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Abstract
We consider a deterministic model of HIV infection that involves macrophages as
a long-term active reservoir to describe all three stages of the disease process: the
acute stage, chronic infection, and the transition to AIDS. The proposed model is
shown to retain crucial properties, such as the positivity of solutions, regardless of
variations in model parameters. A dynamical analysis is performed to identify the
local stability properties of the viral clearance steady state. This analysis illustrates how
chronically infected macrophages can explain the progression to AIDS and provoke
viral explosion, while previousmodels do not.We further demonstrate that the infected
T-cell population, even if not responsible for the majority of new infections that lead to
viral explosion, may contribute significantly to the transition amongst the three stages
of infection.Moreover, we explore the implications of themodel for the administration
of antiretroviral therapy (ART) and provide quantitative estimates that emphasize the
time sensitive nature of treatment initiation and the level of drug efficacy. Finally, we
study the effects of treatment interruption on the disease dynamics predicted by the
model and elucidate the influence of both interruption time and duration.
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1 Introduction

Since the emergence of the Acquired Immunodeficiency Syndrome (AIDS) epidemic
within the United States during the early 1980s and the discovery of its pathogenic
agent, the human immunodeficiency virus (HIV), the deleterious effects of HIV infec-
tion on the human immune system have been extensively studied. The virus is known
to infect an essential component of the immune system, CD4+ T cells, ultimately lead-
ing, without treatment, to patient death caused by opportunistic infection. According
to the World Health Organization, there were approximately 39 million people liv-
ing with HIV as of 2022 (World Health Organization 2023). Due to the continued
global impact of the disease, medical researchers maintain a heightened interest in the
study of HIV infection dynamics, including mechanisms that affect the progression
of the disease, creation of new antiretroviral treatments, and the possibility of vaccine
development.

Themathematical and computationalmodeling of in-host HIVdynamics has gained
a great deal of attention in recent years and become a critical tool tomedical researchers
battling the progression of the disease. A variety of models, generally consisting
of systems of nonlinear differential equations, have been developed to describe the
dynamical behavior of HIV within an infected host (Callaway and Perelson 2002; De
Boer et al. 2010; Kirschner 1996; Jones et al. 2014; Pankavich 2016; Perelson and
Nelson 1999; Nowak andMay 2000). Often these investigations seek to identify basic
relationships between CD4+ T-cells, their infected counterparts, and the viral load
(Jones et al. 2014; Kirschner 1996; Nowak and May 2000; Pankavich and Parkinson
2016), in addition to the infection of secondary target populations and the response of
the immune system via cytotoxic T-lymphocytes (Hadjiandreou et al. 2007; Hogue and
Bajaria 2008; Kirschner and Perelson 1995). Such models have accurately described
the acute stage (during initial or primary infection) and the chronic phase (Nowak
andMay 2000; Kirschner 1996; Callaway and Perelson 2002), but until recently, none
were able to simultaneously represent the final stage of infection, in which the disease
process transitions into the development of AIDS. In general, new predictive models,
and an understanding of their behavior, play a central role and are continually needed
to both advance our understanding of HIV disease dynamics and study the impact of
treatment strategies.

During the acute infection period of the disease, which typically last for a fewweeks
to a fewmonths, an infected individual experiences flu-like symptoms, including fever,
sore throat, swelling of glands, rash, and fatigue. Accordingly, a precipitous drop
occurs within the concentration of an individual’s circulating CD4+ T-cells, as does
an exponential increase in the level of free virions. After the conclusion of this phase,
the aforementioned symptoms cease, and the infected individual enters the chronic, or
latent, infection phase, during which a long asymptomatic period occurs. T-cell levels
return to a magnitude similar to the baseline values expected in a healthy individual,
while the viral load decreases dramatically. However, HIV continues to infect new
cells and actively uses immune cells, including CD4+ and CD8+ T-cells, B-cells, and
macrophages, to replicate. Over long time periods, the T-cell count degrades substan-
tially as the viral load continues to increase. This second period of the disease process
has been observed to last anywhere from 2 to 20 years with most patients experiencing
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Fig. 1 T-cell Population vs time,
depicting the three-stage
representation of HIV disease
pathogenesis. A measured T-cell
count of 200 cells/mm3 or below
(straight line) represents the
clinical definition of AIDS
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an asymptomatic period between 7 and 10 years, on average (Hernandez-Vargas and
Middleton 2013). Finally, as the viral load slowly rises over this period of years, the
T-cell count continues to decrease until it reaches a level of 200 cells/mm3, repre-
senting the onset of AIDS. The continuing low level of T-cells renders the immune
systemof anHIV-positive individual unable to identify and defend itself against oppor-
tunistic infection, which without the benefit of drug therapy, ultimately proves fatal.
As an understanding of the transition to this last stage is crucial to developing treat-
ment strategies and inhibiting the advancement of AIDS, a model that simultaneously
describes all three stages is imperative to battling this now decades-long worldwide
epidemic. Of course, a mathematical model that can realistically simulate each phase
of disease progression is necessary in order study infection dynamics over long time
period (Fig. 1). Hence, such studies were not possible prior to the development of a
three-stage model.

