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Abstract. Motivated by the fundamental model of a collisionless plasma,
the Vlasov-Maxwell (VM) system, we consider a related, nonlinear system

of partial differential equations in one space and one momentum dimension.

As little is known regarding the regularity properties of solutions to the non-
relativistic version of the (VM) equations, we study a simplified system which

also lacks relativistic velocity corrections and prove local-in-time existence and

uniqueness of classical solutions to the Cauchy problem. For special choices of
initial data, global-in-time existence of these solutions is also shown. Finally,

we provide an estimate which, independent of the choice of initial data, yields

additional global-in-time regularity of the associated field.

1. Introduction. A plasma is a partially or completely ionized gas. Such a form
of matter occurs if the velocity of individual particles in a material achieves an
enormous magnitude, perhaps a sizable fraction of the speed of light. Plasmas are
widely used in solid state physics since they are great conductors of electricity due to
their free-flowing abundance of ions and electrons. When a plasma is of low density
or the time scales of interest are sufficiently small, it is deemed to be “collisionless”,
as collisions between particles become infrequent. Many examples of collisionless
plasmas occur in nature, including the solar wind, galactic nebulae, the Van Allen
radiations belts, and comet tails.

The fundamental equations which describe the time evolution of a collisionless
plasma are given by the Vlasov-Maxwell system:
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∂tf + v · ∇xf + (E + v ×B) · ∇vf = 0

ρ(t, x) =

∫
f(t, x, v) dv, j(t, x) =

∫
vf(t, x, v) dv

∂tE = ∇×B − j, ∇ · E = ρ

∂tB = −∇× E, ∇ ·B = 0.

(VM)

Here, f represents the density of (positively-charged) ions in the plasma, while ρ and
j are the charge and current density, and E and B represent electric and magnetic
fields generated by the charge and current. The independent variables, t > 0 and
x, v ∈ R3 represent time, position, and velocity, respectively, and physical constants,
such as the charge and mass of particles, as well as, the speed of light, have been
normalized to one. In the presence of large velocities, relativistic corrections become
important and the corresponding system to consider is the relativistic analogue of
(VM), denoted by (RVM) and constructed by replacing v with

v̂ =
v√

1 + |v|2

in the first equation of (VM), called the Vlasov equation, and in the integrand of
the current j. General references concerning kinetic models of plasma dynamics,
such as (VM) and (RVM), include [5] and [12].

Over the past twenty-five years significant progress has been made in the analysis
of (RVM), specifically, the global existence of weak solutions (which also holds for
(VM); see [3]) and the determination of sufficient conditions which ensure global ex-
istence of classical solutions (originally discovered in [7], and later in [8], and [1]) for
the Cauchy problem. Additionally, a wide array of information has been discovered
regarding the electrostatic versions of both (VM) and (RVM) - the Vlasov-Poisson
and relativistic Vlasov-Poisson systems, respectively. These models do not include
magnetic effects within their formulation, and the electric field is given by an el-
liptic, rather than a hyperbolic equation. This simplification has led to a great
deal of progress concerning the electrostatic systems, including theorems regarding
global existence, stability, and long-time behavior of solutions; though a global ex-
istence theorem for classical solutions with arbitrary data in the relativistic case
has remained elusive. Independent of these advances, many of the most basic exis-
tence and regularity questions remain unsolved for (VM). The main difficulty which
arises is the loss of strict hyperbolicity of the kinetic system due to the possibility
that particle velocities v may travel faster than the propagation of signals from the
electric and magnetic fields, which do so at the speed of light c = 1. As one can
see, this difficulty is remedied by the inclusion of relativistic velocity corrections
which uniformly constrain velocities |v̂| < 1. In many physical systems one does
not consider the effects of special (or general) relativity, but at the kinetic level
such velocity corrections may play a fundamental role, even in the basic existence,
uniqueness, and regularity properties of solutions. Hence, one of the primary goals
of the current work is to understand how this difference in formulation affects such
properties, and yield a partial answer to the question, “Are relativistic velocity cor-
rections really necessary to ensure classical well-posedness?”. It should be noted
here that, whereas (RVM) is invariant under Lorentzian transformations, (VM)
lacks invariance properties as it combines a Galilean-invariant equation for the par-
ticle distribution with a Lorentz-invariant field equation. To date, though, we are
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unaware of any argument which truly utilizes the invariance properties of (RVM)
or (VM) in order to arrive at an existence, uniqueness, or regularity theorem.

Often a remedy to the lack of progress on such a problem is to reduce the di-
mensionality of the system. Unfortunately, posing the problem in one-dimension
(i.e., x, v ∈ R) eliminates the relevance of the magnetic field as the Maxwell system
decouples, yielding the one-dimensional Vlasov-Poisson system:

∂tf + v∂xf + E∂vf = 0

∂xE =

∫
fdv.

(VP)

The lowest-dimensional reduction which includes magnetic effects is the so-called
“one-and-one-half-dimensional” system which is constructed by taking x ∈ R but
v ∈ R2 and considering

∂tf + v∂xf + (E1 + v2B)∂v1f + (E2 − v1B)∂v2f = 0

∂xE1 =

∫
fdv, ∂tE1 = −

∫
v1fdv

∂t(E2 +B) + ∂x(E2 +B) = −
∫
v2fdv

∂t(E2 −B)− ∂x(E2 −B) = −
∫
v2fdv.

