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ABSTRACT

The well-known three-compartment model which describes the spatially homogeneous dynamics of HIV

in-vivo is adapted to account for spatial heterogeneity by considering diffusion of populations and spatially

varying parameters. The new system of nonlinear parabolic PDEs is analyzed in detail. Specifically, local

and global existence, uniqueness and high-order regularity of solutions is proven. We also determine the

global asymptotic behavior of the model in certain biologically relevant regimes and compare our findings

with the analogous results for the spatially homogeneous model. In doing so, we discuss existence and stabil-

ity of viral extinction and viral persistence steady states in different cases. Finally, the system is simulated

using a semi-implicit finite difference method with the goal of verifying the analysis.
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CHAPTER 1

INTRODUCTION

The Human Immunodeficiency Virus (HIV) is a deadly, infectious virus which primarily utilizes

CD4+ T cells, a white blood cell useful in directing the adaptive immune response in the body,

to reproduce. The course of the infection within a host is characterized by depletion of these

cells. With this decrease in the CD4+ T cell population, the immune system is left dangerously

compromised and when such cells reach low enough levels in an HIV infected patient, the patient is

diagnosed with AIDS. The infection and depletion process can range from a few months to several

years. For a biological description of infection dynamics, see [6]. We summarize the very basics

here. HIV particles (called virions) attach to T cells, enter the cell and release the contents of their

genetic information. The process of reverse transcription in the cell copies the viral RNA into the

DNA of the cell. The cell then manufactures new strands viral RNA and proteins which form into

new virons and separate from the cell (a process called budding). The infection will eventually cause

the cell to die which results in a burst of virions into its immediate surroundings. The function of

CD4+ T cells (also called helper T cells) is to “mark” infected cells and virions by secreting proteins

which activate the immune system. The components of the immune system work to kill and clear

infected cells and virions. If the T cell count remains relatively high, then the immune system

will be able to locate and flush out harmful cells. However, with the T cell population depleted,

the immune system receives less direction and the HIV virus and other debilitating pathogens are

allowed to run rampant.

There have been several efforts to mathematically model the battle between the immune system

and HIV within an infected host. Perelson and Nelson [1] provide an overview of some common

models which have been used. The most basic and ubiquitous model, discussed, for example, in

[4], is concerned with three quantities: T (t), the density of uninfected CD4+ cells, I(t), the density

of infected CD4+ cells and V (t), the density of free virions. The corresponding dynamical system

is:
dT

dt
= λ− µTT − kTV, T (0) = T0,

dI

dt
= kTV − µII, I(0) = I0,

dV

dt
= NµII − µV V, V (0) = V0.


(1.1)
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Figure 1: Transfer diagram for (1.1)

Here, all parameters are taken to be positive. The value λ represents the natural constant

regeneration rate of T cells while µT , µI and µV are death/clearance rates which correspond to

cells naturally dying, being killed by virions or the immune response or being cleared by the

immune system. The parameter k is an infection rate; note that healthy T cells become infected

at a rate proportional to the product of the density of T cells and the density of free virions. This

is essentially an application of the mass-action principle. Finally, N is the bud/burst rate which

models output of virions from an infected cell. Many sources ([2], [3], [7]) group NµI into a single

constant. When the two are kept separate, we can see the term NµII as representing the total

average production of virions by an infected T cell over the course of its lifespan.

More sophisticated versions of this model (those which take into account viral production, drug

therapy, drug resistant strains of the virus, etc.) can be found in [1]. However, these models assume

spatial homogeneity as do those considered in [2], [3] and [4]. Spatially homogeneous (or lumped)

models have some advantages. For example, they are simpler in some respects than spatially

heterogeneous models and capture some of the asymptotic behavior of the infection (as noted by

Brauner et al. [5]).

By contrast, there are also several shortcomings of lumped models. For example, the dynamics

of HIV can vary wildly in different compartments of the human body. Also, virions may prefer-

entially infect nearby cells. These considerations are unaccounted for in spatially homogeneous

models.

Accordingly, there have been a few efforts to construct spatially heterogeneous models, some of
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which are discussed in [8]. A common approach (used for example by Funk et al. [7]) is to add

discrete spatial aspects to (1.1). Another approach is to consider virions which are bound to cells

and virions which are free as separate populations; in this case, free virions must be allowed to diffuse

[10]. Further, Stancevic et al. [9] introduce a two-dimensional spatial model with diffusion and a

chemotaxis term which accounts for chemical attractors, though their work focuses on simulation

and stability of equilibria rather than analysis and estimation of solutions.

In this document, we introduce a new spatial model with diffusion of populations and spatially

dependent parameters. Specifically, we assume that the regeneration of T cells does not occur uni-

formly throughout the body or tissue (i.e., λ = λ(x)). We study the model in n spatial dimensions

and time with the goal of proving many classical results for partial differential equations (existence,

uniqueness and regularity) and determining some large time asymptotic behavior.
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CHAPTER 2

WELL-POSEDNESS

We consider the system

(∂t −DT∆)T = λ(x)− µTT − kTV, T (x, 0) = T0(x),

(∂t −DI∆)I = kTV − µII, I(x, 0) = I0(x),

(∂t −DV ∆)V = NµII − µV V, V (x, 0) = V0(x),

 (2.1)

for x ∈ Ω ⊂ Rn, t ∈ (0, t∗], t∗ > 0 where k,N, µT , µI , µV , DT , DI , DV are all real, nonnegative

constants and λ is a nonnegative function of spatial variables. Here, we could have two different

cases, but the analysis remains largely the same in each case. First, we may take Ω = Rn in which

case we also assume that

lim
|x|→∞

∂T

∂n
(x, t) = lim

|x|→∞

∂I

∂n
(x, t) = lim

|x|→∞

∂V

∂n
(x, t) = 0, t ∈ (0, t∗].

In the second case, we take Ω to be a bounded, open subset of Rn with boundary ∂Ω and in this

case, we assume that

∂T

∂n
(·, t)

∣∣∣∣
∂Ω

=
∂I

∂n
(·, t)

∣∣∣∣
∂Ω

=
∂V

∂n
(·, t)

∣∣∣∣
∂Ω

= 0, t ∈ (0, t∗].

We also note here that throughout this document, we will impose various restrictions on our initial

conditions. In a bounded domain, it is enough to take T0, I0, V0 ∈ C
(
Ω
)
. In addition, they will

always be positive. However, for much of the analysis these assumptions are superfluous. As

necessary, we will mention the restrictions we are imposing on T0, I0, V0. Similarly, we will require

λ to have certain properties at different junctures so it is convenient to consider λ to be a smooth

function. Accordingly, we take λ ∈ H∞(Ω); this will play a key role later in this section.

A model similar to ours was considered by [5]. Those authors also introduced diffusion. However,

they neglected T cell diffusion. Their assumption was that, under normal conditions, T cells do

not move whereas the virions are still active. Accordingly, they set DT = DI = 0. Our model is

slightly more robust since we do not assume this.
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2.1 Existence and Uniqueness of Solutions

To analyze (2.1), we consider the inhomogeneous and autonomous, vector heat equation given

by

(∂t −Du∆)u = f(u), x ∈ Ω, t ∈ [0, t∗],

u(x, 0) = u0(x), x ∈ Ω.

 (2.2)

We note that (2.1) can be written in this form by setting u = [T I V ]T and letting f be prescribed

by the right hand side of (2.1). We will require later that that f : R3 → R3 be a locally Lipschitz

function; indeed, we demonstrate that our f satisfies this requirement. We see that for (2.1)

f(u) =


f1(u1, u2, u3)

f2(u1, u2, u3)

f3(u1, u2, u3)

 =


λ− µTu1 − ku1u3

ku1u3 − µIu2

NµIu2 − µV u3

 .

The derivatives of each component are

∇f1 =


−µT − ku3

0

−ku1

 , ∇f2 =


ku3

−µI

ku1

 , ∇f3 =


0

NµI

−µV

 ,

each of which remains bounded on compact subsets of R3. Thus, each of f1, f2, f3 is locally Lipschitz

and so f is locally Lipschitz as well.

By Duhamel’s principle, we know that the solution to (2.2) is given by

u(x, t) =

∫ t

0

∫
Ω

Φ(x− y, t− s)f(u(y, s))dyds+

∫
Ω

Φ(x− y, t)u0(y)dy,

where Φ is the Green’s function for the heat operator in the domain Ω with Neumann boundary

condition; i.e., Φ satisfies

(∂t −Du∆)Φ = 0, (x, t) ∈ Ω× (0, t∗],

Φ(x, 0) = δ(x),

∂Φ

∂n
(·, t)

∣∣∣∣
∂Ω

= 0.
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We note, for example, that if Ω = Rn then Φ is the heat kernel given by

Φ(x, t) =
1

(4Duπt)n/2
exp

{
− |x|

2

4Dut

}
, x ∈ Ω, t > 0, (2.3)

which is a particularly nice function. In any case, the heat operator admits only smooth Green’s

functions, so Φ is smooth. As a result of this, we can ensure that

∫
Ω

Φ(x, t)dx = 1,

for all t > 0. Lastly, in the sense of distributions, Φ tends to the Dirac delta as t → 0. That

is,

lim
t→0

∫
Ω

Φ(x− y, t)F(y)dy = F(x)

for any continuous F defined for x ∈ Ω. We seek to prove existence and uniqueness of solutions to

(2.2).

Lemma 2.1 (Local Existence). If f : Ω→ R3 is a locally Lipschitz function and u0 : Ω→ R3 is

continuous, then there is an a > 0 such that (2.2) has a unique solution for t ∈ [−a, a].

Proof. Let a, ε > 0 and define V = {v ∈ C(Ω × [−a, a]) : ||v − u0||∞ < ε}. Define a linear

operator K on V by

Ku(x, t) =

∫ t

0

∫
Ω

Φ(x− y, t− s)f(u(y, s))dyds+

∫
Ω

Φ(x− y, t)u0(y)dy

for all u ∈ V where f ,u0 are as in (2.2) and Φ is the Green’s function for the heat operator in

Ω.We are assuming that f is locally Lipschitz and has Lipschitz constant L in the ε-neighborhood

of u0.

By the Banach fixed point theorem (contraction mapping principle), to prove that our system has

a unique solution, it will suffice to prove that if we take a sufficiently small, thenK : V → V and that
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K is a contraction. To prove the latter, take u,v ∈ V and consider for all (x, t) ∈ Ω× [−a, a],

|Ku(x, t)−Kv(x, t)| =
∣∣∣∣∫ t

0

∫
Ω

Φ(x− y, t− s) (f(u(y, s))− f(v(y, s))) dyds

∣∣∣∣
≤
∫ |t|

0

∫
Ω

Φ(x− y, t− s) |f(u(y, s))− f(v(y, s))| dyds

≤ L
∫ |t|

0

∫
Ω

Φ(x− y, t− s) |u(y, s)− v(y, s)| dyds

≤ L ||u− v||∞
∫ |t|

0

∫
Ω

Φ(x− y, t− s)dyds

= L ||u− v||∞ |t| ≤ aL ||u− v||∞ .

Since this holds for all (x, t) ∈ Ω× [−a, a], we have an upper bound for |Ku(x, t)−Kv(x, t)|. The

supremum over all such (x, t) is the least upper bound so we find

||Ku−Kv||∞ ≤ aL ||u− v||∞

for all u,v ∈ V . Thus taking a < 1/L will ensure that K is a contraction mapping.

It remains to prove that K : V → V ; that is, we must show that for any u ∈ V , we have Ku ∈ V.

Since Φ, f ,u0 are continuous, we know that Ku is continuous for any u ∈ V. Also,

|Ku(x, t)− u0(x)| =
∣∣∣∣∫ t

0

∫
Ω

Φ(x− y, t− s)f(u(y, s))dyds +

+

∫
Ω

Φ(x− y, t)u0(y)dy − u0(x)

∣∣∣∣
≤
∣∣∣∣∫ t

0

∫
Ω

Φ(x− y, t− s)f(u(y, s))dyds

∣∣∣∣ +

+

∣∣∣∣∫
Ω

Φ(x− y, t)u0(y)dy − u0(x)

∣∣∣∣
≤
∫ |t|

0

∫
Ω

Φ(x− y, t− s) |f(u(y, s))| dyds +

+

∣∣∣∣∫
Ω

Φ(x− y, t)u0(y)dy − u0(x)

∣∣∣∣ .
Since Φ tends to the Dirac delta as t→ 0, we know there is δ > 0 such that

0 < |t| ≤ δ =⇒
∣∣∣∣∫

Ω
Φ(x− y, t)u0(y)dy − u0(x)

∣∣∣∣ < ε
2 .
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We can ensure that |t| < δ by taking a < δ. Next,

∫ |t|
0

∫
Ω

Φ(x− y, t− s) |f(u(y, s))| dyds

≤
∫ |t|

0

∫
Ω

Φ(x− y, t− s) (|f(u(y, s))− f(u0(y))|+ |f(u0(y))|) dyds

≤
∫ |t|

0

∫
Ω

Φ(x− y, t− s) (L ||u− u0||∞ + ||f ||∞) dyds

≤ a (L ||u− u0||∞ + ||f ||∞) < a (Lε+ ||f ||∞) .

Thus we can force this term to be less than ε
2 by taking a < ε

2(Lε+||f ||∞)
.

Thus far we have enforced three separate bounds on a. To satisfy all three, we may take

a < min

{
1
L , δ ,

ε
2(Lε+||f ||∞)

}
. Under this condition,

|Ku(x, t)− u0(x)| < ε
2 + ε

2 = ε, for all (x, t) ∈ Ω0.

Again, since this holds for all (x, t), we have

||Ku− u0||∞ < ε =⇒ Ku ∈ V.

Thus, for sufficiently small a, K is a contraction and K : V → V so by the Banach fixed point

theorem, there is a unique solution to (2.2) for t ∈ [−a, a]. �

From here, we wish to prove that the solution guaranteed by the above lemma will exist globally

under certain assumptions. To that end, we prove a few things about the inhomogeneous scalar

heat equation which we can then apply to the equations for T, I, V given in (2.1).

We consider the equation

(∂t −Du∆)u = g(x, t), (x, t) ∈ Ω× (0, t∗],

u(x, 0) = u0(x), x ∈ Ω.

 (2.4)

Lemma 2.2 (Positivity). Assume that u satisfies (2.4) and that g(x, t) ≥ 0 for all (x, t) ∈ Ω×[0, t∗]

and u0(x) > 0 for all x ∈ Ω. Then u(x, t) ≥ 0 for all (x, t) ∈ Ω × (0, t∗]. That is, the operator

9



(∂t −Du∆) preserves positivity.

Proof. Here, the proof is straightforward if Ω = Rn. In that case, we write

u(x, t) =

∫ t

0

∫
Ω

Φ(x− y, t− s)g(y, s)dyds+

∫
Ω

Φ(x− y, t)u0(y)dy,

where Φ is the heat kernel given by (2.3). We see that Φ(x − y, t − s) ≥ 0, so the product

Φ(x − y, t − s)g(y, s) ≥ 0. This means that the first integral above must be nonnegative. Also

u0(y) ≥ 0 and Φ(x − y, t) ≥ 0. Thus the product Φ(x − y, t)u0(y) ≥ 0 and so the second integral

above is nonnegative and we have reduced u(x, t) to a sum of two nonnegative terms. We conclude

that u(x, t) ≥ 0 for all (x, t) ∈ Ω× (0, t∗], and the theorem is proven.

In the case that Ω is a bounded domain, we recall the definitions of the positive and negative

parts of u:

u+(x, t) = max{0, u(x, t)} and u−(x, t) = −min{0, u(x, t)}.

Then u = u+ − u−. With this in mind, we multiply (2.4) by u− and integrate in both time and

space. Then the left hand side is given by

LHS =

∫ s

0

∫
Ω
u−∂tu dxdt− c

∫ s

0

∫
Ω
u−∆u dxdt ..= I + II,

where s ∈ (0, t∗]. Now if we define Ω−s = {(x, t) ∈ Ω× (0, s] : u(x, t) ≤ 0}, then u− is zero outside

of Ω−s so we see

I =

∫
Ω−s

u−∂tu dxdt.

However, on this set u = −u− so

I = −
∫

Ω−s

u−∂tu− dxdt = −1

2

∫
Ω−s

∂t
(
u2
−
)
dxdt.

However, since u− is zero outside of Ω−s , integrating over Ω−s is the same as integrating over Ω×(0, s].

Thus

I = −1

2

∫
Ω

∫ s

0
∂t
(
u2
−
)
dtdx = −1

2

∫
Ω

[
u−(x, s)2 − u−(x, 0)2

]
dx.

Finally, u0 ≥ 0 implies that u−(x, 0) ≡ 0 so we find I = −1
2 ||u−(s)||22 ≤ 0.
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We use a similar set of steps for II:

II = −Du

∫ s

0

∫
Ω
u−∆u dxdt

= Du

∫
Ω−s

u−∆u− dxdt

= −Du

∫
Ω−s

∇u− · ∇u− dxdt+Du

∫ s

0
u−

∂u−
∂n

∣∣∣∣
∂Ω

dt.

Enforcing the homogeneous boundary condition gives

II = −Du

∫ s

0

∫
Ω
|∇u−(x, t)|2 dxdt ≤ 0.

Thus we have

LHS = I + II ≤ 0.

Next, considering the right hand side under the same operations, we have

RHS =

∫ s

0

∫
Ω
g(x, t)u−(x, t) dxdt.

But both g and u− are nonnegative so RHS ≥ 0.

To recap, LHS is non-positive and equals RHS which is non-negative. Thus both must be zero.

If LHS is zero, then both I and II are zero and we conclude

||u−(s)||2 = 0.

This is only possible if u−(x, s) ≡ 0. However, s was an arbitrary element of (0, t∗] and so

u−(x, t) ≡ 0 for all (x, t) ∈ Ω × (0, t∗]. But if u− = 0, then u = u+ ≥ 0 which completes the

proof. �

Now we would like to prove that u(x, t) remains bounded in some way by the initial data and

the forcing function. We can do this by establishing some corollaries to Lemma 2.2.
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Corollary 2.2.1 If u(x, t) satisfies (2.4), then

||u(t)||∞ ≤ ||u0||∞ +

∫ t

0
||g(τ)||∞ dτ, for all t ∈ [0, t∗].

Proof. Define a new function

v(x, t) =

(
||u0||∞ +

∫ t

0
||g(τ)||∞ dτ

)
− u(x, t).

Then we notice that

(∂t −Du∆)v = ||g(t)||∞ − (∂t −Du∆)u = ||g(t)||∞ − g(x, t).

But g(x, t) is always bounded by its supremum norm with respect to x, so we see

(∂t −Du∆)v = G(x, t)

where G(x, t) ≥ 0 for all (x, t) ∈ Ω× [0, t∗]. Also

v(x, 0) = ||u0||∞ − u(x, 0) = ||u0||∞ − u0(x).

Again, u0(x) is bounded by its supremum norm, so we have v(x, 0) = v0(x) where v0(x) ≥ 0. Then

by Lemma 2.2, v(x, t) ≥ 0 for (x, t) ∈ Ω× [0, t∗] so

0 ≤
(
||u0||∞ +

∫ t

0
||g(τ)||∞ dτ

)
− u(x, t) =⇒ u(x, t) ≤ ||u0||∞ +

∫ t

0
||g(τ)||∞ dτ,

for all (x, t) ∈ Ω× [0, t∗]. Taking the supremum over x gives

||u(t)||∞ ≤ ||u0||∞ +

∫ t

0
||g(τ)||∞ dτ,

for all t ∈ [0, t∗] which completes the proof. �
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Corollary 2.2.2 Assume that u(x, t) satisfies the differential inequality

(∂t −Du∆)u ≤ g(x, t), (x, t) ∈ Ω× (0, t∗],

u(x, 0) = u0(x), x ∈ Ω.

Then u(x, t) satisfies the same inequality as in Corollary 2.2.1. That is,

||u(t)||∞ ≤ ||u0||∞ +

∫ t

0
||g(τ)||∞ dτ, for all t ∈ [0, t∗].

Proof. We use the same technique as was used in the proof of Corollary 2.2.1. Define v(x, t)

by

v(x, t) =

(
||u0||∞ +

∫ t

0
||g(τ)||∞ dτ

)
− u(x, t).

Then

(∂t −Du∆)v = ||g(t)||∞ − (∂t −Du∆)u ≥ ||g(t)||∞ − g(x, t) ≥ 0

and

v(x, 0) = ||u0||∞ − u(x, 0) = ||u0||∞ − u0(x) ≥ 0.

Again the result follows from Lemma 2.2. �

With these results in mind, we now consider our particular system. Throughout the remain-

der of this document C will be a positive constant which may change from line to line. Sometimes

the constant may be accompanied by a subscript to denote which quantities it depends on; e.g. Ct∗ .

Theorem 2.3 (Global Existence). Suppose T, I, V satisfy (2.1) and T0(x), I0(x), V0(x) are pos-

itive for all x ∈ Ω. Then for any b > 0, T (x, t), I(x, t), V (x, t) > 0 for all x ∈ Ω and all t ∈ (0, b].

Further ||T (t)||∞ , ||I(t)||∞ , ||V (t)||∞ remain bounded for t ∈ (0, b].

Note: What this theorem tells us in essence is that the t∗ > 0 we choose for (2.1) is arbitrary.

Proof. We first establish the property for some time interval (0, b], then extend the proof to an

arbitrary interval.

13



Consider the T equation:

(∂t −DT∆)T = λ(x)− µTT (x, t)− kT (x, t)V (x, t), (x, t) ∈ Ω× (0, t∗],

T (x, 0) = T0(x), x ∈ Ω.

 (2.5)

Since we have assumed positivity of initial conditions, there must be some b > 0 such that

T (x, t), I(x, t), V (x, t) are positive for all x ∈ Ω and t ∈ [0, b]. On this interval,

(∂t −DT∆)T + µTT ≤ λ(x).

Multiplying through by the integrating factor ζT (t) = eµT t gives

ζT (t)∂tT + µT ζT (t)T −DT ζT (t)∆T ≤ λ(x)ζT (t).

Since ζT (t) is independent of space, it can slide inside the Laplacian operator. This gives

(∂t −DT∆){ζT (t)T} ≤ λ(x)ζT (t).

Further, ζT (0)T (x, 0) = T0(x) > 0. Then by Corollary 2.2,

∣∣∣∣T (t)eµT t
∣∣∣∣
∞ ≤ ||T0||∞ +

∫ t

0
||λ||∞ e

µT tdt.

