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A B S T R A C T

The dynamics of human infectious diseases are challenging to understand, particularly when a pathogen
spreads spatially over a large region. We present a stochastic, spatially-heterogeneous model framework
derived from the foundational SEIR compartmental model. These models utilize a graph structure of spatial
locations, facilitating mobility via random walks while progressing through disease states, parameterized by
the net probability flux between locations. The analysis is bolstered by Approximate Bayesian Computation, by
which epidemiological and mobility parameter distributions are estimated, including an empirically adjusted
reproductive number, while model structure proposals are compared using Bayes Factors. The utility of this
novel class of models is demonstrated through application to the 2014–2016 Ebola outbreak in West Africa.
The flexibility of such models, whose complexity may be adjusted as desired, and complementary methods
of analysis enable the exploration of various spatial divisions and mobility schema, while maintaining the
essential spatiotemporal disease dynamics.
1. Introduction

The data used in epidemic models often features both spatial and
temporal variation, but difficulties arise in the incorporation of spatial
phenomena within a dynamical model. Analysts therefore often make
the assumption of spatial homogeneity throughout the region (or re-
gions) under study, but this is unreasonable when populations are not
‘‘well-mixed’’ and contacts between individuals depend upon underly-
ing spatial structures within their environment, such as transportation
routes (Brauer, 2017). Unfortunately, this assumption is often imposed
despite its shortcomings because the analysis of spatial models that
utilize partial differential equations (PDEs) is particularly challenging,
especially when a variety of compartments or stochastic components
must be included. Small outbreaks are especially challenging to model
and analyze, as similar spatiotemporal conditions can give rise to the
progression of an epidemic and alternatively, little to no spread of the
disease. Stochastic models aid in such efforts, as this natural uncer-
tainty is encoded directly by a stochastic process (Allen, 2008). While
such processes are often employed in spatially-homogeneous models,
stochastic models that meaningfully describe the spatial aspects of
infection dynamics remain an active and challenging area of research.

∗ Correspondence to: Mail Stop D415, Information Systems and Modeling Group (A-1), Analytics, ALD Global Security, Los Alamos National Laboratory, Los
Alamos, NM, USA.

E-mail address: kaitlynm@lanl.gov (K. Martinez).

This is of particular importance, as stochastic models allow practition-
ers to account for uncertainty in disease spread in addition to parameter
estimation. In particular, quantifying knowledge of epidemic param-
eters (e.g., latent period, variation in infection/contact rate, drivers
of infection) can be of critical importance to public health responses,
as well as planning efforts for future outbreaks. Stochastic models are
especially amenable to analysis via Bayesian inference methods, which
allow modelers to include prior information about known infection
parameters. Simulation techniques are heavily utilized both in Bayesian
and non-Bayesian settings. For example, Approximate Bayesian Compu-
tation (ABC) methods (Beaumont, 2010; Beaumont et al., 2009) permit
Bayesian inference based primarily on forward stochastic simulations
and allow for the comparison of candidate epidemic models through
various means, including the application of Bayes Factors (Kass and
Raftery, 1995). As with other epidemic parameters, stochastic methods
also enable the estimation of various reproductive numbers, as the basic
reproductive number employed in deterministic methods does not have
a single unambiguous counterpart (Brown et al., 2016).

Consider the Ebola outbreak which spread throughout West Africa
between 2014 and 2016 (Center for Disease Control, 2014). While a
large number of people were infected during this epidemic, it began and
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was propagated due to relatively rare infection and interaction events
— both in terms of biological disease processes and the movements of
individuals. In an epidemiological sense, the epidemic thus exhibited
traits of a ‘‘small’’ outbreak, presenting challenges for both the homo-
geneous mixing stochastic models and their deterministic counterparts.
This outbreak confounded international experts at the time due to its
transmission uncertainty (Ladner et al., 2015) and spatial heterogene-
ity (Dilorenzo, 2014a,b). We propose a novel, spatially heterogeneous,
stochastic model to mitigate these challenges.

In the next section, we begin by describing the characteristics
of Ebola Virus Disease generally and in West Africa between 2014
nd 2016 and providing a survey of previous methods used to model
his particular outbreak. Additionally, we provide a general summary
f models that describe spatial heterogeneity or stochastic elements
n disease transmission. Next, we propose a spatially-heterogeneous
xtension to a stochastic process embedded within an Susceptible–
xposed–Infectious–Removed (SEIR) compartmental model. This new
odel employs a graph structure of spatial locations connected by

dges over which individuals can relocate via random walk while simul-
aneously transitioning between disease states. We then describe the
tatistical methods employed herein, including the Bayesian framework
nd implementation through ABC, as well as techniques for reproduc-
ive number estimation and model comparison. Finally, we demonstrate
he utility and efficacy of the proposed class of models by designing and
nalyzing collections of models with various spatial mobility structures
or the Ebola outbreak in West Africa.

. Background

.1. Ebola virus disease characteristics

Ebola virus disease (EVD) is a viral hemorrhagic fever affecting hu-
ans and primates that is caused by four of the six different species of
bola virus, and is native to tropical regions of sub-Saharan Africa (The
orld Health Organization, 2016a; WHO Ebola Response Team, 2014).

he Ebola virus first spreads from a natural animal reservoir to a
roximal human population. The precise natural reservoir is unknown;
owever, it has been shown that bats are asymptomatic carriers and
ave been implicated in earlier outbreaks of EVD (Center for Disease
ontrol, 2015). After its initial introduction from the reservoir, the
irus spreads within a human population via interaction with infected
odily fluids such as blood, vomit, feces, mucus, urine, and semen,
ither during direct physical contact with an infectious individual or
ndirect contact with contaminated surfaces and materials. Symptoms
ypically manifest 2–21 days after exposure and usually last 6–16 days
efore recovery or death (The World Health Organization, 2016a). Re-
overed individuals develop non-permanent antibodies which protect
hem from the virus for up to ten years. The symptoms of EVD begin as
xtreme flu-like symptoms, and progress to include rash, vomiting, and
iarrhea, internal and external bleeding, and severe dehydration (The
orld Health Organization, 2016a). The mortality rate of EVD ranges

rom 25% to 90%, depending on the availability of supportive treat-
ent focusing on rehydration and blood pressure stabilization (The
orld Health Organization, 2016b).
The largest and most deadly outbreak of EVD to date officially began

n December 26, 2013 in West Africa, causing 28,646 cases and 11,323
eaths worldwide (Center for Disease Control, 2014). The epicenter of
his epidemic occurred in the three African countries of Guinea, Sierra
eone, and Liberia. Many factors, including the extreme poverty, inad-
quate and dysfunctional healthcare systems, distrust of government,
nd the introduction of cases into dense urban areas, contributed to the
assive spread of the virus and challenges in containing it (WHO Ebola
esponse Team, 2014). Additionally, traditional religious burial prac-

ices involving widespread, direct contact with deceased individuals
2

ere identified as a significant transmission pathway.
2.2. Previous models and methods

Due to the complexity of transmission pathways and the heterogene-
ity of the spatial spread, modeling efforts for this particular outbreak
have been quite diverse. Attempts to model the epidemic began in
real time as a response measure to the crisis, and have continued
into the present to better prepare for future outbreaks. A number of
previous models for Ebola are compartmental in nature, breaking the
disease process into a set of discrete states or ‘‘compartments’’. These
include both deterministic mathematical models (Mamo and Koya,
2015; Rivers et al., 2014) and stochastic models (Lekone and Finken-
städt, 2006), ranging from a standard susceptible–exposed–infectious–
removed (SEIR) compartmental structure to a broad range of disease
state subdivisions of the population. These additional disease states
include infectious classes representing other pathways of disease spread
(e.g. hospitalized, deceased), distinctions between reported and un-
reported cases, and further divisions of the incubation period or the
particular type of care or hospitalization (Wong et al., 2017; Diaz et al.,
2018). Generally, as the complexity of the compartmental model is
increased, additional assumptions regarding the homogeneous spatial
mixing of populations are necessary. This assumption was typically
addressed not via implementation of spatial heterogeneity, but through
stratified population structures that further split populations into more
refined categories of age, risk, or community structures (Kiskowski,
2014; Fast et al., 2015; Agusto et al., 2015). Other efforts addressed the
spatial heterogeneity by building models at the finest spatial resolution
available — districts in Guinea, counties in Liberia, and provinces in
Sierra Leone (Santermans et al., 2016; Pell et al., 2016a). Despite this
high resolution of spatial discretization, models were constructed for
an individual location, i.e. a single region or country, ignoring the
inherent interactions amongst spatial locations. Most existing models,
even highly-complex compartmental ones, struggle to address the spa-
tial heterogeneity inherent within the epidemic, and specifically fail to
capture the spread of Ebola within Guinea (Rivers et al., 2014; Diaz
et al., 2018). This is particularly problematic, as the outbreak began
in Guinea and, for the first 12 weeks, is observed only within Guinea’s
borders.