(1.5D VM)

Surprisingly, the question of classical regularity remains open even in this simplified
case. One noticeable difference between (1.5D VM) and (VP) is the introduction
of electric and magnetic fields E2 and B that are solutions to transport equations.
Thus, in order to study the existence and regularity questions, but keep the problem
posed in a one-dimensional setting, we consider the following nonlinear system of
PDE which couples the Vlasov equation to an advection equation for the associated
field: 

∂tf + v∂xf +B∂vf = 0

∂tB + ∂xB =

∫
fdv.

(1.1)

The system (1.1) is supplemented by given initial data

f(0, x, v) = f0(x, v), B(0, x) = B0(x). (1.2)

Since the field equation in (1.1) is hyperbolic, we denote it by B so as to avoid con-
fusion with the electric field E of (VP) which satisfies an elliptic equation. Notice
that these equations retain the main difficulty of (VM), namely the interaction be-
tween characteristic particle velocities v and constant field velocities c = 1. Hence,
we hope to analyze (1.1) and develop estimates or methods which can be generalized
to deal with (1.5D VM). To our knowledge, this is the first analytic study of these
kinetic equations, formed from a system of conservation laws coupled by a non-local
field dependence on the particle densities. As such, the properties of solutions to
(1.1) may also be of interest to mathematicians studying hyperbolic conservation
laws in a two-dimensional phase space with nonlocal and nonlinear interaction. A
related model, similar to (1.1), was previously studied [4] in an attempt to under-
stand the nature of possible singularities generated by the intersection of Vlasov
and field characteristics. Though a number of theorems were presented in [4], these
results concerned a reduced system of ordinary differential equations rather than
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partial differential equations, and hence the understanding of this phenomena re-
mains far from complete. In the current article, we present existence uniqueness,
and regularity theorems for the full system of PDEs given by (1.1) and the majority
of our results also generalize to the original system of PDEs considered in [4]. We
also mention the work [2] as it contains a discussion of computational methods for
(1.1).

This paper proceeds as follows. In the next section, we will derive a priori
estimates in order to simplify the proof of the local-in-time existence and uniqueness
theorem for classical solutions of (1.1) with smooth initial data (1.2). The proof
of this theorem then follows in Section 3. In Section 4, we present two results
concerning global existence. In particular, we prove that initial particle distributions
for which particle velocities travel strictly above or below the speed of light remain
smooth globally in time as long as the initial field possesses a certain sign. The
unfortunate detail of these theorems (4.1 and 4.3), however, is that they do not
necessarily extend to arbitrary initial data or to (1.5D VM). Hence, it remains an
open problem to show that any solution launched from smooth initial data remains
smooth for all time. As an intermediate step, we prove in Section 5 an additional
regularity result for the associated field B using a decomposition of derivatives
similar to that of [7]. More specifically, we show a priori that for any T > 0, the
field satisfies B ∈ C0,1/2([0, T ]×R). In fact, this result can be generalized to prove
the same theorem for the electric and magnetic fields of (1.5D VM). Throughout
the paper the value C > 0 will denote a generic constant that may change from
line to line. When necessary, we will specifically identify the quantities upon which
C may depend (e.g., CT ). Since we are interested in classical solutions, we will
also assume the initial data are smooth, i.e. f0 ∈ C1

c (R2) and B0 ∈ C1(R), for the
entirety of the paper.

2. A priori estimates. To begin, we will first prove a lemma that will allow us to
represent and bound the particle density, its derivatives, and the associated field.

Lemma 2.1 (Estimates on f , B, ∂f , and velocity support).

(a). Let T > 0 be given and f be the solution of the Vlasov equation with given
initial data

∂tf + v∂xf +B∂vf = 0, t ∈ (0, T ), x, v ∈ R
f(0, x, v) = f0(x, v), x, v ∈ R

for some given B ∈ C1([0, T ]×R). Then, f ∈ C1([0, T ];C1
c (R2)) and for any

t ∈ [0, T ] we have the estimates

‖f(t)‖∞ ≤ ‖f0‖∞,

‖∂xf(t)‖∞ ≤ ‖∂xf0‖∞ + C

∫ t

0

‖∂xB(s)‖∞(1 + s sup
τ∈[0,s]

‖∂xf(τ)‖∞) ds,

‖∂vf(t)‖∞ ≤ ‖∂vf0‖∞ +

∫ t

0

‖∂xf(s)‖∞ ds

where C depends only upon the initial data.
(b). Let T > 0 be given and B be the solution to the field equation with a given

initial condition, namely

∂tB + ∂xB =

∫
f dv, t ∈ (0, T ), x ∈ R
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B(0, x) = B0(x), x ∈ R

for some given f ∈ C1([0, T ];C1
c (R2)) and define

P (t) = sup{|v| : f(s, x, v) 6= 0, s ∈ [0, t], x ∈ R}.
Then, B ∈ C1([0, T ]× R) and for any t ∈ [0, T ], we have the estimate

‖B(t)‖∞ ≤ C
(

1 +

∫ t

0

P (s) ds

)
where C depends only upon the initial data.

Proof. To prove the first result, we begin by introducing characteristics for the
Vlasov equation. Define the curves X(s, t, x, v) and V (s, t, x, v) as solutions to the
system of ODEs 

∂X

∂s
= V (s, t, x, v),

X(t, t, x, v) = x,

∂V

∂s
= B(s,X(s, t, x, v)),

V (t, t, x, v) = v

(2.1)

Often, the (t, x, v) dependence of these curves will be suppressed so, for example,
X(s, t, x, v) will be denoted by X(s) for brevity. Then, the Vlasov equation can be
expressed as a derivative along the characteristic curves by

d

ds

(
f(s,X(s), V (s))

)
= ∂tf(s,X(s), V (s)) +

∂X

∂s
∂xf(s,X(s), V (s))

+
∂V

∂s
∂vf(s,X(s), V (s))

= ∂tf(s,X(s), V (s)) + V (s)∂xf(s,X(s), V (s))

+B(s,X(s))∂vf(s,X(s), V (s))

= 0.