However, the exponential is independent of the sup-norm with respect to space. Thus we find

||T (t)||∞ ≤ ||T0||∞ e
−µT t +

||λ||∞
µT

(
1− e−µT t

)
.

In particular, there is constant bound for T which is uniform in time; we call this constant TM .

Next we look at the I equation and V equation. Consider

(∂t −DI∆)I = kT (x, t)V (x, t)− µII(x, t), (x, t) ∈ Ω× (0, b],

I(x, 0) = I0(x), x ∈ Ω.

 (2.6)

On the interval (0, b], we have (∂t − DI∆)I ≤ kT (x, t)V (x, t). Using Corollary 2.2, we can say
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that

||I(t)||∞ ≤ ||I0||∞ + k

∫ t

0
||T (τ)V (τ)||∞ dτ

≤ ||I0||∞ + k

∫ t

0
||T (τ)||∞ ||V (τ)||∞ dτ

≤ ||I0||∞ + kC

∫ t

0
TM ||V (τ)||∞ dτ

≤ TM
(

1 +

∫ t

0
||V (τ)||∞ dτ

)
. (2.7)

Further

(∂t −DV ∆)V = NµII(x, t)− µV V (x, t), (x, t) ∈ Ω× (0, t∗],

V (x, 0) = V0(x), x ∈ Ω,

 (2.8)

and so

(∂t −DV ∆)V ≤ NµII(x, t)

for t ∈ [0, b]. Corollary 2.2 gives

||V (t)||∞ ≤ ||V0||∞ +NµI

∫ t

0
||I(τ)||∞ dτ

≤ C
(

1 +

∫ t

0
||I(τ)||∞ dτ

)
. (2.9)

To proceed, we define φ(t) = ||I(t)||∞ + ||V (t)||∞ , t ∈ [0, b]. Then by adding (2.7) and (2.9), we

see

φ(t) ≤ TM
(

1 +

∫ t

0
φ(τ)dτ

)
, t ∈ [0, b].

By Gronwall’s Inequality, we can conclude that

φ(t) ≤ TMet, t ∈ [0, b].

Thus both ||I(t)||∞ and ||V (t)||∞ are bounded by an exponential for t ∈ (0, b].

We have proven boundedness and positivity of solutions on the interval (0, b] for some b > 0.

We attempt to establish the property for any positive time. We note that at this b, T, I, V are

positive and continuous so there is some c > 0 such that T, I, V remain positive for t ∈ (b, b + c].
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We establish a time-shifted diffusion system given by

(∂t −DT∆)T = λ(x)− µTT − kTV, T (x, b) = Tb(x),

(∂t −DI∆)I = kTV − µII, I(x, b) = Ib(x),

(∂t −DV ∆)V = NµII − µV V, V (x, b) = Vb(x),

 (2.10)

for x ∈ Ω and t ∈ (b, b + c]. By slightly modifying the above proofs, we can again prove that

(2.10) has solutions and those solutions remain positive and bounded on (b, b+ c]. Repeating this

argument indefinitely, we arrive at a maximal interval of existence for the solution. If we assume

this interval is finite, then we may say the interval is (0, s], where

s = sup {t∗ ∈ R : T (x, t), I(x, t), V (x, t) > 0 for all t ∈ [0, t∗]} <∞.

On the interval (0, s], the solutions will remain positive and bounded. However, by definition of

s, one of T (x, s), I(x, s), V (x, s) must be equal to zero or else, by continuity, s would not be the

supremum of the set. Thus we see that our solutions are positive on the closed interval (0, s] and

yet one of the solution must equal zero at s. This provides a contradiction so we see that this

interval must be infinite.

Therefore, we conclude that our solutions remain positive and bounded for all positive time.

That is, for any b > 0, T (x, t), I(x, t), V (x, t) > 0 for all x ∈ Ω and all t ∈ (0, b] and ||T (t)||∞,

||I(t)||∞, ||V (t)||∞ remain bounded for t ∈ (0, b]. �

2.2 Regularity of Solutions

Now that we have established global existence of solutions, we note that generally, the heat

operator has a smoothing effect, so we expect some gain in regularity. That is, assuming our initial

data is in L2 (Ω), we expect that our solutions not only remain in L2 (Ω) but actually have deriva-

tives which are square integrable as well. Indeed, this is the case.

Lemma 2.4 (Low Order Regularity). If T, I, V satisfy (2.1) and T0, I0, V0 ∈ L2 (Ω), then T (·, t),

I(·, t), V (·, t) ∈ L2(Ω) for all t ∈ (0, t∗]. Further, ∇T (·, t),∇I(·, t), ∇V (·, t) ∈ L2 (Ω) for all
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t ∈ (0, t∗].

Proof. From (2.5), we multiply through by T and integrate over Ω to arrive at

1

2

d

dt
||T (t)||22 −DT

∫
Ω
T∆T =

∫
Ω
λ(x)T − µT ||T (t)||22 − k

∫
Ω
T 2V.

Integrating by parts on the left (the boundary term goes to zero because of our boundary condi-

tions), using the Cauchy-Schwarz inequality, and replacing V by its supremum, we see

1

2

d

dt
||T (t)||22 +DT ||∇T (t)||22 ≤ ||λ||2 ||T (t)||2 − µT ||T (t)||22 + k ||V (t)||∞ ||T (t)||22

≤ 1
2

(
||λ||22 + ||T (t)||22

)
− µT ||T (t)||22 + k ||V (t)||∞ ||T (t)||22 ,

where

||∇T (t)||22 =

∫
R3

|∇T (x, t)|2 dx.

Finally we arrive at

d

dt
||T (t)||22 ≤ Ct∗

(
1 + ||T (t)||22

)
− 2DT ||∇T (t)||22 . (2.11)

From (2.5) again, we take the gradient of the equation and then take the inner product of the

resulting equation with ∇T to arrive at

1

2
∂t |∇T |2 −DT∇T · ∇∆T = ∇T · ∇λ− µT |∇T |2 − k∇T · (V∇T + T∇V ) .

Integrating over spatial variables and using integration by parts on the left hand side gives

1

2

d

dt
||∇T (t)||22 +DT ||∆T (t)||22 =

∫
Ω
∇T · ∇λ− µT ||∇T (t)||22 − k

(∫
Ω
V |∇T |2 + T∇T · ∇V

)
≤ 1

2

(
||∇T (t)||22 + ||∇λ||22

)
− µT ||∇T (t)||22 + k

(
||V (t)||∞ ||∇T (t)||22 +

+ 1
2 ||T (t)||∞

(
||∇T (t)||22 + ||∇V (t)||22

))
,

whence
d

dt
||∇T (t)||22 ≤ Ct∗

(
1 + ||∇T (t)||22 + ||V (t)||22

)
− 2DT ||∆T (t)||22 . (2.12)
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We deal with equation (2.6) similarly. Multiplying through by I and integrating gives

1

2

d

dt
||I(t)||22 +DI ||∇I(t)||22 = k

∫
Ω
TIV − µI ||I(t)||22

≤ ||V (t)||∞
∫

Ω
TI − µI ||I(t)||22

≤ 1
2 ||V (t)||∞

(
||T (t)||22 + ||I(t)||22

)
− µI ||I(t)||22 .

From this we see
d

dt
||I(t)||22 ≤ Ct∗

(
||T (t)||22 + ||I(t)||22

)
− 2DI ||∇I(t)||22 . (2.13)

Next, taking the gradient of equation (2.6) and then the inner product of the resulting equation

with ∇I, we see

1

2
∂t |∇I|2 −DI∇I · ∇∆I = k∇I · (V∇T + T∇V )− µI |∇I|2 .

Integrating over Ω yields

1

2

d

dt
||∇I(t)||22 +DI ||∆I(t)||22 = k

(∫
Ω
V∇I · ∇T +

∫
Ω
T∇I · ∇V

)
− µI ||∇I(t)||22

≤ k
(
||V (t)||∞

∫
Ω
∇I · ∇T + ||T (t)||∞

∫
Ω
∇I · ∇V

)
− µI ||∇I(t)||22

≤ Ct∗
(

1
2

(
||∇I(t)||22 + ||∇T (t)||22

)
+ 1

2

(
||∇I(t)||22 + ||∇V (t)||22

))
− µI ||∇I(t)||22 .

This produces the inequality

d

dt
||∇I(t)||22 ≤ Ct∗

(
||∇T (t)||22 + ||∇I(t)||22 + ||∇V (t)||22

)
− 2DI ||∆I(t)||22 . (2.14)

Likewise, from equation (2.8), we multiply through by V and integrate to get

1

2

d

dt
||V (t)||22 +DV ||∇V (t)||22 = NµI

∫
Ω
IV − µV ||V (t)||22

≤ NµI
2

(
||I(t)||22 + ||V (t)||22

)
− µV ||V (t)||22

≤ Ct∗
(
||I(t)||22 + ||V (t)||22

)
.

18



This yields
d

dt
||V (t)||22 ≤ Ct∗

(
||I(t)||22 + ||V (t)||22

)
− 2DV ||∇V (t)||22 . (2.15)

Next, from (2.8), we also see

1

2
∂t |∇V |22 −DV∇V · ∇∆V = NµI∇I · ∇V − µV |∇V |22 .

Integrating gives

1

2

d

dt
||∇V (t)||22 +DV ||∆V (t)||22 = NµI

∫
Ω
∇I · ∇V − µV ||∇V (t)||22

≤ NµI
2

(
||∇I(t)||22 + ||∇V (t)||22

)
− µV ||∇V (t)||22

≤ Ct∗
(
||∇I(t)||22 + ||∇V (t)||22

)
,

from which it follows that

d

dt
||∇V (t)||22 ≤ Ct∗

(
||∇I(t)||22 + ||∇V (t)||22

)
− 2DV ||∆V (t)||22 . (2.16)

Finally, let D = min{DT , DI , DV } and for t ∈ (0, t∗], define

M(t) = φ0(t) +Dtφ1(t),

where

φ0(t) = ||T (t)||22 + ||I(t)||22 + ||V (t)||22 ,

φ1(t) = ||∇T (t)||22 + ||∇I(t)||22 + ||∇V (t)||22 .

By adding equations (2.11),(2.13) and (2.15), we see

φ′0(t) ≤ Ct∗ (1 + φ0(t))− 2Dφ1(t)

and by adding equations (2.12), (2.14) and (2.16), we see

φ′1(t) ≤ Ct∗(1 + φ1(t))− 2D
(
||∆T (t)||22 + ||∆I(t)||22 + ||∆V (t)||22

)
.

19



Then, letting φ2(t) = ||∆T (t)||22 + ||∆I(t)||22 + ||∆V (t)||22 , we arrive at

M ′(t) = φ′0(t) +Dφ1(t) +Dtφ′1(t)

≤ Ct∗ (1 + φ0(t))− 2Dφ1(t) +Dφ1(t) +Dt
(
Ct∗(1 + φ1(t))− 2φ2(t)

)
≤ Ct∗

(
1 + φ0(t) +Dtφ1(t)

)
−Dφ1(t)− 2Dtφ2(t).

Realizing that φ1 and φ2 are nonnegative, we may then say

M ′(t) ≤ Ct∗
(
1 +M(t)

)
.

From this, an application of Gronwall’s inequality tells us that

M(t) ≤ Ct∗
(
1 +M(0)et

)
≤ Ct∗(1 +M(0)) for t ∈ (0, t∗].

We note here that by assumption

M(0) = ||T0||22 + ||I0||22 + ||V0||22

is finite and thus M(t) remains finite on the interval. In particular, this implies that φ0(t) remains

finite, and from this we conclude that ||T (t)||22, ||I(t)||22 and ||V (t)||22 are finite for t ∈ (0, t∗].

Thus

T (·, t), I(·, t), V (·, t) ∈ L2(Ω)

for all t ∈ (0, t∗].

The bound on M(t) also implies that

Dtφ1(t) ≤ Ct∗(1 +M(0)) =⇒ φ1(t) ≤ Ct∗

Dt
(1 +M(0)), t ∈ (0, t∗].

That is, for any t ∈ (0, t∗], φ1(t) will remain finite. However, each of ||∇T (t)||22 , ||∇I(t)||22 , ||∇V (t)||22
is bounded by φ1(t). Thus these norms remain finite for t ∈ (0, t∗]. and

∇T (·, t), ∇I(·, t), ∇V (·, t) ∈ L2(Ω)
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for any t ∈ (0, t∗]. �

Next we seek to extend the lemma to higher orders of regularity using similar methods.

Theorem 2.5 (High Order Regularity). Assume that T, I, V satisfy (2.1) and T0, I0, V0 ∈ L2 (Ω).

Then for all m ∈ N ∪ {0}, T (·, t), I(·, t), V (·, t) ∈ Hm (Ω) for all t ∈ (0, t∗].

Note. This theorem holds for Ω ⊂ Rn and can be proven using the methods below. However, the

proof becomes laborious when n gets larger. Accordingly, we prove the theorem in R3, point out

where the difficulty arises for larger n and suggest how the proof could be amended.

Also, many of the manipulations in this proof are rather formal. Indeed, taking arbitrary spatial

derivatives of (2.5), (2.6) and (2.8) may not seem legal but it can be made mathematically rigorous.

To do this, we would, for example, approximate T by a sequence {Tj}j∈N of Schwarz class functions

which converges uniformly to T in Ω. We would prove the bounds for each member of the sequence

and then pass to the limit as j →∞.

As a final note, several times throughout this proof, we use (without pausing to mention it) the

assumption that λ ∈ H∞(Ω); this assumption was heretofore unnecessary, but plays a key role in

our argument for regularity.

Proof (for Ω ⊂ R3). We prove the theorem by induction on m, following a method presented by

Pankavich and Michalowski [12], [13]. First, note that the cases (m = 0, 1) have been proven in

Lemma 2.4; these will constitute the base case. As an inductive hypothesis, we assume that for

some m ≥ 2, we have T (·, t), I(·, t), V (·, t) ∈ H` (Ω) for 0 ≤ ` ≤ m − 1. From this, we must prove

that T (·, t), I(·, t), V (·, t) ∈ Hm (Ω) .

Before we prove increased regularity, we must establish some bounds on the quantities ||T (t)||2H` ,

||I(t)||2H` , ||V (t)||2H` for ` ∈ N, where ||·||H` denotes the norm in

H` (Ω) =
{
u ∈ L2 (Ω) : ∂αxu ∈ L2 (Ω) for multi-indices α with |α| ≤ `

}
.
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That is, ||u||2H` =
∑
|α|≤`

||∂αxu||
2
2 . To this end, define

φ`(t) = ||T (t)||2H` + ||I(t)||2H` + ||V (t)||2H` , 0 ≤ ` ≤ m, t ∈ (0, t∗].

Note that the definition for φ` here differs slightly from the definitions of φ1, φ2 in the proof of low

order regularity but is very similar (this definition does agree with the previous φ0). We first seek

to prove that
d

dt
φ`(t) ≤ Ct∗ (1 + φ`(t))−Dξ`φ`+1(t), 0 ≤ ` ≤ m, t ∈ (0, t∗] (2.17)

where ξ` > 1 and D = min{DT , DI , DV }. Again, we note that (2.17) has been proven for m = 0, 1

with ξ0 = ξ1 = 2 (to see this, add the φ0 and φ1 from the low order regularity proof to construct

the φ1 defined above). We now seek to prove the same for m ≥ 2. First, assume m ≥ 5; we address

the cases that m = 2, 3, 4 individually later. For the case that m ≥ 5, we let α be an arbitrary

multi-index of order ` ≤ m and let ∂αx be the spatial derivative corresponding to α.

Starting from (2.5), we apply ∂αx to the equation and then multiply by ∂αxT and integrate to

arrive at

1

2

d

dt
||∂αxT (t)||22 +DT ||∂αx∇T (t)||22 =

∫
Ω
∂αxλ∂

α
xT (t)− µT ||∂αxT (t)||22

− k
∑̀
j=0

∑
|β|=j
β+γ=α

(
α

β

)∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t).

(2.18)

On the right hand side of (2.18), we handle the first two terms in predictable ways (Cauchy-Schwarz

Inequality then Cauchy’s Inequality). It remains to discuss the integrals in the sum term; that is,

we look for bounds for ∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t), |β| = 0, 1, . . . , `.

We see that when |β| = 0, we have

∫
Ω
T (t)∂αxT (t)∂αxV (t) ≤ ||T (t)||∞

∫
Ω
∂αxT (t)∂αxV (t) ≤

||T (t)||∞
2

(
||∂αxT (t)||22 + ||∂αxV (t)||22

)
≤ Ct∗

(
||T (t)||2H` + ||V (t)||2H`

)
.
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Similarly, when |β| = `, we have

∫
Ω
V (t) [∂αxT (t)]2 ≤ ||V (t)||∞ ||∂

α
xT (t)||22 ≤ Ct∗ ||T (t)||2H` .

For the other terms, |β| , |γ| < ` so we recall the Sobolev embedding theorem.

Theorem (Sobolev Embedding). Let Ω ⊂ Rn and s > n
2 . Then

Hs (Ω) ⊂ C0
(
Ω
)
.

Further, in the case the Ω = Rn, we have

Hs (Rn) ⊂ C0
0 (Rn) ,

where

C0
0 (Rn) =

{
f ∈ C0 (Rn) : lim

|x|→∞
f(x) = 0

}
.

Note. The full version of the Sobolev embedding theorem is quite a bit more robust. It says

for example that under the correct conditions, the injection from Hs → C0 is compact and

makes stronger claims about Wm,p spaces. For a full treatment and a proof of the theorem,

one could look to Brezis’ text [14].

In particular the Sobolev embedding theorem tells us that if f ∈ Hs (Ω) with s > n
2 , then f

remains bounded on Ω.

Here we have assumed that T (·, t), V (·, t) ∈ Hm−1 (Ω) with Ω ⊂ R3. We note that ` ≤ m and

so min{|β| , |γ|} ≤ bm/2c; i.e., one of the partial derivatives ∂βx , ∂
γ
x has order less than or equal to

m/2. If |β| ≤ m/2, we see that ∂βxT (·, t) ∈ Hm−1−|β| (Ω) where, for even m, we have m− 1− |β| ≥

m−1−m/2 = m/2−1 > 3
2 , and for odd m, we get m−1−|β| ≥ m−1−m/2−1/2 = (m−1)/2 > 3

2 .

(Note: here we used the assumption that m ≥ 5). Thus, in both cases, ∂βxT remains bounded and
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we may take its supremum and remove it from the integral, yielding

∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t) ≤

∣∣∣∣∣∣∂βxT (t)
∣∣∣∣∣∣
∞

∫
Ω
∂αxT (t)∂γxV (t)

≤

∣∣∣∣∣∣∂βxT (t)
∣∣∣∣∣∣
∞

2

(
||∂αxT (t)||22 + ||∂γxV (t)||22

)
≤ Ct∗

(
||T (t)||2H` + ||V (t)||2H`

)
.

Likewise, when |γ| ≤ bm/2c, we may say

∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t) ≤

||∂γxV (t)||∞
2

(
||∂αxT (t)||22 +

∣∣∣∣∣∣∂βxT (t)
∣∣∣∣∣∣2

2

)
≤ Ct∗ ||T (t)||2H`

≤ Ct∗
(
||T (t)||2H` + ||V (t)||2H`

)
.

Thus each term in the sum is bounded by Ct∗
(
||T (t)||2H` + ||V (t)||2H`

)
and so the whole sum is

bounded by another constant multiple of the same quantity. Further, for the terms in (2.18) which

are not in the sum, we see

∫
Ω
∂αxλ∂

α
xT (t)− µT ||∂αxT (t)||22 ≤

1

2
(||∂αxλ||

2
2 + ||∂αxT (t)||22)− µT ||∂αxT (t)||22

≤ Ct∗
(

1 + ||∂αxT (t)||22
)

≤ Ct∗
(

1 + ||T (t)||2H`

)
.

Combining all of this into (2.18) and rearranging gives

d

dt
||∂αxT (t)||22 ≤ Ct∗

(
1 + ||T (t)||2H` + ||V (t)||2H`

)
− 2DT ||∂αx∇T (t)||22 .

Summing over all multi-indices of order less than or equal to ` gives that

d

dt
||T (t)||2H` ≤ Ct∗

(
1 + ||T (t)||2H` + ||V (t)||2H`

)
− 2DT ||T (t)||2H`+1 , 0 ≤ ` ≤ m, t ∈ (0, t∗]. (2.19)

A detail here: in the sum, we have replaced

∑
|α|≤`

||∂αx∇T (t)||22
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with ||T (t)||2H`+1 . However, the two are not the same since the former does not contain the norm

||T (t)||22. To remedy this, we can add and subtract DT ||T (t)||22 and group the term we added into

Ct∗
(
1 + ||T (t)||2H` + ||V (t)||2H`

)
.

Next, apply ∂αx to (2.6), multiply through by ∂αx I and integrate to see

1

2

d

dt
||∂αx I(t)||22 +DI ||∂αx∇I(t)||22 = k

∑̀
j=0

∑
|β|=j
β+γ=α

(
α

β

)∫
Ω
∂αx I(t)∂βxT (t)∂γxV (t)

− µI ||∂αx I(t)||22 .

(2.20)

We deal with the sum in (2.20) in a method nearly identical to the one used to deduce (2.19).

When |β| = 0, we have

∫
Ω
T (t)∂αx I(t)∂αxV (t) ≤ ||T (t)||∞

∫
Ω
∂αx I(t)∂αxV (t)

≤ Ct∗
(
||∂αx I(t)||22 + ||∂αxV (t)||22

)
≤ Ct∗

(
||I(t)||2H` + ||V (t)||2H`

)
.

Again, when |β| = `, we have

∫
Ω
V (t)∂αxT (t)∂αx I(t) ≤ ||V (t)||∞

∫
Ω
∂αxT (t)∂αx I(t)

≤ Ct∗
(
||∂αxT (t)||22 + ||∂αx I(t)||22

)
≤ Ct∗

(
||T (t)||2H` + ||I(t)||2H`

)
.

