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Abstract. The motion of a collisionless plasma - a high-temperature, low-

density, ionized gas - is described by the Vlasov-Maxwell (VM) system. These
equations are considered in one space dimension and two momentum dimen-

sions without the assumption of relativistic velocity corrections. The main

results are bounds on the spatial and velocity supports of the particle distribu-
tion function and uniform estimates on derivatives of this function away from

the critical velocity |v1| = 1. Additionally, for initial particle distributions
that are even in the second velocity argument v2, the global-in-time existence

of solutions is shown.

1. Introduction. A plasma is a partially or completely ionized gas. When a
plasma is of low density or the time scales of interest are sufficiently small, it is
deemed to be “collisionless”, as collisions between particles become infrequent. The
fundamental equations which describe the time evolution of a collisionless plasma
are given by the three-dimensional Vlasov-Maxwell system:

∂tf + v · ∇xf + (E + v ×B) · ∇vf = 0

ρ(t, x) =

∫
f(t, x, v) dv, j(t, x) =

∫
vf(t, x, v) dv

∂tE = ∇×B − j, ∇ · E = ρ

∂tB = −∇× E, ∇ ·B = 0.

(VM)

This nonlinear system of integro-differential equations is supplemented by a set of
initial conditions f(0, x, v) = f0(x, v), E(0, x) = E0(x), and B(0, x) = B0(x). Here,
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f represents the density of (positively-charged) ions in the plasma, while ρ and j are
the charge and current densities, and E and B represent electric and magnetic fields
generated by the charge and current. The independent variables, t ≥ 0 and x, v ∈ R3

represent time, position, and velocity, respectively, and physical constants, such as
the speed of light c, have been normalized. In the presence of large velocities,
relativistic corrections may be necessary. The corresponding system to consider
is then the relativistic analogue of (VM), denoted by (RVM) and constructed by
replacing v with v̂ = v√

1+|v|2
within the first equation of (VM), called the Vlasov

equation, and the integrand of the current j. For a general reference concerning
kinetic models of plasma dynamics, such as (VM) and (RVM), see [2, 16].

Over the years some progress has been made in the analysis of (RVM), specifi-
cally establishing the global existence of weak solutions (which also holds for (VM);
see [1]) and determining a sufficient condition which ensures global existence of
classical solutions for the Cauchy problem [10]. In lower-dimensional settings, this
condition has been shown to hold a priori [6, 7, 8, 9]. Additionally, a wide array of
information has been discovered regarding the electrostatic versions of both (VM)
and (RVM), known as the Vlasov-Poisson and relativistic Vlasov-Poisson systems,
respectively. These models do not include magnetic effects, and the electric field is
given by an elliptic equation, rather than a hyperbolic system of PDEs. This sim-
plification has led to a great deal of progress concerning the electrostatic systems,
including theorems regarding global existence and long-time behavior of solutions
[4, 5, 12, 14, 15]. However, a global existence theorem for classical solutions stem-
ming from arbitrary data in the relativistic case has remained elusive. Independent
of these advances, many of the most basic well-posedness questions remain unsolved
for (VM), and few results exist within the literature, with [3, 11] representing ex-
ceptions. The main difficulty which arises is the loss of strict hyperbolicity of the
kinetic system due to the possibility that particle velocities v may travel faster than
the propagation of signals from the electric and magnetic fields, which do so at the
speed of light c = 1 (cf. [13]). As one can see, this difficulty is remedied physically
by the inclusion of relativistic velocity corrections which uniformly constrain veloci-
ties |v̂| < 1. In many macroscopic physical systems one does not consider the effects
of special relativity, but at the kinetic level such velocity corrections may play a
fundamental role, even in the basic well-posedness of solutions. Hence, one of the
primary goals of the current work is to understand how this affects such properties,
and establish a precise result that guarantees the continued smoothness of solutions
as long as velocity characteristics do not assume magnitudes that approach c.