Mathematical modeling can also be used to inform, analyze, and predict outcomes
of long-term treatment options for HIV-infected individuals. In order to be viable for
such purposes, though, they must (i) be capable of both explaining and reproducing
clinical data, (ii) provide biologically-relevant reasoning for their formulation, (iii) fea-
ture robust control relative to parameter variations that are inevitably present amongst
susceptible individuals, and (iv) allow for realistic implementations of treatment strate-
gies. Thus, in addition to describing the entire time course of the HIV disease process,
an informative mathematical model must also feature parameters that do not change
wildly over time. As far as we are aware, Hadjiandreou et al. (2007) proposed the first
differential equations model with the ability to represent all three stages of infection
without the use of time-dependent parameters. Numerical results therein demonstrate
that macrophages, whichmay act as long-term reservoirs, can play an important role in
the final stages of the disease process. However, simulations of the model in Hadjian-
dreou et al. (2007) exhibit great sensitivity to parameter variations. In particular, small
changes on the order of 3% of nominal values can reduce the standard time course
to AIDS from 10 years to just a single year, or perhaps cause it to disappear entirely
(Hernandez-Vargas and Middleton 2013). A refined model of the three-stage dynam-
ics of HIV infection, which corrected the unusual sensitivity of the T-cell count with
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respect to parameters, was developed in Hernandez-Vargas and Middleton (2013) via
a system of five nonlinear differential equations. Further, modifications of this model
have been more recently used (Haering et al. 2014; Hernandez-Vargas et al. 2014) in
tandemwith methods of control theory andMonte Carlo simulation to study antiretro-
viral treatment strategies that combat the effects of drug-resistant viral mutation to the
onset of AIDS. Unfortunately, many of the properties of the original model, includ-
ing the behavior of solutions, the stability properties of steady states, the parameters
of greatest influence on the development of AIDS, and the quantitative impact of
antiretroviral therapy (ART) and treatment interruption, have yet to be elucidated.
Such analyses represent the key contributions of the current paper.

Modern mathematical approaches to studying in-host disease dynamics often focus
on differentiating the behavior of a dynamical model amongst one or more infective
and disease-free steady states and then determining the parameters that most greatly
influence the stability properties of these states. However, as HIV has been shown to
be completely resistant to achieving clearance of the disease, due to the repopulation
of virions from viral reservoirs, one cannot expect the disease-free steady state to be
reached by biologically-relevant parameter regimes. One significant obstacle in clear-
ing persistent viral infection from individuals is the appearance of latently infected viral
reservoirs (Pankavich 2016). Latent HIV often emerges with recrudescence as a pro-
ductive infection later in disease progression and provides a source for the emergence
of resistant strains of the virus. It is widely recognized that macrophages represent
a latently infected viral reservoir and are a significant and critical HIV target cell in
vivo (Hernandez-Vargas and Middleton 2013; Orenstein 2001; Brown et al. 2006).
This class of white blood cells can be divided into multiple subsets of macrophage-
like cells, all of which are susceptible to HIV infection, including dendritic cells,
Langerhans cells, alveolar macrophages, mucosal macrophages, and microglial cells
(Gavegnano and Schinazi 2009). A model that incorporates the effects of such sec-
ondary target populations, like that of Hernandez-Vargas and Middleton (2013), is
necessary to obtain a full, three-stage description of the disease process. Thus, a dif-
ferent approach, i.e. one that does not merely focus on the stability of a disease-free
steady state, is needed to study the complete time course of the disease.