Thus, we find

f(t,X(t, t, x, v), V (t, t, x, v)) = f(0, X(0, t, x, v), V (0, t, x, v))

and

f(t, x, v) = f0(X(0, t, x, v), V (0, t, x, v)) ≤ ‖f0‖∞.
Finally, taking the supremum of this equality over x, v ∈ R yields the first estimate
in (a). The remaining estimates involve derivatives, so differentiating the Vlasov
equation in v yields (

∂t + v∂x +B∂v

)
∂vf = −∂xf

and upon integrating along characteristics we find

∂vf(t, x, v) = (∂vf0)(X(0), V (0))−
∫ t

0

(∂xf)(s,X(s), V (s)) ds. (2.2)

Taking supremums in x and v gives the last estimate for (a). The second estimate
is derived similarly. Differentiating with respect to x in the Vlasov equation, we
find (

∂t + v∂x +B∂v

)
∂xf = −∂xB∂vf
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and integrating as before along characteristics yields

∂xf(t, x, v) = (∂xf0)(X(0), V (0))−
∫ t

0

(∂xB∂vf)(s,X(s), V (s)) ds. (2.3)

Taking the supremum on the right side, inserting the estimate on ‖∂vf(s)‖∞ above,
and using the bounded data, we find

|∂xf(t, x, v)| ≤ ‖∂xf0‖∞ +

∫ t

0

‖∂xB(s)‖∞‖∂vf(s)‖∞ ds

≤ ‖∂xf0‖∞ +

∫ t

0

‖∂xB(s)‖∞
(
C +

∫ s

0

‖∂xf(τ)‖∞ dτ

)
ds

≤ ‖∂xf0‖∞ + C

∫ t

0

‖∂xB(s)‖∞

(
1 + s sup

τ∈[0,s]
‖∂xf(τ)‖∞

)
ds.

Finally, taking the supremum gives the estimate for ‖∂xf(t)‖∞ in (a).
For the claim in (b), we may use the method of characteristics to solve for B in

terms of f . First, we write the differential equation for B as a derivative along the
curves (s, x− t+ s) so that

d

ds

(
B(s, x− t+ s)

)
= ∂tB(s, x− t+ s) +∂xB(s, x− t+ s) =

∫
f(s, x− t+ s, v) dv.

Hence, integrating along these curves, we arrive at

B(t, x) = B0(x− t) +

∫ t

0

∫
f(s, x− t+ s, v) dv ds. (2.4)

Using the bounded data, compact velocity support, and uniform bound on the
particle density yields

|B(t, x)| ≤ C +

∫ t

0

∫
{|v|:f 6=0}

f(s, x− t+ s, v) dv ds

≤ C

(
1 +

∫ t

0

‖f(s)‖∞P (s) ds

)
≤ C

(
1 +

∫ t

0

P (s) ds

)
.

Finally, taking the supremum in x concludes the proof.

3. Local-in-time existence of classical solutions. With these a priori esti-
mates and classical convergence theorems, we now have the necessary tools to prove
the local-in-time existence theorem.

Theorem 3.1 (Existence of classical solutions). Let f0 ∈ C1
c (R2) and B0 ∈ C1(R)

be given. Then, there exists T > 0 and a unique classical solution

f ∈ C1([0, T ];C1
c (R2)), B ∈ C1([0, T ]× R)

to (1.1) satisfying the initial conditions (1.2). Moreover, if we denote the maximal
lifespan of the solution by T ∗ then for T ∗ <∞ we must have

lim sup
t→T∗

(
‖∂xf(t)‖∞ + ‖∂vf(t)‖∞

)
=∞.
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Proof. The outline of our proof generally follows the structure underlying [9], [10],
and [11]. We begin with the existence argument, which utilizes the method of
successive approximations. Hence, we define an iterative sequence of solutions to
linear PDEs and show that it must converge to a solution of the nonlinear system
(1.1). We take f0 ∈ C1

c (R2) and B0 ∈ C1(R) and define

f0(t, x, v) = f0(x, v),

B0(t, x) = B0(x).

Additionally, for every n ∈ N, define fn ∈ C1([0,∞);C1
c (R2)) and Bn ∈ C1([0,∞)×

R) by solving the linear initial-value problems{
∂tf

n + v∂xf
n +Bn−1∂vf

n = 0

fn(0, x, v) = f0(x, v),
(3.1)

and  ∂tB
n + ∂xB

n =

∫
fndv

Bn(0, x) = B0(x)
(3.2)

respectively. Notice that if fn → f and Bn → B in the appropriate sense as n→∞
then f and B will satisfy (1.1). Now as in Lemma 2.1, we further define the sequence
of velocity support functions for every t ≥ 0, n ∈ N,

Pn(t) = sup{|v| : fn(s, x, v) 6= 0, s ∈ [0, t], x ∈ R}.

Using these sequences the uniform convergence on some time interval [0, T ] follows
using standard machinery. We briefly sketch the proof for clarity and completeness.