Often a remedy to the lack of progress on such a problem is to reduce the di-
mensionality of the system. The lowest-dimensional reduction which retains mag-
netic effects is the so-called “one-and-one-half-dimensional” Vlasov-Maxwell system
which is constructed by taking x ∈ R but v ∈ R2, yielding the system of PDEs

∂tf + v1∂xf +K · ∇vf = 0

K = 〈E1 + v2B,E2 − v1B〉, j(t, x) =

∫
vf dv

∂xE1 = ρ(t, x) =

∫
fdv − b(x), ∂tE1 = −j1

∂tE2 = −∂xB − j2, ∂tB = −∂xE2

(1.5D VM)

and initial conditions
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f(0, x, v) = f0(x, v), E2(0, x) = E0
2(x), B(0, x) = B0(x). (IC)

Here, B is now a scalar field and the associated electric field possesses only two
components, E1 and E2. Additionally, the given, neutralizing background density
b is included in order to study solutions with finite energy. If one takes b ≡ 0,
then E1 6∈ L2(R) and solutions necessarily possess infinite energy. Surprisingly, the
question of classical regularity of solutions remains open even in this simplified case.
The fundamental issue of (VM) persists within (1.5D VM), namely that the reduced
Vlasov characteristics in the density equation propagate at an uncontrollable speed
|v1| and hence, are able to intersect the field characteristics which propagate with
speed c = 1. Though we cannot currently prove that all initial data launch a
global-in-time solution, we can provide an answer for certain classes of initial data
(see Section 3) and establish uniform bounds on derivatives arbitrarily close to this
possible intersection of characteristics.

This paper proceeds as follows. In the next section, we will derive a priori
estimates in order to prove the main result. The first lemma obtains bounds on
the spatial and velocity supports of the particle distribution and the associated
fields, while the main theorem guarantees a uniform bound on derivatives of the
distribution function as long as particle velocities do not approach the set on which
|v1| = 1. The proofs of these results then follow in the latter portion of the section.
Finally, in Section 3, we present a theorem concerning global existence for initial
particle densities that are even in v2. We show that this symmetry property is
preserved in time by solutions of (1.5D VM) and a reduction in complexity occurs
which allows us to conclude that smooth solutions exist globally in time.

Throughout the paper the value C > 0 will denote a generic constant that may
change from line to line and depend upon the neutralizing density b, existence time
T , and initial data (IC). When necessary, we will specifically identify a constant
with a subscript (e.g., C1). Finally, since we are interested in classical solutions, we
will assume f0, E0

2 , B
0 ∈ C1

c (R2) for the entirety of the paper.

2. A priori estimates. To begin this section, we will first prove a lemma that
bounds the support of the particle density and the associated electric and magnetic
fields.

Lemma 2.1. Let T > 0 be given and assume that (f,E,B) is a C1 solution of
(1.5D VM) on [0, T ) with f0 ≥ 0, and b ∈ C1

c (R) satisfying the global neutrality
assumption ∫∫

f0(x, v) dv dx =

∫
b(x) dx.

Then, there exists C > 0, such that f(t, x, v) 6= 0 for t ∈ [0, T ), x ∈ R, and v ∈ R2

implies

|x|+ |v| ≤ C. (2.1)

Additionally, there is C > 0 such that

|E(t, x)|+ |B(t, x)| ≤ C

for all t ∈ [0, T ), x ∈ R.

With this result in hand, we may further obtain bounds on derivatives of the
particle distribution function.
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Theorem 2.2. Let the assumptions of Lemma 2.1 hold. Then, for any ε > 0 the
quantity |∂xf |+ |∇vf | is uniformly bounded on the set

Sε :=

{
(t, x, v) ∈ [0, T )× R× R2 :

∣∣∣∣|v1| − 1

∣∣∣∣ > ε

}
.