One approach is to consider treatment strategies that extend the chronic phase of
the disease to suitably long time periods, perhaps many decades or longer. In this way,
an infected patient will never experience the transition to AIDS during a realistic life-
time, and thus will not become immunocompromised or susceptible to opportunistic
infection. In a later section, we take this approach from a computational perspective in
an effort to determine the parameters that most influence the time to the transition from
the chronic phase to AIDS. Within the next section, however, we first focus on formu-
lating and validating the proposed model, providing biologically relevant ranges for
parameter values, performing a basic sensitivity analysis, and discussing the inherent
mathematical properties of the model.
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2 Model formulation & properties

We begin by presenting the model of Hernandez-Vargas and Middleton (2013) and
describing its formulation. The system of five nonlinear ODEs is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṫ = sT + ρT V

cT + V
T − kT T V − δT T

Ṫ ∗ = kT T V − δT ∗T ∗

Ṁ = sM + ρMV

cM + V
M − kMMV − δMM

Ṁ∗ = kMMV − δM∗M∗

V̇ = pT T
∗ + pMM∗ − δV V

(1)

with initial conditions T (0), T ∗(0), M(0), M∗(0), V (0) ≥ 0. Here, T (t) represents
the density of uninfected CD4+ T-cells and T ∗(t) is the density of infected CD4+
T-cells. Similarly, M(t) is the density of uninfected macrophages, while M∗(t) repre-
sents the density of infected macrophages, and V (t) is the density of free, productively
infectious HIV virions.

The model is comprised of a variety of biological processes. First is the natural gen-
eration of new T-cells and macrophages from the thymus and bone marrow at constant
rates, namely sT = 10 cells/mm3 day and sM = 0.15 cells/mm3 day, respectively
(Kirschner and Perelson 1995; Perelson and Nelson 1999). Such mechanisms are not
the only manner in which the T-cell and macrophage populations may increase over
time, as the appearance ofHIV triggers the further proliferation of immune cells. In par-
ticular, the antigen-stimulated homeostatic proliferation of T-cells and macrophages
is modeled by Michaelis-Menten dynamics that are limited by the viral load. Within
the T-cell evolution, this term appears in the form ρT V

cT +V T . Here and in the analogous
macrophage term, ρT and ρM are the maximum growth rates, while cT and cM are the
half-velocity constants of growth. The behavior of this nonlinear term is limited by the
growth and decay of the virus population.More specifically, the function F(V ) = ρV

c+V
satisfies F(0) = 0, F ′(V ) > 0, and limV→∞ F(V ) = ρ. Hence, when no virions are
present in the system, this term vanishes, as an immune response is unecessary in the
absence of virions. Contrastingly, as the virus population grows large, the immune sys-
tem replenishes the T-cell and macrophage populations so as to balance their depletion
from viral infection, and this occurs at a growing rate whose maximal impact is ρT and
ρM , respectively. Values of the proliferation parameters were obtained by simulating
disease trajectories in comparison to clinically observed data (cf. Hernandez-Vargas
and Middleton 2013).

Next, the infection process is modeled in a standard manner amongst in-host viral
models. Though HIV can infect a variety of cell types, we focus on the impact to
activated CD4+ T-cells and macrophages via a bilinear infection term, for instance
kT T V within the T-cell population evolution. Once T-cells or macrophages become
infected, they change compartments, and hence this term decreases the T and M
populations and boosts the T ∗ and M∗ populations, as well. The parameter kT is

123



   34 Page 6 of 42 C. Clarke, S. Pankavich

Table 1 Parameter values and simulation ranges for (1)