Many models that have incorporated interactions between spatial
locations in both mathematical and statistical studies consider only the
mobility of the pathogen and not of individuals themselves, wherein
infection can spread across borders, while individuals remain static
in their locality. Gravity models constitute one such example and
have been implemented at a variety of spatial scales to explore the
spread of this Ebola epidemic (Kramer et al., 2016; Valdez et al.,
2015; D’Silva and Eisenberg, 2017). More generally, in the statistical
epidemiology community, the gravity model concept is generalized to
characterize any spatial auto-correlation structure which could explain
the spread of disease using spatial or conditional auto-regressive mod-
els (SAR/CAR) (Porter and Oleson, 2014). One of the few modeling
frameworks that facilitates the movement of individuals as a source
of disease spread is that of Agent-based Models (ABMs) (Merler et al.,
2015). ABMs are often computationally constrained, however, and tend
to focus on relatively small populations as a result (Hunter et al., 2017;
Perez and Dragicevic, 2009). In general, the development of robust
stochastic patch models that facilitate statistical parameter estimation
and data fitting with the addition of mobility parameters (Pell et al.,
2016b; McCormack and Allen, 2007; Lahodny and Allen, 2013) re-
mains a challenge. The fully stochastic inferential modeling framework
presented herein enables the incorporation of individual as well as
pathogenic mobility while retaining a simple disease structure that
fosters both parameter identification and the feasible use of model
selection techniques, as we shall demonstrate through application to

the Ebola outbreak in West Africa that began in 2014.
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3. Methods

3.1. Spatially heterogeneous embedded stochastic SEIR model

We consider a graph 𝐺 with 𝑘 nodes, each representing a spatial lo-
ation. Population mobility on this graph is implemented via transition
robabilities defined on the edges according to a Markov probability
atrix

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑝11 𝑝12 … 𝑝1𝑘
𝑝21 𝑝22 … 𝑝2𝑘
⋮ ⋮ ⋱ ⋮
𝑝𝑘1 𝑝𝑘2 … 𝑝𝑘𝑘

⎞

⎟

⎟

⎟

⎟

⎠

where 𝑝𝑖𝑗 represents the probability of transitioning from node 𝑖 to node
𝑗. Individuals can then move between locations via a random walk on
this graph. This structure is a Markov chain (Modica and Poggiolini,
2012), as an individual’s movement at the next time step only depends
on their current position. If 𝑝𝑖𝑗 = 𝑝𝑗𝑖 = 0 then no edge connects node 𝑖 to
node 𝑗. While it is feasible to allow 𝐺 to be a directed graph and enforce
unidirectional movement along an edge, we assume that there is some
level of continuous movement in both directions along a defined edge.
Thus, for every edge either 𝑝𝑖𝑗 = 𝑝𝑗𝑖 = 0 or 𝑝𝑖𝑗 , 𝑝𝑗𝑖 ≠ 0. With the edges
and transition probabilities defined, a single flux term 𝜌𝑖𝑗 = 𝑝𝑖𝑗 − 𝑝𝑗𝑖,
which we will refer to as the overall probability flux, is defined for each
existing edge. This quantity is necessary as the individual transition
probabilities are not structurally identifiable (Bellman and Åström,
1970), and are also often not identifiable in practice and the former
has been directly verified via simulation.

The overall probability flux is intuitively understood as the net ex-
change of individuals between two spatial locations and will be practi-
cally identifiable for a general Markov random walk on 𝐺. Additionally,
our utilization of a single flux term only requires the identification of
2𝑘(𝑘−1) parameters rather than 4𝑘(𝑘−1). Using this parameterization,
we fix the less dominant probability of the pair (𝑝𝑖𝑗 , 𝑝𝑗𝑖) and add the
estimated probability flux to uniquely determine the second in the pair
when necessary.

This random structure assumes a constant probability of individu-
als moving between two locations, which is valid assuming constant
mobility. However, such an assumption may fail to be realistic. In the
context of the spread of an infectious disease, one type of non-constant
movement, known as a ‘‘sparking’’ event, can be extremely important
to understanding the spatial spread of the disease. Sparking events
are characterized by situations in which two locations with typically
negligible mutual mobility experience a rare transmission event that
introduces new cases to a previously unaffected region. Such events
have a large impact on the scope and timing of an epidemic, and can
be vital to understanding the spatial spread of the disease.

To facilitate the incorporation of such sparking events, the proposed
model will utilize a matrix  of spatial and temporal indicator func-
tions. We first define a time interval 𝑇 centered at a fixed time 𝑡∗ > 0
and possessing a specified duration of 2𝜏, so that 𝑇 = [𝑡∗ − 𝜏, 𝑡∗ + 𝜏].
Then, the temporal indicator function on this interval is denoted by

𝐼𝑇 (𝑡) =

{

0, 𝑡 ∉ 𝑇

1, 𝑡 ∈ 𝑇

and for 𝑝∗𝑖𝑗 ∈ (0, 1) the corresponding spatio-temporal matrix  is
defined entrywise by

𝑖𝑗 (𝑡) =

{

0 (𝑖, 𝑗) ∉ 

𝑝∗𝑖𝑗𝐼𝑇 (𝑡) (𝑖, 𝑗) ∈ 
(1)

where  ⊂  is a specified edge subset of the graph. When added to 𝑃𝑃𝑃 ,
this matrix will implement the short term probability 𝑝∗𝑖𝑗 of population
mobility between nodes 𝑖 and 𝑗 with (𝑖, 𝑗) ∈  that otherwise possess
no mobility.

With movement between nodes determined by the probabilities 𝑝̂𝑖𝑗
𝑃̂ 𝑃
3

in 𝑃𝑃 = 𝑃𝑃 +  at each time step, we can track individuals that move c
between nodes from each compartment of the disease process. Consider
individuals in a particular disease class 𝑋 that is mobile. Then 𝑥𝑖𝑗 (𝑡),
the number of individuals in compartment 𝑋 leaving node 𝑖 for node
𝑗 at time 𝑡, can be drawn from multinomial distributions over all 𝑘
locations. Hence, we let

[𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡),… , 𝑥𝑖𝑘(𝑡)] ∼ Multi
(

𝜒𝑖(𝑡), [𝑝̂𝑖1, 𝑝̂𝑖2,… , 𝑝̂𝑖𝑘]
)

where 𝜒𝑖(𝑡) is the number of individuals within compartment 𝑋 and
location 𝑖 that are available to move at time 𝑡. To understand the
number of mobile individuals at each node and within each disease
class requires a simplifying assumption. To help us preserve positivity,
we will assume that within any time step, a person first completes the
disease process stochastic step, e.g. moving from the susceptible to the
exposed state, prior to being considered mobile if appropriate. This
imposes a reality in which an individual cannot simultaneously move
locations and disease states. The multinomial draws produce 𝑘 vectors
for the 𝑖th spatial location, generating matrices of mobile 𝑋 individuals
given by

𝑀𝑋 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑥11(𝑡) 𝑥12(𝑡) … 𝑥1𝑘(𝑡)
𝑥21(𝑡) 𝑥22(𝑡) … 𝑥2𝑘(𝑡)
⋮ ⋮ ⋱ ⋮

𝑥𝑘1(𝑡) 𝑥𝑘2(𝑡) … 𝑥𝑘𝑘(𝑡)

⎞

⎟

⎟

⎟

⎟

⎠

.

e then calculate the net total individuals in disease class 𝑋 enter-
ng (or remaining within) spatial location 𝑖 from all other locations,
enoted 𝑁𝑋

𝑖 (𝑡), by summing the columns of 𝑀𝑀𝑀𝑋 , namely

𝑋
𝑖 (𝑡) =

𝑘
∑

𝓁=1
𝑥𝓁𝑖(𝑡).