Prior to proving these results, we introduce a few other quantities necessary for
the subsequent analysis. First, we define characteristics for the Vlasov equation.
These are the curves X(s, t, x, v) and V (s, t, x, v) satisfying

∂X

∂s
= V1, X(t, t, x, v) = x,

∂V1
∂s

= E1(s,X) + V2B(s,X), V1(t, t, x, v) = v1

∂V2
∂s

= E2(s,X)− V1B(s,X), V2(t, t, x, v) = v2.

Often, the (t, x, v) dependence of these curves will be suppressed so, for example,
X(s, t, x, v) will be denoted by X(s) for brevity. Then, the Vlasov equation can be
expressed as a derivative along the characteristic curves by d

dsf(s,X(s), V (s)) = 0.
Thus, we find

f(t, x, v) = f0(X(0, t, x, v), V (0, t, x, v)) ∈ [0, C].

Remark 2.1. If it can be shown that velocity characteristics remain bounded away
from the set |V1(s)| = 1 for all s ≥ 0, then Theorem 2.2 implies the global existence
of smooth solutions.

Next, define the potential

A(t, x) =

∫ x

−∞
B(t, y) dy,

and notice that

∂tA =

∫ x

−∞
(−∂xE2(t, y)) dy = −E2(t, x)

and

(∂tt − ∂xx)A = −∂tE2 − ∂xB = j2. (2.2)

The potential will be used throughout this section because it satisfies the important
identity

d

ds
[V2(s) +A(s,X(s))] = 0

so that

v2 +A(t, x) = V2(0) +A(0, X(0)). (2.3)

Now, we may prove Lemma 2.1.

Proof. To prove the initial result, we first define a function to serve as an upper
bound on the maximal velocity support

Q(t) := 1 + sup {|v| : there exist τ ∈ [0, t], x ∈ R such that f(τ, x, v) 6= 0}
and the blow-up time

T̄ = sup {t ∈ [0, T ) : Q(t) is finite} .
Then, T̄ > 0 and Q : [0, T̄ ) → [0,∞) is continuous and nondecreasing. Finally, if
T̄ < T then Q(t)→∞ as t→ T̄−.
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Consider any T1 ∈ [0, T̄ ). For t ∈ [0, T1] it is straightforward to check the energy
conservation identity

d

dt

(∫∫
|v|2f(t, x, v) dv dx+

∫ (
|E(t, x)|2 +B(t, x)2

)
dx

)
= 0

so that ∫∫
|v|2f(t, x, v) dv dx+

∫ (
|E(t, x)|2 +B(t, x)2

)
dx = C.

Using the supremum bound on f and the kinetic energy portion of the identity, we
estimate j. So, for every P > 0

|j(t, x)| ≤
∫
|v|<P

|v|f dv + P−1
∫
|v|>P

|v|2f dv

≤ CP 3 + P−1
∫
|v|2f dv.

Taking P =
(∫
|v|2f dv

)1/4
then yields

|j(t, x)| ≤ C
(∫
|v|2f(t, x, v) dv

)3/4

. (2.4)

Note that (2.4) holds if j = 0 also. By (2.2), (2.4), and Hölder’s inequality we have

|A(t, x)|

=
1

2

∣∣∣∣A(0, x+ t) +A(0, x− t)−
∫ x+t

x−t
E2(0, y) dy +

∫ t

0

∫ x+t−τ

x−t+τ
j2(τ, y) dy dτ

∣∣∣∣
≤ C

(
1 +

∫ t

0

∫ x+t−τ

x−t+τ

(∫
|v|2f(τ, y, v) dv

)3/4

dy dτ

)

≤ C

(
1 +

(∫ t

0

∫ ∫
|v|2f(τ, y, v)dv dy dτ

)3/4(∫ t

0

∫ x+t−τ

x−t+τ
dy dτ

)1/4
)

≤ C.

