical experiments to consider

hese effects. 

. Numerical investigations 

To analyze the effect of the kernel bandwidth h on SPH transport

imulations, we study a simple case of 1D constant dispersion, where

he initial condition is a Dirac delta pulse located at the center of the

omain, 𝑥 = 0 . 5 [L]. 

For simplicity, the model has no units. The dispersion coefficient is

xed as 𝐷 = 10 −3 [L 2 T 

−1 ], and the total simulation time is 𝑇 = 4 [T].

he analytical solution is then a Gaussian with variance 𝜎2 = 2 𝐷𝑇 (see

ig. 1 ), or, to be more precise, the analytical solution is a normalized,

 -bin histogram populated with evaluations of the density of a Normal

istribution,  (0 . 5 , 𝜎2 ) , at the positions of the particles. We compare

his analytical solution to the numerical results for a range of values of

, N and Δt , using root-mean-squared error (RMSE) as the error metric,

hich is defined to be 

MSE 
(
𝑪 

si ) = 

√ √ √ √ 

1 
𝑁 

𝑁 ∑
𝑖 =1 

(
𝐶 

si 
𝑖 
( 𝑇 ) − 𝐶 

an 
𝑖 
( 𝑇 ) 

)2 
, (18)

here C 

an ( T ) is the analytical solution vector at time T , C 

si ( T ) is the

orresponding result from a given simulation. 

For our numerical experiments, the N particles are initially dis-

ributed over a fixed interval [0, L ], with 𝐿 = 1 [L]. The Dirac delta

nitial condition is represented in the numerical model by placing a par-

icle with concentration N / L at the center of the domain. We compare

hree different types of simulations: equally-spaced, stationary particles

 Section 3.1 ), randomly-spaced, stationary particles ( Section 3.2 ), and

articles moving by Brownian motion random walks ( Section 3.3 ). For

he latter two cases, initial particle positions are assigned according to

raws from a uniform,  (0 , 1) , distribution, and ensembles of 9 520 and

 660 realizations of each configuration, respectively, are performed in

rder to obtain a smooth estimation of the expected error by averaging

ver the ensemble. For fixed values of N and Δt , we define h ∗ as the
110 
andwidth for which the lowest average RMSE is obtained, i.e., 

 ∗ = argmin 
ℎ> 0 

(
RMSE 

(
𝑪 

si ; ℎ 
))

, (19)

here RMSE 
(
𝑪 

si ; ℎ 
)

is the average RMSE over all realizations. 

.1. Equally-spaced, stationary particles 

Fig. 2 shows RMSE (18) as a function of h for different values of

 and Δt , for simulations with evenly-spaced, stationary particles. In

his case we observe a high degree of overlap between the curves, since

arginal changes in N and/or Δt do not always have a significant effect

n the simulation results. The simple explanation for this is that, for a

xed Δt that implies a given dispersion distance, 𝓁 = 

√
2 𝐷Δ𝑡 , increasing

 beyond a certain point does nothing to improve the “resolution ” of

he simulation, and the reverse also holds. We see that, given a high

nough density of particles ( N sufficiently large), the closest possible

epresentation of the dispersion equation (lowest RMSE) occurs for

= 1 . In other words, for evenly-spaced particles, the smoothing kernel

ssociated with 𝛽 = 1 is virtually free of numerical error when used in

he SPH algorithm, as it in fact matches the analytical solution of the

olute’s dispersion over a time step. It is worth noting here that this

alue of 𝛽 = 1 does not correspond to the particle co-location algorithm,

iven in (11) (see Benson and Bolster, 2016) , but to the generalization

f the Green’s function algorithm instead ( Schmidt et al., 2018a ),

hich is discussed in Section 2 . From a physical point of view, using

 kernel bandwidth larger than 𝓁 ( 𝛽 < 1), could be seen as equivalent

o assuming that the solute mass carried by each particle is Gaussian-

istributed in space over some support, rather than a Dirac delta, prior

o the start of the time step ( Schmidt et al., 2017 ). This is consistent

ith the fact that, for low N , the RMSE can be reduced (up to a certain

oint) by using a larger kernel; i.e., the assumption that each particle is

istributed over some support can mitigate the need for more particles.

onversely, choosing a kernel bandwidth significantly smaller than

 ( 𝛽 > 1), in addition to not having a clear physical meaning, generates

umerical instabilities because the mass transfer between two particles

n one time step may be larger than the difference between their masses

see (8) ). As a result, these cases are excluded from the results shown in

ig. 2 . 