With population movement defined in this way, the standard stochas
ic spatially homogeneous SEIR model (Lekone and Finkenstädt, 2006)
an be extended to a spatially heterogeneous model describing the
pread of an SEIR disease process over 𝑘 nodes, given by

𝑆𝑖(𝑡 + 𝛥𝑡) = 𝑁𝑆
𝑖 (𝑡) − 𝐵𝑖(𝑡)

𝐸𝑖(𝑡 + 𝛥𝑡) = 𝑁𝐸
𝑖 (𝑡) + 𝐵𝑖(𝑡) − 𝐶𝑖(𝑡)

𝐼𝑖(𝑡 + 𝛥𝑡) = 𝑁𝐼
𝑖 (𝑡) + 𝐶𝑖(𝑡) −𝐷𝑖(𝑡)

𝑅𝑖(𝑡 + 𝛥𝑡) = 𝐷𝑖(𝑡).

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(2)

his model assumes there are four disease states: susceptible, exposed,
nfectious, and removed (recovered, deceased, and immune) popula-
ions at time 𝑡 and spatial location 𝑖 denoted by 𝑆𝑖(𝑡), 𝐸𝑖(𝑡), 𝐼𝑖(𝑡), and
𝑖(𝑡), respectively. The susceptible population is, in this case the entire
opulation of the country (or other relevant spatial region), as no
accine or direct treatment methods to prevent the spread of the disease
ere available prior to the onset of the epidemic. The newly exposed,
𝑖(𝑡), infectious, 𝐶𝑖(𝑡), and removed, 𝐷𝑖(𝑡), populations at time 𝑡 and

ocation 𝑖 are defined by

𝐵𝑖(𝑡) ∼ Bin(𝑆𝑖(𝑡), 𝑃𝑖(𝑡))

𝐶𝑖(𝑡) ∼ Bin(𝐸𝑖(𝑡), 𝑝𝐶 )

𝑖(𝑡) ∼ Bin(𝐼𝑖(𝑡), 𝑝𝐷)

here

𝑖(𝑡) = 1 − exp
[

−𝛽𝑖(𝑡)
𝑁𝑖(𝑡)

𝐼𝑖(𝑡)𝛥𝑡
]

, (3)

𝑝𝐶 = 1 − exp(−𝛼𝛥𝑡), and 𝑝𝐷 = 1 − exp(−𝛾𝛥𝑡).

he binomial probabilities for each transition population depend on
he biological parameters in the foundational deterministic SEIR model
Brauer and Castillo-Chávez, 2001) within which the stochastic model
s embedded. In general, members of the susceptible population may
ontact an infectious individual with probability 𝜇1, and each interac-
ion has an associated probability of transmission, given by 𝜇2. These
robabilities are then combined to form 𝛽 = 𝜇1𝜇2, which represents the
haracteristic infection rate. We will consider the situation in which
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𝛽 = 𝛽𝑖(𝑡) is a function of time and spatial location. The exposed
population represents individuals experiencing the biological latent
period (on average, 1

𝛼 days) during which they have been infected but
resent no symptoms and are not infectious. After this time, exposed
ndividuals transition into the infectious compartment, from which they
re ultimately removed after an average period of 1

𝛾 days via either
recovery or death. Both 𝛼 and 𝛾 are fixed, as the latent and infectious
periods typically do not change over the course of an epidemic. The net
mobile susceptible, exposed, and infectious individuals are defined by

𝑁𝑆
𝑖 (𝑡) =

𝑘
∑

𝓁=1
𝑠𝓁𝑖(𝑡), 𝑁𝐸

𝑖 (𝑡) =
𝑘
∑

𝓁=1
𝑒𝓁𝑖(𝑡), 𝑁𝐼

𝑖 (𝑡) =
𝑘
∑

𝓁=1
𝜄𝓁𝑖(𝑡).

Additionally, the multinomial draws for mobile individuals are given
by

[𝑠𝑖1(𝑡), 𝑠𝑖2(𝑡),… , 𝑠𝑖𝑘(𝑡)] ∼ Multi(𝑆𝑖(𝑡) − 𝐵𝑖(𝑡), [𝑝̂𝑖1, 𝑝̂𝑖2,… , 𝑝̂𝑖𝑘])

[𝑒𝑖1(𝑡), 𝑒𝑖2(𝑡),… , 𝑒𝑖𝑘(𝑡)] ∼ Multi(𝐸𝑖(𝑡) + 𝐵𝑖(𝑡) − 𝐶𝑖(𝑡), [𝑝̂𝑖1, 𝑝̂𝑖2,… , 𝑝̂𝑖𝑘])

[𝜄𝑖1(𝑡), 𝜄𝑖2(𝑡),… , 𝜄𝑖𝑘(𝑡)] ∼ Multi(𝐼𝑖(𝑡) + 𝐶𝑖(𝑡) −𝐷𝑖(𝑡), [𝑝̂𝑖1, 𝑝̂𝑖2,… , 𝑝̂𝑖𝑘])

This structure assumes that all individuals possess the same mobility
characteristic probabilities. Depending on the disease, this assumption
should be addressed considering that some diseases render infectious
individuals much less mobile or completely immobile. Of course, the
mobility of removed individuals does not impact the system, as the SEIR
framework described above assumes immunity (or death), rendering
mobility of recovered individuals irrelevant to the disease process;
hence, we will not include such a feature in the model.

3.2. BayesIan inference for model selection and parameter estimation

The above framework defines a rich class of models from which an
appropriately calibrated model for a particular disease data set can be
identified. There are two primary model design decisions that must
be made. First, the number of spatial locations 𝑘 will be informed
by the data; however, it is valuable to explore a variety of possible
spatial divisions, i.e. values of 𝑘, as inherent spatial divisions may be
uncovered that are not apparent from the data. The second decision
regards the mobility structure between the 𝑘 spatial locations. Once 𝑘 ≥
3 is determined there exist 𝑘(𝑘−1)

2 possible connections between nodes,
esulting in ∑𝑘

𝑖=1
(𝑘
𝑖

)

2(
𝑖
2) different spatial connectivity structures (Baylis

t al., 2003). Additionally if ‘‘sparking’’ events are suspected the model
pace expands for each ‘‘sparking’’ event explored. Selection of the
ppropriate model can be determined primarily by the modeler or via
systematic approach. Independent of the choice of model structure,
ost of the inherent parameters are unknown and must be estimated.

Given the potentially large space of models to consider, Bayesian
nference provides a natural approach to deal with model uncertainty in
ddition to parameter estimation. In addition to providing a mechanism
or model comparison, parameter estimation via Bayesian Inference
ormally quantifies parameter uncertainty rather than simply providing
oint estimates. Additionally, prior knowledge about the biological
rocess or the model can be directly encoded in the form of in-
ormative priors, which can help constrain highly flexible, dynamic
odels for epidemics to biologically plausible configurations. The most

ommon method for Bayesian Inference is Markov Chain Monte Carlo
MCMC) (Gilks et al., 1995). However, MCMC presents difficulties as
odels become more complex, as it requires repeated evaluation of a

omplex likelihood and can explore large parameter spaces slowly. In
ontrast, Approximate Bayesian Computation (ABC) can be applied to
ny process with a defined forward model, without requiring evalu-
tion of the likelihood (Beaumont, 2010). ABC provides approximate
osteriors based on simulation, by comparing replicate data sets 𝑌 ∗

enerated by candidate parameter values 𝜃∗ to the observed data 𝑌 .
Many extensions of ABC exist, including sequential techniques designed
4

to make more efficient parameter proposals (Beaumont, 2010). In this o
work, we apply the ABC-SMC method detailed in Beaumont et al.
(2009).