Parameter Nominal value Range (10% Variation) Units

sT 10 9–11 cells mm−3 days−1

sM 0.15 0.135–0.165 cells mm−3 days−1

kT 4.57 × 10−5 4.11 × 10−5–5.02 × 10−5 mm3 days−1 copies−1

kM 4.33 × 10−8 3.90 × 10−8–4.76 × 10−8 mm3 days−1 copies−1

pT 38 34.2–41.8 copies cells−1 days−1

pM 35 31.5 –38.5 copies cells−1 days−1

δT 0.01 0.009–0.011 days−1

δT ∗ 0.4 0.36–0.44 days−1

δM 1 × 10−3 9 × 10−4–1.1 × 10−3 days−1

δM∗ 1 × 10−3 9 × 10−4–1.1 × 10−3 days−1

δV 2.4 2.16–2.64 days−1

ρT 0.01 0.009–0.011 days−1

ρM 0.003 0.0027–0.0033 days−1

cT 300 270–330 copies mm−3

cM 220 198–242 copies mm−3

merely the rate at which free virions infect T-cells, with an analogous definition for
kM .

As activated T-cells and macrophages are infected, they begin to produce virions.
We model viral production and proliferation using terms that are proportionate to the
current size of the infected T-cell and infectedmacrophage populations. In thisway, the
amount of virus produced by infected T-cells and macrophages is given by pT T ∗ and
pMM∗, respectively, where pT and pM are the individual rates of production per unit
time. As before, the range of values of these rates are taken from Hernandez-Vargas
and Middleton (2013).

Finally, both cells and virions possess a finite lifespan. Thus, we model the nat-
ural death of each population as proportionate to their current values, leading to the
exponential time decay of these quantities in the absence of other biological mecha-
nisms. The corresponding constants δT , δT ∗ , δM , δM∗ , and δV , all represent the natural
death rate of these respective populations. All nominal values (and ranges of their
fluctuation) for the aforementioned constants are provided within Table 1.

Throughout the paper, the values of initial conditions found in Hernandez-Vargas
and Middleton (2013) are used for computational simulations. In particular, the initial
density of T-cells is fixed to be T (0) = 103 cells/mm3, the initial macrophage density
is M(0) = 150 cells/mm3, and the initial viral concentration is V (0) = 10 copies/ml.
The densities of infected T-cells and macrophages are initialized to zero so that
T ∗(0) = M∗(0) = 0. We note that throughout the paper all simulations are con-
ducted using MATLAB’s ode23s ODE solver with the aforementioned parameter
values and initial conditions. A representative simulation using these quantities is
provided within Figs. 1 and 2.
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Fig. 2 Graphs of the infected T-cell T ∗(t), macrophage M(t), infected macrophage M∗(t), and virion V (t)
populations vs time using standard parameter values. The last three populations are plotted on a log-scale
along the vertical axis
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Fig. 3 Sensitivity Analysis with 10% variation in all parameter values: T-cell count (left) and viral load
(right). Envelopes represent changes over a sample of size N = 1, 000 with uniformly distributed parameter
variations

Upon setting baseline values of parameters, we performed an initial "all-at-once"
sensitivity analysis, allowing parameters to vary by up to 10% above or below their
baseline values. Subsequent T-cell and viral time courses are shown in Fig. 3 and
display very minor fluctuations over long time periods. Thus, unlike the proposed
three-stage model of Hadjiandreou et al. (2007), the system (1) is quite robust with
respect to parameter variations. Another issue appearing within the earlier model of
Hadjiandreou et al. (2007) is that solutions may become negative at some finite time.
Of course, each of these quantities (e.g., the T-cell count and viral load) lose biological
significance in such a scenario, and this may invalidate the relevance of the previous
model, even near baseline parameter values. In contrast, we show that the positivity
(or nonnegativity) of (1) is necessarily preserved in time. Said another way, the density
of the T-cell, macrophage, and virion populations cannot become negative at a finite
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Fig. 4 Multiscale dependence of
viral load on the generation of
new virions via infected T-cells
and infected macrophages
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time, though they may vanish in the asymptotic limit as t → ∞. This is displayed by
the following theorem:

Theorem 1 (Positivity) Assume the initial conditions satisfy T (0), M(0), V (0) > 0
and T ∗(0), M∗(0) ≥ 0. Then, these properties aremaintained so that T (t), M(t), V (t)
> 0 and T ∗(t), M∗(t) ≥ 0 for all t ≥ 0. These quantities also remain bounded on
[0, T̃ ] for any T̃ > 0.