Now, if f(t, x, v) 6= 0 then by (2.3) we find

|v2 +A(t, x)| = |V2(0, t, x, v) +A(0, X(0, t, x, v))| ≤ C

so that

|v2| ≤ |v2 +A(t, x)|+ |A(t, x)| ≤ C. (2.5)

This bound then yields a spatially-uniform bound on j2

|j2(t, x)| ≤
∫ Q(t)

−Q(t)

∫ C

−C
|v2|f dv2 dv1 ≤ CQ(t).

Next, we note that the field equations in (1.5D VM) imply

(∂t + ∂x)(E2 +B) = −j2
(∂t − ∂x)(E2 −B) = −j2.

The first of these equations yields the bound

|E2(t, x) +B(t, x)| =
∣∣∣∣E2(0, x− t) +B(0, x− t)−

∫ t

0

j2(τ, x− t+ τ) dτ

∣∣∣∣ ≤ CQ(t)
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and an identical bound for |E2 − B| follows from the second equation in the same
manner. Using these together, we find

|E2(t, x)|+ |B(t, x)| ≤ CQ(t). (2.6)

In addition, a bound on the first component of the electric field arises from charge
conservation. In particular, integrating the Vlasov equation over phase space yields

d

dt

∫∫
f(t, x, v) dv dx = 0

and thus ∫∫
f(t, x, v) dv dx =

∫∫
f0(x, v) dv dx.

With this, we find

|E1(t, x)| =

∣∣∣∣∫ x

−∞

(∫
f(t, y, v) dv − b(y)

)
dy

∣∣∣∣
≤

∫∫
f(t, y, v) dv dy +

∫
|b(y)| dy

=

∫∫
f0(y, v) dv dy +

∫
|b(y)| dy

≤ C.

Hence, if f(t, x, v) 6= 0, then∣∣∣∣dV1ds
∣∣∣∣ = |E1(s,X) + V2B(s,X)| ≤ CQ(s)

and therefore

|v1| ≤
∣∣∣∣V1(0, t, x, v) +

∫ t

0

dV1
ds

ds

∣∣∣∣ ≤ C (1 +

∫ t

0

Q(s) ds

)
.

Combining this with the bound on the v2-support in (2.5), it follows that

Q(t) ≤ C
(

1 +

∫ t

0

Q(s) ds

)
.

By Gronwall’s inequality, we conclude

Q(t) ≤ C

and (2.1) follows directly from this. Finally, the field bounds follow precisely from
this estimate and (2.6). Similarly, ρ and j are controlled by the estimate onQ(t).

To conclude this section, we prove Theorem 2.2.

Proof. For any t ∈ [0, T ) define the norm

‖∇x,vf(t)‖ := sup
τ∈[0,t]

‖∇x,vf(τ)‖∞

and note that the function t → ‖∇x,vf(t)‖ is continuous and nondecreasing, and
maps [0, T ) to [0,∞). To prove the uniform boundedness asserted in Theorem
2.2, consider ε > 0 and without loss of generality take ε < T/2. Let (t, x, v) ∈
Sε
⋂

supp(f). If this intersection is, in fact, empty then the uniform bound on
derivatives guaranteed by the theorem will merely be 0. If t ≤ T − ε then

|∂xf(t, x, v)|+ |∇vf(t, x, v)| ≤ ‖∇x,vf(T − ε)‖,
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so consider t ∈ (T − ε, T ) and note that∣∣∣∣|V1(t)| − 1

∣∣∣∣ =

∣∣∣∣|v1| − 1

∣∣∣∣ > ε.

From the result of Lemma 2.1, namely (2.1), (2.6), and the bound on E1, it follows
that

|K(t, x, v)| ≤ C
on the support of f . Hence, there is C1 > 1 such that tε := t− ε

C1
≤ s ≤ t implies∣∣∣∣|V1(s)| − 1

∣∣∣∣ > 1

2
ε.