All ABC methods require a metric to compare simulated and ob-
served data, which generally relies on the use of summary statistics and
selected norms. The choice of summary statistics and norms depends
on the nature and dimension of the problem at hand and is an ongoing
area of research (Beaumont et al., 2009; Beaumont, 2010). In this case,
with epidemic data there were various dynamics to consider when
selecting summaries and norms. It is highly unlikely that the data is
error free due to the measurement challenges that arise early in clinical
surveillance of an ongoing epidemic. In fact, it is nearly guaranteed
that cases will be unreported or recorded incorrectly, and the precise
timing of cases is always suspect. Comparison of replicate data sets
in an ABC context should therefore avoid over-reliance on granular
spatiotemporal indices. While simple and often effective, point-wise
norms like a standard sum of squares or 2 error metric over the
ntire spatial time series could inflate the effects of reporting artifacts
f an appropriately tailored data model is not available. Here, we focus
n three particular measures which are distinctive and determine the
ualitative structure of the epidemic: infection intensity, timing, and
uration. These characteristics are defined at each location 𝑖 = 1,… , 𝑘
y:

1. The number of cases observed during the peak week, given by
𝑃𝐶𝑖 = max𝑡≥0 𝑊𝑖(𝑡), where 𝑊𝑖(𝑡) =

∑𝑡1
𝑠=𝑡0

𝐶𝑖(𝑠) is the weekly
number of cases and 𝑡0 = 7

⌊

𝑡
7

⌋

and 𝑡1 = 𝑡0 + 6 are the first
and last days of the week containing day 𝑡 of the outbreak.

2. The week in which the maximum number of cases are observed
(i.e., the peak week), defined as 𝑃𝑊𝑖 =

1
7 min

{

𝑡 ≥ 0 ∶ 𝑊𝑖(𝑡) =
𝑃𝐶𝑖

}

.
3. The end of the epidemic can be defined independent of location

by 𝑇 = max{𝑡 ≥ 0 ∶ 𝐶𝑖(𝑠) > 0 for all 𝑠 ∈ [0, 𝑡] for any 𝑖 = 1,… , 𝑘}.

Using these quantities, two relative norms which are spatial in nature
 𝑛

𝑖 , 𝑛 = 1, 2 and one relative non-spatial norm  3, are defined,
by which the sample data, denoted by ∗, can be compared to the
established data set, namely

 1
𝑖 =

|𝑃𝐶𝑖 − 𝑃𝐶∗
𝑖 |

𝑃𝐶∗
𝑖

,  2
𝑖 =

|𝑃𝑊𝑖 − 𝑃𝑊 ∗
𝑖 |

𝑃𝑊 ∗
𝑖

,  3 =
|𝑇 − 𝑇 ∗

|

𝑇

∗
.

(4)

Thus, for each simulated epidemic a total of 2𝑘 + 1 norm values  𝑛
𝑖

for 𝑖 = 1,… , 𝑘 and 𝑛 = 1, 2 and  3 can be calculated and used to
determine the acceptance or rejection of parameter proposals in the
ABC-SMC algorithm.

In addition, an ABC-SMC framework allows for the direct compar-
ison of candidate models via the computation of approximate Bayes
Factors (Kass and Raftery, 1995). These terms measure the relative
posterior evidence in favor of one model over another. It can be shown
that when using ABC-SMC the Bayes Factor is merely the ratio of
probabilities of each model given the data 𝑥 or

𝐵𝑖𝑗 =
𝑃 (𝑚𝑖|𝑥)
𝑃 (𝑚𝑗 |𝑥)

.

hese values can be well-approximated by the acceptance rates for each
odel. This property of ABC methods allows different models to be

asily compared and ranked in relation to one another, at any tolerance
alue 𝜖 for which an acceptance rate is defined, by using an established
ategorization for the values of Bayes Factors. With this, not only can
arious model pairs be ranked, but we can also precisely determine the
egree to which one model, relative to another, is more effective at
roducing acceptable simulations at a particular threshold.

It is also valuable to calculate and analyze the basic reproduction
umber and other associated quantitative threshold values. The basic
eproduction number is intuitively defined as the expected number
f secondary infected cases directly generated by the introduction of
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a new primary infected case (Brauer and Castillo-Chávez, 2001; Van
den Driessche and Watmough, 2002). For the classical, non-spatial,
deterministic SEIR model, with constant infection rate, the associated
mathematical quantity is defined by 𝑅0 = 𝛽

𝛾 . Instead of this value, we
ill calculate and analyze an empirically adjusted reproduction number

or stochastic compartmental models, denoted by 𝑅(𝑒𝑎), which measures
he number of expected secondary infections per infectious individual
n a particular location and time (Brown et al., 2016). For the proposed
odel, an empirically adjusted reproduction number for each spatial

ocation 𝑖 and time 𝑡 is defined as:

(𝑒𝑎)
𝑖 (𝑡) =

𝑇𝑖
∑

𝜏=𝑡
𝐺𝑖(𝜏)𝑒−𝛾(𝜏−𝑡) (5)

here

𝑖(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑆𝑖(𝑡)𝑃𝑖(𝑡)
𝐼𝑖(𝑡)

, if 𝐼𝑖(𝑡) > 0

0, if 𝐼𝑖(𝑡) = 0.

his metric is easily calculated in the proposed framework, and cap-
ures epidemic thresholding behavior in a spatiotemporally heteroge-
eous way.

. Results & discussion

As an application of the newly defined class of embedded stochastic
odels and the Bayesian analysis techniques for both parameter esti-
ation and model selection, we explore modeling the Ebola epidemic

n West Africa between 2014 and 2016. The particular spatio-temporal
ynamics demonstrated over the course of this epidemic present many
odeling challenges. Specifically, the diverse pathways of transmis-

ion add high levels of uncertainty to the time course of infection.
his uncertainty has previously been addressed via complex compart-
ental structures incorporating numerous infection and transmission
arameters. However, this particular epidemic spread throughout three
eparate countries in a distinctly heterogeneous way. As a result, it
s possible that some of the difficult-to-model characteristics of this
pidemic arose in part from spatial heterogeneity. The flexibility and
readth of the embedded stochastic model class defined in the Methods
ection will aid in examining various hypotheses about the nature of
he spatial spread of disease in this particular epidemic. We explore
nd compare a range of simplified compartmental models, with a
hared spatial structure and differing mobility frameworks constrained
nly by the geography of the region, to examine the role that spatial
eterogeneity plays in the infection spread. Using a simple SEIR com-
artmental structure constrains the biological parameter space to more
asily accommodate the additional mobility parameters. Furthermore,
his structure facilitates examination of the hypothesis that spatial
eterogeneity contributed more to epidemic dynamics than previously
xplored. Finally, while the class of models allows for highly complex
nd large spatial structures with many nodes, increasing spatial com-
lexity possesses a high computational cost. The ultimate goal is to
dentify and elucidate the simplest spatial model that achieves a desired
evel of accuracy and provides reasonable explanations for the spread
f the epidemic.