For the sake of continuity, the proof is postponed to Appendix 1. As discussed in the
introduction, another crucial property of the model is its multiple time scale evolution
and dependence upon a secondary population that is susceptible to HIV infection,
namely macrophages. Performing a simulation of (1) with baseline parameter values,
one can precisely track the new virions that are generated over time by infected T-
cells and infected macrophages, respectively. To accomplish this, the viral load is
decomposed into

V (t) = VT ∗(t) + VM∗(t)

where VT ∗(t) represents the new virions produced by infected T-cells, satisfying

V̇T ∗ = pT T
∗ − δV VT ∗ ,

while VM∗(t) represents the new virions produced by infected macrophages and sat-
isfies

V̇M∗ = pMM∗ − δV VM∗ .

The sum of these factors then provides the complete behavior of the total virus popu-
lation as given in (1). Figure4 demonstrates this decomposition for baseline parameter
values. Notice that the behavior of the virus population is dictated by the infected T-
cell population for the first 1-4 years, after which, infected macrophages become the
dominant viral production mechanism. In this way, the infection of T-cells determines
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the response of the system during the acute stage, while a slow transition occurs dur-
ing the chronic stage, and the continuing infection of macrophages drives the system
to viral explosion and the onset of AIDS. We will revisit the influence of infected
macrophages on the development of AIDS in later sections as it will significantly
impact outcomes for patients who are undergoing ART.

With some basic properties of (1) established, we turn our attention to an introduc-
tory dynamical analysis of the system, in order to identify any infection-free steady
states and determine their associated stability properties. Classically, studying such
phenomena will provide information concerning the parameters that promote and
inhibit viral clearance or proliferation, respectively.

3 Equilibria & stability analysis

The main focus of this section is to apply traditional tools of mathematical analysis
to discover the potential dynamical states of the system and deduce conditions on
parameters that imply the stability or instability of these states. We first determine all
relevant steady state solutions of the model and perform a stability analysis to gauge
their dynamical properties.

Theorem 2 (Steady States) The system (1) has exactly one non-infected steady state,
given by

EN I =
(
sT
δT

, 0,
sM
δM

, 0, 0

)

.

Furthermore, (1) possesses as many as four distinct infected steady states EI , which
are determined by the positive solutions of a quartic polynomial - see (4) in Appendix
1.

As before, we postpone the proof of Theorem 2 to Appendix 1 for continuity.
Furthermore, simulations conducted with up to a 10% variation in parameters from
their baseline values show that the steady state equations associated to (1) can, in fact,
attain four distinct positive solutions. Hence, the existence of multiple biologically-
relevant steady states displays the inherent complexity of the model, and an explicit
representation of these steady states in terms of parameter values is not easily obtained.
Next, we explore the stability properties of EN I .

Theorem 3 (Stability & Instability) Let

RT = pT kT sT
δT δT ∗δV

and

RM = pMkMsM
δMδM∗δV

123



   34 Page 10 of 42 C. Clarke, S. Pankavich

represent basic reproduction numbers corresponding to the T -cell and macrophage
populations, respectively. Then, EN I is locally asymptotically stable if

RT + RM < 1

and unstable if

RT + RM > 1.

To streamline the exposition, we also postpone the proof of this result to Appendix
1. Here, the basic reproduction number associated to T-cell infection is denoted RT ,
while the analogous reproduction number for macrophage infection is denoted by RM .
These represent the average number of secondary infections produced by a single new
T-cell or macrophage infection, respectively. Using baseline parameter values, the
associated reproduction numbers are