Thus, we have ∫ t

tε

∣∣∣∣|V1(s)| − 1

∣∣∣∣−1ds ≤ 2

ε
(t− tε) =

2

C1
. (2.7)

From the Vlasov equation, we have

d

ds
[∂xf(s,X(s), V (s))] = − (∂xK · ∇vf) (s,X(s), V (s)),

d

ds
[∂v1f(s,X(s), V (s))] = (−∂xf +B∂v2f) (s,X(s), V (s)), (2.8)

d

ds
[∂v2f(s,X(s), V (s))] = − (B∂v1f) (s,X(s), V (s)). (2.9)

Hence, for t2 ∈ [tε, t]

∂xf(t2, X(t2), V (t2))

= ∂xf(tε, X(tε), V (tε))−
∫ t2

tε

(∂xK · ∇vf) (s,X(s), V (s)) ds

= ∂xf(tε, X(tε), V (tε))

−
∫ t2

tε

∂xK(s,X(s), V (s)) ·
[
∇vf(tε, X(tε), V (tε))

+

∫ s

tε

〈
−∂xf +B∂v2f,−B∂v1f

〉
(u,X(u), V (u))du

]
ds

Letting

K(u, t2) =

∫ t2

u

∂xK(s,X(s), V (s)) ds (2.10)

and changing the order of integration in the last term, this expression becomes

∂xf(t2, X(t2), V (t2))

=∂xf(tε, X(tε), V (tε))

−K(tε, t2) · ∇vf(tε, X(tε), V (tε))

−
∫ t2

tε

K(u, t2) ·
〈
−∂xf +B∂v2f,−B∂v1f

〉
(u,X(u), V (u))du.

(2.11)

Now, it remains to bound K. For K2, note that

∂xK2(s,X(s), V (s)) = ∂xE2(s,X(s))− V1(s)∂xB(s,X(s))

= −∂tB(s,X(s))− V1(s)∂xB(s,X(s))

= − d

ds

[
B(s,X(s))

]
,
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so that

|K2(u, t2)| =
∣∣∣∣B(u,X(u))−B(t2, X(t2))

∣∣∣∣ ≤ C. (2.12)

For K1, note that

∂xK1 = ∂xE1 + v2∂xB

and

|∂xE1(t, x)| = |ρ(t, x)| ≤ C, (2.13)

so we focus on the remaining quantity in (2.10), namely∫ t2

u

V2(s)∂xB(s,X(s)) ds. (2.14)

Since B can be represented as

B(t, x)

=
1

2

[
(E2+B)(0, x−t)−(E2−B)(0, x+t)−

∫ t

0

(j2(τ, x−t+τ)−j2(τ, x+t−τ)) dτ

]
,

we’ll consider

B±(t, x) :=

∫ t

0

∂xj2(τ, x∓ (t− τ)) dτ

=

∫ t

0

∫
v2∂xf(τ, x∓ (t− τ), v) dv dτ.

Then, we can estimate (2.14) by∣∣∣∣∫ t2

u

V2(s)∂xB(s,X(s)) ds

∣∣∣∣ ≤ C +
1

2

∣∣∣∣∫ t2

u

V2(s)[B+(s,X(s))− B−(s,X(s))] ds

∣∣∣∣ .
(2.15)

Consider the first part of the expression on the right, namely

I :=

∫ t2

u

V2(s)B+(s,X(s)) ds,

as the other term may be handled similarly. Writing

f = f(τ,X(s)− s+ τ, v) and ∂xf = ∂xf(τ,X(s)− s+ τ, v)

we have from the Vlasov equation

∂xf =
1

1− v1

[
df

dτ
+∇v · (fK)

]
=

1

V1(s)− 1

df

ds
.

Take

D = (V1(s)− 1)2 + (v1 − 1)2 and θ =
(V1(s)− 1)2

D

and write ∂xf as a convex combination of its two representations, so that

∂xf =
θ

V1(s)− 1

df

ds
+

1− θ
1− v1

[
df

dτ
+∇v · (fK)

]
.
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Using this, we split I into three portions given by

I =

∫ t2

u

V2(s)

∫ s

0

∫
v2∂xf(τ,X(s)− s+ τ, v) dv dτ ds

=

∫ t2

u

V2(s)

∫ s

0

∫
v2

[
V1(s)− 1

D

df

ds
+

1− v1
D

df

dτ
+

1− v1
D
∇v · (fK)

]
dv dτ ds

=: IS + IT + IV .