.1. Data: Ebola in West Africa between 2014 and 2016

The data used for this study was produced by the World Health
rganization (WHO), which tracked the Ebola epidemic in the West
frica nations of Sierra Leone, Liberia, and Guinea between 2014 and
016. The data is publicly available and can be downloaded from the
HO (The World Health Organization, 2020b). The sum of confirmed

nd probable cases obtained from the Patient Database (PD) was used
n lieu of the counts from the Situation Report (SR) because the SR
oes not measure the initial trajectory of the epidemic particularly
5

a

well, as the epidemic had not gained enough attention, and so was not
described by a weekly situation report until later in its time course.
The raw data is discretized to 15 counties in Liberia, 33 prefectures
in Guinea, and 16 districts in Sierra Leone which can be aggregated
to coarser spatial resolutions. The availability of weekly, high spatial
resolution data for each country facilitates the exploration of a variety
of spatial structures to determine an appropriate and computationally
feasible representation of the spatial heterogeneity. While the epidemic
curves in Liberia and Guinea are typical of epidemic data, the super
exponential rise in the Liberia data indicates reporting errors (The
World Health Organization, 2020a).

4.2. Model space and selection

Within the framework proposed in Methods, a vast array of model
structures exist to describe this epidemic. Though a basic, country-level
implementation of the model would consider 𝑘 = 3, with three spatial
ocations mimicking the existing country boundaries, this approach was
nsufficient to capture the early dynamics of the epidemic in Guinea
see Supplemental Information). Given the heterogeneity within the
ational units, particularly in Guinea, (see Figure S5), a collection of
our location models was considered. The six schema illustrated within
ig. 1 all consider a single node to represent each of Liberia and Sierra
eone, while Guinea is represented by two distinct regions, Guinea 1
onstituting the eastern (predominantly, rural) and Guinea 2, western
more urban) counties, respectively. The nature of mobility between the
our locations varies between the six model structures, depending on
he number and type of connections between the four nodes. Schemes
and 1i represent the fully connected graph, containing all five edges

nformed by the shared borders between the locations, while Schemes
and 3i represent a minimally connected graph which links all four

ocations with only three edges. The type of edge connecting the two
uinea nodes is altered in Schemes 1i, 2i, and 3i, where a sparking
vent, implemented via the temporary edge, 𝜌34𝐼𝑇 (𝑡), is explored.

While these are not the only spatial connectivity schemes possible
n the model space, here we limit the scope of the models explored by
sing intuition gained through analysis of the geographic distribution
f cases and the timing of the initial wave of infection (Figure S5)
s well as a review of the literature (D’Silva and Eisenberg, 2017;
ivers et al., 2014; Diaz et al., 2018). The constraints on the model
cope stem from the initial progression of the disease across the four
egions. The epidemic started in the eastern and rural Guinea 1, and
ext was observed in the western, urban Guinea 2. However, we
onjecture that after this initial transfer, the western epidemic spreads
rimarily independent of the outbreak in the eastern region that spread
o Liberia and Sierra Leone. Indeed this concurrent spread is observed
n other modeling efforts (Kramer et al., 2016). There is effectively

physical separation between the two regions aligned with the least
opulous areas of the country which could serve to severely dampen
opulation mixing between the two regions. Hence, this study serves as
demonstration of the application of the model class and the Bayesian

nference methods for model selection and parameter estimation, rather
han as a comprehensive exploration of the entire model space.

Among the explored spatial structures there are aspects of the
odel and Bayesian inference process that remain consistent due to the
articular application and computational implementation. Primarily, as
n infectious Ebola individual is extremely unlikely to be mobile due
o the debilitating nature of the symptoms, our implementation of the
odel does not consider a mobile infectious class. Thus, for any value

f 𝑖 = 1,… , 𝑘 the infectious population at time 𝑡+ 𝛥𝑡 will be defined as
𝐼𝑖(𝑡 + 𝛥𝑡) = 𝐼𝑖(𝑡) + 𝐶𝑖(𝑡) − 𝐷𝑖(𝑡) with each population defined as in (2).

hough the data is observed weekly, the model will consider a constant
ime step as 𝛥𝑡 = 1 day. The general model structure accommodates
temporally-dependent and/or spatially-dependent 𝛽 by redefining it

s a function of 𝑡 and/or 𝑖, respectively. For this application it is

ppropriate to consider a spatiotemporally-dependent infection rate
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Fig. 1. Four Node Models.
Four node model schema with differing connectivity structures informed by geographical boundaries and timing of epidemic spread. Schemes 1i, 2i, and 3i include a time indicator
function from Guinea 1 to Guinea 2 informed by geographical boundaries and timing of epidemic spread.
𝜖

Table 1
Standard priors of model parameters.
Parameter Prior

𝛾 𝛾 = 1∕10

𝛼 𝛼 ∼ 𝛤 (4, 20)

𝜌𝑖𝑗 𝜌𝑖𝑗 ∼ 𝛽(2, 2) − .5

𝑝𝑖𝑗 If 𝜌𝑖𝑗 > 0
𝑝𝑗𝑖 ∼ U(0, (1−𝜌𝑖𝑗 )

𝑘
),

𝑝𝑖𝑗 = 𝑝𝑗𝑖 + 𝜌𝑖𝑗
If 𝜌𝑖𝑗 < 0

𝑝𝑖𝑗 ∼ U(0, (1−|𝜌𝑖𝑗 |)
𝑘

),
𝑝𝑗𝑖 = 𝑝𝑖𝑗 + |𝜌𝑖𝑗 |

𝑏𝑖0,1,2 (𝑏𝑖0 , 𝑏
𝑖
1 , 𝑏

𝑖
2) ∼ 𝑁(𝜇̂, 3𝐼𝜎̂2)

𝑇 𝑇 = [𝑡∗ − 𝜏, 𝑡∗ + 𝜏]
𝑡∗ = 70 days and 𝜏 = 7 days

The standard priors used for each parameter in the
model are detailed. Additional details are included to
explain non-intuitive aspects of the priors used.

𝛽𝑖(𝑡) to approximate the effects of interventions that reduce the overall
infection strength, as well as the inherent spatial heterogeneity of the
spread. To simplify the parameter estimation, rather than estimating
each daily infection rate we will estimate a particular functional form
of the infection rate, namely

𝛽𝑖(𝑡) = exp
(

𝑏𝑖0 + 𝑏𝑖1𝑡 + 𝑏𝑖2𝑡
2) .

With this model definition and the associated simplifying assumptions,
the parameters that require estimation are a single latent period pa-
rameter 𝛼, the 3𝑘 infection rate functional coefficients 𝑏𝑖0, 𝑏

𝑖
1, 𝑏

𝑖
2, and

each 𝜌𝑖𝑗 that is defined for a given spatial connectivity structure shown
in Fig. 1. As a given individual is infectious for 7–14 days (6–16 days
if untreated), this parameter is estimated in the model by the average
infectious period 1

𝛾 . This value is well known and simpler to measure
because Ebola symptoms are clear and violent. For these reasons, we
will treat it as known in our modeling efforts, and it will be fixed by
𝛾 = 1

10 . The mean latent period 1∕𝛼 has been estimated between 2 and
21 days, but a 4–10 day time span is typical. That being said, there
is some evidence that the latent period for this particular epidemic
was significantly longer, ranging up to 30 or 40 days. One of the
reasons for this discrepancy is that the recommended quarantine period
for individuals exposed to Ebola was 21 days (Eichner et al., 2011;
6

Haas, 2014; Velásquez et al., 2015), but there were cases in which an
individual who had been originally deemed uninfected later exhibited
symptoms after being quarantined. To address this while still reflect-
ing the higher likelihood of the standard latency periods, a gamma
distribution reflecting a mean latency period of 5 days with a suitably
large standard deviation was selected to serve as a prior for 𝛼. Finally,
the spatial connectivity schemes possess consistent initial conditions
defined by initializing the susceptible population in all three locations
to be the total population in each country with the exception of two
initial infectious individuals in Guinea. The priors are summarized in
Table 1 for each location and connecting edge, which is indicated by
each of the graph structures shown in Fig. 1. A relatively vague prior
centered at zero and ranging from [−0.5, 0.5] was chosen for 𝜌𝑖𝑗 in
order to prevent extremely large differences between the movement
probabilities 𝑝𝑖𝑗 and 𝑝𝑗𝑖. This introduces a constraint, |𝜌𝑖𝑗 | ≤ 0.5, which
prevents invalid values of the probabilities 𝑝𝑖𝑗 and 𝑝𝑗𝑖. Following the
parameterization detailed in Section 3.1 a proposed 𝜌𝑖𝑗 is drawn from
its prior and then, depending on its sign, either 𝑝𝑖𝑗 or 𝑝𝑗𝑖 is proposed and
the remaining parameter is calculated using the definition 𝜌𝑖𝑗 = 𝑝𝑖𝑗−𝑝𝑗𝑖.