Some of the aforementioned relations can be better observed in

ig. 3 . Given a coarse time discretization ( Fig. 3 (a), green curves and

arkers), h ∗ does not depend on s , and ℎ ∗ = 𝓁. Given a finer time dis-

retization and a low particle density, we have the relation h ∗ ∝s (see

he linear trend, for large s , in the yellow curves of Fig. 3 (a)). This pro-

ortionality is consistent with the known theoretical behavior for the

runcation error of the SPH interpolation, given evenly-spaced particles

 Quinlan et al., 2006 ). In examining the relation of h ∗ to the disper-

ion distance 𝓁 = 

√
2 𝐷Δ𝑡 in Fig. 3 (b), we observe that, for sufficiently

igh values of N and Δt , we have ℎ ∗ = 𝓁 (corresponding to 𝛽 = 1 , see

he clearly distinguished minima in Fig. 2 ), and otherwise, ℎ ∗ ≃ 𝑠 ∕ 
√
2

the curves with less pronounced minima in Fig. 2 ). All these relations
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Fig. 2. Numerical results for evenly-spaced, stationary par- 

ticles. RMSE (18) , as a function of the kernel bandwidth h , 

is given for different combinations of N and Δt . The dashed, 

semitransparent vertical lines indicate the values of h that cor- 

respond to 𝛽 = 1 ( ℎ = 𝓁 = 
√
2 𝐷Δ𝑡 ) for a given value of Δt . (For 

interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 3. Numerical results for evenly-spaced, 

stationary particles. (a) Bandwidth h ∗ associ- 

ated with the minimum RMSE plotted against 

the particle spacing 𝑠 = 𝐿 ∕ 𝑁, for different Δt 

values (see color legend on Fig. 2 ). (b) Band- 

width h ∗ associated with the minimum RMSE 

plotted against the dispersion distance 𝓁 = √
2 𝐷Δ𝑡 given different N values (see marker 

legend on Fig. 2 ). (c) Lowest-error bandwidth 

h ∗ against particle spacing 𝑠 = 𝐿 ∕ 𝑁, both nor- 

malized by the dispersion distance 𝓁 = 
√
2 𝐷Δ𝑡 . 

(For interpretation of the references to color in 

this figure legend, the reader is referred to the 

web version of this article.) 
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re summarized by the two distinguishable regimes that can be seen in

ig. 3 (c), wherein h ∗ and s are non-dimensionalized via scaling by the

ispersion distance 𝓁. 

.2. Randomly-spaced, stationary particles 

The numerical results for randomly-distributed particles show less

istinct trends, in terms of matching the analytical solution, than those

een for the evenly-distributed particles of Section 3.1 , and this can be

een in Fig. 4 . In this case, the RMSE does not always have such a clearly

dentifiable minimum in the vicinity of h ∗ , nor does h ∗ reliably corre-

pond to 𝛽 = 1 , as we saw in Section 3.1 . Rather, its behavior appears to

oughly agree with the theoretical SPH truncation error for randomly-

paced particles ( Quinlan et al., 2006; Tartakovsky et al., 2016 ), which

an be expressed as the summation of two terms: the smoothing error,

hich scales with h ; and the quadrature error, which scales with ⟨s ⟩/ h ,
here ⟨s ⟩ is the expected particle separation (here, ⟨𝑠 ⟩ = 𝐿 ∕ 𝑁). Balanc-

ng these two terms results in ℎ ∗ ∝
√⟨𝑠 ⟩, and hence for that choice of

andwidth the truncation error scales with 
√⟨𝑠 ⟩. This is consistent with

he results shown in Fig. 4 , where, given ℎ = ℎ ∗ (i.e., considering only

ach curve’s minimum), the RMSE scales with the particle number as

MSE ∝ 𝑁 

−1∕2 . 