In all other cases, we turn again to Sobolev’s embedding theorem. When |β| ≤ bm/2c, we see

∫
Ω
∂αx I(t)∂βxT (t)∂γxV (t) ≤

∣∣∣∣∣∣∂βxT (t)
∣∣∣∣∣∣
∞

∫
Ω
∂αx I(t)∂γxV (t)

≤

∣∣∣∣∣∣∂βxT (t)
∣∣∣∣∣∣
∞

2

(
||∂αx I(t)||22 + ||∂γxV (t)||22

)
≤ Ct∗

(
||I(t)||2H` + ||V (t)||2H`

)
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and when |γ| ≤ bm/2c,

∫
Ω
∂αx I(t)∂βxT (t)∂γxV (t) ≤ ||∂γxV (t)||∞

∫
Ω
∂αx I(t)∂βxT (t)

≤
||∂γxV (t)||∞

2

(
||∂αx I(t)||22 +

∣∣∣∣∣∣∂βxT (t)
∣∣∣∣∣∣2

2

)
≤ Ct∗

(
||T (t)||2H` + ||I(t)||2H`

)
.

Thus every member of the sum is bounded by Ct∗
(
||T (t)||2H` + ||I(t)||2H` + ||V (t)||2H`

)
and so the

sum is bounded by another multiple of this term. Combining this bound with (2.20) gives

d

dt
||∂αx I(t)||22 ≤ Ct∗

(
||T (t)||2H` + ||I(t)||2H` + ||V (t)||2H`

)
− 2DI ||∂αx∇I(t)||22 .

Summing over all |α| ≤ ` yields,

d

dt
||I(t)||2H` ≤ Ct∗

(
||T (t)||2H` + ||I(t)||2H` + ||V (t)||2H`

)
−2DI ||I(t)||2H`+1 ,

0 ≤ ` ≤ m, t ∈ (0, t∗].

(2.21)

Finally, starting from (2.8), we apply ∂αx then multiply through by ∂αxV and integrate, yield-

ing

1

2

d

dt
||∂αxV (t)||2 +DV ||∂αx∇V (t)||2 = NµI

∫
Ω
∂αxV (t)∂αx I(t)− µV ||∂αxV (t)||22

≤ NµI
2

(
||∂αx I(t)||22 + ||∂αxV (t)||22

)
− µV ||∂αxV (t)||22

≤ Ct∗
(
||∂αx I(t)||22 + ||∂αxV (t)||22

)
. (2.22)

Rearranging (2.22) and summing over all |α| ≤ ` produces,

d

dt
||V (t)||2H` ≤ Ct∗

(
||I(t)||2H` + ||V (t)||2H`

)
− 2DV ||V (t)||H`+1 , 0 ≤ ` ≤ m, t ∈ (0, t∗]. (2.23)

Adding (2.19),(2.21) and (2.23), yields

d

dt
φ`(t) ≤ Ct∗(1 + φ`(t))− 2Dφ`+1(t), ` ≤ m, t ∈ (0, t∗].

Thus, for m ≥ 5, (2.17) is proven with ξ` = 2 for all `.
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It remains to prove (2.17) for m = 2, 3, 4. These are the cases in which Sobolev’s embedding

theorem cannot immediately help since we are not guaranteed that m− 1− bm/2c > 3
2 . However,

we only required this condition to deduce the bounds for T and I. Thus we need only reconsider

those equations. In all cases, the derivations of bounds for V are all identical as above and thus

(2.23) still holds for m = 2, 3, 4.

This is why the proof becomes more difficult in Rn when n is large. For n = 3, we need

consider 3 special cases: m = 2, 3, 4. In general, the special cases will be those m ≥ 2 such that

m − 1 − bm/2c ≤ n
2 . It is easily checked that for odd n, there are n special cases to consider and

for even n there are n + 1 special cases. These can be handled in the manner presented below.

However, even in R3 it becomes quite tedious.

We begin with m = 2. Since the bound has already been proven when ` = 0, 1, we need only

consider ` = m = 2. Let α be a multi-index of order ` = 2. Then, starting from (2.5), we get

1

2

d

dt
||∂αxT (t)||22 +DT ||∂αx∇T (t)||22 ≤

1

2

(
||∂αxλ||

2
2 + ||∂αxT (t)||22

)
− µT ||∂αxT (t)||22

− k
2∑
j=0

∑
|β|=j
β+γ=α

(
α

β

)∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t).

(2.24)

Again we look for bounds on the integrals in the sum. We see that when |β| = 0 or |β| = 2, we

may deal with integral in the exact same way as above. The trouble occurs when |β| = |γ| = 1. In

this case, we integrate by parts to see∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t) = −

∫
Ω
T (t)∂βx

(
∂αxT (t)∂γxV (t)

)
= −

(∫
Ω
T (t)

[
∂α+β
x T (t)∂γxV (t) + ∂αxT (t)∂αxV (t)

])
≤ TM

(∫
Ω
∂α+β
x T (t)∂γxV (t) +

∫
Ω
∂αxT (t)∂αxV (t)

)
,

(2.25)

where TM is the uniform bound for T we found earlier. Having converted this into two integrals,

we deal with each separately. For the second, we simply note that

∫
Ω
∂αxT (t)∂αxV (t) ≤ 1

2

(
||∂αxT (t)||22 + ||∂αxV (t)||22

)
.

We take more care with the first term. We may still use the Cauchy-Schwarz Inequality to arrive
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at ∫
Ω
∂α+β
x T (t)∂γxV (t) ≤

∣∣∣∣∣∣∂α+β
x T (t)

∣∣∣∣∣∣
2
||∂γxV (t)||2 .

Next we apply Young’s Inequality, with arbitrary η > 0 to see

∫
Ω
∂α+β
x T (t)∂γxV (t) ≤

η
∣∣∣∣∣∣∂α+β

x T (t)
∣∣∣∣∣∣2

2

2
+
||∂γxV (t)||22

2η

≤
η ||∂αx∇T (t)||22

2
+
||∂γxV (t)||22

2η
.

We will choose η later. Then combining these bounds with (2.24) gives

d

dt
||∂αxT (t)||22 ≤ Ct∗

(
1 + ||T (t)||2H2 + ||V (t)||2H2

)
−

2DT −
kηTM

2

∑
|β|=1

(
α

β

) ||∂αx∇T (t)||22 ,

where all sufficiently low order derivatives have been grouped into the H2−norms. Now to fulfill

(2.17) we need

2DT −
kηTM

2

∑
|β|=1

(
α

β

)
> D.

It is sufficient to require that

η <
2D

kTM
∑
|β|=1

(
α
β

) .
Choosing such η, we may conclude that

d

dt
||∂αxT (t)||22 ≤ Ct∗

(
1 + ||T (t)||2H2 + ||V (t)||2H2

)
−Dξ2 ||∂αx∇T (t)||22 , t ∈ (0, t∗],

for some ξ2 > 1. Summing over all such multi-indices |α| ≤ 2, we arrive at

d

dt
||T (t)||2H2 ≤ Ct∗

(
1 + ||T (t)||2H2 + ||V (t)||2H2

)
−Dξ2 ||T (t)||2H3 , t ∈ (0, t∗]. (2.26)

Next, we consider (2.6). From (2.20), we easily deduce

1

2

d

dt
||∂αx I(t)||22 +DI ||∂αx∇I(t)||22 = k

2∑
j=0

∑
|β|=j
β+γ=α

(
α

β

)∫
Ω
∂αx I(t)∂βxT (t)∂γxV (t)

− µI ||∂αx I(t)||22 .

(2.27)
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Again, the goal is to bound the integral

∫
Ω
∂αx I(t)∂βxT (t)∂γxV (t)

in the case that |β| = |γ| = 1. We do this with a method similar to that used above:

∫
Ω
∂αx I(t)∂βxT (t)∂γxV (t) = −

∫
Ω
T (t)∂βx

(
∂αx I(t)∂γxV (t)

)
= −

(∫
Ω
T (t)

[
∂α+β
x I(t)∂γxV (t) + ∂αx I(t)∂αxV (t)

])
≤ TM

(∫
Ω
∂α+β
x I(t)∂γxV (t) +

∫
Ω
∂αx I(t)∂αxV (t)

)
.

Using the same methods as we did above (Young’s Inequality, etc) and recombining with results

from (2.20), we derive

d

dt
||∂αx I(t)||22 ≤ Ct∗

(
||T (t)||2H2 + ||I(t)||2H2 + ||V (t)||2H2

)
−

2DI −
kηTM

2

∑
|β|=1

(
α

β

) ||∂αx∇I(t)||22 ,

where η is another an arbitrary positive number we may choose. In fact, using the same choice for

η, and summing over all α gives

d

dt
||I(t)||2H2 ≤ Ct∗

(
||T (t)||2H2 + ||I(t)||2H2 + ||V (t)||2H2

)
−Dξ2 ||I(t)||2H3 , t ∈ (0, t∗] (2.28)

for some ξ2 > 1. Adding (2.23),(2.26) and (2.28) gives that

d

dt
φ2(t) ≤ Ct∗ (1 + φ2(t))−Dξ2φ3(t), t ∈ (0, t∗].

Then since the analagous equations for ` = 0, 1 hold, this proves (2.17) for m = 2.

For m = 3, to prove the proposition for each ` ≤ m, it suffices to look at ` = 3. The instances

when ` = 0, 1, 2 follow from the above work. We proceed as usual, letting |α| = 3:

1

2

d

dt
||∂αxT (t)||22 +DT ||∂αx∇T (t)||22 ≤

1

2

(
||∂αxλ||

2
2 + ||∂αxT (t)||22

)
− µT ||∂αxT (t)||22

− k
3∑
j=0

∑
|β|=j
β+γ=α

(
α

β

)∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t).

(2.29)
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In this situation there are two troubling cases: |β| = 1, |γ| = 2 and |β| = 2, |γ| = 1; the other cases

(|β| = 0, |β| = 3) can be handled as above. If |β| = 1, we perform steps identical to (2.25) to arrive

at ∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t) ≤ ||T (t)||∞

(∫
Ω
∂α+β
x T (t)∂γxV (t) +

∫
Ω
∂αxT (t)∂αxV (t)

)
.

Further, we restrict the second integral above by

∫
Ω
∂αxT (t)∂αxV (t) ≤ 1

2
(||∂αxT (t)||2 + ||∂αxV (t)||2) ,

as before. For the first integral, we again use Young’s Inequality to see

∫
Ω
∂α+β
x T (t)∂γxV (t) ≤

η
∣∣∣∣∣∣∂α+β

x T (t)
∣∣∣∣∣∣2

2

2
+
||∂γxV (t)||22

2η

≤
η ||∂αx∇T (t)||22

2
+
||∂γxV (t)||22

2η
.

Thus in this case we may choose η very similarly. Using (2.29), we arrive at

d

dt
||∂αxT (t)||22 ≤ Ct∗

(
1 + ||T (t)||2H3 + ||V (t)||2H3

)
−

2DT −
kη ||T (t)||∞

2

∑
|β|=1

(
α

β

) ||∂αx∇T (t)||22

so we require

η <
2D

kTM
∑
|β|=1

(
α
β

)
In the case that |γ| = 1, we use the same technique. Again, we are only truly concerned with

bounding the term ∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t).

But now, when we integrate by parts, we must choose to remove ∂γx from V :

∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t) = −

∫
Ω
V (t)∂γx

(
∂αxT (t)∂βxT (t)

)
≤ ||V (t)||∞

(∫
Ω
∂α+γ
x T (t)∂βxT (t) +

∫
Ω
∂αxT (t)∂αxT (t)

)
.
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Then, following through, we see

∫
Ω
∂α+γ
x T (t)∂βxT (t) ≤

η
∣∣∣∣∣∣∂α+γ

x T (t)
∣∣∣∣∣∣2

2

2
+

∣∣∣∣∣∣∂βxT (t)
∣∣∣∣∣∣2

2

2η

≤
η ||∂αx∇T (t)||22

2
+

∣∣∣∣∣∣∂βxT (t)
∣∣∣∣∣∣2

2

2η
,

for yet another arbitrary η > 0. Here we require that

η <
2D

kVM
∑
|β|=2

(
α
β

) ,
where VM = supt∈(0,t∗] ||V (t)||∞. We note that the supremum is finite since ||V (t)||∞ remains

bounded on the interval. Thus, having enforced two bounds on η, we may take the minimum of

the two in order to satisfy both. Compiling all of this into (2.29) yields

d

dt
||∂αxT (t)||22 ≤ Ct∗

(
1 + ||T (t)||2H3 + ||V (t)||2H3

)
−Dξ3 ||∂αx∇T (t)||22 , t ∈ (0, t∗],

and summing over all |α| ≤ 3 gives

d

dt
||T (t)||2H3 ≤ Ct∗

(
1 + ||T (t)||2H3 + ||V (t)||2H3

)
−Dξ3 ||T (t)||2H4 , t ∈ (0, t∗]. (2.30)

Following the procedure, we see that

1

2

d

dt
||∂αx I(t)||22 +DI ||∂αx∇I(t)||22 = k

3∑
j=0

∑
|β|=j
β+γ=α

(
α

β

)∫
Ω
∂αx I(t)∂βxT (t)∂γxV (t)

− µI ||∂αx I(t)||22 ,

(2.31)

and we must bound the integral ∫
Ω
∂αx I(t)∂βxT (t)∂γxV (t)

in the case that |β| = 1 or |β| = 2. We do this in a predictable way: if |β| = 1 we integrate by

parts to remove ∂βx from T and if |β| = 2 we integrate by parts to remove ∂γx from V . Performing

these steps, we eventually come to

d

dt
||∂αx I(t)||22 ≤ Ct∗

(
||T (t)||2H3 + ||I(t)||2H3 + ||V (t)||2H3

)
−Dξ3 ||∂αx∇I(t)||22 , t ∈ (0, t∗],
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which, after summing over α, leads to

d

dt
||I(t)||2H3 ≤ Ct∗

(
||T (t)||2H3 + ||I(t)||2H3 + ||V (t)||2H3

)
−Dξ3 ||∇I(t)||2H3 , t ∈ (0, t∗]. (2.32)

Adding (2.23),(2.30),(2.32) yields

d

dt
φ3(t) ≤ Ct∗ (1 + φ3(t))−Dξ3φ4(t), t ∈ (0, t∗],

which proves (2.17) for m = 3.

Finally we address the case that m = 4. Here we need only consider ` = 4 since the derivation

for ` = 0, 1, 2, 3 follow directly from the above work. When ` = 4, we have

1

2

d

dt
||∂αxT (t)||22 +DT ||∂αx∇T (t)||22 ≤

1

2

(
||∂αxλ||

2
2 + ||∂αxT (t)||22

)
− µT ||∂αxT (t)||22

− k
4∑
j=0

∑
|β|=j
β+γ=α

(
α

β

)∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t).

(2.33)

Attempting to bound the integrals, we see that when |β| = 0, 4, we can simply take the supremum

of the term without a derivative and bound the remaining integral as before. When |β| = 1, 3,

we see that either m − 1 − |β| > 3
2 or m − 1 − |γ| > 3

2 . In either case, we may use the Sobolev

embedding theorem and proceed as before. There is only trouble when |β| = |γ| = 2. In this case,

we bound the integral ∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t).

To do so we integrate by parts to get

∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t) = −

∫
Ω
∂β−1
x T (t)∂1

x

[
∂αxT (t)∂γxV (t)

]
,

where ∂1
x, ∂

β−1
x are the first order spatial derivatives such that ∂βx = ∂1

x∂
β−1
x . Now |β − 1| = 1 so

m − 1 − |β − 1| = 2 > 3
2 and, by the Sobolev embedding theorem, ∂β−1

x T (t) remains bounded.

Thus

∫
Ω
∂αxT (t)∂βxT (t)∂γxV (t) ≤

∣∣∣∣∣∣∂β−1
x T (t)

∣∣∣∣∣∣
∞

∫
Ω
∂1
x

[
∂αxT (t)∂γxV (t)

]
=
∣∣∣∣∣∣∂β−1

x T (t)
∣∣∣∣∣∣
∞

(∫
Ω
∂α+1
x T (t)∂γxV (t) +

∫
Ω
∂αxT (t)∂γ+1

x V (t)

)
.
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We treat the two integrals separately as before. For the latter, we use

∫
Ω
∂αxT (t)∂γ+1

x V (t) ≤ 1

2

(
||∂αxT (t)||22 +

∣∣∣∣∂γ+1
x V (t)

∣∣∣∣2
2

)
,

while for the former, we take η > 0 and use

∫
Ω
∂α+1
x T (t)∂γxV (t) ≤

η
∣∣∣∣∂α+1

x T (t)
∣∣∣∣2

2

2
+
∂γxV (t)

2η
≤
η ||∂αx∇T (t)||22

2
+
∂γxV (t)

2η
.

Combining all of this with (2.33) and rearranging terms gives

||∂αxT (t)||22 ≤ Ct∗
(

1 + ||T (t)||2H4 + ||V (t)||2H4

)
−Dξ4 ||∂αx∇T (t)||22

where

ξ4 ≥

2−
kη
∣∣∣∣∣∣∂β−1

x T (t)
∣∣∣∣∣∣
∞

2D

∑
|β|=2

(
α

β

) .

Thus to force ξ4 > 1, we take

η <
2D[

supt∈(0,t∗]

∣∣∣∣∣∣∂β−1
x T (t)

∣∣∣∣∣∣
∞

]
k
∑
|β|=2

(
α
β

) .
For such η, we sum over all |α| ≤ 4 to get

d

dt
||T (t)||2H4 ≤ Ct∗

(
1 + ||T (t)||2H4 + ||V (t)||2H4

)
−Dξ4 ||T (t)||2H5 , t ∈ (0, t∗]. (2.34)

We turn again to (2.6) and derive

1

2

d

dt
||∂αx I(t)||22 +DI ||∂αx∇I(t)||22 = k

4∑
j=0

∑
|β|=j
β+γ=α

(
α

β

)∫
Ω
∂αx I(t)∂βxT (t)∂γxV (t)

− µI ||∂αx I(t)||22 .

(2.35)

We realize again that, in bounding the integrals, we only run into trouble with |β| = |γ| = 2. In

this case, we use the same method as above (with the same η) to arrive at

||∂αx I(t)||22 ≤ Ct∗
(
||T (t)||2H4 + ||I(t)||2H4 + ||V (t)||2H4

)
−Dξ4 ||∂αx∇I(t)||22 ,
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which leads immediately to

||I(t)||2H4 ≤ Ct∗
(
||T (t)||2H4 + ||I(t)||2H4 + ||V (t)||2H4

)
−Dξ4 ||I(t)||2H5 , t ∈ (0, t∗]. (2.36)

Summing (2.23),(2.34) and (2.36) yields

d

dt
φ4(t) ≤ Ct∗ (1 + φ4(t))−Dξ4φ5(t), t ∈ (0, t∗],

which proves (2.17) for m = 4.

Thus for m ≥ 2, beginning from our assumption that T (·, t), I(·, t), V (·, t) ∈ H` (Ω) for 0 ≤ ` ≤

m− 1, we have proven that

d

dt
φ`(t) ≤ Ct∗ (1 + φ`(t))−Dξ`φ`+1(t), 0 ≤ ` ≤ m, t ∈ (0, t∗].

Finally, to prove high order regularity, define

M(t) =
m∑
`=0

(Dt)`

`!
φ`(t), t ∈ (0, t∗].

Then differentiating, we see

M ′(t) =

m∑
`=1

D`t`−1

(`− 1)!
φ`(t) +

m∑
`=0

(Dt)`

`!

d

dt
φ`(t)

=
m−1∑
`=0

D`+1t`

`!
φ`+1(t) +

m∑
`=0

(Dt)`

`!

d

dt
φ`(t).

Now we use (2.17) to find

M ′(t) ≤
m−1∑
`=0

D`+1t`

`!
φ`+1(t) +

m∑
`=0

(Dt)`

`!
{Ct∗ (1 + φ`(t))−Dξ`φ`+1(t)}

= Ct∗

(
m∑
`=0

(Dt)`

`!
+

m∑
`=0

(Dt)`

`!
φ`(t)

)
−

(
m−1∑
`=0

D`+1(ξ` − 1)
t`

`!
φ`+1(t)

)
−Dm+1ξm

tm

m!
φm(t).
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Next, we note that ξ` − 1 > 0, and so

M ′(t) ≤ Ct∗
(

m∑
`=0

(Dt)`

`!
+

m∑
`=0

(Dt)`

`!
φ`(t)

)

= Ct∗(1 +M(t)), t ∈ (0, t∗].

An application of Gronwall’s Inequality yields

M(t) ≤ Ct∗(1 +M(0)et)

≤ Ct∗(1 +M(0)), t ∈ (0, t∗].
(2.37)

However, the right hand side of (2.37) is finite and each term in M(t) is nonnegative so we see that

(2.37) implies that

(Dt)m

m!
φm(t) ≤ Ct∗(1 +M(0)) =⇒ φm(t) ≤ m!Ct∗(1 +M(0))

(Dt)m
, t ∈ (0, t∗].

Further, each of ||T (t)||2Hm , ||I(t)||2Hm , ||V (t)||2Hm is bounded by φm(t) on (0, t∗]. Thus for all t ∈

(0, t∗], we have T (·, t), I(·, t), V (·, t) ∈ Hm (Ω). This completes the induction step.

From this we may conclude that for all m ∈ N ∪ {0}, T (·, t), I(·, t), V (·, t) ∈ Hm (Ω) which

completes the proof. �
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CHAPTER 3

LARGE TIME ASYMPTOTICS

In this section we present some large time asymptotic results for our system. To establish these

results, we use Corollaries 2.2.1 and 2.2.2 several times so it is helpful to recall them here.

Corollary 2.2.1 If u(x, t) satisfies the differential equation

(∂t −Du∆)u = g(x, t), (x, t) ∈ Ω× (0, t∗],

u(x, 0) = u0(x), x ∈ Ω.

then

||u(t)||∞ ≤ ||u0||∞ +

∫ t

0
||g(τ)||∞ dτ, for all t ∈ [0, t∗].

Corollary 2.2.2 Assume that u(x, t) satisfies the differential inequality

(∂t −Du∆)u ≤ g(x, t), (x, t) ∈ Ω× (0, t∗],

u(x, 0) = u0(x), x ∈ Ω.

Then u(x, t) satisfies the same inequality as in Corollary 2.2.1. That is,

||u(t)||∞ ≤ ||u0||∞ +

∫ t

0
||g(τ)||∞ dτ, for all t ∈ [0, t∗].

Using these corollaries and enforcing some conditions on our parameters, we attempt to deter-

mine some asymptotic behavior of the system.