(2.16)
Note that∫

|v|≤C

1

D
dv ≤ C

∫
dv1

(V1(s)− 1)2 + (v1 − 1)2
=

C

|V1(s)− 1|
. (2.17)

Using (2.17) we have

|IT | =
∣∣∣∣∫ t2

u

V2(s)

∫
v2

1− v1
D

(f(s,X(s), v)− f(0, X(s)− s, v)) dv ds

∣∣∣∣
≤ C

∫ t2

u

∫
|v|≤C

dv ds

D
≤ C

∫ t2

u

ds

|V1(s)− 1|
.

(2.18)

Next, we consider IV . Using (2.17) again and integrating by parts, we have for
the portion involving ∂v2 ,∣∣∣∣∫ v2

1− v1
D

∂v2(fK2) dv

∣∣∣∣ =

∣∣∣∣−∫ fK2∂v2

(
v2

1− v1
D

)
dv

∣∣∣∣
=

∣∣∣∣∫ fK2
1− v1
D

dv

∣∣∣∣
≤ C

∫
|v|≤C

1

D
dv

≤ C

|V1(s)− 1|
.

For the portion involving ∂v1 , we again use (2.17) to find∣∣∣∣∫ v2
1− v1
D

∂v1(fK1) dv

∣∣∣∣ =

∣∣∣∣− ∫ fK1∂v1

(
v2

1− v1
D

)
dv

∣∣∣∣
=

∣∣∣∣∫ fK1v2

(
1

D
+

1− v1
D2

2(v1 − 1)

)
dv

∣∣∣∣
≤

∫
|v2|f |K1|

(
1

D
+

2D

D2

)
dv

≤ C

|V1(s)− 1|
.

Combining these estimates we have

|IV | ≤
∫ t2

u

|V2(s)|
∫ s

0

C

|V1(s)− 1|
dτ ds ≤ C

∫ t2

u

|V1(s)− 1|−1 ds. (2.19)

For IS , more work is needed. We integrate by parts twice so that

IS =

∫ t2

u

V2(s)

[
d

ds

∫ s

0

∫
v2
V1(s)− 1

D
f dv dτ
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−
∫
v2
V1(s)− 1

D
f(s,X(s), v) dv

−
∫ s

0

∫
v2
d

ds

(
V1(s)− 1

D

)
f dv dτ

]
ds

= V2(s)

∫ s

0

∫
v2
V1(s)− 1

D
f dv dτ

∣∣∣∣s=t2
s=u

−
∫ t2

u

dV2
ds

∫ s

0

∫
v2
V1(s)− 1

D
f dv dτ ds

−
∫ t2

u

V2(s)

∫
v2
V1(s)− 1

D
f(s,X(s), v) dv ds

−
∫ t2

u

V2(s)

∫ s

0

∫
v2

(
1

D
− V1(s)− 1

D2
2(V1(s)− 1)

)
dV1
ds

f dv dτ ds

=: I1S + I2S + I3S + I4S .

Note that ∫
|v|≤C

|V1(s)− 1|
D

dv ≤ C
∫

|V1(s)− 1|
(v1 − 1)2 + |V1(s)− 1|2

dv1 ≤ C

and it follows that

|I1S |+ |I2S |+ |I3S | ≤ C. (2.20)

Also, by (2.17) we have

|I4S | ≤ C
∫ t2

u

|V2(s)|
∫ s

0

∫
|v|≤C

|v2|
(

1

D
+

2D

D2

)
dv dτ ds

≤ C
∫ t2

u

|V1(s)− 1|−1 ds.
(2.21)

Using (2.18), (2.19), (2.20), and (2.21) in (2.16) yields

|I| ≤ C
(

1 +

∫ t2

u

|V1(s)− 1|−1 ds
)
.