It is only when Δt adopts large values that it appears to have a no-

iceable influence on the RMSE. This behavior is also evident in the

elative insensitivity of h ∗ to 𝓁, as can be seen in Fig. 5 (b). In Fig. 5 (a)

e see that the relation of h ∗ to the average particle spacing ⟨s ⟩ is not
111 
inear, not even for small Δt , unlike in the evenly-spaced particle case.

nstead, we observe a range of slopes in the log-log space (about 1/2

nd lower), which can be related to the aforementioned truncation er-

or ( Quinlan et al., 2006 ), which is minimized when ℎ ∝
√⟨𝑠 ⟩. Unlike

he equally-spaced case ( Fig. 3 (c)), we do not observe a single linear

rend in Fig. 5 (c) for the relationship between h ∗ / 𝓁 and ⟨s ⟩/ 𝓁. Rather,

e observe the general tendency that ⟨s ⟩→0 implies h ∗ →𝓁. For the

ange of tested values, a relatively high particle density, of ⟨s ⟩≲0.01 𝓁,

s required to observe the relation h ∗ ≃𝓁. 

.3. Random-walking particles 

The same set of simulations are also conducted for a hybrid model

n which the dispersion coefficient is partitioned as 

 = 𝐷 RW 

+ 𝐷 MT , (20)

here D MT is the dispersion coefficient used in the SPH/MTPT algo-

ithm described in the previous section, and particles move by Brownian

otion, according to the Langevin equation. For a time discretization

 𝑡 1 , 𝑡 2 , … , 𝑡 𝑛 } , with 𝑡 𝑘 +1 = 𝑡 𝑘 + Δ𝑡, 

 

𝑘 +1 
𝑖 

= 𝑋 

𝑘 
𝑖 + 𝜉𝑘 𝑖 

√
2 𝐷 RW 

Δ𝑡 , (21)

here 𝑋 

𝑘 
𝑖 
∶= 𝑋 𝑖 ( 𝑡 𝑘 ) , and 𝜉𝑘 

𝑖 
is a random number drawn from a standard

ormal,  (0 , 1) , distribution. With an appropriate choice of D RW 

and

 MT , this type of approach can be used to give a separate treatment

o the non-mixed spreading (RW) and the actual mixing (MT). Several
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Fig. 4. Numerical results for randomly-spaced, stationary parti- 

cles. Averaged RMSE (18) , as a function of the kernel bandwidth 

h , is given for different combinations of N and Δt . The dashed, 

semitransparent vertical lines indicate the values of h that corre- 

spond to 𝛽 = 1 ( ℎ = 𝓁 = 
√
2 𝐷Δ𝑡 ) for each value of Δt . (For inter- 

pretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 5. Numerical results for randomly- 

spaced, stationary particles. (a) Bandwidth 

h ∗ associated with the minimum RMSE 

plotted against the average particle spacing ⟨𝑠 ⟩ = 𝐿 ∕ 𝑁, for different Δt values (see color 

legend on Fig. 4 ). (b) Bandwidth h ∗ associated 

with the minimum RMSE plotted against the 

dispersion distance 𝓁 = 
√
2 𝐷Δ𝑡 given different 

N values (see marker legend on Fig. 4 ). (c) 

Lowest-error bandwidth h ∗ against average 

particle spacing ⟨𝑠 ⟩ = 𝐿 ∕ 𝑁, both normalized 

by the dispersion distance 𝓁 = 
√
2 𝐷Δ𝑡 . (For 

interpretation of the references to color in this 

figure legend, the reader is referred to the web 

version of this article.) 
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uthors ( Gelhar et al. (1979) , Gelhar and Axness (1983) , Cirpka et al.

1999) and Werth et al. (2006) ) have suggested that these correspond to

he anisotropic spreading (longitudinal minus transverse hydrodynamic

ispersion) and the isotropic mixing (molecular diffusion plus transverse

ydrodynamic dispersion) parts of the dispersion tensor, respectively.

ere we simply set 𝐷 RW 

= 𝐷 MT = 𝐷∕2 . Note that, for this partitioning,

andom walks do not significantly perturb spatial concentrations about

heir expected value. That is, the concentration difference between two

patially coincident particles is negligible, meaning that the concentra-

ions at a given time vary “smoothly ” with the particle positions X i (see

ig. 1 , yellow markers). This is because particles exchange mass at the

ame rate at which they diffuse by Brownian motion. For this reason,

e can study the influence of h on the numerical results when parti-

les are random-walking and compare to the case where particles are

tationary (as in Sections 3.1 and 3.2 ), without introducing the concen-

ration variance that would be otherwise (purposefully) induced by set-

ing D RW 

≫D MT . Since, at 𝑡 = 0 , there is only one particle with nonzero

oncentration, a strong variability in the results is introduced by the ran-

om motion of that particle in the initial stages of the simulation, when

t is carrying nearly all the solute mass in the system. For this reason, in

rder to favor faster convergence of the RMSE with the number of simu-

ations, we set that singular particle to be motionless and to use the full

ispersion coefficient in its mass-transfer calculations (i.e., for that par-

icle, 𝐷 MT = 𝐷 and 𝐷 RW 

= 0 ). An alternative approach to overcome the
112 
ame issue could be to use more particles to represent the initial Dirac

elta condition. 