Following the ABC-SMC algorithm, a decreasing sequence of accep-
tance thresholds

⃗ = (0.75, 0.65, 0.55, 0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.20)

was implemented using the norms given by (4). All norms were re-
quired to be satisfied in all spatial locations simultaneously to generate
an acceptance. For the purposes of this data set, 𝑇max = 123 weeks is the
final reporting date. Each stage of ABC-SMC was simulated until 𝑁 ≥
1000 acceptances were observed. Detailed information regarding the
implementation of the ABC-SMC algorithm is available in Supplemental
Information. All six proposed models generated a sufficient number
of acceptances at the final threshold, though clear differences in the
suitability of the spatial structures become clear. Table 2 summarizes
the results for these structures with the final stage of ABC-SMC at
𝜖 = 0.20.

Model selection via Bayes Factors was applied upon reaching the
final threshold, as at less stringent thresholds it is not clear which
model(s) can generate acceptances at more restrictive thresholds. This
is abundantly clear when considering the evolution of the Bayes factors
over the 𝜖 thresholds for the six model structures shown in Fig. 2. The
stark contrast of the evolution of the Bayes factors for Schemes 1 and 2i
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Fig. 2. Bayes Factors.
Each facet shows the Bayes Factors calculated for a given model by dividing the acceptance rate of the titular model (Model A) by the modeled indicated by the color scheme
(Model B) for each 𝜖 threshold used for ABC-SMC. The Bayes Factors are shown on a log scale and values greater than one indicate positive evidence for Model A while values
less than one indicate evidence in favor of Model B.
Table 2
ABC-SMC results for six schemes.

Scheme Epsilon Simulations Acceptances Acceptance rate

Scheme2i 0.20 9.35 × 109 1011 1.08 × 10−7

Scheme2 0.20 5.65 × 109 448 7.94 × 10−8

Scheme3i 0.20 9.78 × 109 739 7.55 × 10−8

Scheme3 0.20 2.74 × 109 82 2.99 × 10−8

Scheme1 0.20 3.17 × 109 22 6.94 × 10−9

Scheme1i 0.20 2.09 × 109 12 5.74 × 10−9

The total simulations, acceptances and acceptance rate are reported for each of the six
spatial mobility schemes when ABC-SMC uses a threshold of 𝜖 = 0.20

are demonstrative of this uncertainty early in the ABC-SMC Algorithm.
At the final threshold, 𝜖 = 0.20, the Bayes factor matrix 𝐁 is generated
by dividing the acceptance rate for the model indicated by the column
by the acceptance rate for the model indicated by the row, and is given
by

𝐁 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1𝑖 2 2𝑖 3 3𝑖
1 − 0.83 10.71 14.50 3.77 10.45
1𝑖 1.21 − 12.97 17.55 4.57 12.65
2 0.09 0.08 − 1.35 0.35 0.98
2𝑖 0.07 0.06 0.74 − 0.26 0.72
3 0.27 0.22 2.84 3.84 − 2.77
3𝑖 0.10 0.08 1.03 1.39 0.36 −

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (6)

After evaluating all pairwise Bayes Factor comparisons, Scheme 2i is
the model which is favored among the candidates. This evidence is sub-
stantial in the case of Scheme 2i compared to Scheme 3, strong when
compared to either Scheme 1 or 1i, but only slight when compared
to Scheme 2 and Scheme 3i. In general, Schemes 2, 2i, and 3i stand
apart from the other three models as displaying evidence in the data to
support them over the others. Additionally, all spatial structures that
included the sparking event between Guinea 1 and Guinea 2, in the
form of the indicator function all have Bayes Factors greater than 1
when compared to their non-indicator parallel model.
7

Fig. 3. Accepted Epidemics for Scheme 2i.
The accepted epidemics for the Scheme 2i four node model at the SMC threshold of
𝜖 = 0.20 are plotted (gray) with the observed data (black) and the mean simulation
(red).

4.3. Analysis of optimal structure (Scheme 2i)

For the purposes of demonstration of the results we will limit further
analysis to only those of Scheme 2i. Fig. 3 displays the evolution of
accepted epidemics 𝜖 = 0.20. The division of Guinea into two regions
and the reduction of edges connecting the western region of Guinea
(Guinea 2) to the remaining graph structure aids in modeling the
early weeks of the epidemic within that country. In fact, the three
highest-ranked model structures (Schemes 2, 2i, and 3i) demonstrate
this capability, further solidifying the hypothesis of disconnected con-
current spread in Guinea, as well as the occurrence of a sparking event
as the mode of spread to the urban region of Guinea. Even so, the nature
of the super exponential growth applied at the entire country level
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Fig. 4. Posterior Distribution of the Latent Period Parameter 𝛼.
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f Liberia is challenging to represent via the standard SEIR structure,
ven with spatiotemporal infection and contact rates 𝛽𝑖(𝑡). While further
patial divisions and other model structures may address this issue,
t is likely that the data itself has not captured the true situation on
he ground. This is particularly suspect in Liberia, where the super-
xponential rise of the data is indicative of reporting errors (The World
ealth Organization, 2020a). Such errors arise from a variety of factors,

ncluding the overwhelmed state of the healthcare system during the
pidemic or issues within the governmental agencies that provide the
ata, as unlike the other two countries, there is no unifying federal
ystem in Liberia that directs the public health response, particularly
he collection of data from each of its subregions. Both causes are likely
o introduce intrinsic errors in the data. Thus, as the dynamics represent
he disease progression in the other three regions so well, the model
ay actually reveal a more accurate description of the epidemic in

iberia.

.3.1. Epidemiological parameter estimation
The ABC-SMC algorithm produces approximate posterior distribu-

ions for epidemiological parameters in the model, namely 𝛼 and the
oefficients 𝑏𝑖0,1,2 that determine the infection rate 𝛽𝑖(𝑡) = exp

(

𝑏𝑖0 + 𝑏𝑖1𝑡
+𝑏𝑖2𝑡

2). Fig. 4 shows the approximated posterior distribution for 𝛼 as
compared to its prior. A numerical summary for each of the epidemio-
logical parameters can be found in Supplemental Table S2.

It is particularly useful to examine the numerical values of 𝛼 as this
quantity represents the time that an infected individual spends within
the exposed compartment, and the mobility of exposed individuals
facilitates the spatial spread of infection. The accepted values of 𝛼 at 𝜖 =
0.20 generate a distribution with mean 𝛼̄ = 0.0317, median 𝛼̃ = 0.0288,
and equal-tailed credible interval [0.0175, 0.0545]. This indicates a mean
latent period of approximately 31 days ranging from a minimum of 11
days to a maximum of 71 days. Though the bulk of the distribution is
centered at values that are greater than the expected latency period for
Ebola (ranging from 2–21 days), this dynamic is unsurprising due to
the simplified nature of the underlying compartmental model and the
mode of infection transfer between multiple locations. To accommodate
the absence of other infection pathways, such as hospital infections or
infections caused by deceased individuals, the latency period becomes
inflated to reproduce the data and generate the observed spatial spread.
Particularly, as the only mode in this model framework of infection
transfer between two spatial locations is that due to the movement
8

Table 3
Flux parameter means, medians, and credible intervals.