3.1. Uniform boundedness. For the first portion of the proof, we consider T > 0
given and estimate on the time interval [0, T ]. In order to uniformly bound the
sequence Bn, we utilize the estimates on the velocity support of fn. First, by
Lemma 2.1, we have the bound

‖Bn(t)‖∞ ≤ C
(

1 +

∫ t

0

Pn(s) ds

)
(3.3)

for every n ∈ N. To bound the velocity support in terms of the field, we express
the solution of the Vlasov equation in terms of the associated characteristics. For
every n ∈ N define the characteristic curves Xn(s, t, x, v) and V n(s, t, x, v) by

∂Xn

∂s
= V n(s, t, x, v),

Xn(t, t, x, v) = x,

∂V n

∂s
= Bn−1(s,Xn(s, t, x, v)),

V n(t, t, x, v) = v.

(3.4)

As before, the (t, x, v) dependence of these curves will be suppressed for brevity.
Then, using the argument in the proof of the first result of Lemma 2.1, we find

fn(t,Xn(t, t, x, v), V n(t, t, x, v)) = fn(0, Xn(0, t, x, v), V n(0, t, x, v))

and

fn(t, x, v) = f0(Xn(0, t, x, v), V n(0, t, x, v))
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for every n ∈ N. Inverting the characteristics and using the identities

x = Xn (t, 0, Xn(0, t, x, v), V n(0, t, x, v))

v = V n (t, 0, Xn(0, t, x, v), V n(0, t, x, v))

within this last equality, then utilizing the compact support of f0 and the definition
of Pn, it follows that

sup
x,v
|V n(t, 0, x, v)| ≤ Pn(t)

for every t ≥ 0. From the velocity characteristic equation (3.4), we can integrate to
find

V n(t, 0, x, v) = v +

∫ t

0

Bn−1(τ,Xn(τ)) dτ

and thus

|V n(t)| ≤ |v|+
∫ t

0

‖Bn−1(τ)‖∞ dτ.

Taking the supremum over characteristics along which fn 6= 0, we find

Pn(t) ≤ Pn(0) +

∫ t

0

‖Bn−1(τ)‖∞ dτ.

We can now use (3.3) to arrive at a recursive bound for Pn, namely

Pn(t) ≤ Pn(0) + C

∫ t

0

(
1 +

∫ τ

0

Pn−1(s) ds

)
dτ.

Since f0 has compact support, we know Pn(0) is finite and constant in n, thus for
every n ∈ N and on every bounded time interval [0, T ],

Pn(t) ≤ CT
(

1 +

∫ t

0

Pn−1(τ) dτ

)
where CT depends upon f0 and T . Using this recursive relation, we immediately
deduce

Pn(t) ≤ CT
(

1 +
tn

n!

)
≤ CT et ≤ CT .

Thus, on any bounded time interval [0, T ] the function Pn(t) is uniformly bounded
and from (3.3) so is ‖Bn(t)‖∞.

3.2. Uniform boundedness of derivatives. Now we focus on obtaining uniform
bounds on derivatives, sketching the proof for x derivatives, with t and v derivatives
following similarly. From the definition of the iterates we can differentiate the
representation for Bn (2.4) after integrating along characteristics with speed one,
so that

∂xB
n(t, x) = B′0(x− t) +

∫ t

0

∫
∂xf

n(τ, x− t+ τ, v) dv dτ. (3.5)

Using the bound on the velocity support above, we arrive at

‖∂xBn(t)‖∞ ≤ CT
(

1 +

∫ t

0

‖∂xfn(τ)‖∞ dτ

)
(3.6)

for every n ∈ N. Using Lemma 2.1(a) we also have the estimate

‖∂xfn(t)‖∞ ≤ ‖∂xf0‖∞ + C

∫ t

0

‖∂xBn−1(s)‖∞

(
1 + s sup

τ∈[0,s]
‖∂xfn(τ)‖∞

)
ds.
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We combine these inequalities to find

‖∂xfn(t)‖∞

≤ CT

[
1 +

∫ t

0

(
1 +

∫ s

0

‖∂xfn−1(τ)‖∞ dτ

)(
1 + s sup

τ∈[0,s]
‖∂xfn(τ)‖∞

)
ds

]

≤ CT

[
1 +

∫ t

0

(
1 + s sup

τ∈[0,s]
‖∂xfn−1(τ)‖∞

)(
1 + s sup

τ∈[0,s]
‖∂xfn(τ)‖∞

)
ds

]
.

Now, let
Fn(t) = max

1≤k≤n
sup
τ∈[0,t]

‖∂xfk(τ)‖∞.

With this definition, the previous inequality yields

Fn(t) ≤ CT
(

1 +

∫ t

0

[1 + sFn(s)]2 ds

)
. (3.7)

Hence, by induction Fn(t) ≤ F (t) for every n ∈ N, t ∈ [0, T ∗), where F (t) is the
maximal solution of the integral equation corresponding to (3.7):

F (t) = CT∗

(
1 +

∫ t

0

[1 + sF (s)]2 ds

)
. (3.8)

This solution exists on some time interval [0, T ∗) with T ∗ > 0 determined by f0
and B0. This yields a uniform bound on ‖∂xfn(t)‖∞ on [0, T ] for every n ∈ N and
T < T ∗. Additionally, ‖∂xBn(t)‖∞ is bounded on the same interval by (3.6). The
argument can be repeated in the same manner to bound ‖∂tB(t)‖∞, ‖∂tf(t)‖∞,
and ‖∂vf(t)‖∞ on the same time interval.