The behavior of the RMSE in this case ( Fig. 6 ) can be seen as oc-

upying a middle ground between the equally-spaced ( Fig. 2 ) and the

andomly-spaced ( Fig. 4 ), stationary cases. The distribution of particle

pacings in the random-walking case at any given time is identical to the

tationary randomly-distributed case, but in the former, the expected, or

ime-averaged, particle spacing distribution is much narrower, approxi-

ating the stationary, evenly-spaced case in that sense. For that reason,

e do expect the value of h ∗ for a random-walking model, in the con-

ext of this specific example, to be bounded between the two extreme

tationary cases, which may be thought of as the most ordered and disor-

ered systems, respectively. Note, however, that the actual values of the

MSE in Fig. 6 are on the same order of magnitude as for the randomly-

istributed, stationary particles ( Fig. 4 ), and they can be even higher.

his may be attributed to the added natural variability of Brownian ran-

om walks used to represent half of the dispersion, as opposed to the de-

erministic nature of mass transfers. For high enough N and Δt , we can

ee that RMSE minima occur at ℎ ∗ = 𝓁 and are strongly pronounced.

therwise, we see milder minima and h ∗ > 𝓁, similarly to what is ob-

erved for equally-spaced particles ( Fig. 2 ). In these regions of milder

inima, we see the approximate scaling RMSE ∝ 𝑁 

−1∕2 given ℎ = ℎ ∗ ,

hich, in this behavior, is similar to the randomly-spaced, stationary

ase ( Fig. 4 ). 
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Fig. 6. Numerical results for random-walking particles. Averaged 

RMSE (18) , as a function of the kernel bandwidth h , is given for 

different combinations of N and Δt . The dashed, semitransparent 

vertical lines indicate the values of h that correspond to 𝛽 = 1 for 

each value of Δt . (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 7. Numerical results for random-walking 

particles. (a) Bandwidth h ∗ associated with 

the minimum RMSE plotted against the av- 

erage particle spacing ⟨𝑠 ⟩ = 𝐿 ∕ 𝑁, for differ- 

ent Δt values (see color legend on Fig. 4 ). 

(b) Bandwidth h ∗ associated with the mini- 

mum RMSE plotted against the dispersion dis- 

tance 𝓁 = 
√
2 𝐷 MT Δ𝑡 given different N values 

(see marker legend on Fig. 4 ). (c) Lowest-error 

bandwidth h ∗ against average particle spacing ⟨𝑠 ⟩ = 𝐿 ∕ 𝑁, both normalized by the dispersion 

distance 𝓁 = 
√
2 𝐷 MT Δ𝑡 . (For interpretation of 

the references to color in this figure legend, the 

reader is referred to the web version of this ar- 

ticle.) 

 

w  

h  

s

f  

g  

𝓁  

s  

t  

l  

f

4

 

g  

t  

t  

o  

n  

c  

d  

i  

t  

t  

p  

a  

(  

i  

i  

s  

s  

m  

l

 

r  

i  

ℎ  

i  

i  

i  

a  

k  

a  

o  

b  

H  

d  

c  

c  

d  

g  
We see that for a fine time discretization (blue line in Fig. 7 (a)),

e have ℎ ∗ ∝
√⟨𝑠 ⟩, which, as mentioned in Section 3.2 , indicates that

 ∗ in these regimes is mainly controlled by the truncation error of the

patial interpolation. On the other hand, we see a clear trend that ℎ ∗ = 𝓁
or large enough N and Δt , as evidenced by the triangle symbols and

reen markers in Fig. 7 (b). As in the previous cases, h ∗ departs from

 at some threshold as the relative spacing ⟨s ⟩/ 𝓁 increases. Like in the

tationary, randomly-spaced case, and unlike the equally-spaced case,

his threshold value for ⟨s ⟩/ 𝓁 appears to depend on 𝓁 (i.e., no single

inear trend is observed in Fig. 7 (c), unlike in Fig. 3 (c)). Nevertheless,

or the range of tested values, h ∗ ≃𝓁 for ⟨s ⟩≲0.1 𝓁. 