3.1 Supremum-Norm Asymptotics

Theorem 3.1 (Asymptotic Behavior: Case 1). Let T, I, V satisfy (2.1) and assume that

T0, I0, V0 ∈ L∞(Ω), µV > µI and R1 =
||λ||∞Nk
µTµI

< 1. Then there is an r > 0 such that

lim
t→∞

ert ||V (t)||∞ = 0 and lim
t→∞

ert ||I(x)||∞ = 0.
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Proof. Assume T, I, V satisfy (2.1), µV > µI and R1 < 1. We first consider the T -equation.

Rearraging terms and dropping the negative term on the right hand side, we see

∂tT + µTT −DT∆T ≤ λ(x).

Use of an integrating factor gives

∂t
[
eµT tT

]
−DT∆

[
eµT tT

]
≤ λ(x)eµT t =⇒ (∂t −DT∆)

[
eµT tT

]
≤ λ(x)eµT t.

Corollary 2.2 then implies that

∣∣∣∣eµT tT (t)
∣∣∣∣
∞ ≤

∣∣∣∣eµT ·0T0

∣∣∣∣
∞ +

∫ t

0
||λeµT τ ||∞ dτ.

However, since the supremum norms in the previous line are taken over spatial variables and eµT t is

independent of space, we may pull those terms outside of the norms, and then evaluate the integral

on the right hand side yielding

eµT t ||T (t)||∞ ≤ ||T0||∞ +
||λ||∞
µT

(
eµT t − 1

)
=⇒ ||T (t)||∞ ≤ e

−µT t ||T0||∞ +
||λ||∞
µT

(
1− e−µT t

)
.

But 0 ≤ 1− e−µT t ≤ 1 for t > 0, so we set T̃ (t) = e−µT t ||T0||∞ +
||λ||∞
µT

and

||T (t)||∞ ≤ T̃ (t), t > 0. (3.1)

With this in mind, we turn our attention to the I equation. Using (3.1), we immediately arrive

at

∂tI −DI∆I ≤ kV T̃ (t)− µII.

Using an integrating factor again, we see

(∂t −DI∆)
[
eµI tI

]
≤ kV T̃ (t)eµI t.

An application of Corollary 2.2 gives

∣∣∣∣eµI tI(t)
∣∣∣∣
∞ ≤ ||I0||∞ + k

∫ t

0
T̃ (τ)eµIτ ||V (τ)||∞ dτ
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which leads to

||I(t)||∞ ≤ e
−µI t ||I0||∞ + ke−µI t

∫ t

0
T̃ (τ)eµIτ ||V (τ)||∞ dτ. (3.2)

Finally, we turn to the V equation. We seek a bound on V using the same methods as we

used for the T and I equations above. Rearranging terms and introducing an integrating factor

yields

(∂t −DV ∆)
[
eµV tV

]
= NµIIe

µV t.

An application of Corollary 2.1 gives

∣∣∣∣eµV tV (t)
∣∣∣∣
∞ ≤ ||V0||∞ +NµI

∫ t

0
eµV τ ||I(τ)||∞ dτ

which then implies

||V (t)||∞ ≤ e
−µV t ||V0||∞ +NµIe

−µV t
∫ t

0
eµV τ ||I(τ)||∞ dτ. (3.3)

Our next step is to insert the bound derived in (3.2) into (3.3). Doing this yields

||V (t)||∞ ≤ e
−µV t ||V0||∞+

NµIe
−µV t

∫ t

0
eµV τ

(
e−µIτ ||I0||∞ + ke−µIτ

∫ τ

0
T̃ (s)eµIs ||V (s)||∞ ds

)
dτ

which we may reduce to

||V (t)||∞ ≤ A1e
−µV t +A2e

−µI t +NµIke
−µV t

∫ t

0

∫ τ

0
T̃ (s)e(µV −µI)τeµIs ||V (s)||∞ dsdτ,

for some constants A1, A2. Rearranging gives

||V (t)||∞ ≤ A1e
−µV t +A2e

−µI t +NµIk

∫ t

0

∫ τ

0
T̃ (s)e−µI(τ−s)e−µV (t−τ) ||V (s)||∞ dsdτ. (3.4)

Now since µV > µI , we see that e−µV (t−τ) ≤ e−µI(t−τ). Thus

||V (t)||∞ ≤ A1e
−µV t +A2e

−µI t +NµIk

∫ t

0

∫ τ

0
T̃ (s)e−µI(τ−s)e−µI(t−τ) ||V (s)||∞ dsdτ

= A1e
−µV t +A2e

−µI t +NµIk

∫ t

0

∫ τ

0
T̃ (s)e−µI(t−s) ||V (s)||∞ .
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We change the order of integration for the double integral:

||V (t)||∞ ≤ A1e
−µV t +A2e

−µI t +NµIk

∫ t

0

∫ t

s
T̃ (s)e−µI(t−s) ||V (s)||∞ dτds.

Evaluating the inner integral and multiplying through by eµI t gives

∣∣∣∣eµI tV (t)
∣∣∣∣
∞ ≤ A1e

−(µV −µI)t +A2 +NµIk

∫ t

0
(t− s)T̃ (s) ||eµIsV (s)||∞ ds

but e−(µV −µI)t ≤ 1 so this leads to

∣∣∣∣eµI tV (t)
∣∣∣∣
∞ ≤ A1 +A2 +NµIk

∫ t

0
(t− s)T̃ (s) ||eµIsV (s)||∞ ds. (3.5)

Now consider T̃ (t) defined above. Since ||T0||∞ e−µT t → 0, we know that for any ε > 0, there is

tε > 0 such that

T̃ (t) ≤
||λ||∞
µT

+ ε, when t > tε.

Using this, we can modify the integral in (3.5). We see for sufficiently large t,

∫ t

0
(t− s)T̃ (s) ||eµV sV (s)||∞ ds =

∫ tε

0
(t− s)T̃ (s) ||eµV sV (s)||∞ ds+

∫ t

tε

(t− s)T̃ (s) ||eµV sV (s)||∞ ds.

But

∫ tε

0
(t− s)T̃ (s) ||eµV sV (s)||∞ ds = t

∫ tε

0
T̃ (s) ||eµV sV (s)||∞ ds−

∫ tε

0
sT̃ (s) ||eµV sV (s)||∞ ds

≤ A(1 + t), for some A > 0.

Using this, we can rewrite (3.5) as

∣∣∣∣eµI tV (t)
∣∣∣∣
∞ ≤ C(1 + t) +NµIk

∫ t

tε

(t− s)T̃ (s) ||eµIsV (s)||∞ ds.

However, in the integral above, s > tε, so we can bound T̃ yielding

∣∣∣∣eµI tV (t)
∣∣∣∣
∞ ≤ C(1 + t) +NµIk

(
||λ||∞
µT

+ ε

)∫ t

tε

(t− s) ||eµIsV (s)||∞ ds, t > tε. (3.6)

From here, let

ψ(t) =
∣∣∣∣eµI tV (t)

∣∣∣∣
∞ , θ(t) = C(1 + t)
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Also define a constant κ = NµV k
(
||λ||∞
µT

+ ε
)
. Then (3.6) becomes

ψ(t) ≤ θ(t) + κ

∫ t

tε

(t− s)ψ(s)ds. (3.7)

Define a linear operator B on locally integrable functions f by

(Bf)(t) = κ

∫ t

tε

(t− s)f(s)ds.

Then (3.7) gives

ψ ≤ θ +Bψ. (3.8)

We note that B preserves inequalities (since the operator is a composition of multiplication by

nonnegative terms and then integration), thus we may say

Bψ ≤ Bθ +B2ψ.

But from (3.8), we have ψ − θ ≤ Bψ so

ψ − θ ≤ Bθ +B2ψ =⇒ ψ ≤ θ +Bθ +B2ψ.

Applying B to this inequality then gives

Bψ ≤ Bθ +B2θ +B3ψ

which, using again ψ − θ ≤ Bψ gives

ψ ≤ θ +Bθ +B2θ +B3ψ.

By a quick induction, it is easy to see that iterating through this process leads to

ψ ≤ Bnψ +

n−1∑
`=0

B`θ, n ∈ N, (3.9)

where B0 is the identity operator. The next step is to find a formula for B`, ` ≥ 2 and then we

can deal with each piece of the right hand side of (3.9). Consider, for a locally integrable function
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f ,

(B2f)(t) = B

[
κ

∫ τ

tε

(τ − s)f(s)ds

]
(t)

= κ

∫ t

tε

(t− τ)

(
κ

∫ τ

tε

(τ − s)f(s)ds

)
dτ

= κ2

∫ t

tε

∫ τ

tε

(t− τ)(τ − s)f(s)dsdτ

= κ2

∫ t

tε

f(s)

∫ t

s
(t− τ)(τ − s)dτds

= κ2

∫ t

tε

f(s)

∫ t−s

0
(t− s− τ)τ dτds

= κ2

∫ t

tε

f(s)

∫ t−s

0
((t− s)τ − τ2)dτds

= κ2

∫ t

tε

f(s)

(
(t− s)τ2

2
− τ3

3

)τ=t−s

τ=0

ds

=
κ2

6

∫ t

tε

(t− s)3f(s)ds.

This gives us a formula for the operator B2. To find a similar formula for B3, we apply B

again:

(B3f)(t) = κ

∫ t

tε

(t− τ)

(
κ2

6

∫ τ

tε

(τ − s)3f(s)ds

)
dτ

=
κ3

6

∫ t

tε

∫ τ

tε

(t− τ)(τ − s)3f(s)dsdτ

=
κ3

6

∫ t

tε

f(s)

∫ t

s
(t− τ)(τ − s)3dτds

=
κ3

6

∫ t

tε

f(s)

∫ t−s

0
((t− s)− τ)τ3 dτds

=
κ3

6

∫ t

tε

f(s)

(
(t− s)τ4

4
− τ5

5

)τ=t−s

τ=0

ds

=
κ3

120

∫ t

tε

(t− s)5f(s)ds.

From here we may infer that

(B`f)(t) =
κ`

(2`− 1)!

∫ t

tε

(t− s)2`−1f(s)ds.

Indeed, this formula can be verified by induction. Using this formula, we consider the terms on the
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right hand side of (3.9). First, consider

(Bnψ)(t) =
κn

(2n− 1)!

∫ t

tε

(t− s)2n−1ψ(s)ds.

Since solutions to (2.1) exist globally, in particular, we know ψ(s) has a finite supremum on tε ≤

s ≤ t; call this supremum ψmax. Then

(Bnψ)(t) ≤ ψmax
κn

(2n− 1)!

∫ t

tε

(t− s)2n−1ds

= ψmax
((t− tε)

√
κ)

2n

(2n)!
−→ 0, as n→∞, for all t > tε.

Then since (3.9) holds for all n ∈ N, we may take the limit as n→∞ yielding

ψ(t) ≤
∞∑
`=0

(B`θ)(t). (3.10)

It remains to find a formula for B`θ since we have a relatively simply function θ. We see

(B`θ)(t) =
κ`

(2`− 1)!

∫ t

tε

(t− s)2`−1C(1 + s)ds

= C
κ`

(2`− 1)!

∫ t−tε

0
s2`−1(1 + t− s)ds

= C
κ`

(2`− 1)!

∫ t−tε

0
[(1 + t)s2`−1 − s2`]ds

= C
κ`

(2`− 1)!

(
(1 + t)

(t− tε)2`

2`
− (t− tε)2`+1

2`+ 1

)
.

From here, we use 1 + t = (1 + tε) + (t− tε). Then

(B`θ)(t) = C
κ`

(2`− 1)!

(
(1 + tε)

(t− tε)2`

2`
+

(t− tε)2`+1

2`
− (t− tε)2`+1

2`+ 1

)
= C(1 + tε)

((t− tε)
√
κ)

2`

(2`)!
+

C√
κ

((t− tε)
√
κ)

2`+1

(2`+ 1)!
.

Plugging this into (3.10), we arrive at

ψ(t) ≤ C(1 + tε)
∞∑
`=0

((t− tε)
√
κ)

2`

(2`)!
+

(
C√
κ

) ∞∑
`=0

((t− tε)
√
κ)

2`+1

(2`+ 1)!

= C(1 + tε) cosh
(
(t− tε)

√
κ
)

+
C√
κ

sinh
(
(t− tε)

√
κ
)
.
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Now cosh ((t− tε)
√
κ) and sinh ((t− tε)

√
κ) both behave like et

√
κ as t → ∞. Thus we may

say

ψ(t) ≤ Cet
√
κ for some C > 0 and t sufficiently large.

Finally, this gives that

||V (t)||∞ ≤ Ce
(
√
κ−µI)t.

Recall, κ = NµIk
(
||λ||∞
µT

+ ε
)

. We need
√
κ − µI < 0 so that ||V (t)||∞ is bounded by a decaying

exponential. But

√
κ− µI < 0 ⇐⇒ κ < µ2

I ⇐⇒ Nk

µI

(
||λ||∞
µT

+ ε

)
< 1.

Now using our assumption that
||λ||∞Nk
µTµI

< 1,

we know that there is some sufficiently small ε > 0 such that

Nk

µI

(
||λ||∞
µT

+ ε

)
< 1.

Using this ε, we can achieve a decaying exponential bound on ||V (t)||∞ . Taking, for example,

r = −
√
κ−µI

2 > 0, we see

lim
t→∞

ert ||V (t)||∞ = 0.

Using the decaying exponential bound for V in (3.2), we see

||I(t)||∞ ≤ e
−µI t ||I0||∞ + kT̃Me

−µI t
∫ t

0
eτ
√
κdτ

= e−µI t ||I0||∞ +
kT̃M√
κ
e−µI t

(
et
√
κ − 1

)
= e−µI t ||I0||∞ +

kT̃M√
κ

(
e(
√
κ−µI)t − e−µI t

)
.

Thus ||I(t)||∞ is also bounded in time by a decaying exponential and

lim
t→∞

ert ||I(t)||∞ = 0,

for the same r we defined above, which completes the proof. �
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We now consider the opposite case: µV < µI .

Theorem 3.2 (Asymptotic Behavior: Case 2). Let T, I, V satisfy (2.1) and assume that

T0, I0, V0 ∈ L∞(Ω), µV < µI and R2 =
||λ||∞NµIk
µTµ

2
V

< 1. Then there is an r > 0 such that

lim
t→∞

ert ||V (t)||∞ = 0 and lim
t→∞

ert ||I(t)||∞ = 0.

Proof. We start from (3.4):

||V (t)||∞ ≤ A1e
−µV t +A2e

−µI t +NµIk

∫ t

0

∫ τ

0
T̃ (s)e−µI(τ−s)e−µV (t−τ) ||V (s)||∞ dsdτ.

In this case, we can incur the correct inequality by replacing µI with µV . This gives

||V (t)||∞ ≤ A1e
−µV t +A2e

−µI t +NµIk

∫ t

0

∫ τ

0
T̃ (s)e−µV (τ−s)e−µV (t−τ) ||V (s)||∞ dsdτ

≤ A1e
−µV t +A2e

−µI t +NµIk

∫ t

0

∫ τ

0
T̃ (s)e−µV (t−s) ||V (s)||∞ dsdτ.

Using the same manipulations as in Case 1, we can reduce this to an inequality which looks identical

to (3.5) except with µI replaced with µV . This inequality is

∣∣∣∣eµV tV (t)
∣∣∣∣
∞ ≤ A1 +A2 +NµIk

∫ t

0
(t− s)T̃ (s) ||eµV sV (s)||∞ ds.

Using the same arguments as above, we note that for any ε > 0, there is tε > 0 such that

∣∣∣∣eµV tV (t)
∣∣∣∣
∞ ≤ C(1 + t) +NµIk

(
||λ||∞
µT

+ ε

)∫ t

tε

(t− s) ||eµV sV (s)||∞ ds.

Define ψ(t), θ(t), κ, (Bf)(t) as in the proof of Case 1 (the difference being that ψ(t) now has an

exponential with µV rather than µI). Then we can verify that (3.9) and (3.10) hold and thus

ψ(t) ≤ Cet
√
κ, for some C > 0.

Finally, this gives that

||V (t)||∞ ≤ Ce
(
√
κ−µV )t.
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Now, for exponential decay, we need
√
κ− µV < 0. Simplifying this gives

√
κ− µV < 0 ⇐⇒ κ < µ2

V ⇐⇒ NµIk

µ2
V

(
||λ||∞
µT

+ ε

)
< 1.

Using our condition that
||λ||∞NµIk
µTµ

2
V

< 1, we know that there is some sufficiently small ε > 0 such

that the above condition holds. For such ε and sufficiently large t, ||V (t)||∞ is bounded by a

decaying exponential and so

lim
t→∞

ert ||V (t)||∞ = 0,

for r = −κ−µV
2 > 0.

Again, plugging this bound for ||V (t)||∞ into (3.2) we can easily derive a decaying exponential

bound for ||I(t)||∞ as well and we conclude that

lim
t→∞

ert ||I(t)||∞ = 0,

for the same r, which completes the proof. �

Finally, for completeness, we consider the case then µV = µI .

Theorem 3.3 (Asymptotic Behavior: Case 3). Let T, I, V satisfy (2.1) and assume that

T0, I0, V0 ∈ L∞(Ω), µV = µI and R =
||λ||∞Nk
µTµV

< 1. Then there is an r > 0 such that

lim
t→∞

ert ||V (t)||∞ = 0 and lim
t→∞

ert ||I(t)||∞ = 0.

Note. The condition we require here is exactly what we would find in Case 1 by taking the limit

as µI → µV from below or what we would find in Case 2 by taking the limit as µV → µI from

below. That is to say, R = R1 = R2 when µV = µI .

Proof. Starting from (3.4), we simply replace all µI with µV since the two are equal and all steps

proceed exactly as in Case 2. �
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We may also say something about the asymptotic behavior of T . Essentially, in the case that

||I(t)||∞ , ||V (t)||∞ → 0, we expect the influence of the nonlinear term in the T -equation to be

negligible for large time. We state this more precisely in the following theorem.

Theorem 3.4 (Asymptotic Behavior of T). Let T, I, V satisfy (2.1) and assume that T0, I0, V0 ∈

L∞(Ω) and that one of the following holds:

(i) µV > µI and R1 =
||λ||∞Nk
µTµI

< 1,

(ii) µV < µI and R2 =
||λ||∞NµIk
µTµ

2
V

< 1,

(iii) µV = µI and R =
||λ||∞Nk
µTµV

< 1.

Further, let T ∗(x) satisfy the equation

−DT∆T ∗ = λ(x)− µTT ∗, x ∈ Ω, (3.11)

along with the same boundary condition that T satisfies. Then there is r > 0 such that

lim
t→∞

ert ||T (t)− T ∗||∞ = 0.

Proof. Let U(x, t) = T ∗(x)− T (x, t) for all x ∈ Ω, t > 0. Then

(∂t −DT∆)U = (∂t −DT∆)T ∗ − (∂t −DT∆)T

=⇒ (∂t −DT∆)U = λ(x)− µTT ∗ − (λ(x)− µTT − kTV )

=⇒ (∂t −DT∆)U = −µTU + kTV (3.12)

and U(x, 0) = T ∗(x)− T0(x) = U0(x), say. From (3.12), we have

(∂t −DT∆)
[
UeµT t

]
= kTV eµT t

≤ CTV eµT t
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where CT is some constant which depends on the uniform (in time) bound for T we found earlier.

Using Corollary 2.2, this yields

eµT t ||U(t)||∞ ≤ ||U0||∞ +

∫ t

0
CT e

µT τ ||V (τ)||∞ dτ.

From the proofs of the above theorems, we know that in any of case (i),(ii) or (iii), ||V (t)||∞ is

bounded in time by a decaying exponential, i.e.,

||V (t)||∞ ≤ Ce
−mt for some C,m > 0.

Then

eµT t ||U(t)||∞ ≤ ||U0||∞ + CT

∫ t

0
e(µT−m)τdτ.

Integrating gives

eµT t ||U(t)||∞ ≤ ||U0||∞ +
CT

µT −m

(
e(µT−m)t − 1

)
which immediately leads to

0 ≤ ||U(t)||∞ ≤
(
||U0||∞ −

CT
µT −m

)
e−µT t +

CTM

µT −m
e−mt.

And so, taking r = min{µT ,m}
2 and using the Squeeze Theorem, we see that

lim
t→∞

ert ||U(t)||∞ = lim
t→∞

ert ||T (t)− T ∗(t)||∞ = 0,

which completes the proof. �

These give us a concrete set of conditions which force I, V → 0 for large time. However, the

conditions are not exactly what we would like. We would like a condition which more closely

resemble the analogous condition for the lumped model since that condition has some biological

meaning. To derive a “better” condition, we look at the non-dimensionalized version of the system

which leads us to the next subsection.
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3.2 Non-Dimensionalization

From (2.1), we attempt to derive a dimensionless system. To do so, we first discuss the dimen-

sions of the quantities at play. We use the notation convention [A] = dimensions of A. We consider

T, I to have units “volumetric concentration of cells,” while V has units “volumetric concentration

of virions”; we are following the lead of [9]. Accordingly, we may list the dimensions of each piece

of (2.1) as follows:

• [t] = time (time is ordinarily measured in days)

• [x] = lengthn if we are in Rn (i.e., each component of x has units “length”),

• [T ] = [I] = cells
lengthn ,

• [V ] = virions
lengthn

• [DT ] = [DI ] = [DV ] = length2

time ,

• [λ] = cells
lengthn·time ,

• [µT ] = [µI ] = [µV ] = 1
time ,

• [k] = lengthn

virions·time ,

• [N ] = virions
cells .

From this we see that each equation above has units cells
lengthn·time or virions

lengthn·time .