Similar steps show that∣∣∣∣∫ t2

u

V2(s)B−(s,X(s)) ds

∣∣∣∣ ≤ C (1 +

∫ t2

u

|V1(s) + 1|−1 ds
)

and hence (2.15) yields∣∣∣∣∫ t2

u

V2(s)∂xB(s,X(s)) ds

∣∣∣∣ ≤ C (1 +

∫ t2

u

[
|V1(s)− 1|−1 + |V1(s) + 1|−1

]
ds

)
.

By (2.7) we have ∣∣∣∣∫ t2

u

V2(s)∂xB(s,X(s)) ds

∣∣∣∣ ≤ C.
Using this bound, (2.12), and (2.13) within (2.10) yields

|K(u, t2)| ≤ C.
Returning to (2.11), we find

|∂xf(t2, X(t2), V (t2))|
≤ |∂xf(tε, X(tε), V (tε))|
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+ C |∇vf(tε, X(tε), V (tε))|

+ C

∫ t2

tε

(|∂xf |+ |∇vf | ) (u,X(u), V (u))du

≤C
(
‖∇x,vf(tε)‖+

∫ t2

tε

(|∂xf |+ |∇vf | ) (u,X(u), V (u))du

)
.

From (2.8) and (2.9) and the previous bounds it follows that

|∇x,vf(t2, X(t2), V (t2))| ≤ C‖∇x,vf(tε)‖+ C

∫ t2

tε

|∇x,vf(u,X(u), V (u))| du.

By Gronwall’s inequality, we finally have

|∇x,vf(t,X(t), V (t))| ≤ C‖∇x,vf(tε)‖eC(t−tε)

≤ C‖∇x,vf(tε)‖eCT

≤ C‖∇x,vf(tε)‖
≤ C‖∇x,vf(T − ε/C1)‖.

From this, the conclusion of Theorem 2.2 follows, and the proof is complete.

3. Global existence for symmetric initial data. Though it remains unknown
as to whether any smooth triple of initial data (f0, E0

2 , B
0) launches a global-in-

time classical solution (f,E2, B) of (1.5D VM), we may show that a particular
class of solutions exists globally in time. In particular, we will show that symmetry
of the initial distribution in v2 is preserved in time and gives rise to a smooth,
unique, global solution, which satisfies the one-dimensional Vlasov-Poisson system.
Throughout this final section we will split the v-dependence of the distribution
function into its components v1 and v2 for clarity.

Theorem 3.1. Assume the initial particle distribution f0(x, v1, v2) satisfies

f0(x, v1, v2) = f0(x, v1,−v2)

for every x, v1, v2 ∈ R, while the initial fields satisfy E0
2(x) = B0(x) = 0 for every

x ∈ R. Then, there is a unique f ∈ C1
(
[0,∞)× R3

)
satisfying (1.5D VM) and

f(t, x, v1, v2) = f(t, x, v1,−v2)

for all t ∈ [0,∞), x, v1, v2 ∈ R. In particular, E2(t, x) = B(t, x) = 0 for all
t ∈ [0,∞), x ∈ R and f satisfies the one-dimensional Vlasov-Poisson system in the
variables (t, x, v1) with v2 as a parameter, namely

∂tf + v1∂xf + E1∂v1f = 0.

∂xE1 = ρ(t, x) =

∫
fdv − b(x), ∂tE1 = −j1 = −

∫
v1f dv.

Proof. Let g(t, x, v1, v2) = f(t, x, v1,−v2) for all t ∈ [0, T ), x, v1, v2 ∈ R so that

g(0, x, v1, v2) = f0(x, v1,−v2) = f0(x, v1, v2). (3.1)
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Then, define jg2 (t, x) =
∫
w2g(t, x, w1, w2) dw2dw1 and note that, upon changing

variables

j2(t, x) =

∫
v2f(t, x, v1, v2) dv

=

∫∫
v2g(t, x, v1,−v2) dv2 dv1

= −
∫∫

w2g(t, x, w1, w2) dw2 dw1

= −jg2 (t, x).