3.3. Convergence and properties of limiting functions. Using the same tools,
the uniform Cauchy property of the field, particle distribution, and their derivatives
follows in a straightforward manner. We omit the details and direct the reader to
[5] and [9] for further information. Assembling these steps, we prove that the
sequences and their derivatives converge to solutions of (1.1). Let T ∗ again denote
the maximal existence time of the solution to (3.8). Using the Cauchy property of
fn, Xn, V n, Bn, and their derivatives, we conclude that each sequence of functions
converges uniformly on the time interval [0, T ] for any T < T ∗ and uniformly for
x, v ∈ R, n ∈ N. Since the space of continuous functions is complete with respect to
the norm of uniform convergence, we may conclude that these sequences converge
to continuous functions. Therefore, let us define f ∈ C([0, T ]× R2) by

f(t, x, v) = lim
n→∞

fn(t, x, v) = lim
n→∞

f0
(
Xn(0, t, x, v), V n(0, t, x, v)

)
.

Then, we similarly define the field

B(t, x) = lim
n→∞

Bn(t, x) = lim
n→∞

(
B0(x− t) +

∫ t

0

∫
fn(s, x− t+ s, v) dv ds

)
.

Thus, using the uniform convergence of fn(t, x, v), we can pass the limit inside these
integrals to find for every t ∈ [0, T ], x ∈ R

B(t, x) = B0(x− t) +

∫ t

0

∫
f(s, x− t+ s, v) dv ds. (3.9)

Further, we define
X = lim

n→∞
Xn, V = lim

n→∞
V n.
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It follows from (3.4) and the uniform field bound that

∂X

∂s
= V (s, t, x, v),

∂V

∂s
= B(s,X(s, t, x, v)),

X(t, t, x, v) = x,

V (t, t, x, v) = v,

(3.10)

and by the continuity of f0, we see that

f(t, x, v) = f0(X(0, t, x, v), V (0, t, x, v)),

whence for every s ∈ [0, t],

f(t, x, v) = f(s,X(s, t, x, v), V (s, t, x, v)). (3.11)

Since the approximating sequence of derivatives (e.g., ∂xf
n) of these functions con-

verge uniformly, this implies that f and B are C1 and their derivatives are neces-
sarily the limits of the respective sequences, meaning

∂xf = lim
n→∞

∂xf
n, ∂vf = lim

n→∞
∂vf

n, ∂tf = lim
n→∞

∂tf
n,

∂xB = lim
n→∞

∂xB
n, ∂tB = lim

n→∞
∂tB

n.

Furthermore, the uniform bound on Pn(t) implies the compact x and v support
of f(t, x, v) for every t ∈ [0, T ]. Thus, for every T < T ∗, f ∈ C1([0, T ];C1

c (R2)).
Using (3.9) and taking derivatives, we see that the field equation for B of (1.1)
holds. Upon taking the derivative with respect to s in (3.11) and using (3.10), we
see that the Vlasov equation of (1.1) holds. Additionally, the solutions (3.11) and
(3.9) satisfy the initial conditions (1.2). Therefore, the continuously differentiable
functions f and B satisfy (1.1) with (1.2). Hence, we have shown the existence
of such a solution (f,B). Notice that this argument can be continued to a time
interval of arbitrary size so long as ‖∂xf(t)‖∞ and ‖∂vf(t)‖∞ remain bounded.

3.4. Uniqueness of solutions. Finally, we turn to uniqueness. Let us first sup-
pose that the functions (f (1), B(1)) and (f (2), B(2)) are two solutions to the system
(1.1) on some time interval [0, T ] which satisfy (1.2). Also, for every t ∈ [0, T ] and
x, v ∈ R define the difference of these solutions

f(t, x, v) = f (1)(t, x, v)− f (2)(t, x, v)

B(t, x) = B(1)(t, x)−B(2)(t, x).

Then, we subtract the first equation of (1.1) for f (2) from that for f (1) to find

0 = ∂tf + v∂xf +B(1)∂vf
(1) −B(2)∂vf

(2)

= ∂tf + v∂xf +B(1)∂vf
(1) −B(1)∂vf

(2) +B(1)∂vf
(2) −B(2)∂vf

(2)

= ∂tf + v∂xf +B(1)∂vf −B∂vf (2)

so that by rearranging terms this becomes

∂tf + v∂xf +B(1)∂vf = B∂vf
(2).

The left side of this equation can be expressed as a derivative along characteristic
curves as

d

ds
f
(
s,X(1)(s), V (1)(s)

)
=

(
B∂vf

(2)

)(
s,X(1)(s), V (1)(s)

)
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where the curves X(1)(s) and V (1)(s) are defined by the, now well-known, system
of characteristic ordinary differential equations

∂X(1)

∂s
= V (1)(s, t, x, v),

∂V (1)

∂s
= B(1)(s,X(1)(s, t, x, v)),

X(1)(t, t, x, v) = x,

V (1)(t, t, x, v) = v.

(3.12)

Here, we have abbreviated X(1)(s, t, x, v) by X(1)(s) and similarly for V (1)(s). Now,
integrating both sides of the above equation with respect to s, we find

f(t, x, v)− f
(
0, X(1)(0), V (1)(0)

)
=

∫ t

0

(
B∂vf

(2)
)(
s,X(1)(s), V (1)(s)

)
ds

and since both solutions satisfy the same initial condition (1.2), as before this implies
f(0, x, v) ≡ 0. Therefore, the equality simplifies to

f(t, x, v) =

∫ t

0

(
B∂vf

(2)
)(
s,X(1)(s), V (1)(s)

)
ds.

Since f (2) is a solution, we know ‖∂vf (2)(s)‖∞ is bounded for s ∈ [0, t] and we can
bound the right side to find

‖f(t)‖∞ ≤ CT
∫ t

0

‖B(s)‖∞ ds. (3.13)

Now, by subtracting the B(2) equation from the B(1) equation, we arrive at

∂tB + ∂xB =

∫
f dv

which we can write as a derivative along curves with slope one as

d

ds
B(s, x− t+ s) =

∫
f(s, x− t+ s, v) dv.