Now we introduce new versions of each quantity. Let

t = αs, x = βy, T = γS, I = δJ, V = εW.

where α, β, γ, δ, ε are abitrary scalings; we will specify the units of s, y, S, J,W shortly. Plugging

these into (2.1), one arrives at

(
∂s −

DTα

β2
∆y

)
S =

α

γ
λ(βy)− µTαS − kαεSW (3.13)(

∂s −
DIα

β2
∆y

)
J =

kαγε

δ
SW − µIαJ (3.14)(

∂s −
DV α

β2
∆y

)
W =

NµIαδ

ε
J − µV αW (3.15)
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along with the appropriate transformations of initial conditions which we discuss later. We now

begin to choose values for our new parameters very strategically. Considering how α appears, it

makes sense to set α = 1/µT (in fact, α = 1/µI or α = 1/µV seem equally sensible at first; we

will discuss exactly why we made the choice that α = 1/µT shortly). From here, to eliminate the

coefficient of diffusion from (3.13), we choose β =
√
DT /µT . Next, we notice that the quantity

δ/ε appears in both (3.14) and (3.15) (though in (3.14) the quantity is inverted). Accordingly,

we eliminate N and µI from (3.15) and supply an extra µV so that the quantity µV α may be

factored out of the right hand side of (3.15). This leads us to the choice δ/ε = µV /(NµI). We set

γ = µV /(Nk) to eliminate some parameters from (3.14). Finally, we need to specify one of δ and

ε, and we will be done. To further simplify (3.13), we set ε = µI/k. To recap, the parameters we

have introduced are now defined by

α = 1
µT
, β =

√
DT
µT
, γ = µV

Nk , δ = µTµV
NkµI

, ε = µT
k .

We plug these values into (3.13)-(3.15). This yields the new system:

(∂s −∆y)S = R0(y)− S − SW (3.16)(
∂s − D̃I∆y

)
J = µ̃I(SW − J) (3.17)(

∂s − D̃V ∆y

)
W = µ̃V (J −W ) (3.18)

where

R0(y) = Nk
µTµV

λ
(
y
√

DT
µT

)
, D̃I = DI

DT
, D̃V = DV

DT
, µ̃I = µI

µT
, µ̃V = µV

µT
.

Because of the choice that α = 1/µT , we transformed λ into this new function R0. In the coming

section, we describe why this was a desirable transformation. We will find that R0 is of particular

interest.

At this point, we see that

[α] = time, [β] = length, [γ] = cells
lengthn , [δ] = cells

lengthn , [ε] = virions
lengthn .

Thus

[s] = [y] = [S] = [J ] = [W ] = 1.
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It is also easily checked that

[R0] = [D̃I ] = [D̃V ] = [µ̃I ] = [µ̃V ] = 1.

Thus (3.16)-(3.18) is a fully non-dimensionalized system. The last thing to do is to transform the

initial conditions. This happens in a completely natural way. If we set

S0(y) = T0

(
y
√

DT
µT

)
, J0(y) = I0

(
y
√

DT
µT

)
, W0(y) = V0

(
y
√

DT
µT

)
,

then our system is

(∂s −∆y)S = R0(y)− S − SW, S(y, 0) = S0(y),(
∂s − D̃I∆y

)
J = µ̃I(SW − J), J(y, 0) = J0(y),(

∂s − D̃V ∆y

)
W = µ̃V (J −W ), W (y, 0) = W0(y).

 (3.19)

Here (3.19) holds for all y ∈ Ω̃ and all s ∈ [0, s∗] where

Ω̃ =
{
x
√

µT
DT

: x ∈ Ω
}

and s∗ = µT t
∗.

The boundary conditions also transform in a natural way. We assume

lim
|y|→∞

∂S

∂n
(y, s) = lim

|y|→∞

∂J

∂n
(y, s) = lim

|y|→∞

∂W

∂n
(y, s) = 0, s ∈ (0, s∗],

if Ω̃ = Rn or
∂S

∂n
(·, s)

∣∣∣∣
∂Ω̃

=
∂J

∂n
(·, s)

∣∣∣∣
∂Ω̃

=
∂W

∂n
(·, s)

∣∣∣∣
∂Ω̃

= 0, s ∈ (0, s∗],

if Ω̃ is a bounded open subset of Rn with boundary ∂Ω̃.

3.3 Non-Dimensional Supremum-Norm Asymptotics

In this section, we work with (3.19) and establish some of the asymptotic behavior of the system

in different parameter regimes. To do this, we need the help of a pair of lemmas which we state

here (proofs of these lemmas can be found in Appendix I).

Lemma 3.5. Let Ω = Rn or let Ω be a bounded open subset of Rn and let F : Ω× [0,∞)→ [0,∞).
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Futher, assume that for fixed t ≥ 0, F (·, t) ∈ H∞(Ω) and that ∂F
∂t is continuous and bounded for

(x, t) ∈ Ω× [0,∞). Then

f(t) = sup
x∈Ω

F (x, t), t ∈ [0,∞)

is uniformly continuous.

Lemma 3.6. Let f : [a,∞)→ [0,∞) be a uniformly continuous function such that

∫ ∞
a

f(t)dt = C <∞.

Then lim
t→∞

f(t) = 0.

With these lemmas, we are ready to deal with asymptotic behavior of (3.19).

Theorem 3.7 (Non-Dimensional Supremum Norm Asymptotics). Assume that S, J,W

satisfy (3.19), S0, J0,W0 ∈ L∞(Ω̃) and

||R0||∞ =
Nk ||λ||∞
µTµV

< 1.

Then

lim
s→∞

||J(s)||∞ = 0 and lim
s→∞

||W (s)||∞ = 0.

Note: There are several observations to consider before we begin the proof. The first is that,

when taking the supremum ||R0||∞, we may do so with respect to either x or y and the two are

equivalent. That is to say,

||λ||∞ = sup
x∈Ω
|λ(x)| = sup

y∈Ω̃

|λ(y)| .

Similarly, requiring that S0, J0,W0 ∈ L∞(Ω̃) is equivalent to requiring that T0, I0, V0 ∈ L∞(Ω).

Next, we note that ||J(s)||∞ , ||W (s)||∞ → 0 will certainly imply that ||I(t)||∞ , ||V (t)||∞ → 0.

That is, asymptotic behavior of (2.1) and (3.19) is the same. Further, the high order regularity

which was proven for I and V also applies to J and W . Finally, we proved a similar set of theorems
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for (2.1) already. However, these were proved under more stringent conditions on the parameters

and it was necessary to consider several cases. Here, we need only consider one condition and all

cases follow. There is a trade-off though. In the other proofs we were able to bound ||I(t)||∞ and

||V (t)||∞ by exponential decay. Here we can only assert that ||J(s)||∞ and ||W (s)||∞ decay like

s−(1+α) for some α > 0, so the decay could be slower, though, with additional work, it may be

possible to recover the exponential decay.

Proof. For this proof, we denote ∆y simply by ∆ and it is understood that the derivatives are

taken with respect to the coordinates of y. We begin by considering the S equation. We see

∂sS + S −∆S = R0(y)− SW ≤ R0(y).

Then using an integrating factor gives

(∂s −∆)[esS] ≤ R0(y)es.

By Corollary 2.2, this implies

||S(s)||∞ e
s ≤ ||S0||∞ +

∫ s

0
||R0||∞ e

σdσ

and therefore that

||S(s)||∞ ≤ ||S0||∞ e
−s + ||R0||∞ (1− e−s) ≤ ||S0||∞ e

−s + ||R0||∞ . (3.20)

Set

S̃(s) = ||S0||∞ e
−s + ||R0||∞

so that ||S(s)||∞ ≤ S̃(s), s > 0.

Next we consider the J equation. Using our bound on S, we see

∂sJ + µ̃IJ − D̃I∆J ≤ µ̃I S̃(s)W
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which leads to

(∂s − D̃I∆)[eµ̃IsJ ] ≤ µ̃Ieµ̃IsS̃(s)W.

Then Corollary 2.2 gives

||J(s)||∞ e
µ̃Is ≤ ||J0||∞ + µ̃I

∫ s

0
eµ̃IσS̃(σ) ||W (σ)||∞ dσ

from which we see

||J(s)||∞ ≤ ||J0||∞ e
−µ̃Is + µ̃Ie

−µ̃Is
∫ s

0
eµ̃IσS̃(σ) ||W (σ)||∞ dσ. (3.21)

Our next step is to integrate the inequality. This yields

∫ s

0
||J(σ)||∞ dσ ≤

||J0||∞
µ̃I

(1− e−µ̃Is) +

∫ s

0
µ̃Ie
−µ̃Is

∫ σ

0
eµ̃Iτ S̃(τ) ||W (τ)||∞ dτdσ.

If we set

F (σ) =

∫ σ

0
eµ̃Iτ S̃(τ) ||W (τ)||∞ dτ,

we may rewrite the inequality as

∫ s

0
||J(σ)||∞ dσ ≤

||J0||∞
µ̃I

(1− e−µ̃Is) +

∫ s

0
µ̃Ie
−µ̃IsF (σ)dσ.

Now we integrate by parts to give

∫ s

0
||J(σ)||∞ dσ ≤

||J0||∞
µ̃I

(1− e−µ̃Is)−
(
F (σ)e−µ̃Iσ

∣∣σ=s

σ=0

)
+

∫ s

0
e−µ̃IσF ′(σ)dσ.

But F (0) = 0 and F ′(σ) = eµ̃IσS̃(σ) ||W (σ)||∞ . Thus

∫ s

0
||J(σ)||∞ dσ ≤

||J0||∞
µ̃I

(1− e−µ̃Is)− e−µ̃Is
∫ s

0
eµ̃IσS̃(σ) ||W (σ)||∞ dσ +

∫ s

0
S̃(σ) ||W (σ)||∞ dσ.

After dropping the negative term and replacing 1− e−µ̃Is by 1, this gives us the bound

∫ s

0
||J(σ)||∞ dσ ≤

||J0||∞
µ̃I

+

∫ s

0
S̃(σ) ||W (σ)||∞ dσ. (3.22)
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We deal with the W equation in a similar fashion. We see

∂sW + µ̃VW − D̃V ∆W = µ̃V J

which then implies that

(∂s − D̃V ∆)[eµ̃V sW ] ≤ µ̃V eµ̃V sJ

and then, by Corollary 2.1, that

||W (s)||∞ e
µ̃V s ≤ ||W0||∞ + µ̃V

∫ s

0
eµ̃V σ ||J(σ)||∞ dσ.

Rearranging yields

||W (s)||∞ ≤ ||W0||∞ e
−µ̃V s + µ̃V e

−µ̃V s
∫ s

0
eµ̃V σ ||J(σ)||∞ dσ. (3.23)

Again, we will integrate and this time set

G(σ) =

∫ σ

0
eµ̃V τ ||J(τ)||∞ dτ.

This gives ∫ s

0
||W (σ)||∞ dσ ≤

||W0||∞
µ̃V

(1− e−µ̃V s) +

∫ s

0
µ̃V e

−µ̃V σG(σ)dσ.

Integrating by parts yields

∫ s

0
||W (σ)||∞ dσ ≤

||W0||∞
µ̃V

(1− e−µ̃V s)−
(
G(σ)e−µ̃V σ

∣∣σ=s

σ=0

)
+

∫ s

0
e−µ̃V σG′(σ)dσ.

We realize that G(0) = 0 and G′(σ) = eµ̃V σ ||J(σ)||∞. So

∫ s

0
||W (σ)||∞ dσ ≤

||W0||∞
µ̃V

(1− e−µ̃V s)− e−µ̃V s
∫ s

0
eµ̃V σ ||J(σ)||∞ dσ +

∫ s

0
||J(σ)||∞ dσ,

which leads immediately to

∫ s

0
||W (σ)||∞ dσ ≤

||W0||∞
µ̃V

+

∫ s

0
||J(σ)||∞ dσ. (3.24)
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The next step is to insert the bound derived in (3.22) into (3.24). Doing so, we see

∫ s

0
||W (σ)||∞ dσ ≤

||W0||∞
µ̃V

+
||J0||∞
µ̃I

+

∫ s

0
S̃(σ) ||W (σ)||∞ .

In particular, this implies that

∫ s

s1

||W (σ)||∞ dσ ≤
||W0||∞
µ̃V

+
||J0||∞
µ̃I

+

∫ s

0
S̃(σ) ||W (σ)||∞

for any s1 > 0. Consider, since

lim
s→∞

S̃(s) = ||R0||∞

and since S̃(s) approaches this limit from above, we know that for any ε > 0, there is sε > 0 such

that s > sε implies that S̃(s) < ||R0||∞ + ε. We rewrite the above inequality:

∫ s

sε

||W (σ)||∞ dσ ≤
||W0||∞
µ̃V

+
||J0||∞
µ̃I

+

∫ s

0
S̃(σ) ||W (σ)||∞

=
||W0||∞
µ̃V

+
||J0||∞
µ̃I

+

∫ sε

0
S̃(σ) ||W (σ)||∞ dσ +

∫ s

sε

S̃(σ) ||W (σ)||∞ dσ.

However,

∫ sε

0
S̃(σ) ||W (σ)||∞ dσ is simply a constant, so we conclude

∫ s

sε

||W (σ)||∞ dσ ≤ Cε +

∫ s

sε

S̃(σ) ||W (σ)||∞ dσ ≤ Cε +

∫ s

sε

(||R0||∞ + ε) ||W (σ)||∞ dσ,

for some Cε > 0. This leads us to

(1− ||R0||∞ − ε)
∫ s

sε

||W (σ)||∞ dσ ≤ Cε.

Set H(s) =

∫ s

sε

||W (σ)||∞ dσ. Then certainly H is nonnegative and

(1− ||R0||∞ − ε)H(s) ≤ Cε, s > sε.

Now if (1− ||R0||∞ − ε) < 0, the above holds trivially and tells us nothing. However, we have

assumed that

||R0||∞ < 1.
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Thus there is an ε > 0 sufficiently small so that

||R0||∞ + ε < 1.

We choose this ε (and the corresponding sε). Then taking the limit as s→∞ gives

lim
s→∞

H(s) ≤ Cε
1− ||R0||∞ − ε

<∞.

However, H is also an increasing function of s. Thus we have an increasing function which is

bounded above and so by the Monotone Convergence Theorem, H(s) tends to a finite limit as

s→∞.

Further, from (3.19), we see that

∂W

∂s
= D̃V ∆W + µ̃V J − µ̃VW

so by high-order regularity, we know that ∂W
∂s is continuous and bounded. Further, for fixed s ≥ 0,

we have W (·, s) ∈ H∞
(

Ω̃
)

. Thus by Lemma 3.5,

sup
y∈Ω̃

W (y, s) = ||W (s)||∞

is a uniformly continuous function of s.

Then by Lemma 3.6, since ||W (s)||∞ is uniformly continuous and

∫ ∞
sε

||W (s)||∞ ds <∞,

we may conclude that

lim
s→∞

||W (s)||∞ = 0.

Finally, since ∫ ∞
sε

||W (s)||∞ ds

is bounded, from (3.22), we can bound

∫ ∞
sε

||J(σ)||∞ dσ
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the same way we did for ||W (s)||∞ . This will then imply that

lim
s→∞

||J(s)||∞ = 0

which completes the proof. �

Note: A final note on the rate of decay of ||W (s)||∞ and ||J(s)||∞. We never derived any rate of

decay in the proof. However, by proving that

∫ ∞
sε

||W (s)||∞ ds

converges (and since ||W (s)||∞ is nonnegative), we know that ||W (s)||∞ must go to zero faster than

s−1 and the same applies for ||J(s)||∞. Thus we conclude that both ||W (s)||∞ and ||J(s)||∞ decay

to zero like s−(1+α) for some α > 0 though they may exhibit exponential decay.

3.4 Non-Dimensional p-Norm Asymptotics

To make Theorem 3.7 more robust, we would also like to consider other norms as well. In fact,

this result generalizes nicely to p-norms in the following way.

Corollary 3.7.1 (p-norm Asymptotics). Assume that S, J,W satisfy (3.19),

S0, J0,W0 ∈ L1(Ω̃) ∩ L∞(Ω̃) and ||R0||∞ =
Nk||λ||∞
µTµV

< 1. Then

lim
s→∞

||J(s)||p = 0 and lim
s→∞

||W (s)||p = 0,

for all 1 < p <∞.

Proof. The proof is actually fairly simple in the case of a bounded domain. If we suppose that Ω̃
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has finite measure, then we may say

||W (s)||p =

(∫
Ω̃
|W (y, s)|p dy

)1/p

≤
(∫

Ω̃
||W (s)||p∞ dy

)1/p

= ||W (s)||∞ µ(Ω̃)1/p,

where µ(Ω̃) is the measure of Ω̃ and p ∈ [1,∞). The same inequality holds for J as well. Then

since the supremum norm of each W and J goes to zero, so must the p-norm.

The case of an unbounded domain is slightly more complicated. We would like to use p-norm

interpolation; i.e., we would like to bound the p-norm by the 1-norm and the supremum norm. In

order to do this, we need some estimates for the 1-norm.

To that end, from the J-equation, we integrate out space. We note that the integral of J (or

W ) is actually the 1-norm; this follows since J (and W ) are positive. Thus we have

d

ds
||J(s)||1 − D̃I

∫
Ω̃

∆Jdy = µ̃I

∫
Ω̃
S(y, s)W (y, s)dy − µ̃I ||J(s)||1

We can bound S(y, s) by its supremum norm and then use the bound derived in (3.20) to say

d

ds
||J(s)||1 − D̃I

∫
Ω̃

∆Jdy ≤ µ̃I S̃(s) ||W (s)||1 − µ̃I ||J(s)||1 .

Using the divergence theorem for the integral gives

d

ds
||J(s)||1 − D̃I

∫
∂Ω̃

∂J

∂n
ds ≤ µ̃I S̃(s) ||W (s)||1 − µ̃I ||J(s)||1 ,

but then our boundary condition implies that the integral is zero. Thus

d

ds
||J(s)||1 + µ̃I ||J(s)||1 ≤ µ̃I S̃(s) ||W (s)||1 .

Using an integrating factor and “solving” the inequality for ||J(s)||1 brings us to

||J(s)||1 ≤ ||J0||1 e
−µ̃Is + µ̃Ie

−µ̃Is
∫ s

0
eµ̃IσS̃(σ) ||W (σ)||1 dσ. (3.25)
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Next, we consider the W -equation and integrate out space:

d

ds
||W (s)||1 − D̃V

∫
Ω̃

∆Wdy = µ̃V ||J(s)||1 − µ̃V ||W (s)||1 .

Using the divergence theorem and our boundary condition, we know that the integral is zero.

Thus
d

ds
||W (s)||1 + µ̃V ||W (s)||1 = µ̃V ||J(s)||1 .

Finally, using a integrating factor and solving for ||W (s)||1 yields

||W (s)||1 = ||W0||1 e
−µ̃V s + µ̃V e

−µ̃V s
∫ s

0
eµ̃V σ ||J(σ)||1 dσ.

In particular,

||W (s)||1 ≤ ||W0||1 e
−µ̃V s + µ̃V e

−µ̃V s
∫ s

0
eµ̃V σ ||J(σ)||1 dσ. (3.26)

If we compare (3.25) and (3.26) to (3.21) and (3.23), respectively, we see inequalities are exactly

the same except ||·||1 is replaced with ||·||∞. Thus we can conclude from similar work that ||J(s)||1
and ||W (s)||1 remain bounded for all s.

With this, we are almost ready to assert that the p-norm of J and W must go to zero.First, we

recall Hölder’s Inequality.

Theorem (Hölder’s Inequality). Let Ω ⊂ Rn. Suppose that q, r ∈ [1,∞] are such that

1
q + 1

r = 1 and that f ∈ Lq(Ω), g ∈ Lr(Ω). Then

∫
Ω
fg ≤ ||f ||q ||g||r .

Now consider, for a smooth function u defined on Ω and for p ∈ (1,∞), we have

||u||pp =

∫
Ω
|u|p

=

∫
Ω
|u| |u|p−1

≤ ||u||1
∣∣∣∣up−1

∣∣∣∣
∞ (by Hölder’s Inequality with q = 1, r =∞)

= ||u||1 ||u||
p−1
∞ ,
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which yields the inequality

||u||p ≤ ||u||
1/p
1 ||u||1−1/p

∞ .

Using this, we see that

||W (s)||p ≤ ||W (s)||1/p1 ||W (s)||1−1/p
∞ ,

for any p ∈ (1,∞). Thus, since the 1-norm of W remains bounded and the supremum norm of W

goes to zero, the p-norm is bounded by a quantity that goes to zero and so ||W (s)||p → 0. The

same holds for J . �

3.5 Comparison with the Spatially Homogeneous Model

It is no accident that our results on large time asymptotics are contingent on the quantity

||R0||∞ =
Nk||λ||∞
µTµV

. In fact, to more clearly express the meaning of this quantity, it should perhaps

be written in the form

||R0||∞ =
NµIk ||λ||∞
µTµIµV

.

In this form, we see that ||R0||∞ is the ratio of appearance rates to clearance rates. Indeed, NµI

is a rate of appearance of free virions based on the death of infected cells, k is a rate at which T

cells become infected when in contact with virions and λ is a regeneration rate for T cells, while

the denominator (µT , µI , µV ) is composed of the natural death/clearance rates.

In fact, this quantity has a clear analog in the analysis of the spatially homogeneous model.

When analyzing (1.1), several authors ([3], [4] for example) consider the quantity

ρ =
NµIkλ

µTµIµV
.

This quantity is called the reproductive ratio. It is of particular interest to Jones and Roemer [11]

who analyze (1.1) in detail. They prove that there are two steady states of (1.1), termed the viral

extinction state (a state in which I(t), V (t)→ 0 for large t) and the viral persistence state (a state

in which I(t), V (t) do not go to zero), respectively. Further, they prove that the extinction state is

stable if and only if ρ ≤ 1 and otherwise the persistence state is stable.

Our results are somewhat similar. We have proven that in the case that ||R0||∞ < 1, our system

tends to a virus free state. Our analysis thus far has been limited to this case and we can say

60



little when ||R0||∞ > 1. We notice R0(y) is precisely ρ if λ is taken to be constant. Thus ||R0||∞
should not be considered an exact analog of ρ because taking the supremum norm will not incur a

particularly sharp inequality unless λ is “nearly” constant. Something like the average value of R0

may be a better analog to ρ. In any case, we presented a sufficient condition to force I, V → 0; it

is unlikely that this condition is necessary (we speak more to this point in the next section).

However, if λ is taken to be constant we do have the following result.

Theorem 3.8. Assume that T, I, V satisfy (2.1), take λ to be constant and let

R0 =
λNk

µTµV
> 1.

Then the viral persistence steady state given by

(T ∗, I∗, V ∗) =

(
µV
Nk

,
λ

µI
− µV
Nk

,
λN

µV
− µT

k

)

is asymptotically stable.