. Summary and discussion 

In this paper, we demonstrate an equivalence between the La-

rangian SPH (smoothed particle hydrodynamics) and MTPT (mass

ransfer particle tracking) methods for simulating dispersion, provided

hat the spatial kernel being employed is Gaussian. These two methods

riginate from completely different interpretations. The SPH commu-

ity views their methods (classically speaking, as recent work has in-

luded random walks in SPH simulations, Herrera et al. ) as solving the

ispersion equation by projecting the particles onto the continuum us-

ng radial basis functions (kernels) and approximating the solution on

hat kernel space. The random walk particle tracking community views

he MTPT methods considered in this paper in two ways: (i) a first-

rinciples approach, wherein mass-transfers between moving particles
113 
re scaled by the probability that these particles co-locate via dispersion;

ii) a discretization of the Green’s function for the dispersion equation,

n which a particle’s solute mass is spread in space via mass-transfers to

ts nearest neighbors. Previously, these two MTPT methods were con-

idered to be distinct approaches, and neither had rigorous proofs as-

ociated with it. As a result of this work, however, both of these MTPT

ethods now inherit a rigorous theoretical underpinning from the SPH

iterature. 

The numerical investigations we conduct yield compelling results

egarding the proper Gaussian kernel bandwidth for particle track-

ng simulations. We see strong evidence that a kernel with bandwidth

 = 𝓁 = 

√
2 𝐷Δ𝑡 (i.e., imposing 𝛽 = 1 ) is the ideal choice, provided there

s a “dense enough ” spatial distribution of particles. This makes intu-

tive/physical sense because, with bandwidth 𝓁, this Gaussian function

s the fundamental solution of the dispersion equation. In other words,

side from the error introduced in the normalization step, using this

ernel for mass transfer is not an approximation, but rather a semi-

nalytical solution of the dispersion in a time-step of length Δt . We also

bserve that, counter-intuitively, a coarser time-discretization may be a

etter choice than a finer one, if that allows one to use bandwidth 𝓁.

owever, there may be cases in which the intent is to reproduce the

ispersion equation without the distortion associated with a low parti-

le density (a subject that we discuss below), but a high particle density

annot be afforded, computationally (as may be likely to occur in multi-

imensional systems). If, in these cases, the use of a long time-step would

enerate other forms of error (for instance, in the chemical reactions),
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hen a wider kernel bandwidth than 𝓁 (following the traditional SPH

andwidth selection rules-of-thumb) may be a better choice when seek-

ng a compromise between accuracy and efficiency. One way to think of

his is to consider the wider-bandwidth particle to be a “macro-particle, ”

r cluster of smaller particles, that is distributed in space over some sup-

ort volume. 

Additional conclusions can be drawn from each of the individual

ases tested in Section 3 . In the equally-spaced, stationary particle case,

 = 𝓁 is clearly the optimal bandwidth choice, provided that N is suf-

ciently large, as to capture the magnitude of dispersion, described by

 = 

√
2 𝐷Δ𝑡 (i.e., particles must be close enough to “see ” one another). 

Considering the randomly-distributed, stationary particle case, we

ee a different story, in that RMSE tends to be more related to average

nter-particle spacing, ⟨𝑠 ⟩ = 𝐿 ∕ 𝑁, than it is to the dispersion distance,

. This is most likely because, for the range of N and Δt values tested,

he RMSE is dominated by the truncation error of the SPH interpolation.

evertheless, according to some authors in particle methods (e.g., Ding

t al., 2017; Paster et al., 2014 ), the distortion of the numerical solution

aused by heterogeneity in the inter-particle spacing and low particle

ensities can represent incomplete mixing conditions, rather than being

ust a numerical error. If we subscribe to this view, then the randomly-

paced case represents areas in which particles are poorly-mixed and

emain poorly mixed for the duration of the simulation. From that per-

pective, using the 𝓁 bandwidth would only be capturing the “average

ixedness ” of such a simulation, fully simulating diffusive mixing in

ell-mixed areas and under-simulating mixing in poorly mixed areas.

n light of this, the increase in RMSE could be thought of not as an er-

or, but as desirable deviations from the well-mixed solution, due to

hysically meaningful areas of poor mixing. 