Integrating in s and using (1.2) to conclude that B(0, x) ≡ 0, this becomes

B(t, x) =

∫ t

0

∫
f(s, x− t+ s, v) dvds.

Since both f (1) and f (2) are solutions, the velocity support of f is controlled and
we can bound B by

‖B(t)‖∞ ≤ CT sup
s∈[0,t]

‖f(s)‖∞ (3.14)

Finally, combining (3.13) and (3.14) yields

||B(t)||∞ ≤ CT
∫ t

0

sup
τ∈[0,s]

||B(τ)||∞ds

and

sup
s∈[0,t]

||B(s)||∞ ≤ CT
∫ t

0

sup
τ∈[0,s]

||B(τ)||∞ds

Again using Gronwall’s Inequality, we deduce ||B(t)||∞ ≤ 0 for all t ∈ [0, T ] which
implies that B(t, x) = 0 for every t ∈ [0, T ], x ∈ R. Similarly, using (3.13) we see
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that f(t, x, v) = 0 for every t ∈ [0, T ], x, v ∈ R. Finally, this implies that f (1) ≡ f (2)
and B(1) ≡ B(2), and hence there can be at most one such solution.

4. Global existence. Now that we know smooth solutions exist on some time
interval, the next logical question is whether this can be extended for all times.
Unfortunately, a complete answer remains unknown. The fundamental issue is that
the Vlasov characteristics in the density equation propagate at an uncontrollable
speed v and hence, are able to intersect the field characteristics which propagate
with speed 1. Though we cannot currently prove that all initial data launch a
global-in-time solution, we can provide an answer for certain classes of initial data.
In what follows we will use the unidirectional nature of the transport operator in
(1.1) to answer the question of global existence in the affirmative for a class of initial
data (f0, B0). Then, we utilize a new invariance of the system to extend the global
existence result to additional solutions. Such an approach may also work for (1.5D
VM), but no ideas of this form currently exist within the literature. We begin with
the former global existence result:

Theorem 4.1. Let f0 ∈ C1
c (R2) and B0 ∈ C1(R) be nonnegative with supp(f0(x, ·))

⊂ (1,∞) for all x ∈ R. Then, for all T > 0 there exist f ∈ C1([0, T ] × R2) and
B ∈ C1([0, T ]× R) satisfying (1.1) with (1.2) and f(t, ·, ·) compactly supported for
every t ∈ [0, T ].

Proof. Let f and B be the local solution guaranteed by Theorem 3.1 and T > 0 be
given. First, we represent B and use the sign of the data to find

B(t, x) = B0(x− t) +

∫ t

0

∫
f(s, x+ t− s, v) dv ds

= B0(x− t) +

∫ t

0

∫
f0(X(s, t, x+ t− s, v), V (s, t, x+ t− s, v)) dv ds

≥ 0

for every t ∈ [0, T ] and x ∈ R. Thus, if we now let (X(t), V (t)) be characteristics
along which f is nonzero. Then, a lower bound on velocity characteristics follows

V (t) = V (0) +

∫ t

0

B(s,X(s)) ds ≥ V (0).

Since the velocity support of f0 is strictly bounded below by v = 1, it follows that
the velocity support of f satisfies this same property. Additionally, the compact
velocity support of f implies

|X(t)| =
∣∣∣∣∫ t

0

V (s) ds

∣∣∣∣ ≤ tP (t) ≤ CT

and thus the spatial support remains compact for t ∈ [0, T ].
With this, we may utilize the field representation of [7] to control derivatives of

the density and field (as in the proof of (5.1)). Thus, we write the field derivative
in terms of the derivative of the density, as in (3.5), so that

∂xB(t, x) = B′0(x− t) +

∫ t

0

∫
∂xf(τ, x− t+ τ, v) dv dτ. (4.1)

Now, we would like to eliminate the x-derivative of the density in this equation, so
similar to [6] we transform ∂x into derivatives along the characteristic curves of the
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system. Define the operators
S = ∂t + v∂x

T = ∂t + ∂x
.

Then, for v 6= 1 we may write the inverse transformation

∂x =
1

1− v

(
T − S

)
.

For t ∈ [0, T ], let

P (t) = sup{|v| : ∃x ∈ R with f(t, x, v) 6= 0}
and recall P (t) ≤ CT for all t ∈ [0, T ]. Then, differentiation of the representation
for the field (3.9) yields

∂xB(t, x) = B′0(x− t) +

∫ t

0

∫
1

1− v
[T f(τ, x− t+ τ, v)

−Sf(τ, x− t+ τ, v)] dv dτ

= B′0(x− t) +

∫ t

0

∫
1

1− v
d

dτ
[f(τ, x− t+ τ, v)] dv dτ

+

∫ t

0

∫
1

1− v
∂v [B(τ, x− t+ τ)f(τ, x− t+ τ, v)] dv dτ

Here we have used the Vlasov equation of (1.1) to write the integrand as a pure
v-derivative so that

Sf(τ, y, v) = (∂tf + v∂xf)(τ, y, v) = −∂v(Bf)(τ, y, v).

Since the velocity support of f is bounded away from v = 1, we see that the
integrands are non-singular and we integrate by parts to find

∂xB(t, x) = B′0(x− t) +

∫
1

1− v
[f(t, x, v)− f0(x− t, v)] dv

+

∫ t

0

1

1− v
(Bf)(τ, x− t+ τ, v)

∣∣∣∣
v=P (t)

dτ

−
∫ t

0

∫
1

(1− v)2
(Bf)(τ, x− t+ τ, v) dv dτ.