Flux(𝜌𝑖𝑗 ) Mean Median ETI CI

𝜌12 −0.0579 −0.0610 [−0.1578, 0.0529]
𝜌13 0.2683 0.2736 [0.0672, 0.4578]
𝜌23 0.2686 0.2754 [0.0579, 0.4686]

The indices 𝑖 = 1, 2, 3, 4 refer to Liberia, Sierra Leone, Guinea
1, and Guinea 2, respectively, and the CI is a 89% equal-tailed
credible interval. These values are calculated for the distribu-
tions generated by the threshold 𝜖 = 0.20. Recall that every flux
is a dimensionless difference between two probabilities.

of an exposed individual, there is an additional bias towards longer
latency periods. Besides the model structure, as noted previously, post-
mortem analysis has shown that the standard quarantine of 21 days was
insufficient as there were a non-negligible number of individuals who
experienced longer latency periods, a dynamic that was newly observed
during this particular outbreak of EVD.

In order to examine the functional form of the spatiotemporal infec-
tion rate for each set of accepted coefficients, the pointwise, temporal
quantiles of 𝛽𝑖(𝑡) were calculated and plotted in Fig. 5, where the color
ranges from the darkest point representing the greatest density of 𝛽𝑖(𝑡)
to the lightest representing the least density. For reference, inset on the
top right panel of Fig. 5 is the same plot generated by a random sample
of the coefficients from the priors. It is clear that in all four locations
there is a convergence to an estimate of the functional form for 𝛽𝑖(𝑡) for
all 𝑡 > 0. This is not due to a convergence of the coefficients themselves
s Supplemental Figure S11 demonstrates widely varying behavior of
ach individual distribution.

.3.2. Mobility parameters
The fluxes 𝜌𝑖𝑗 between two spatial locations and their underlying

directional movement probabilities 𝑝𝑖𝑗 , 𝑝𝑗𝑖 are critical to the ultimate
pread of the disease due to the design of the model, as infection
an only spread across a border between two spatial locations via the
ovement of individuals. While the mobility of susceptible individuals

mpacts the overall number of potential contacts that could spread
nfection, the mobility of the exposed class is indistinguishable from
heir susceptible counterparts and is the primary mode of transmission
cross space. Thus, the model can uncover the potential pathways of
isease spread. A positive flux 𝜌 indicates an overall flow towards
𝑖𝑗
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Fig. 5. Functional Distribution of 𝛽𝑖(𝑡).
The distribution of the accepted functional values of 𝛽𝑖(𝑡) are plotted for 𝜖 = 0.20 with the greatest density at each time point denoted by the darkest shade of red. Inset on the
top right panel, the distribution of the 𝛽𝑖(𝑡) prior for all 𝑖 = 1, 2, 3, 4 is plotted as a reference, with the greatest density at each time point denoted by the darkest shade of red.
spatial location 𝑖 from 𝑗. Alternatively, a negative flux favors movement
to location 𝑗 from 𝑖. Table 3 catalogues the mean, median, and 89%
equal-tailed credible interval for each of the three constant fluxes in
this model, while Fig. 6 demonstrates the final posterior for each
compared to the prior, as well as joint posterior densities for pairs of
fluxes. The joint posterior densities aid in our understanding of the
individual fluxes because though the fluxes are independent random
variables, they do impact one another within the model. These results
signal a few notable dynamics. First, the flux between locations 1
(Liberia) and 2 (Sierra Leone) is near zero, with the weight of the
distribution slightly favoring movement towards Sierra Leone. With a
near zero flux, it is worth examining the individual probabilities that
result from said flux. If the probable mobility between each location
is high in both directions, this could be compelling evidence for the
merger of the two locations due to the high level of mixing which
results. Fig. 7 demonstrates in the panels for Liberia and Sierra Leone
that the dominating probability for each location is the probability that
an individual, exposed or susceptible, does not change location. The
probabilities 𝑝11 and 𝑝22 are greater than 0.50 and have means close to
0.75 while the probabilities 𝑝12 and 𝑝21 are less than 0.25 and means
close to 0.10. Clearly, the system considers these two spatial locations
as distinct, with only small levels of movement being necessary and
sufficient for the spread of the infection between the two locations.

In contrast to the dynamics between Sierra Leone and Liberia, the
mobility of individuals in Guinea 1 is drastically different. Both 𝜌13
and 𝜌23 indicate an overall flow of individuals away from Guinea 1.
The mean for both is 0.26 meaning that the probability of leaving
Guinea 1 for one of the other locations is on average 0.26 higher than
the probability of entering Guinea 1. In fact credible intervals indicate
that 89% of all realizations of both fluxes are positive, meaning that
a different mobility dynamic favoring entering Guinea 1 is very rare.
The epidemic is started on Day 0 in Guinea 1, and thus there must be
movement from Guinea 1 to at least one of the other spatial locations
to perpetuate the spatial spread. Additionally, as the data suggests, the
case counts in Guinea 1 remain relatively low throughout the epidemic,
9

while the bulk of the infection occurs in Sierra Leone and Liberia.
There is evidence that the case counts maintain low levels in Guinea
1 for longer periods of time due to rare re-seeding of epidemics from
Liberia and Sierra Leone (D’Silva and Eisenberg, 2017). The borders at
the nexus of these three regions are extremely porous, and though the
region is technically divided between three countries for administrative
and political purposes, it was difficult to implement closed borders to
slow the spread of the virus from Guinea 1 (Kiskowski, 2014; Cohen,
2016). Despite the clarity of the overall flux away from Guinea 1, the
distribution of these positive fluxes have wider spreads, indicating a
larger range of acceptable movement dynamics within that limitation.
This is especially clear when observing the individual probabilities for
Guinea 1 as seen in the final panel of Fig. 7. The three distributions of
the probabilities 𝑝33, 𝑝31, 𝑝32 have wide ranges of high density regions
ranging anywhere from 0 to nearly 0.75 for all three probabilities.
Clearly, the three probabilities must sum to one, so all three cannot
be simultaneously either high or low, instead they must balance under
the constraints of the fluxes. Analyzing various joint probability density
functions of combinations of the fluxes can aid in elucidating the
shared dynamics. In Fig. 6 the joint densities of pairs of the fluxes
are visualized using contour and color density plots. The regions of
lightest blue are the regions with the highest joint density. From this
it can be deduced that the average behavior of the fluxes overall
is that there is a near zero, though slightly negative flux between
Liberia and Sierra Leone, the fluxes involving Guinea 1 are likely to
be large and equally positive, favoring movement away from Guinea 1.
Additionally, as 𝜌12 decreases, 𝜌23 decreases slightly and 𝜌13 increases
slightly to compensate. Similarly the relationship between 𝜌23 and 𝜌13 is
definitively negative with 𝜌13 increasing to compensate for a reduction
in 𝜌23.

Furthermore, the three-dimensional joint kernel density estimates
are computed to identify the three flux values that occur simultaneously
with greatest density, detailed in Table 4. Across the board the modal
values align with high density regions of the individual distributions,

but the interactions between the three different variables may shift the
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Fig. 6. Marginal and Joint Distributions of Flux Parameters.
Panels (A)–(C) are two dimensional joint density plots of pairs of the three fluxes 𝜌12 , 𝜌13 , 𝜌23 with the lightest blue denoting the highest density region and the gray contours
indicated equal density values in the plane. Panel (D) is plots the marginal distributions for each of the fluxes, 𝜌12 (blue), 𝜌13 (yellow), 𝜌23 (green) compared to their prior (black).
All distributions are generated with 𝜖 = 0.20.
Fig. 7. Distributions of Movement Probabilities.
The distribution of the three probabilities generated by the fluxes are plotted for each spatial location besides Guinea 4. Guinea 4 does not have mobility in this scheme. All
distributions are generated with 𝜖 = 0.20.
values slightly from the distinct means or medians. For example the
means and medians of 𝜌13 and 𝜌23 are nearly identical, but the joint
modal values indicate slightly more movement from Guinea 1 to Sierra
Leone than to Liberia. This dynamic is only revealed by exploring the
joint posteriors.