Proof. It is easy to see that (T ∗, I∗, V ∗) is indeed a steady state for the system by simply performing

the necessary algebra. Now assume that our functions are perturbed slightly from the steady state;

say

T (x, t) = T ∗ + εT1(x, t), I(x, t) = I∗ + εI1(x, t), V (x, t) = V ∗ + εV1(x, t),

where 0 < ε� 1. Plugging these into (2.1) and ignoring terms on the order of ε2, we see that our

perturbation functions satisfy

(∂t −DT∆)T1 = −µTT1 − k(T ∗V1 + V ∗T1),

(∂t −DI∆)I1 = k(T ∗V1 + V ∗T1)− µII1,

(∂t −DV ∆)V1 = NµII1 − µV V1,

Next we take the Fourier Transform in space (with transform variable ξ) and rearrange to arrive
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at

∂t


T̂1

Î1

V̂1

 =


−(µT + kV ∗ +DT |ξ|2) 0 −kT ∗

kV ∗ −(µI +DI |ξ|2) kT ∗

0 NµI −(µV +DV |ξ|2)



T̂1

Î1

V̂1



..= A(ξ)


T̂1

Î1

V̂1

 .

We wish to prove that T1, I1, V1 → 0 as t → ∞. To do so, it suffices to prove that all of the

eigenvalues of the matrix A(ξ) have negative real part regardless of choice for ξ. Accordingly, we

note that

det(A− νI) = −
(
ν3 + a(ξ)ν2 + b(ξ)ν + c(ξ)

)
where

a(ξ) = µT + kV ∗ + µI + µV + (DT +DI +DV ) |ξ|2 ,

b(ξ) = (µT + kV ∗)(µI + µV )

+
(
(µT + kV ∗)(DI +DV ) + µI(DT +DV ) + µV (DT +DI)

)
|ξ|2

+ (DTDI +DTDV +DIDV ) |ξ|4 ,

c(ξ) = µIµV kV
∗ + (µT + kV ∗)(µIDV + µVDI) |ξ|2

+
(
DIDV (µT + kV ∗) +DI(µIDV + µVDI)

)
|ξ|4 +DTDIDV |ξ|6 .

It is clear to see that each of a(ξ), b(ξ), c(ξ) > 0 for all ξ ∈ Rn (in fact, this is where the

assumption that R0 > 1 is necessary since it guarantees that V ∗ > 0). We recall the Routh-

Hurwitz Stability Criterion.

Routh-Hurwitz Stability Condition. Let a, b, c > 0 and ab > c. Then all of the roots of

the polynomial p(x) = x3 + ax2 + bx+ c have negative real part.

With this in mind, it will suffice to show that a(ξ)b(ξ) > c(ξ), ∀ξ ∈ Rn; this will imply that all
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eigenvalues of A(ξ) have negative real part. To this end, we see

a(ξ)b(ξ) = (µT + kV ∗ + µI + µV )(µT + kV ∗)(µI + µV )

+

[
(DT +DI +DV )(µT + kV ∗)(µI + µV )

+
(
(µT + kV ∗)(DI +DV )µI(DT +DV ) + µV (DI +DV )

)
(µT + kV ∗ + µI + µV )

]
|ξ|2

+

[
(µT + kV ∗ + µI + µV )(DTDI +DTDV +DTDI)

+
(
(µT + kV ∗)(DI +DV )µI(DT +DV ) + µV (DI +DV )

)
(DT +DI +DV )

]
|ξ|4

+ (DT +DI +DV )(DTDI +DTDV +DIDV ) |ξ|6 .

For brevity, say

c(ξ) = c0 + c2 |ξ|2 + c4 |ξ|4 + c6 |ξ|6

a(ξ)b(ξ) = d0 + d2 |ξ|2 + d4 |ξ|4 + d6 |ξ|6 .

Looking at the coefficients, we can see that for each k = 0, 2, 4, 6, we have

dk = ck + positive terms.

Thus a(ξ)b(ξ) is term-by-term greater than c(ξ) for any ξ ∈ Rn. Thus we can conclude that

a(ξ)b(ξ) > c(ξ), ∀ξ ∈ Rn and so all eigenvalues of A(ξ) have negative real part regardless of ξ.

Hence

T1, I1, V1 → 0

as t→∞ which proves linear stability around the viral persistence steady state (T ∗, I∗, V ∗). �

Theorem 3.8 gives a clear analog to the results for the spatially homogeneous model. In the

case that λ is constant, the asymptotic behavior of (2.1) and (1.1) is very similar. If R0 < 1 there

there is a viral extinction steady state and if R0 > 1 then then there is a viral persistence state.

Stancevic et al. [9] perform the same analysis (though they consider a slightly different system)

and the results are very similar.
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The case of non-constant λ is more difficult. In that case, any viral persistence state will need

to satisfy a system of three nonlinear elliptic PDEs and the method for establishing steady states

is not so straightforward.
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CHAPTER 4

SIMULATIONS

The purpose of the simulations is largely to verify the analysis so we break the simulations up

into several different parameter regimes which are discussed below.

For our simulations we use a semi-implicit finite difference scheme in MATLAB. The difficulty

with this is the nonlinear term so we lag that term by one time step. We describe the scheme in

one spatial dimension with time domain [0, t∗] and spatial domain [a, b] (the corresponding scheme

for two spatial dimensions can be abstracted fiarly easily). Let ∆t = t∗/N, h = (b− a)/J for some

N, J ∈ N. Then our grid is given by tn = n∆t, xj = a+ hj and our scheme is

Tnj − T
n−1
j

∆t
−DT

Tnj+1 − 2Tnj + Tnj−1

h2
= λj − µTTnj − kTn−1

j V n−1
j ,

Inj − I
n−1
j

∆t
−DI

Inj+1 − 2Inj + Inj−1

h2
= kTn−1

j V n−1
j − µIInj ,

V n
j − V

n−1
j

∆t
−DV

V n
j+1 − 2V n

j + V n
j−1

h2
= NµII

n
j − µV V n

j ,

for n = 1, 2, . . . , N and j = 1, 2, . . . J − 1, where Tnj = T (xj , tn), etc. We also have initial condi-

tions

T 0
j = T0(xj), I0

j = I0(xj), V 0
j = V0(xj), j = 0, 1, . . . J.

Finally, for ease of implementation, we take homogeneous Dirichlet boundary conditions:

Tn0 = TnJ = In0 = InJ = V n
0 = V n

J = 0, n = 0, 1, . . . , N.

In fact this choice does not affect the analysis at any point except for finding a bound on the

1-norms of J and W in Section 3.4.

We can rewrite the system in matrix-vector form as

AT ~T
n = ~Tn−1 + ∆t

(
~λ− k ~TV

n−1
)
,

AI~I
n = ~In−1 + ∆tk ~TV

n−1
,

AV ~V
n = ~V n−1 + ∆tNµI~I

n,

(4.1)
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where

~Tn =



Tn1

Tn2

...

TnJ−1


, ~TV

n
=



Tn1 V
n

1

Tn2 V
n

2

...

TnJ−1V
n
J−1


and AT is a matrix with

(AT )n,n = 1 + ∆tµT +DT
∆t

h2
, (AT )n,n−1 = (AT )n−1,n = −DT

∆t

h2
,

for suitable n values and (AT )n,m = 0 off of the three principal diagonals (the vectors ~In, ~V n and

matrices AI , AV are constructed identically except with T replaced by I or V ).

We note that in the discretized version of the V equation, we keep ~In on the right hand side.

In order to do this, it is necessary to solve the equations in the order in which they are listed.

Having done this, ~In has been calculated just before we use it in the next equation. It is easily seen

that the matrices AT , AI , AV are symmetric and positive definite (since they are all strictly diag-

onally dominant) so ~Tn, ~In, ~V n can be computed very efficiently from (4.1) by using the Cholesky

factorization of each matrix.

We use the parameter values suggested by [9]. These values are:

µT = 0.03 day−1 µI = 0.5 day−1 µV = 3 day−1

DT = 0.09054mm2

day DI = 0.09054mm2

day DV = 7.603 · 10−4 mm2

day

N = 960virions
cells k = 3.43 · 10−5−n mmn

virions·day λ(x) ≈ 10n cells
mmn·day

Note that λ and k depend on the dimension of the space we are working in. The only value that

will consistently change between simulations (besides the changes based on dimension) is λ; any

other changes in parameter values will be noted when necessary. We will choose several different

functional forms for λ in each dimension in attempt to demonstrate the different ways that the

system can behave.

The different cases which are simulated are the same in 1D and 2D:

Case 1. ||R0||∞ < 1, viral extinction. This case simply verifies that our conditions from section 3 are

indeed sufficient to force ||I(t)||∞ , ||V (t)||∞ → 0.
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Case 2. ||R0||∞ > 1, viral extinction. This case gives solid computational evidence that our sufficient

condition for viral extinction is not a necessary condition.

Case 3. R0(x) = 1 + ε(x), viral persistence. This case demonstrates that the condition for viral

extinction (||R0||∞ < 1) can be a sharp condition.

Case 4. ||R0||∞ > 1, viral persistence. This case demonstrates more clearly the existence of the viral

persistence steady state.

4.1 Simulation in 1-D

All of the simulations in 1-D take Ω = (−10, 10) and 0 ≤ t ≤ 100.

t ||T (t)||∞ ||I(t)||∞ ||V (t)||∞ ||T (t)− T ∗(t)||∞
0 2.0000e+03 3.0000e+02 8.0000e+02 0
20 2.2989e+02 2.7952e+00 5.1177e+02 9.6788e+02
40 2.1070e+02 1.1195e-03 2.0696e-01 4.8895e+02
60 1.9088e+02 2.9044e-07 5.4054e-05 2.4494e+02
80 1.7802e+02 5.8124e-11 1.0858e-08 1.2372e+02
100 1.7064e+02 1.0129e-14 1.8959e-12 6.3073e+01

200 1.6229e+02 8.8918e-34 1.6677e-31 2.3555e+00
300 1.6195e+02 6.6707e-53 1.2513e-50 9.2018e-02

Figure 2: 1D Case 1. λ(x) = 25e−5x2 , ||R0||∞ = 0.9147

The first case we consider is one in which ||R0||∞ < 1. In this case, Theorem 3.7 tells us that

we should have I, V → 0 for large time. Indeed, this can be observed. In addition, we should

have

lim
t→∞
||T (t)− T ∗(t)||∞ = 0,

where T ∗ satisfies the same equation as T but with the nonlinear term ignored. This can be

observed as well, though it is more subtle. The convergence of this quantity to zero is perhaps very

slow. For each 20 day increase in time, the value of ||T (t)− T ∗(t)||∞ is roughly halved.

It is clear from Figures 2 - 5 that for large time, I, V are approximately zero while T tends to

a nonzero steady state.

Our second case demonstrates that the condition ||R0||∞ < 1 is not necessary for the infection

to die off. In fact, it may be possible to make ||R0||∞ arbitrarily large while the system still tends

to an infection free state.
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Figure 3: 1D Case 1. Evolution of T-Cells

Figure 4: 1D Case 1. Evolution of I-Cells
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Figure 5: 1D Case 1. Evolution of Virions

t ||T (t)||∞ ||I(t)||∞ ||V (t)||∞ ||T (t)− T ∗(t)||∞
0 2.0000e+03 3.0000e+02 8.0000e+02 0
20 4.8462e+02 6.1607e+00 1.0959e+03 1.0348e+03
40 5.7655e+02 2.1015e-02 3.6979e+00 5.1308e+02
60 5.9895e+02 1.0081e-04 1.7679e-02 2.5538e+02
80 6.0481e+02 5.3757e-07 9.4174e-05 1.2861e+02
100 6.0629e+02 2.9506e-09 5.1677e-07 6.5452e+01

200 6.0641e+02 1.5158e-20 2.6547e-18 2.4372e+00
300 6.0637e+02 7.7287e-32 1.3536e-29 9.5166e-02

Figure 6: 1D Case 2. λ(x) = 270e−50x2 , ||R0||∞ = 9.8784

From Figures 6 - 9, we see that even though ||R0||∞ is substantially larger than 1, the system

tends towards a viral extinction steady state. Again, it does appear that ||T (t)− T ∗(t)||∞ is

decreasing, but it still decreases very slowly. Here, the average R0 value is still relatively small (R0 =

0.1237); keeping this value sufficiently small seems to affect the long time asymptotic behavior. This

would confirm that the stability of the steady states is spatially dependent.

Indeed, the condition ||R0||∞ < 1 does seem somewhat sharp in the case that ||R0||∞ ≈ R0. To

demonstrate this, we consider a third case. The results are summarized in Figures 10 - 13.

In this case, λ was chosen so that

R0(x) = 1 + ε(x) where 0 ≤ ε(x) ≤ 0.1 for all x ∈ [−10, 10].
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Figure 7: 1D Case 2. Evolution of T-Cells

Figure 8: 1D Case 2. Evolution of I-Cells

70



Figure 9: 1D Case 2. Evolution of Virions

t ||T (t)||∞ ||I(t)||∞ ||V (t)||∞ ||T (t)− T ∗(t)||∞
0 2.0000e+03 3.0000e+02 8.0000e+02 0
20 5.0265e+02 1.2404e+02 1.0419e+04 1.1408e+03
40 6.3302e+02 1.2007e+01 9.8991e+02 6.5534e+02
60 7.4864e+02 3.2889e+00 2.6720e+02 3.4731e+02
80 8.3260e+02 1.7194e+00 1.3858e+02 1.8394e+02
100 8.8457e+02 1.2639e+00 1.0145e+02 9.9220e+01

200 9.4225e+02 1.0791e+00 8.6288e+01 1.1236e+01
300 9.4364e+02 1.2448e+00 9.9539e+01 8.8212e+00

Figure 10: 1D Case 3. λ(x) = 27.33 + 2.7 cos(x)2, ||R0||∞ = 1.0988

Also, ||R0||∞ = 1.0988 and R0 = 1.0517 and µI = 0.25 days−1 which accentuates the viral persis-

tence steady state. In this case, Figures 10 - 13 seem to indicate that the virus is persisting; indeed,

the values of ||I(t)||∞ and ||V (t)||∞ are no longer strictly decreasing. When the virus persists, we

cannot be sure that ||T (t)− T ∗(t)||∞ → 0. We notice that the error is decreasing in Figure 10,

though it is significantly greater than in Figure 2 or Figure 6.

As a final case, we would like to observe a clear tendency towards a viral persistence state. This

can be accomplished by simply increasing λ enough.

Here Figures 14 - 17 clearly show that the virions and the infected cells are not tending towards

zero and the error in T ∗ as an approximation to T is not small anymore.
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Figure 11: 1D Case 3. Evolution of T-Cells

Figure 12: 1D Case 3. Evolution of I-Cells
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Figure 13: 1D Case 3. Evolution of Virions

t ||T (t)||∞ ||I(t)||∞ ||V (t)||∞ ||T (t)− T ∗(t)||∞
0 2.0000e+03 3.0000e+02 8.0000e+02 0
20 7.4349e+02 1.8929e+01 3.1925e+03 1.2650e+03
40 1.0635e+03 1.0528e+01 1.6541e+03 7.1700e+02
60 1.0963e+03 6.5955e+01 1.0301e+04 6.5262e+02
80 9.0395e+02 6.0029e+01 9.7501e+03 8.9220e+02
100 9.3799e+02 3.8916e+01 6.2164e+03 7.7965e+02

200 9.4315e+02 5.1316e+01 8.2133e+03 7.9551e+02
300 9.4272e+02 5.0626e+01 8.0998e+03 7.9325e+02

Figure 14: 1D Case 4. λ(x) = 50 + 10e−5x2 , ||R0||∞ = 2.1952
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Figure 15: 1D Case 4. Evolution of T-Cells

Figure 16: 1D Case 4. Evolution of I-Cells
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Figure 17: 1D Case 4. Evolution of Virions
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4.2 Simulation in 2-D

In two spatial dimensions, we take Ω = (−10, 10)2 and again let 0 ≤ t ≤ 100.

t ||T (t)||∞ ||I(t)||∞ ||V (t)||∞ ||T (t)− T ∗(t)||∞
0 5.0000e+02 1.0000e+02 3.0000e+02 0
20 6.8709e+02 8.9954e-03 1.7152e+00 3.1301e+00
40 5.8452e+02 5.3796e-07 1.0319e-04 1.3586e+00
60 5.3118e+02 2.7447e-11 5.2730e-09 5.9763e-01
80 5.0675e+02 1.3456e-15 2.5860e-13 2.7140e-01
100 4.9553e+02 6.5540e-20 1.2596e-17 1.2659e-01

Figure 18: 2D Case 1. λ(~x) = 250e−5|~x|2 ,||R0||∞ = 0.9147

Our cases here will be the same as in Section 4.1. In particular, these simulations shold help to

establish the dimensionally independent nature of your dynamical results. First, we take ||R0||∞ < 1

and show that I, V → 0 and ||T (t)− T ∗(t)||∞ → 0. In fact, here the behavior is even more apparent

than it was in the case of one spatial dimension. In Figures 18 - 21, by the time we reach t = 100,

I and V are within machine error of zero and the relative error in T ∗ as an approximation to T is

roughly 0.025%.

Secondly, we can easily demonstrate that ||R0||∞ < 1 is not a necessary condition for ||I(t)||∞ ,

||V (t)||∞ → 0.

Figure 19: 2D Case 1. Evolution of T-Cells
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Figure 20: 2D Case 1. Evolution of I-Cells

Figure 21: 2D Case 1. Evolution of Virions
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t ||T (t)||∞ ||I(t)||∞ ||V (t)||∞ ||T (t)− T ∗(t)||∞
0 5.0000e+02 1.0000e+02 3.0000e+02 0
20 5.3755e+03 4.7950e-02 8.7927e+00 5.0135e+00
40 5.6961e+03 2.3715e-05 4.3467e-03 1.8207e+00
60 5.7775e+03 1.2339e-08 2.2592e-06 7.6187e-01
80 5.8055e+03 6.6724e-12 1.2211e-09 3.3813e-01
100 5.8165e+03 3.6736e-15 6.7213e-13 1.5568e-01

Figure 22: 2D Case 2. λ(~x) = 3000e−5|~x|2 ,||R0||∞ = 10.9670

Figure 23: 2D Case 2. Evolution of T-Cells

Figures 22 - 25 show that I, V still tend towards zero for large time even though ||R0||∞ ≈ 11.

Since I, V → 0, we also see that ||T (t)− T ∗(t)||∞ becomes very small relative to the size of T .

The third case is more difficult to demonstrate in two spatial dimensions. We wish to show that

||R0||∞ < 1 can be a fairly sharp bound in the case that ||R0||∞ ≈ R0. To do this, we construct a

λ such that R0(x, y) = 1 + ε(x, y) where ε(x, y) is somewhat small.

Our λ here is defined by

λ(x, y) = 273.3 + 5 cos

(
π
√
x2+y2

4

)2

, x, y ∈ [−2, 2]

and

λ(x+ 4, y) = λ(x, y), λ(x, y + 4) = λ(x, y).
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Figure 24: 2D Case 2. Evolution of I-Cells

Figure 25: 2D Case 2. Evolution of Virions
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t ||T (t)||∞ ||I(t)||∞ ||V (t)||∞ ||T (t)− T ∗(t)||∞
0 5.0000e+02 1.0000e+02 3.0000e+02 0
20 4.3652e+03 2.3492e+01 7.6658e+02 1.7711e+01
40 6.4873e+03 9.0954e+00 2.9482e+02 1.9692e+01
60 7.6617e+03 4.8965e+00 1.5801e+02 1.5768e+01
80 8.3016e+03 3.2308e+00 1.0399e+02 1.1938e+01
100 8.6436e+03 2.3830e+00 7.6601e+01 9.0823e+00

Figure 26: 2D Case 3. λ(~x) = 273.3 + 5 cos
(
π|~x|

4

)2
,||R0||∞ = 1.0183

Figure 27: 2D Case 3. Evolution of T-Cell

The graph of this looks like smooth periodic humps on each 4× 4 square in both directions.

This choice of λ forces

R0(x, y) = 1 + ε(x, y), 0 ≤ ε(x, y) ≤ 0.02, (x, y) ∈ Ω.

Also, in this case we take µI = 0.1 days−1. Recall that changing µI changes nothing about R0.

This change was made simply to accentuate the non-zero steady state which the system is tending

toward. Figures 26 - 29 show that I, V each seem to settle near some non-zero value. The value

||T (t)− T ∗(t)||∞ is significantly bigger than the previous simulations as well which suggests that

the system is approaching an equilibrium with non-zero I and V .
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Figure 28: 2D Case 3. Evolution of I-Cells

Figure 29: 2D Case 3. Evolution of Virions
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For our last simulation, we increase λ enough to make ||R0||∞ and R0 larger than 1. We clearly

see that there is a steady state with non-zero I and V .

t ||T (t)||∞ ||I(t)||∞ ||V (t)||∞ ||T (t)− T ∗(t)||∞
0 5.0000e+02 1.0000e+02 3.0000e+02 0
20 6.7741e+03 4.3135e-01 7.2409e+01 1.3978e+01
40 9.9845e+03 1.4235e-01 2.2714e+01 7.3235e+00
60 1.1739e+04 4.0544e-01 6.3067e+01 5.0114e+00
80 1.2677e+04 3.5534e+00 5.4574e+02 1.4978e+01
100 1.3011e+04 5.2963e+01 8.0983e+03 1.8364e+02

Figure 30: 2D Case 4. λ(~x) = 400 + 300e−5|~x|2 ,||R0||∞ = 2.5611

Figure 31: 2D Case 4. Evolution of T-Cells

In this case, ||R0||∞ = 2.5611 and R0 = 1.4652. It is clearly seen from Figures 30 - 33 that I, V

are not tending towards zero; they are not even decreasing after long enough time. Also the error

in T ∗ as an approximation to T is more substantial in this case.
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Figure 32: 2D Case 4. Evolution of I-Cells

Figure 33: 2D Case 4. Evolution of Virions
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CHAPTER 5

CONCLUSION

This thesis presents a new in-host spatial model for thefor the dynamics of HIV in an infected

host by introducing diffusion. The new system of parabolic PDEs is analyzed in detail.

First, Duhamel’s principle was used to invert the diffusion operator and then a local existence

theorem was established using the Banach fixed point theorem on a sufficiently small time interval.

Global existence and uniqueness was then shown by proving that solutions are positive and thus

bounded as long as they exist.

Next, the gain in regularity that is typical of solutions to diffusion equations was establshed.

We first proved that solutions exhibit low order regularity following the lead of Pankavich and

Michalowski [12], [13], and using the low order regularity as a base case, high order regularity was

proven by induction. In particular, solutions were shown to be as smooth as one desires so long as

the influx of healthy T cells is similarly smooth.