RT = 1.809 and RM = 0.09

and even a 40% change in parameters cannot reduce the sum RM + RT below one.
Further, notice that RT � RM , and this remains true even if one accounts for variabil-
ity in parameter estimates. Therefore, while the infection of macrophages is driving
the transition to AIDS, reducing the reproduction number RM that stems from the
parameters associated to macrophage infection will not result in the stability of the
viral clearance state. Indeed, the value of RT remains unchanged even if the infection
rate of macrophages is drastically reduced. Though infected T-cells are typically seen
as the primary driver of infection, the infected macrophage population is responsi-
ble for producing the overwhelming majority of new virions during the transition to
AIDS. Indeed, Fig. 4 demonstrates that the infected macrophage population induces
the rapid growth of the viral load. In this direction, if one takes pM = 0 within the
model, then the M∗ population decouples from the remaining differential equations,
and the dynamics reduce to a three-dimensional system for T (t), T ∗(t), and V (t),
which was studied in detail within Pankavich et al. (2020). Fixing all other parameters
to baseline values results in the development of a persistent infection, as expected from
Theorem 3, but neither viral explosion nor a steady decrease in the T-cell count occurs
to drive the system to AIDS as depicted in Fig. 5. Similarly, if one takes pT = 0 and
fixes all other parameter values to baseline, the T-cell evolution is decoupled from the
system, and the primary infection mechanism is lost. This induces an immediate and
rapid decline of the initial viral load (see Fig. 5) and eliminates the pool of virions
required to generate the acute and chronic phases, thereby removing the initial driving
force that guarantees a suitably large viral load to sustain the persistent infection of
macrophages and lead to viral explosion. Hence, it appears that these two infection
processes (via T-cells and macrophages) must work in tandem to generate all three
stages of the disease process, and a suitable threshold of virions is needed during the
chronic phase in order for the infected macrophages to drive the system beyond a viral
persistence equilibrium and into the final, viral explosion stage.
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Fig. 5 Plots of T-cell and virion populations comparing baseline parameter simulations to those in which
pM = 0 and pT = 0, respectively. When pM = 0, EN I is unstable, and the T-cell and virion populations
converge to a locally stable infectious steady state EI , namely with T (t) → 552 and V (t) → 283, as
t → ∞. Furthermore when pT = 0, the non-infectious steady state EN I is stable with T (t) → 1000 and
V (t) → 0 as t → ∞

We further note that the reduced system of differential equations in Pankavich et al.
(2020) has already been shown to display significantly complex behavior, including
two stable, persistently-infected steady states, regions of infected bistability, and the
appearance of both limit cycles and a Hopf bifurcation. As M(t) � T (t) during the
acute phase and the majority of the chronic phase, the short-time dynamical picture
of (1) is quite similar. However, for large times a full dynamical understanding of (1)
becomes significantly more complex.

While mathematical analysis can provide information regarding the large time
asymptotic behavior of in-host models like (1), the current clinical focus on combating
HIV-1 infection centers on prolonging the chronic phase of the disease indefinitely via
viral suppression, not the total eradication of the disease, which is intractable due to
numerous viral reservoirs. Therefore, in the next section, we employ a computational
approach to identify parameters that most greatly contribute to the extension of the
chronic phase beyond the standard time period expected for the transition to AIDS.

4 Transition from chronic infection to AIDS

As demonstrated within the previous section, only a subset of the parameters, namely
those appearing within RT and RM , regulate the stability or instability of the non-
infected state EN I . However, as we’ll show, other parameters within the three-stage
model can still drastically influence the behavior of the T-cell count and viral load
throughout the time course of the disease.

Due to the persistence of viral reservoirs,modern treatment strategies do not attempt
to completely eradicate HIV within an infected patient, but instead focus on extending
the chronic phase of the disease, thereby prolonging the onset of AIDS for as long
as possible. For this reason, we will turn our attention to studying and comparing
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functions that may characterize the duration of the chronic phase. In particular, let

p = [sT , sM , . . . , cT , cM ] ∈ R
15

represent the vector of parameter values in the system (1) ordered by their appearance
in Table 1. Using this notation, we represent the T-cell count after t > 0 years by
T (t; p) in order to demonstrate its dependence upon the high-dimensional set of
parameters. Next, we similarly formulate the parameter-dependent “Time to AIDS”
function F : R15 → R defined by

F(p) = max {t ≥ 0 : T (t; p) > 200} .

This quantity represents the maximal time at which an infected individual’s T-cell
count remains above the clinically-defined AIDS threshold of 200 cells per mm3, and
thus for any set of parameters, outputs the time until the onset of AIDS.