4.3.3. Basic reproduction number
As detailed in the Methods section, there are a variety of tools that

modelers use to estimate the epidemiological definition of the basic
reproduction number. Here, this important epidemiological value is
estimated via an empirically adjusted reproductive number given by
10
Table 4
Joint modal flux values.

Fluxes
𝜌𝑖𝑗

Parameter 𝜌12 𝜌13 𝜌23
Joint modal value −0.060 0.244 0.291

The mode of joint distribution of the three fluxes allows for
the calculation of the joint modal values of the three fluxes for
𝜖 = 0.20.
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Fig. 8. Functional Distributions of 𝑅(𝑒𝑎)
𝑖 (𝑡).

The distribution of the accepted functional values with 𝜖 = 0.20 of 𝑅(𝑒𝑎)
𝑖 (𝑡) are plotted, with the highest density values at each time point denoted by the darkest color. The

dot/dashed lines represent the 50% quantile. The horizontal dashed line on all plots highlights the threshold of one. Additionally, dotted vertical gray lines annotate each spatial
location, indicating epidemic days that correspond to interventions or other notable events in each region.
(5) rather than that of the underlying deterministic, continuous-time
compartmental model. A comparison of the two estimations of the
reproductive number can be found in the Supplemental Information,
wherein a spatiotemporally-varying, but unadjusted reproductive num-
ber 𝑅𝑖

0(𝑡) clearly does not exemplify the dynamics of the observed or
simulated epidemics.

In contrast, the average dynamics of 𝑅(𝑒𝑎)
𝑖 (𝑡) appear to match the

general behavior of both the observed data and the accepted simulated
epidemics. Fig. 8 contains more detailed plots with the quantiles of
𝑅(𝑒𝑎)
𝑖 (𝑡) calculated from the accepted SMC sample represented by the

range of color shading, with the darkest region representing the median
value of 𝑅(𝑒𝑎)

𝑖 (𝑡) at each time point. While the accepted sample of
parameters and epidemics do produce variability in the empirically
adjusted reproduction number, there is a clear trend that the time series
for each spatial location follows. The peak and the decay occur in the
same places, with only the magnitude presenting the uncertainty, the
level of which depends on the spatial location. Clearly 𝑅(𝑒𝑎)

4 (𝑡), describ-
ing Guinea 2, displays low levels of uncertainty at all times, indicating
the dynamics of this location are distinctive and must follow certain
trends to produce acceptable epidemics. The increasing uncertainty in
the other three regions is intuitive due to the connections between
the spatial locations and the reality that a secondary infection may
not induce subsequent infections within the location in which it was
generated.

Finally, though explicit intervention parameters were not included
in this model formulation, the calculated reproduction number may
uncover links between interventions on the ground and the average
number of secondary infections. Additionally, it can be useful in for-
mulating hypotheses concerning the efficacy of different intervention
strategies or the accuracy of real time analysis. That being said, it is
not possible to fully disentangle the effect of a public health response
with a single model parameter. For example, this model employs a
time-varying 𝛽𝑖(𝑡) to capture factors like intervention and behavior or
mobility changes. Alternatively, the mobility changes could have been
parameterized by more complex time-varying mobility parameters and
fluxes.
11
The intervention timeline during this epidemic was particularly
complex. A more complete description and illustration is given in the
Supplemental Information (Figure S7). Fig. 8 is also annotated with
vertical dotted lines highlighting the timing of potentially important
epidemiological interventions or significant events in the location (West
African Ebola virus epidemic timeline, 2020). The timestamp on Day
90 aligns with the peak value of the reproduction number in Guinea
1, Sierra Leone and Liberia, signaling that once the epidemic garnered
sufficient attention, in the form of WHO awareness and tracking, the
number of secondary cases began to decay in these regions. This does
not mean the epidemic ceased to propagate, as the reproduction values
remain above one; instead, it signals that the rate of spread was not
accelerating. An attempt at closing the borders was made in Sierra
Leone on Day 170 and in Liberia on Day 216, a change that the model
does not impose as the fluxes are constant. It is unclear how effective
this intervention was because while 𝑅(𝑒𝑎)

𝑖 (𝑡) continues to decrease from
its peak, it remained well above one after Day 170/216, and only drops
below one on average after Sierra Leone enlisted the help of the military
to enforce quarantines on Day 220 and after the implementation of
improved mortuary practices in Liberia that were reported to have
been effective on Day 310, but occurred prior. Epidemiologists have
noted that while travel restrictions around the world aided in pre-
venting significant spread beyond West Africa, the porous borders in
the region greatly contributed to the spread of the disease within
West Africa (Kiskowski, 2014; Cohen, 2016), supporting the hypothesis
that closing the borders was not entirely successful at halting the
spatial spread. In Guinea, distrust of international aid was high, which
mitigated the impact of interventions to slow the spread. When aid
workers and journalists were killed in a prefecture in Guinea 1 on Day
270, the corresponding reproductive number estimate was also high,
𝑅(𝑒𝑎)
𝑖 (𝑡) ≈ 2 in both Guinea 1 and Guinea 2. After subsequent efforts

by the Guinean government, like cancellation of festivities on Day 283,
the reproduction number dropped across all three regions. Finally, on
Day 394 all three countries reported their lowest transmission rates
since August 2014, which matches the dynamics of the reproduction
number this model suggests as this is the first time in which all four
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locations have a mean 𝑅(𝑒𝑎)
𝑖 (𝑡) ≤ 1 signaling the eventual extinction of

the epidemic.

5. Conclusions

The current study introduces a spatially-heterogeneous extension
of an embedded stochastic SEIR model that describes the spread of
an infectious disease across a graph structure with 𝑘 different spatial
locations and mobility along the edges of the graph by the various
disease compartment populations. As demonstrated by the application
of the model to the Ebola outbreak in West Africa between 2014 and
016, the proposed class of models can be adapted to fit a variety of
patial structures and mobility schemes to capture infectious disease
pread, as well as rare behaviors such as sparking events. Additionally,
he SEIR compartmental structure allows for estimation of important
pidemiological quantities, model parameters, and analysis of the basic
eproduction number, which can be compared and validated against
ther methods and models. The design of this class of models further
llows for model comparison using Bayes Factors. The use of ABC
ethods, particularly ABC-SMC, avoids some of the computational

hallenges observed in this setting with MCMC techniques. The range
f complexity available within the class of models can be scaled up
r down, both through the mobility and compartmental structure de-
ending on the application, but ABC methods require norms that gauge
he relative proximity of proposed simulations, which must be tailored
o the proposed model. The summary norms detailed herein provide
lexibility and a greater rate of acceptances even though the number
f norms increases with the number of spatial locations. The norms
hemselves are also subject to additional scrutiny, as various adjust-
ents to the existing norm structure may be appropriate. Overall, the

lexibility of the model and associated analytic methods present both
dvantages to exploit and challenges that must be addressed depending
n the application.

An ongoing challenge for future applications is to refine the present
rocedure for determining the spatial mobility structure. The number
f spatial locations and the mobility structures in this study are deter-
ined ad hoc, but in theory the collection of potential spatial mobility

tructures is arbitrarily large. This study limited the exploration space
y specifying small numbers of spatial locations and subsequently
mposing assumptions on the mobility that are based on the observed
ata. However, it is possible to relax these constraints and build a
ystem by which the model space can be explored more holistically. For
xample, the four location model is a step in the direction of further
ystematization, as a similar method could be applied to generate a
umber of mobility schemes for a system with 𝑘 spatial locations for
ny desired 𝑘 ∈ N. Additional complexity in the application of the
perator that introduces ‘‘sparking events’’, by varying the timing,
uration, and location of such events, could also be considered when
onstructing a desired model space to explore. An algorithmic method
or determining spatial structures would be particularly valuable in
he case of an ongoing crisis, as the course of the epidemic and the
ynamics of its future spatial spread would necessarily be unknown,
nd thus well suited to the adaptable nature of the class of models
roposed herein.
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