With existence, uniqueness and high order regularity established, we turned our attention to

the large time asymptotics of the system. By establishing bounds on the supremum norms of the

quantities involved, several different sufficient conditions were presented under which our system

tends to a viral extinction steady state for large time. These conditions were compared with the

analagous results of the spatially homogeneous model. In the constant λ case, the large time

asymptotics of the spatially heterogeneous model and the spatially homogeneous model are nearly

identical. Further analytical study is needed to determine conditions for the global asymptotic

stability of the infection-free steady state and to determine the behavior of the infection as it tends

to a viral persistence state in the case that λ is spatially dependent.

Finally, the behavior of the model was simulated in MATLAB using a finite difference method in

order to verify the analysis (especially the large time asymptotics). The simulations were consistent

our analysis and verified that our sufficient conditions for viral extinction were correct. Using these

simulations, we also presented convincing computational evidence that our sufficient conditions for

viral extinction are not necessary.

The methods used in this thesis could be applied to a very wide range of problems. Indeed, they

could be easily adapted to other nonlinear systems of parabolic PDEs such as those with directed

84



diffusion or HIV models with additional populations to account for mutated strains of the virus or

latently infected cells.
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APPENDIX I: LEMMAS 3.5 AND 3.6

Following are the proofs of two key lemmas used in Section 3.3.

Lemma 3.5. Let Ω = Rn or let Ω be a bounded open subset of Rn and let F : Ω× [0,∞)→ [0,∞).

Futher, assume that for fixed t ≥ 0, F (·, t) ∈ H∞(Ω) and that ∂F
∂t is continuous and bounded for

(x, t) ∈ Ω× [0,∞). Then

f(t) = sup
x∈Ω

F (x, t), t ∈ [0,∞)

is uniformly continuous.

Proof. The proof proceeds slightly differently for Ω = Rn and for Ω a bounded open subset of Rn.

First assume that Ω = Rn. For fixed t ≥ 0, we have that F (x, t) ∈ H∞(Ω). Thus by the Sobolev

embedding theorem, F (x, t) ∈ C∞0 (Ω). Hence, since F is positive and goes to zero at infinity,

we know that F attains its maximum on Ω = Rn. To see this, for sufficiently large k, we could

restrict F to [−k, k]n in space. Then since F goes to zero as |x| → ∞, we can bound F outside of

[−k, k]n and, inside [−k, k]n, F must attain its maximum since the set is compact. Thus, for any

t ≥ 0,

sup
x∈Ω

F (x, t) = F (x∗, t) for some x∗ ∈ Ω.

If Ω is an open, bounded subset of Rn then the Sobolev embedding theorem implies that for

fixed t ≥ 0, F (x, t) ∈ C∞
(
Ω
)
. Further, Ω is closed and bounded so F must meet its supremum

somewhere in the set. Hence, in this case, we can also claim that for any t ≥ 0,

sup
x∈Ω

F (x, t) = sup
x∈Ω

F (x, t) = F (x∗, t) for some x∗ ∈ Ω.

In either case, it is the case that F is uniformly continuous in x for all x ∈ Ω or Ω. F is also

uniformly continuous in t since it has a bounded first derivative in t. Thus if f is defined as in the
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statement of the lemma, we see for t, τ ≥ 0,

|f(t)− f(τ)| =
∣∣∣∣sup
x∈Ω

F (x, t)− sup
x∈Ω

F (x, τ)

∣∣∣∣
= |F (x1, t)− F (x2, τ)| , for some x1, x2 ∈ Ω or Ω

= |F (x1, t)− F (x2, t) + F (x2, t)− F (x2, τ)|

≤ |F (x1, t)− F (x2, t)|+ |F (x2, t)− F (x2, τ)| .

Then since F is uniformly continuous in time and space (this follows since F has a bounded

derivative in time and is smooth in space), we know that f must be uniformly continuous in time. �

Lemma 3.6. Let f : [a,∞)→ [0,∞) be a uniformly continuous function such that

∫ ∞
a

f(t)dt = C <∞.

Then lim
t→∞

f(t) = 0.

Proof. Assuming that f is uniformly continuous, we prove the statement by contrapositive. That

is, we actually prove that if

lim
t→∞

f(t) 6= 0

then the integral doesn’t converge, which is equivalent to the statement of the lemma. Assuming

the limit is not zero, we know that there is ε > 0 such that for any K > 0, there is τ > K such

that f(τ) > ε; i.e., no matter how large we force t, we cannot ensure that f(t) remains less than

this ε.

Then by uniform continuity, for such ε, there is δ > 0 such that for any t ∈ (τ − δ, τ + δ),

|f(τ)− f(t)| < ε
2 .

An important note (and the reason that we require uniform continuity) is that this δ does not

depend on t or τ ; it depends only on ε. Now f(τ) > ε and |f(τ)− f(t)| < ε
2 imply that f(t) > ε

2

for all t ∈ (τ − δ, τ + δ).
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To recap, for some fixed ε > 0, there exists δ > 0 (which, once chosen, is fixed as well), such

that for any K > 0, there is a τ > K such that f(t) > ε
2 for all t ∈ (τ − δ, τ + δ).

First, take K0 = a + δ and find the corresponding τ1 > K0 such that f(t) > ε
2 for all t ∈

(τ1− δ, τ1 + δ). Next, take K1 = τ1 + 2δ and find the corresponding τ2 > K1 such that f(t) > ε
2 for

all t ∈ (τ2 − δ, τ2 + δ). Next, take K2 = τ2 + 2δ and repeat ad infinitum.

This process constructs a sequence of disjoint intervals, In = (τn − δ, τn + δ), n ∈ N such that

f(t) > ε
2 for all t ∈ In for each n. Then for any N ∈ N, we have

∫ ∞
a

f(t)dt ≥
N∑
n=1

∫ τn+δ

τn−δ
f(t)dt >

N∑
n=1

∫ τn+δ

τn−δ

ε
2dt =

N∑
n=1

εδ = Nεδ.

This implies that the integral is infinite and concludes the proof. �

Note. The assumption that f is a nonnegative function is actually superfluous; it was only as-

sumed here since it simplifies the proof a bit and since it is sufficient for what follows. However, it

can be relaxed by realizing that f is uniformly continuous if and only if f is continuous and |f | is

uniformly continuous. Thus proving the lemma for nonnegative functions actually implies that the

same property holds for other functions.
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APPENDIX II: MATLAB CODE

The following MATLAB code was used for the simulations in Section 4.

OneDmodel implicit.m

1 c l e a r ; c l o s e a l l ;

2 t i c ;

3 %Set Grids

4 dx = 0 . 0 2 ; x min = −10; x max=10;

5 dt = 0 . 0 1 ; t min = 0 ; t max =100;

6 x = x min : dx : x max ;

7 t = t min : dt : t max ;

8 mu t = 0 . 0 3 ; mu i = 0 . 5 ; mu v = 3 ;

9 D t = . 0 9 5 0 4 ; D i = . 0 9 5 0 4 ; D v = 0.00076032 ;

10 a t = D t∗dt /( dx ˆ2) ; a i = D i∗dt /( dx ˆ2) ; a v = D v∗dt /( dx ˆ2) ;

11 k =0.00000343; N=960;

12

13 %I n i t i a l i z e T, I ,V

14 T = ze ro s ( l ength ( x ) , l ength ( t ) ) ;

15 T2 = ze ro s ( l ength ( x ) , l ength ( t ) ) ;

16 I = ze ro s ( l ength ( x ) , l ength ( t ) ) ;

17 V = ze ro s ( l ength ( x ) , l ength ( t ) ) ;

18 lamvec = ze ro s ( l ength ( x ) ,1 ) ;

19 %I n i t i a l Condit ions and lambda

20 f o r m=1: l ength ( x )

21 i f abs ( x (m) ) < 5

22 T(m, 1 ) = 2000 ;

23 T2(m, 1 ) = 2000 ;

24 I (m, 1 ) = 300 ;

25 V(m, 1 ) = 800 ;

26 end

27 lamvec (m, 1 ) = lambda 1d ( x (m) ) ;
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28 end

29

30 %Boundary Condit ions ( Zero Here )

31 T( 1 , : ) = 0 ; T( l ength ( x ) , : ) = 0 ;

32 T2 ( 1 , : ) = 0 ; T( l ength ( x ) , : ) = 0 ;

33 I ( 1 , : ) = 0 ; I ( l ength ( x ) , : ) = 0 ;

34 V( 1 , : ) = 0 ; V( l ength ( x ) , : ) = 0 ;

35

36 %i n i t i a l i z e the matr i ce s I w i l l need ( us ing spar s e matr i ce s )

37 B = spd iags ([− ones ( l ength ( x ) −2 ,1) ,2∗ ones ( l ength ( x ) −2 ,1) ,−ones ( l ength ( x )

−2 ,1) ] , . . .

38 [ −1 ,0 ,1 ] , l ength ( x )−2, l ength ( x )−2) ;

39 Id = speye ( l ength ( x ) − 2) ;

40 Tmat = (1+mu t∗dt ) ∗ Id + a t ∗B;

41 Imat = (1+mu i∗dt ) ∗ Id + a i ∗B;

42 Vmat = (1+mu v∗dt ) ∗ Id + a v ∗B;

43

44 %Use Cholesky f a c t o r i z a t i o n f o r e f f i c i e n c y

45 R T = cho l (Tmat) ;

46 R I = cho l ( Imat ) ;

47 R V = cho l (Vmat) ;

48

49 %We’ l l a l s o want to t rack the maxima at each time step

50 Tsup = ze ro s ( l ength ( t ) ,1 ) ; Tsup (1 , 1 ) = max( abs (T( : , 1 ) ) ) ;

51 T2sup = ze ro s ( l ength ( t ) ,1 ) ; T2sup (1 , 1 ) = max( abs (T2 ( : , 1 ) ) ) ;

52 E max = ze ro s ( l ength ( t ) , 1 ) ; E max (1 , 1 ) = max( abs (T( : , 1 ) − T2 ( : , 1 ) ) ) ;

53 Isup = ze ro s ( l ength ( t ) , 1 ) ; Isup (1 , 1 ) = max( abs ( I ( : , 1 ) ) ) ;

54 Vsup = ze ro s ( l ength ( t ) , 1 ) ; Vsup (1 , 1 ) = max( abs (V( : , 1 ) ) ) ;

55

56 %we ’ l l only s o l v e at the se po in t s ( l e ave boundary a lone

57 xs = 2 : l ength ( x )−1;

58
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59 %Backward Euler Scheme ( Solve f o r T( : , n ) in terms o f T( : , n−1) )

60 % by s o l v i n g matrix equat ions

61 f o r l =2: l ength ( t )

62 T( xs , l ) = R T ’ \ (T( xs , l −1)+dt ∗( lamvec ( xs , 1 )− k∗T( xs , l −1) .∗V( xs , l −1)

) ) ;

63 T( xs , l ) = R T\T( xs , l ) ;

64 T2( xs , l ) = R T ’ \ ( T2( xs , l −1)+dt ∗( lamvec ( xs , 1 ) ) ) ;

65 T2( xs , l ) = R T\T2( xs , l ) ;

66 I ( xs , l ) = R I ’ \ ( I ( xs , l −1)+dt ∗( k∗T( xs , l −1) .∗V( xs , l −1) ) ) ;

67 I ( xs , l ) = R I\ I ( xs , l ) ;

68 V( xs , l ) = R V ’ \ (V( xs , l −1)+dt∗mu i∗N∗ I ( xs , l ) ) ;

69 V( xs , l ) = R V\V( xs , l ) ;

70

71 %Set maxima

72 Tsup ( l , 1 ) = max( abs (T( xs , l ) ) ) ;

73 T2sup ( l , 1 ) = max( abs (T2( xs , l ) ) ) ;

74 E max( l , 1 ) = max( abs (T( xs , l ) − T2( xs , l ) ) ) ;

75 Isup ( l , 1 ) = max( abs ( I ( xs , l ) ) ) ;

76 Vsup( l , 1 ) = max( abs (V( xs , l ) ) ) ;

77 end

78

79 E msq = (1/ length ( x ) ) ∗(sum ( (T2 ( : , end )−T( : , end ) ) . ˆ 2 ) ) ˆ(1/2) ;

80

81 %Plot r e s u l t s f o r T ( t=0 to t =10)

82 f i g u r e (1 ) ; c l f ;

83 subplot ( 2 , 3 , 1 ) ;

84 p lo t (x ,T( : , 1 ) ’ ) ;

85 t i t l e ( ’T(x , 0 ) ’ ) ;

86 x l a b e l ( ’ x ’ ) ;

87 y l a b e l ( ’T ’ ) ;

88 a x i s ([−10 10 0 max(T( : , 1 ) ) ∗ 1 . 2 ] ) ;

89 subplot ( 2 , 3 , 2 ) ;
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90 p lo t (x ,T( : , 2 0 0 ) ’ ) ;

91 t i t l e ( ’T(x , 2 ) ’ ) ;

92 x l a b e l ( ’ x ’ ) ;

93 y l a b e l ( ’T ’ ) ;

94 a x i s ([−10 10 0 max(T( : , 2 0 0 ) ) ∗ 1 . 2 ] ) ;

95 subplot ( 2 , 3 , 3 ) ;

96 p lo t (x ,T( : , 4 0 0 ) ’ ) ;

97 t i t l e ( ’T(x , 4 ) ’ ) ;

98 x l a b e l ( ’ x ’ ) ;

99 y l a b e l ( ’T ’ ) ;

100 a x i s ([−10 10 0 max(T( : , 4 0 0 ) ) ∗ 1 . 2 ] ) ;

101 subplot ( 2 , 3 , 4 ) ;

102 p lo t (x ,T( : , 3 0 0 0 ) ’ ) ;

103 t i t l e ( ’T(x , 3 0 ) ’ ) ;

104 x l a b e l ( ’ x ’ ) ;

105 y l a b e l ( ’T ’ ) ;

106 a x i s ([−10 10 0 max(T( : , 3 0 0 0 ) ) ∗ 1 . 2 ] ) ;

107 subplot ( 2 , 3 , 5 ) ;

108 p lo t (x ,T( : , 7 0 0 0 ) ’ ) ;

109 t i t l e ( ’T(x , 7 0 ) ’ ) ;

110 x l a b e l ( ’ x ’ ) ;

111 y l a b e l ( ’T ’ ) ;

112 a x i s ([−10 10 0 max(T( : , 7 0 0 0 ) ) ∗ 1 . 2 ] ) ;

113 subplot ( 2 , 3 , 6 ) ;

114 p lo t (x , T( : , l ength ( t ) ) ’ ) ;

115 t i t l e ( ’T(x , 1 0 0 ) ’ ) ;

116 x l a b e l ( ’ x ’ ) ;

117 y l a b e l ( ’T ’ ) ;

118 a x i s ([−10 10 0 max(T( : , l ength ( t ) ) ) ∗ 1 . 2 ] ) ;

119

120 %Resu l t s f o r I ( t=0 to t =10)

121 f i g u r e (2 ) ; c l f ;
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122 subplot ( 2 , 3 , 1 ) ;

123 p lo t (x , I ( : , 1 ) ’ ) ;

124 t i t l e ( ’ I (x , 0 ) ’ ) ;

125 x l a b e l ( ’ x ’ ) ;

126 y l a b e l ( ’ I ’ ) ;

127 a x i s ([−10 10 0 max( I ( : , 1 ) ) ∗ 1 . 2 ] ) ;

128 subplot ( 2 , 3 , 2 ) ;

129 p lo t (x , I ( : , 2 0 0 ) ’ ) ;

130 t i t l e ( ’ I (x , 2 ) ’ ) ;

131 x l a b e l ( ’ x ’ ) ;

132 y l a b e l ( ’ I ’ ) ;

133 a x i s ([−10 10 0 max( I ( : , 2 0 0 ) ) ∗ 1 . 2 ] ) ;

134 subplot ( 2 , 3 , 3 ) ;

135 p lo t (x , I ( : , 4 0 0 ) ’ ) ;

136 t i t l e ( ’ I (x , 4 ) ’ ) ;

137 x l a b e l ( ’ x ’ ) ;

138 y l a b e l ( ’ I ’ ) ;

139 a x i s ([−10 10 0 max( I ( : , 4 0 0 ) ) ∗ 1 . 2 ] ) ;

140 subplot ( 2 , 3 , 4 ) ;

141 p lo t (x , I ( : , 3 0 0 0 ) ’ ) ;

142 t i t l e ( ’ I (x , 3 0 ) ’ ) ;

143 x l a b e l ( ’ x ’ ) ;

144 y l a b e l ( ’ I ’ ) ;

145 a x i s ([−10 10 0 max( I ( : , 3 0 0 0 ) ) ∗ 1 . 2 ] ) ;

146 subplot ( 2 , 3 , 5 ) ;

147 p lo t (x , I ( : , 7 0 0 0 ) ’ ) ;

148 t i t l e ( ’ I (x , 7 0 ) ’ ) ;

149 x l a b e l ( ’ x ’ ) ;

150 y l a b e l ( ’ I ’ ) ;

151 a x i s ([−10 10 0 max( I ( : , 7 0 0 0 ) ) ∗ 1 . 2 ] ) ;

152 subplot ( 2 , 3 , 6 ) ;

153 p lo t (x , I ( : , l ength ( t ) ) ’ ) ;
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154 t i t l e ( ’ I (x , 1 0 0 ) ’ ) ;

155 x l a b e l ( ’ x ’ ) ;

156 y l a b e l ( ’ I ’ ) ;

157 a x i s ([−10 10 0 max( I ( : , l ength ( t ) ) ) ∗ 1 . 2 ] ) ;

158

159 %Resu l t s f o r V ( t=0 to t =10)

160 f i g u r e (3 ) ; c l f ;

161 subplot ( 2 , 3 , 1 ) ;

162 p lo t (x ,V( : , 1 ) ’ ) ;

163 t i t l e ( ’V(x , 0 ) ’ ) ;

164 x l a b e l ( ’ x ’ ) ;

165 y l a b e l ( ’V ’ ) ;

166 a x i s ([−10 10 0 max(V( : , 1 ) ) ∗ 1 . 2 ] ) ;

167 subplot ( 2 , 3 , 2 ) ;

168 p lo t (x ,V( : , 2 0 0 ) ’ ) ;

169 t i t l e ( ’V(x , 2 ) ’ ) ;

170 x l a b e l ( ’ x ’ ) ;

171 y l a b e l ( ’V ’ ) ;

172 a x i s ([−10 10 0 max(V( : , 2 0 0 ) ) ∗ 1 . 2 ] ) ;

173 subplot ( 2 , 3 , 3 ) ;

174 p lo t (x ,V( : , 4 0 0 ) ’ ) ;

175 t i t l e ( ’V(x , 4 ) ’ ) ;

176 x l a b e l ( ’ x ’ ) ;

177 y l a b e l ( ’V ’ ) ;

178 a x i s ([−10 10 0 max(V( : , 4 0 0 ) ) ∗ 1 . 2 ] ) ;

179 subplot ( 2 , 3 , 4 ) ;

180 p lo t (x ,V( : , 3 0 0 0 ) ’ ) ;

181 t i t l e ( ’V(x , 3 0 ) ’ ) ;

182 x l a b e l ( ’ x ’ ) ;

183 y l a b e l ( ’V ’ ) ;

184 a x i s ([−10 10 0 max(V( : , 3 0 0 0 ) ) ∗ 1 . 2 ] ) ;

185 subplot ( 2 , 3 , 5 ) ;
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186 p lo t (x ,V( : , 7 0 0 0 ) ’ ) ;

187 t i t l e ( ’V(x , 7 0 ) ’ ) ;

188 x l a b e l ( ’ x ’ ) ;

189 y l a b e l ( ’V ’ ) ;

190 a x i s ([−10 10 0 max(V( : , 7 0 0 0 ) ) ∗ 1 . 2 ] ) ;

191 subplot ( 2 , 3 , 6 ) ;

192 p lo t (x , V( : , l ength ( t ) ) ’ ) ;

193 t i t l e ( ’V(x , 1 0 0 ) ’ ) ;

194 x l a b e l ( ’ x ’ ) ;

195 y l a b e l ( ’V ’ ) ;

196 a x i s ([−10 10 0 max(V( : , l ength ( t ) ) ) ∗ 1 . 2 ] ) ;

197

198 %Plot maxima va lues

199 f i g u r e (4 ) ; c l f ;

200 subplot ( 4 , 1 , 1 )

201 p lo t ( t , Tsup ( : , 1 ) ’ , ’ k ’ ) ;

202 t i t l e ( ’ sup (T) as a func t i on o f time ’ ) ;

203 x l a b e l ( ’ time ’ ) ;

204 y l a b e l ( ’ sup (T) ’ ) ;

205 a x i s ([−5 100 0 max( Tsup ) ∗ 1 . 2 ] ) ;

206 subplot ( 4 , 1 , 2 )

207 p lo t ( t , Isup ( : , 1 ) ’ , ’ k ’ ) ;

208 t i t l e ( ’ sup ( I ) as a func t i on o f time ’ ) ;

209 x l a b e l ( ’ time ’ ) ;

210 y l a b e l ( ’ sup ( I ) ’ ) ;

211 a x i s ([−5 100 0 max( Isup ) ∗ 1 . 2 ] ) ;

212 subplot ( 4 , 1 , 3 )

213 p lo t ( t , Vsup ( : , 1 ) ’ , ’ k ’ ) ;

214 t i t l e ( ’ sup (V) as a func t i on o f time ’ ) ;

215 x l a b e l ( ’ time ’ ) ;

216 y l a b e l ( ’ sup (V) ’ ) ;

217 a x i s ([−5 100 0 max(Vsup) ∗ 1 . 2 ] ) ;
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218 subplot ( 4 , 1 , 4 )

219 p lo t ( t , T2sup ( : , 1 ) ’ , ’ k ’ ) ;

220 t i t l e ( ’ sup (T2) as a func t i on o f time ’ ) ;

221 x l a b e l ( ’ time ’ ) ;

222 y l a b e l ( ’ sup (T2) ’ ) ;

223 a x i s ([−5 100 0 max( T2sup ) ∗ 1 . 2 ] ) ;

224

225 %Plot Lambda

226 lmax=max( lamvec ( : , 1 ) ) ;

227 f i g u r e (5 ) ; c l f ;