Because analytical methods for understanding the transition from the chronic stage
to the emergence of AIDS are limited, we take a computational approach. In particu-
lar, we use an active subspace decomposition to determine the parameters of greatest
influence on F(p) and T (t; p) for fixed t > 0, which will further allow us to con-
struct reduced-order approximations of these functions. For completeness, we outline
the basics of an active subspace decomposition in Appendix 1. The high dimensional
nature of the domains of T (t; p) andF(p) makes visualization particularly challeng-
ing. Hence, we will project the values of these functions onto the single direction in
R
15 along which they vary the most.
In this vein, the active subspace decomposition allows us to determine the param-

eters that most greatly influence the values of these functions of p. In particular,
Fig. 6(a) demonstrates that three parameters (due to the magnitude of their weight
vector entries) primarily influence T (5; p), representing the T-cell count after 5 years,
namely (i) pT , the production rate of virions from infected T-cells (parameter 5),
(ii) δT ∗ , the clearance rate of infected T-cells (parameter 8), and (iii) δV , the virion
clearance rate (parameter 11). These quantities are generally expected to influence the
T-cell count at any particular time, especially considering their appearance within the
associated basic reproduction number RT and the stability properties of the viral clear-
ance equilibrium EN I demonstrated by Theorem 3. While they also affect T (10; p)
and F(p), as seen in Figs. 6(b) and 6(c), there is another parameter that drastically
influences an infected individual’s time until the onset of AIDS, namely ρM , the rate
of macrophage recruitment due to the presence of virions (parameter 13). This is
indicative of macrophage infection driving the growth of the virus population in the
later stages of the disease process, as an increased macrophage population presents a
greater potential for viral reservoirs. We note that ρM does not significantly impact
T (5; p), likely because the disease is still experiencing the chronic phase wherein
the virions produced by infected T-cells are the main engine of viral production. In
contrast, after 10 years the virions produced by infected macrophages begin driving
the system to AIDS. However, notice that ρM does not appear within RT or RM ,
and thus does not influence the qualitative behavior of the disease-free equilibrium
in any manner. That being said, this parameter clearly has a quantitative influence
on the rate at which solutions may tend to an infected equilibrium state or induce
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Fig. 6 Parameter weights and sufficient summary plots (inset) for T (5; p), T (10; p) andF(p). Parameters
along the horizontal axis are labelled in order as presented within Table 1

viral explosion. Indeed, if the value of ρM is increased, then more macrophages are
recruited to fight the persistent infection, and thus, additional target cells are available
for HIV to infect and spread the infection. The values of T (t; p) at longer times t
were further explored to evaluate variables of greatest influence, and similar results
emerged for T (15; p) and T (20; p) as did for T (10; p). Finally, Fig. 6 shows that the
weight vector decompositions for T (10; p) and F(p) are nearly identical, implying
that the same parameters that determine an individual’s T-cell count after 10 years
further indicate the time until the onset of AIDS.

Inset within Fig. 6 are sufficient summary plots of the respective variable of interest,
i.e., T (5; p), T (10; p), or F(p), as functions of the first active variable, namely the
linear combination of parameters with the weight vectors shown in Fig. 6 serving as
the coefficients (or coordinates) of these parameters. As each weight vector represents
the direction of greatest influence of parameters on the respective output quantity, e.g.
F(p), the sufficient summary plot constitutes the projection of the output quantity onto
the dominant active subspace, namely the direction described by the weight vector.
Notice that the output quantities are increasing as functions of the first active variable.
Hence, those parameters with positive weight vector entries promote an increase in (or
positive correlation with) the output variable, while those with negative weight vector
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Fig. 7 Decomposition of viral population; shading represents a 10% variation in δV . These results are
similar for variations in δT ∗

Fig. 8 Decomposition of viral population; shading represents a 10% variation in ρM

entries promote a decrease in (or negative correlation with) the output variable. For
instance, for each of the output variables Fig. 6 demonstrates that ρM (parameter 13) is
negatively correlated, while the other parameters of greatest influence, i.e. δV , δT ∗ , and
pT , are all positively correlated with the output. Furthermore, the sufficient summary
plots provide details about the approximate behavior of these output quantities. In
particular, the inset of Fig. 6(a) shows that after 5 years very few of the randomly-
sampled time courses produce T-cell counts below the clinical threshold for AIDS,
while the inset of Fig. 6(b) demonstrates the opposite, namely that the overwhelming
majority of randomly-sampled parameter sets lead to the onset of AIDS within 10
years. Finally, the inset of Fig. 6(c) provides direct estimates on the time (in years)
until the progression to AIDS, with a generally linear distribution ranging between 5
and 10 years.