Using the previously-derived L∞ bounds on f , P , and B, which follow from the
iterates, we find

‖∂xB(t)‖∞ ≤ CT
Hence, using Lemma 2.1(a) we find

‖∂xf(t)‖∞ ≤ CT

(
1 +

∫ t

0

sup
τ∈[0,s]

‖∂xf(τ)‖∞ ds.

)
Taking the supremum in t and using Gronwall’s Inequailty implies

‖∂xf(t)‖∞ ≤ CT
and using 2.1(a) again we find

‖∂vf(t)‖∞ ≤ CT
for any T > 0 and t ∈ [0, T ]. Thus, the local-in-time solution from Theorem 3.1 can
be extended to arbitrarily large time.
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Next, we utilize a new invariance of (1.1) to extend this result to additional
solutions.

Lemma 4.2. Let T > 0 be given. The functions f ∈ C1([0, T ];C1
c (R2)) and B ∈

C1([0, T ] × R) solve (1.1) for t ∈ [0, T ], x, v ∈ R with initial data (1.2) if and only
if the functions

fu(t, x, v) := f(t, (u+ 1)x− ut, (u+ 1)v − u) (4.2)

and

Bu(t, x) := (u+ 1)−1B(t, (u+ 1)x− ut) (4.3)

satisfy (1.1) for t ∈ [0, T ], x, v ∈ R with initial data

fu0 (x, v) = f0((u+ 1)x, (1 + u)v − u)

and

Bu0 (x) = (1 + u)−1B0((u+ 1)x)

for every u 6= −1.

Proof. Clearly, if (fu, Bu) satisfies these properties then we may choose u = 0 and
(f,B) will satisfy the same equations. Now, assume that (f,B) solve (1.1) and
define (fu, Bu) by (4.2) and (4.3) respectively. Then, a brief calculation shows that
(fu, Bu) satisfy (1.1) and the corresponding initial conditions. Denoting

t′ = t, x′ = (u+ 1)x− ut v′ = (u+ 1)v − u
we find specifically

∂tf
u(t, x, v) + v∂xf

u(t, x, v) +Bu(t, x)∂vf
u(t, x, v)

=

[
∂tf(t′, x′, v′)− u∂xf(t′, x′, v′)

]
+ v(u+ 1)∂xf(t′, x′, v′)

+(1 + u)−1B(t′, x′)(1 + u)∂vf(t′, x′, v′)

= ∂tf(t′, x′, v′) + v′∂xf(t′, x′, v′) +B(t′, x′)∂vf(t′, x′, v′) = 0

and

∂tB
u(t, x) + ∂xB

u(t, x) = (u+ 1)−1
[
∂tB(t′, x′)− u∂xB(t′, x′)

]
+(u+ 1)−1 · (u+ 1)∂xB(t′, x′)

= (u+ 1)−1 (∂tB(t′, x′) + ∂xB(t′, x′))

= (u+ 1)−1
∫
f(t′, x′, v′) dv′

=

∫
f(t′, x′, v′) dv

=

∫
fu(t, x, v) dv

since (f,B) satisfy (1.1) at every point t ∈ [0, T ] and x, v ∈ R. Similarly the initial
conditions are satisfied by inspection.

Theorem 4.3. Let f0 ∈ C1
c (R2) be nonnegative and B0 ∈ C1(R) be nonpositive

with the velocity support of f0 contained in (−∞, 1). Then, for all T > 0 there exist
f ∈ C1([0, T ]× R2) and B ∈ C1([0, T ]× R) satisfying (1.1) with (1.2) and f(t, ·, ·)
compactly supported for every t ∈ [0, T ].
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Proof. We assume f0(x, v) ≥ 0 for x, v ∈ R with supp(f(x, ·)) ⊂ (−∞, 1) for every
x ∈ R and B0(x) ≤ 0 for x ∈ R. Let (f,B) be the local solution guaranteed by
Theorem 3.1 and T > 0 be given. By Lemma 4.2, there is a local-in-time solution
of (1.1) denoted (fu, Bu) with u = −2 and corresponding initial data

fu0 (x, v) = f0(−x, 2− v)

Bu0 (x) = −B0(−x)

Hence, this solution satisfies fu0 (x, v), Bu0 (x) ≥ 0 for x, v ∈ R and supp(fu0 (x, ·)) ⊂
(1,∞) for x ∈ R. Thus, by Theorem 4.1 the solution exists on [0, T ], and by Lemma
4.2 so too must the solution (f,B) launched by f0 and B0. Since T > 0 is arbitrary,
the result follows.

5. Additional field regularity. Though we cannot currently prove the global
existence of classical solutions to (1.1) for arbitrary initial data, we can provide an
estimate which yields additional regularity of the field B. If one could show a priori
for any T > 0 that B ∈ C1([0, T ] × R) then global existence would follow as this
bound would imply smoothness of characteristics and ultimately f ∈ C1([0, T ]×R2).
Hence, the local solution could be continued up to the arbitrary existence time T .
Instead of the global result that B possesses a full derivative, however, we are only
able to show that it possesses half of a derivative in space-time.

Theorem 5.1. Let f0 ∈ C1
c (R2) and B0 ∈ C1(R) be given and let f ∈ C1([0, T0]×

R2) and B ∈ C1([0, T0] × R) be the unique solution of (1.1) within the maxi-
mal interval of existence T0 ∈ (0, T ∗). Then, for any T > 0 it follows that
B ∈ C0,1/2([0, T ]× R).