228 p lo t (x , lamvec ( : , 1 ) ’ , ’ k ’ ) ;

229 t i t l e ( ’Lambda ’ ) ;

230 x l a b e l ( ’ x ’ ) ;

231 y l a b e l ( ’ lambda ’ ) ;

232 a x i s ([−10 10 0 lmax ∗ 1 . 2 ] ) ;

233

234 R 0 sup = max( lamvec ) ∗N∗k /( mu t∗mu v) ;

235 R 0 avg = mean( lamvec ) ∗N∗k /( mu t∗mu v) ;

236

237 Tsup table = [ Tsup (1) ; Tsup (2001) ; Tsup (4001) ; Tsup (6001) ; Tsup (8001) ;

Tsup (10001) ] ;

238 I s u p t a b l e = [ Isup (1 ) ; Isup (2001) ; Isup (4001) ; Isup (6001) ; Isup (8001) ;

Isup (10001) ] ;

239 E max table = [ E max (1) ; E max(2001) ; E max(4001) ; E max(6001) ; E max

(8001) ; E max(10001) ] ;

240 Vsup table = [ Vsup (1 ) ; Vsup (2001) ; Vsup (4001) ; Vsup (6001) ; Vsup (8001) ;

Vsup (10001) ] ;

241

242 TABLE = [ Tsup table I s u p t a b l e Vsup table E max table ] ;

243

244 toc ;
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lambda 1d.m

1 f unc t i on [ L ] = lambda 1d ( x )

2 % For 1D CASE 1 :

3 % x 0 =0;

4 % L = 25∗ exp ((−5∗(x−x 0 ) ˆ2) ) ;

5

6 % For 1D CASE 2 :

7 % x 0 =0;

8 % L = 270∗ exp ((−50∗(x−x 0 ) ˆ2) ) ;

9

10 % For 1D CASE 3 :

11 % L = 27.3324 + 2.7∗ cos ( x ) ˆ2 ;

12

13 % For 1D CASE 4 :

14 L = 50 + 10∗ exp ((−5∗(x−x 0 ) ˆ2) ) ;

15

16 end

TwoDmodel implicit.m

1 %Two Dimensional Model f o r in host HIV dynamics with s p a t i a l a spec t s

2 % Computations done us ing i m p l i c i t Euler method with

3 % time−l a gg ing o f non l in ea r terms

4 c l e a r ; c l o s e a l l ;

5 t i c ;

6

7 %Set Grids

8 dx = 0 . 2 ; x min = −10; x max=10;

9 dy = 0 . 2 ; y min = −10; y max=10;

10 dt = 0 . 0 5 ; t min = 0 ; t max =100;

11 x = x min : dx : x max ;

12 y = y min : dy : y max ;
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13 t = t min : dt : t max ;

14

15 %Set a l l parameters ( except lambda ) i n c l u d i n g some which are used in

16 % the f i n i t e d i f f e r e n c e scheme

17 mu t = 0 . 0 3 ; mu i = 0 . 1 ; mu v = 3 ;

18 D t = . 0 9 5 0 4 ; D i = . 0 9 5 0 4 ; D v = 0.00076032 ;

19 a t = D t∗dt /( dx ˆ2) ; a i = D i∗dt /( dx ˆ2) ; a v = D v∗dt /( dx ˆ2) ;

20 k =0.000000343; N=960;

21

22 %I n i t i a l i z e T, I ,V

23 % T2 w i l l s a t i s f y the same equat ion as T

24 % but with the non l in ea r term ignored

25 T = ze ro s ( l ength ( x ) , l ength ( y ) , l ength ( t ) ) ;

26 T2 = ze ro s ( l ength ( x ) , l ength ( y ) , l ength ( t ) ) ;

27 I = ze ro s ( l ength ( x ) , l ength ( y ) , l ength ( t ) ) ;

28 V = ze ro s ( l ength ( x ) , l ength ( y ) , l ength ( t ) ) ;

29

30 %I n i t i a l Condit ions / a l s o s e t lambda

31 lambda = ze ro s ( l ength ( x ) , l ength ( y ) ) ;

32 f o r m=1: l ength ( x )

33 f o r n=1: l ength ( y )

34 r = x (m) ˆ2 + y (n) ˆ2 ;

35 i f r < 25

36 T(m, n , 1 ) = 500 ;

37 T2(m, n , 1 ) = 500 ;

38 I (m, n , 1 ) = 100 ;

39 V(m, n , 1 ) = 300 ;

40 end

41 lambda (m, n) = lambda 2d ( x (m) , y (n) ) ;

42 end

43 end

44
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45 avg lambda = sum(sum( lambda ) ) /( l ength ( x ) ∗ l ength ( y ) ) ;

46

47 %D i r i c h l e t Boundary Condit ions ( Zero Here )

48 T( 1 , : , : ) = 0 ; T( l ength ( x ) , : , : ) = 0 ;

49 T2 ( 1 , : , : ) = 0 ; T2( l ength ( x ) , : , : ) = 0 ;

50 I ( 1 , : , : ) = 0 ; I ( l ength ( x ) , : , : ) = 0 ;

51 V( 1 , : , : ) = 0 ; V( l ength ( x ) , : , : ) = 0 ;

52 T( : , 1 , : ) = 0 ; T( : , l ength ( y ) , : ) = 0 ;

53 T2 ( : , 1 , : ) = 0 ; T2 ( : , l ength ( y ) , : ) = 0 ;

54 I ( : , 1 , : ) = 0 ; I ( : , l ength ( y ) , : ) = 0 ;

55 V( : , 1 , : ) = 0 ; V( : , l ength ( y ) , : ) = 0 ;

56

57 %I n i t i a l i z e v e c t o r s which w i l l be used in the i m p l i c i t scheme

58 Tvec = ze ro s ( ( l ength ( x )−2)∗( l ength ( y )−2) ,1 ) ;

59 T2vec = ze ro s ( ( l ength ( x )−2)∗( l ength ( y )−2) ,1 ) ;

60 Ivec = ze ro s ( ( l ength ( x )−2)∗( l ength ( y )−2) ,1 ) ;

61 Vvec = ze ro s ( ( l ength ( x )−2)∗( l ength ( y )−2) ,1 ) ;

62 T Vvec = ze ro s ( ( l ength ( x )−2)∗( l ength ( y )−2) ,1 ) ;

63 lamvec = reshape ( lambda ( 2 : l ength ( x ) −1 ,2: l ength ( y )−1) , [ ( l ength ( x )−2)∗(

l ength ( y )−2) , 1 ] ) ;

64 %I n i t i a l i z e matr i ce s which w i l l be used in the scheme

65 B = spd iags ([− ones ( l ength ( x ) −2 ,1) ,2∗ ones ( l ength ( x ) −2 ,1) ,−ones ( l ength ( x )

−2 ,1) ] , . . .

66 [ −1 ,0 ,1 ] , l ength ( x )−2, l ength ( x )−2) ;

67 I1 = speye ( l ength ( x ) − 2) ;

68 I2 = speye ( ( l ength ( x ) − 2) ˆ2) ;

69

70 Tmat = (1+mu t∗dt ) ∗ I2 + a t ∗( kron ( I1 ,B) + kron (B, I1 ) ) ;

71 Imat = (1+mu i∗dt ) ∗ I2 + a i ∗( kron ( I1 ,B) + kron (B, I1 ) ) ;

72 Vmat = (1+mu v∗dt ) ∗ I2 + a v ∗( kron ( I1 ,B) + kron (B, I1 ) ) ;

73

74 %Use Cholesky f a c t o r i z a t i o n f o r e f f i c i e n c y
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75 R T = cho l (Tmat) ;

76 R I = cho l ( Imat ) ;

77 R V = cho l (Vmat) ;

78

79 %We’ l l only s o l v e the system on these g r id po int

80 % ( l eave the boundar ies a lone )

81 xs = 2 : l ength ( x )−1;

82 ys = 2 : l ength ( y )−1;

83

84 %Get everyth ing in terms o f long column v e c t o r s

85 Tvec = reshape (T( xs , ys , 1 ) , [ ( l ength ( x )−2)∗( l ength ( y )−2) , 1 ] ) ;

86 T2vec = reshape (T2( xs , ys , 1 ) , [ ( l ength ( x )−2)∗( l ength ( y )−2) , 1 ] ) ;

87 Ivec = reshape ( I ( xs , ys , 1 ) , [ ( l ength ( x )−2)∗( l ength ( y )−2) , 1 ] ) ;

88 Vvec = reshape (V( xs , ys , 1 ) , [ ( l ength ( x )−2)∗( l ength ( y )−2) , 1 ] ) ;

89

90 %We would l i k e to s t o r e the maximum va lues at each time step

91 Tsup = ze ro s ( l ength ( t ) ,1 ) ; Tsup (1 , 1 ) = max( abs ( Tvec ) ) ;

92 T2sup = ze ro s ( l ength ( t ) ,1 ) ; T2sup (1 , 1 ) = max( abs ( T2vec ) ) ;

93 E max = ze ro s ( l ength ( t ) , 1 ) ; E max (1 , 1 ) = max( abs ( T2vec−Tvec ) ) ;

94 Isup = ze ro s ( l ength ( t ) , 1 ) ; Isup (1 , 1 ) = max( abs ( Ivec ) ) ;

95 Vsup = ze ro s ( l ength ( t ) , 1 ) ; Vsup (1 , 1 ) = max( abs ( Vvec ) ) ;

96

97 f o r l =2: l ength ( t )

98 %c r e a t e T Vvec by entry−wise m u l t i p l i c a t i o n o f T and V

99 T Vvec = Tvec .∗Vvec ;

100

101 %s o l v e f o r T, I ,V at the cur rent time step

102 % NOTE: the non l in ea r term i s lagged because

103 % the Tvec .∗Vvec m u l t i p l i c a t i o n i s us ing i n f o

104 % from the prev ious time step

105 Tvec = R T ’ \ ( Tvec + dt ∗( lamvec − k∗T Vvec ) ) ;

106 Tvec = R T\Tvec ;
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107 T2vec = R T ’ \ ( T2vec + dt∗ lamvec ) ;

108 T2vec = R T\T2vec ;

109 Ivec = R I ’ \ ( Ivec + dt∗k∗T Vvec ) ;

110 Ivec = R I\ Ivec ;

111 Vvec = R V ’ \ ( Vvec + dt∗N∗mu i∗ Ivec ) ;

112 Vvec = R V\Vvec ;

113

114 %Store the maxima

115 Tsup ( l , 1 ) = max( abs ( Tvec ) ) ;

116 T2sup ( l , 1 ) = max( abs ( T2vec ) ) ;

117 E max( l , 1 ) = max( abs ( T2vec−Tvec ) ) ;

118 Isup ( l , 1 ) = max( abs ( Ivec ) ) ;

119 Vsup( l , 1 ) = max( abs ( Vvec ) ) ;

120

121 %s t o r e the r e s u l t s in the appropr ia te p l a c e s

122 T( xs , ys , l ) = reshape ( Tvec , [ ( l ength ( x )−2) , ( l ength ( y )−2) ] ) ;

123 T2( xs , ys , l ) = reshape ( T2vec , [ ( l ength ( x )−2) , ( l ength ( y )−2) ] ) ;

124 I ( xs , ys , l ) = reshape ( Ivec , [ ( l ength ( x )−2) , ( l ength ( y )−2) ] ) ;

125 V( xs , ys , l ) = reshape ( Vvec , [ ( l ength ( x )−2) , ( l ength ( y )−2) ] ) ;

126

127 end

128

129 E msq = (1/( l ength ( x ) ∗ l ength ( y ) ) ) ∗sum(sum ( (T( : , : , end ) − T2 ( : , : , end ) )

. ˆ 2 ) ) ˆ(1/2) ;

130

131 %plo t T r e s u l t s

132 f i g u r e (1 ) ; c l f ;

133 subplot ( 2 , 3 , 1 )

134 s u r f (x , y ,T( : , : , 1 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

135 t i t l e ( ’T, time = 0 ’ ) ;

136 a x i s ([−10 10 −10 10 0 max(max(T( : , : , 1 ) ) ) ∗ 1 . 2 ] )

137 subplot ( 2 , 3 , 2 )
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138 s u r f (x , y ,T( : , : , 4 0 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

139 t i t l e ( ’T, time = 2 ’ ) ;

140 a x i s ([−10 10 −10 10 0 max(max(T( : , : , 4 0 ) ) ) ∗ 1 . 2 ] )

141 subplot ( 2 , 3 , 3 )

142 s u r f (x , y ,T( : , : , 8 0 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

143 t i t l e ( ’T, time = 4 ’ ) ;

144 a x i s ([−10 10 −10 10 0 max(max(T( : , : , 8 0 ) ) ) ∗ 1 . 2 ] )

145 subplot ( 2 , 3 , 4 )

146 s u r f (x , y ,T( : , : , 6 0 0 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

147 t i t l e ( ’T, time = 30 ’ ) ;

148 a x i s ([−10 10 −10 10 0 max(max(T( : , : , 6 0 0 ) ) ) ∗ 1 . 2 ] )

149 subplot ( 2 , 3 , 5 )

150 s u r f (x , y ,T( : , : , 1 4 0 0 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

151 t i t l e ( ’T, time = 70 ’ ) ;

152 a x i s ([−10 10 −10 10 0 max(max(T( : , : , 1 4 0 0 ) ) ) ∗ 1 . 2 ] )

153 subplot ( 2 , 3 , 6 )

154 s u r f (x , y ,T( : , : , l ength ( t ) ) ’ , ’ edgeco l o r ’ , ’ none ’ )

155 t i t l e ( ’T, time = 100 ’ ) ;

156 a x i s ([−10 10 −10 10 0 max(max(T( : , : , l ength ( t ) ) ) ) ∗ 1 . 2 ] )

157

158 %plo t I r e s u l t s

159 f i g u r e (2 ) ; c l f ;

160 subplot ( 2 , 3 , 1 )

161 s u r f (x , y , I ( : , : , 1 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

162 t i t l e ( ’ I , time = 0 ’ ) ;

163 a x i s ([−10 10 −10 10 0 max(max( I ( : , : , 1 ) ) ) ∗ 1 . 2 ] )

164 subplot ( 2 , 3 , 2 )

165 s u r f (x , y , I ( : , : , 4 0 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

166 t i t l e ( ’ I , time = 2 ’ ) ;

167 a x i s ([−10 10 −10 10 0 max(max( I ( : , : , 4 0 ) ) ) ∗ 1 . 2 ] )

168 subplot ( 2 , 3 , 3 )

169 s u r f (x , y , I ( : , : , 8 0 ) ’ , ’ edgeco l o r ’ , ’ none ’ )
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170 t i t l e ( ’ I , time = 4 ’ ) ;

171 a x i s ([−10 10 −10 10 0 max(max( I ( : , : , 8 0 ) ) ) ∗ 1 . 2 ] )

172 subplot ( 2 , 3 , 4 )

173 s u r f (x , y , I ( : , : , 6 0 0 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

174 t i t l e ( ’ I , time = 30 ’ ) ;

175 a x i s ([−10 10 −10 10 0 max(max( I ( : , : , 6 0 0 ) ) ) ∗ 1 . 2 ] )

176 subplot ( 2 , 3 , 5 )

177 s u r f (x , y , I ( : , : , 1 4 0 0 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

178 t i t l e ( ’ I , time = 70 ’ ) ;

179 a x i s ([−10 10 −10 10 0 max(max( I ( : , : , 1 4 0 0 ) ) ) ∗ 1 . 2 ] )

180 subplot ( 2 , 3 , 6 )

181 s u r f (x , y , I ( : , : , l ength ( t ) ) ’ , ’ edgeco l o r ’ , ’ none ’ )

182 t i t l e ( ’ I , time = 100 ’ ) ;

183 a x i s ([−10 10 −10 10 0 max(max( I ( : , : , l ength ( t ) ) ) ) ∗ 1 . 2 ] )

184

185 %plo t V r e s u l t s

186 f i g u r e (3 ) ; c l f ;

187 subplot ( 2 , 3 , 1 )

188 s u r f (x , y ,V( : , : , 1 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

189 t i t l e ( ’V, time = 0 ’ ) ;

190 a x i s ([−10 10 −10 10 0 max(max(V( : , : , 1 ) ) ) ∗ 1 . 2 ] )

191 subplot ( 2 , 3 , 2 )

192 s u r f (x , y ,V( : , : , 4 0 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

193 t i t l e ( ’V, time = 2 ’ ) ;

194 a x i s ([−10 10 −10 10 0 max(max(V( : , : , 4 0 ) ) ) ∗ 1 . 2 ] )

195 subplot ( 2 , 3 , 3 )

196 s u r f (x , y ,V( : , : , 8 0 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

197 t i t l e ( ’V, time = 4 ’ ) ;

198 a x i s ([−10 10 −10 10 0 max(max(V( : , : , 8 0 ) ) ) ∗ 1 . 2 ] )

199 subplot ( 2 , 3 , 4 )

200 s u r f (x , y ,V( : , : , 6 0 0 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

201 t i t l e ( ’V, time = 30 ’ ) ;
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202 a x i s ([−10 10 −10 10 0 max(max(V( : , : , 6 0 0 ) ) ) ∗ 1 . 2 ] )

203 subplot ( 2 , 3 , 5 )

204 s u r f (x , y ,V( : , : , 1 4 0 0 ) ’ , ’ edgeco l o r ’ , ’ none ’ )

205 t i t l e ( ’V, time = 70 ’ ) ;

206 a x i s ([−10 10 −10 10 0 max(max(V( : , : , 1 4 0 0 ) ) ) ∗ 1 . 2 ] )

207 subplot ( 2 , 3 , 6 )

208 s u r f (x , y ,V( : , : , l ength ( t ) ) ’ , ’ edgeco l o r ’ , ’ none ’ )

209 t i t l e ( ’V, time = 100 ’ ) ;

210 a x i s ([−10 10 −10 10 0 max(max(V( : , : , l ength ( t ) ) ) ) ∗ 1 . 2 ] )

211

212 %plo t lambda

213 f i g u r e (4 ) ; c l f ;

214 s u r f (x , y , lambda ( : , : ) ’ , ’ edgeco l o r ’ , ’ none ’ )

215 t i t l e ( ’ lambda ’ ) ;

216 a x i s ([−10 10 −10 10 0 max(max( lambda ) ) ∗ 1 . 2 ] )

217

218 %Plot maxima va lues

219 f i g u r e (5 ) ; c l f ;

220 subplot ( 4 , 1 , 1 )

221 p lo t ( t , Tsup ( : , 1 ) ’ , ’ k ’ ) ;

222 t i t l e ( ’ sup (T) as a func t i on o f time ’ ) ;

223 x l a b e l ( ’ time ’ ) ;

224 y l a b e l ( ’ sup (T) ’ ) ;

225 a x i s ([−5 100 0 max( Tsup ) ∗ 1 . 2 ] ) ;

226 subplot ( 4 , 1 , 2 )

227 p lo t ( t , Isup ( : , 1 ) ’ , ’ k ’ ) ;

228 t i t l e ( ’ sup ( I ) as a func t i on o f time ’ ) ;

229 x l a b e l ( ’ time ’ ) ;

230 y l a b e l ( ’ sup ( I ) ’ ) ;

231 a x i s ([−5 100 0 max( Isup ) ∗ 1 . 2 ] ) ;

232 subplot ( 4 , 1 , 3 )

233 p lo t ( t , Vsup ( : , 1 ) ’ , ’ k ’ ) ;
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234 t i t l e ( ’ sup (V) as a func t i on o f time ’ ) ;

235 x l a b e l ( ’ time ’ ) ;

236 y l a b e l ( ’ sup (V) ’ ) ;

237 a x i s ([−5 100 0 max(Vsup) ∗ 1 . 2 ] ) ;

238 subplot ( 4 , 1 , 4 )

239 p lo t ( t , T2sup ( : , 1 ) ’ , ’ k ’ ) ;

240 t i t l e ( ’ sup (T2) as a func t i on o f time ’ ) ;

241 x l a b e l ( ’ time ’ ) ;

242 y l a b e l ( ’ sup (T2) ’ ) ;

243 a x i s ([−5 100 0 max( T2sup ) ∗ 1 . 2 ] ) ;

244

245 toc ;

246

247 Tsup table = [ Tsup (1) ; Tsup (401) ; Tsup (801) ; Tsup (1201) ; Tsup (1601) ;

Tsup (2001) ] ;

248 I s u p t a b l e = [ Isup (1 ) ; Isup (401) ; Isup (801) ; Isup (1201) ; Isup (1601) ;

Isup (2001) ] ;

249 E max table = [ E max (1) ; E max(401) ; E max(801) ; E max(1201) ; E max

(1601) ; E max(2001) ] ;

250 Vsup table = [ Vsup (1 ) ; Vsup (401) ; Vsup (801) ; Vsup (1201) ; Vsup (1601) ;

Vsup (2001) ] ;

251

252 TABLE = [ Tsup table I s u p t a b l e Vsup table E max table ] ;

253

254 R 0 sup = max( lamvec ) ∗N∗k /( mu t∗mu v) ;

255 R 0 avg = mean( lamvec ) ∗N∗k /( mu t∗mu v) ;

lambda 2d.m

1 f unc t i on [ L ] = lambda 2d ( x , y )

2 % For 2D CASE 1 :

3 % x 0 =0;

4 % y 0 =0;
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5 % L = 250∗ exp (−((x−x 0 ) .ˆ2+(y−y 0 ) . ˆ 2 ) ) ;

6

7 %For 2D CASE 2 :

8 % x 0 =0;

9 % y 0 =0;

10 % L = 3000∗ exp (−5∗((x−x 0 ) .ˆ2+(y−y 0 ) . ˆ 2 ) ) ;

11

12 % For 2D CASE3 :

13 % c = 273.3236151603498 ;

14 % x = mod(x , 4 ) ; y = mod(y , 4 ) ;

15 % x = x−2; y=y−2;

16 % r = s q r t ( xˆ2 + y ˆ2) ;

17 % R=2;

18 % i f r <=R

19 % L = c + 5∗ cos ( ( p i /(2∗R) ) ∗ r ) ˆ2 ;

20 % e l s e i f r>R

21 % L = c ;

22 % end

23

24 % For 2D CASE 4 :

25 x 0 =0;

26 y 0 =0;

27 L = 400 + 300∗ exp (−5∗((x−x 0 ) .ˆ2+(y−y 0 ) . ˆ 2 ) ) ;

28

29 end
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