Let Eg2 (0, x) = Bg(0, x) = 0, and for t ∈ (0, T ) define Eg2 (t, x) and Bg(t, x) as
the unique solutions of {

∂tE
g
2 + ∂xB

g = −jg2
∂tB

g + ∂xE
g
2 = 0.

(3.2)

Then, we see that these functions satisfy{
∂t(−Eg2 ) + ∂x(−Bg) = jg2 = −j2

∂t(−Bg) + ∂x(−Eg2 ) = 0.

Hence, the pair (−Eg2 ,−Bg) satisfies the same system of PDEs with the same initial
conditions as the pair (E2, B). By uniqueness Eg2 (t, x) = −E2(t, x) and Bg(t, x) =
−B(t, x) for all t ∈ [0, T ), x ∈ R. Since a change of variable in v2 does not affect
other quantities in the system, we define ρg, jg1 , and Eg1 , and note that they are
equal to their f -dependent counterparts, so that

ρg(t, x) :=

∫
g(t, x, v1, v2) dv2dv1 − b(x) = ρ(t, x)

jg1 (t, x) :=

∫
v1g(t, x, v1, v2) dv2dv1 = j1(t, x)

∂xE
g
1 (t, x) := ρg(t, x) = ρ(t, x).

Then, we apply the Vlasov operator in the variables (t, x, w1, w2) to the function
g(t, x, w1, w2) to find

∂tg + w1∂xg + (Eg1 + w2B
g)∂w1

g + (Eg2 − w1B
g)∂w2

g

= ∂tf + w1∂xf + (E1 − w2B)∂v1f − (−E2 + w1B)∂v2f

where the function f = f(t, x, v1, v2) is evaluated at the point (v1, v2) = (w1,−w2).
Relabeling the velocity arguments in this equation using v1 = w1 and v2 = −w2,
we find further

∂tg + w1∂xg + (Eg1 + w2B
g)∂w1

g + (Eg2 − w1B
g)∂w2

g

= ∂tf + v1∂xf + (E1 + v2B)∂v1f + (E2 − v1B)∂v2f

= 0.

Hence, g satisfies the Vlasov equation with initial condition (3.1). Additionally, Eg2
and Bg satisfy the analogous transport equations as E2 and B, namely (3.2), with
the same initial conditions Eg2 (0, x) = 0 = E2(0, x) and Bg(0, x) = 0 = B(0, x). By
uniqueness, we find (g,Eg2 , B

g) ≡ (f,E2, B), which in particular implies

f(t, x, v1,−v2) = f(t, x, v1, v2)

for every t ∈ [0, T ), x, v1, v2 ∈ R. Since f is even in v2, the function v2f is odd and
we find j2(t, x) =

∫∫
v2f(t, x, v1, v2) dv2dv1 = 0. Additionally, we have Eg2 (t, x) =



GLOBAL SOLVABILITY FOR 1.5D VLASOV MAXWELL 467

E2(t, x) and Eg2 (t, x) = −E2(t, x), which implies E2 ≡ 0. As the same equalities
hold for B, we conclude B ≡ 0 as well. Finally, using these field representation
within the Vlasov equation, we see that f satisfies the reduced equation

∂tf + v1∂xf + E1∂v1f = 0.

We note that only the last term on the left side is nonlinear, and hence the coupling
between the unknown field E1 and the particle distribution only occurs via the
remaining equations

∂xE1 = ρ and ∂tE1 = −j1.
The resulting system is exactly the one-dimensional Vlasov-Poisson system with v2
as a parameter rather than an independent variable. As this system is known to
possess a global classical solution, the conclusion of the theorem follows.
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