Proof. Let T > 0 be given. We will prove the result for the regularity in x, while a
similar argument leads to the additional Hölder continuity in t. Let h > 0 be given.
As in Theorem 4.1 we wish to use the operators

S = ∂t + v∂x

T = ∂t + ∂x.

As before, for v 6= 1 we may write the inverse transformation

∂x =
1

1− v

(
T − S

)
.

For t ∈ [0, T ], let

P (t) = sup{|v| : ∃x ∈ R with f(t, x, v) 6= 0} ≤ CT .

Since the (∂t, ∂x) 7→ (S, T ) transformation is only valid for v bounded away from
one, we decompose the v-integral over [−P (t), P (t)] within our previous derivative
estimate (4.1) into integrals over the disjoint sets

Aε = {v : |1− v| < ε} ∩ [−P (t), P (t)]

and

Bε = {v : |1− v| > ε} ∩ [−P (t), P (t)]
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where ε > 0 is to be chosen. Then, beginning with the representation for the field
(3.9) we have

|B(t, x+ h)−B(t, x)| ≤ |B0(x+ h− t)−B0(x− t)|

+

∣∣∣∣∫ t

0

∫ [
f(τ, x+ h− t+ τ, v)− f(τ, x− t+ τ, v)

]
dv dτ

∣∣∣∣
≤ I + II + III

where
I = ‖B0‖C0,1/2 ·

√
h,

II =

∫ t

0

∫
Aε
|f(τ, x+ h− t+ τ, v)− f(τ, x− t+ τ, v)| dv dτ,

and

III =

∣∣∣∣∫ t

0

∫
Bε
f(τ, x+ h− t+ τ, v)− f(τ, x− t+ τ, v) dv dτ

∣∣∣∣ .
Using the bound on f we crudely estimate II and find

II ≤ 2t‖f0‖∞ · µ(Aε) ≤ Cε
where µ denotes the Lebesgue measure on R. As all velocities in Bε are bounded
away from 1, we can then use the transformation of derivatives for the estimate
of III. We include the x-derivative of the density and transform ∂x into terms
involving S and T so that

III =

∣∣∣∣∣
∫ t

0

∫
Bε

∫ x+h−t+τ

x−t+τ
∂xf(τ, y, v) dy dv dτ

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

0

∫
Bε

∫ x+h−t+τ

x−t+τ

1

1− v

(
T f − Sf

)
(τ, y, v) dy dv dτ

∣∣∣∣∣
≤ IIIT + IIIS ,

where the quantities

IIIT =

∣∣∣∣∣
∫ t

0

∫
Bε

∫ x+h−t+τ

x−t+τ

1

1− v
(∂tf + ∂xf)(τ, y, v) dy dv dτ

∣∣∣∣∣
and

IIIS =

∣∣∣∣∣
∫ t

0

∫
Bε

∫ x+h−t+τ

x−t+τ

1

1− v
(∂tf + v∂xf)(τ, y, v) dy dv dτ

∣∣∣∣∣
separate the T and S terms. To estimate IIIT we change variables in the y integral
with z = y − (x− t+ τ), switch the order of integration, and integrate by parts in
τ to find

IIIT =

∣∣∣∣∣
∫ t

0

∫
Bε

∫ h

0

1

1− v
d

dτ
f(τ, z + x− t+ τ, v) dz dv dτ

∣∣∣∣∣
=

∣∣∣∣∣
∫
Bε

∫ h

0

1

1− v
(f(t, z + x, v)− f(0, z + x− t, v) dz dv

∣∣∣∣∣
≤ 2‖f0‖∞

∫
Bε

∫ h

0

1

|1− v|
dz dv

≤ Ch

∫
Bε
|1− v|−1 dv
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Notice that on the set Bε, we have |1−v| > ε and thus |1−v|−1 < ε−1. In addition,
µ(Bε) ≤ 2P (t) ≤ CT . Therefore,

IIIT ≤
CTh

ε
.

Estimating IIIS , we again use the Vlasov equation of (1.1) to write the integrand
as a pure v-derivative so that

Sf(τ, y, v) = (∂tf + v∂xf)(τ, y, v) = −∂v(Bf)(τ, y, v).

Then, we integrate by parts in v and use the bounds on f and B, yielding

IIIS ≤
∫ t

0

∫ x+h−t+τ

x−t+τ

∣∣∣∣∫
Bε

1

1− v
∂v(Bf)(τ, y, v) dv

∣∣∣∣ dy dτ
≤ CT

∫ t

0

∫ x+h−t+τ

x−t+τ

∣∣∣∣∣
(
Bf

1− v

)∣∣∣∣(τ,y,1−ε)
(τ,y,1+ε)

−
∫
Bε

Bf

(1− v)2
(τ, y, v) dv

∣∣∣∣∣ dy dτ
≤ CT

∫ t

0

∫ x+h−t+τ

x−t+τ

(
1

ε
+

∫
Bε

1

|1− v|2
dv

)
dy dτ

≤ CTh

ε
.

Finally, we combine the estimates to find

|B(t, x+ h)−B(t, x)| ≤ CT
(√

h+ ε+ h/ε

)
. (5.1)

We choose ε =
√
h optimally so that ε = h/ε, and finally

|B(t, x+ h)−B(t, x)| ≤ CT
√
h.

Thus, B(t, ·) ∈ C0,1/2(R) for every t ∈ [0, T ] and a similar argument can be used to
establish the Hölder continuity in t for fixed x ∈ R.
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