For the case of random-walking particles, we find that the qualitative

ehavior of the RMSE with respect to the bandwidth h can be placed in

 middle ground between the other two scenarios. In fact, the minima

 h ∗ ) are found to be bounded in this case between the two former cases.

t is clear from the results that, despite the particle disorder, the depen-

ence of the RMSE on h should not be understood as a function of the

article density alone. Instead, the error originated in deviating from the

ispersion kernel bandwidth ℎ = 𝓁 should also be considered. Again, if

he effects of particle disorder on the numerical solution are considered

o be physically meaningful, it makes sense that random-walking parti-

les are closer to representing a well-mixed system (distinguishable by

 ∗ = 𝓁) than stationary randomly-distributed particles, since in this case

he poorly-mixed areas are not persistent in time. 

We believe the results of our numerical experiments are relevant

n a general sense, despite representing the specific simple case of a

irac delta initial condition in a one-dimensional setting. This partic-

lar dispersion problem, where one initial concentration pulse spreads

y dispersion, is no doubt the simplest one; however, any more complex

roblem can be thought of as unions of Dirac delta initial conditions, at

east from a computational/discrete standpoint. As long as the physics

re being captured on a local, particle level, as is demonstrated here,

ore complicated conditions will also be properly simulated. Addition-

lly, we expect the scaling with s and 𝓁 to be analogous for isotropic

ispersion in higher dimensions because mass transfers are merely a

unction of Euclidean distance between particles, and hence not sub-

tantively different in higher spatial dimensions. However, the scaling

elations will likely need to be reformulated in terms of fill distance,

ather than the simple inter-particle spacing we see here in 1D. Besides,

he analysis performed in Section 3 would undoubtedly become more

omplex in the case of anisotropic and spatially variable dispersion. 

The traditional SPH extension to anisotropic dispersion entails a

ore complicated expression for �̂� 𝑖𝑗 in (1) , while maintaining the

sotropy of the kernel W , and this approach may result in negative con-

entrations ( Herrera and Beckie, 2013 ). This is in contrast to the more

traightforward extension of traditional MTPT to anisotropic dispersion,

hich would involve redefining W as an anisotropic multi-Gaussian with
114 
ariance 2 Δt · g ( D ( X i ), D ( X j ))/ 𝛽, where g is some averaging function. The

ubject of anisotropy is out of the scope of this paper and should be

ddressed in future work. Nevertheless, as mentioned in Section 3 , an-

ther suitable approach to reproducing anisotropic dispersion would be

o split the dispersion tensor between an isotropic and an anisotropic

art, using the isotropic SPH/MTPT method addressed here to simulate

he former and reproducing the latter with random walks. 

Open questions do remain in this area. For instance, we only con-

ider the Gaussian kernel in our analysis and results. Other kernels are

ommonly used in the SPH literature, and compactly-supported kernels

re known to result in computational speedup. A standard choice is the

ompactly-supported Wendland kernel that has been shown to approach

 Gaussian in the infinitely-smooth, limiting case ( Chernih et al., 2014 ).

ow much error is introduced by this approximation, and how does this

ompare to the common practice or imposing a cutoff distance of 3 h for

ass transfers, as is commonly done in the particle tracking literature? 

The hybridization of SPH/MTPT with random walks is a very recent

echnique that, to date, has not been studied in depth. In this work, we

ompare the numerical results from one such model with an analytical

olution in the particular case wherein the simulation of the full dis-

ersion tensor is partitioned equally between random walks and mass

ransfers. If the purpose of this hybridization is to simulate a two-scale

ystem (as in Herrera et al., 2017 ) in which the random walk accounts

or spreading and the mass transfer accounts for mixing, it would be

roper for the magnitude of mixing to be much smaller than that of

preading, in order to generate states of local disequilibrium (as, for

nstance, to simulate the effect of local heterogeneities in porous me-

ia). Hence, further investigation is needed in this area, in order to: (i)

nalyze the effect of using different spreading/mixing ratios, and (ii)

valuate the capability of this kind of model to correctly reproduce the

eneration, propagation, and decay of sub-scale concentration variance.
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