Now that the parameters of greatest influenceonT-cell counts havebeendetermined,
we may further study how variations in the values of these quantities affect the viral
load over its entire time course. To begin, we perturb δV by up to a 10% variation from
its baseline value and study the corresponding changes in (i) the virions produced by
infected T-cells VT ∗(t), (ii) the virions produced by infectedmacrophages VM∗(t), and
(iii) the total number of virions V (t) over time. As seen in Fig. 7, δV exerts a greater
influence uponviral production by infectedmacrophages than it does for virions arising
from infected T-cells. Figure8 shows similar behavior for up to a 10% variation from
baseline values of ρM , and the effect on VT ∗(t) is essentially negligible. Hence, these
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parameters modify the time until the transition to AIDS mainly by influencing the
growth rate of virions produced by infected macrophages.

Though variations in the values of ρM , δV , pT , and δT ∗ can lead to significantly
longer times until the onset of AIDS, the values of most of these parameters are not
actually determined by external factors. However, the parameter pT can be altered by
the implementation of antiretroviral therapy. Thus, in the next section, we implement a
time-dependentART treatment strategy to understand howdrug therapy can be applied
to prolong an individual’s progression to the final stage of the disease.

5 Administration of ART

In order to study the model’s capability to explain the effect of realistic treatment
strategies, we introduce the administration of ARTwithin the system. A variety of pre-
vious studies (Pankavich and Shutt 2015; Rong et al. 2007; Xia 2007) have attempted
to understand the influence of antiretroviral drugs by using constant drug efficacies,
which tacitly assumes that an infected individual begins ART at the time of infection.
Doing so in the model (1) would merely utilize the result of Theorem 3 and alter the
parameters kT and pT . In particular, upon denoting the drug efficacy by ε ∈ [0, 1],
we would rescale parameters by taking

kε
T = (1 − ε)kT , pε

T = (1 − ε)pT

to replace the previous values of these parameters. Here, we assume that ART does not
display an appreciable effect on the continued infection of macrophages, as shown in
Gavegnano and Schinazi (2009). This alters the corresponding reproduction number
so that

RT = pT kT sT
δT δT ∗δV

(1 − ε)2,

and a simple calculation demonstrates that, using baseline parameter values, an efficacy
of ε = 0.26 would be needed in order to drive the system to the infection-free steady
state via Theorem 3.

While this can be useful to better understand the dynamics of the model via a
reduction in basic reproduction numbers, it is highly unrealistic, as many HIV-positive
individuals may not be diagnosed for months, or even years, post-infection. In partic-
ular, a few studies (Crepaz et al. 2021; van Sighem et al. 2015) have estimated that the
average HIV-infected individual is typically diagnosed around 3 to 3.5 years after ini-
tial infection. The Centers for Disease Control have provided similar recent estimates
(Centers for Disease Control and Prevention 2019). Thus, HIV-infected individuals
often do not begin antiretroviral therapy until well after the acute phase has con-
cluded. Additionally, in the above scenario a 30% constant drug efficacy (ε = 0.30)
routinely drives the model to the non-infected (viral clearance) steady state even with
variation amongst parameters taken into account, while antiretroviral drug efficacy
is often significantly greater than this percentage (i.e., closer to 60-90%) Lee et al.
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(2014). For these reasons, a time-dependent function is needed to study the long-term
effects of ART. Hence, we consider a more realistic implementation consisting of (i)
a post-infection but pre-diagnosis period during which antiretroviral therapy is not
administered due to the lack of an HIV-positive diagnosis and (ii) a post-diagnosis
period during which ART is administered. Of course, the use of a time-dependent
parameter generally precludes an analytical approach to studying the influence of
treatment, and so we take a purely computational approach. Additionally, though the
concentrations of antiretroviral drugs continuously vary due to drug absorption, distri-
bution, and metabolism in the body (Rong et al. 2007), these effects can be averaged
to provide a useful understanding of their efficacy. For simplicity, we use a constant
impulse function to model the combined administration of ART drugs (e.g., reverse
transcriptase inhibitors and either protease or integrase inhibitors, which are typically
the constituents of an initial treatment regimen (What to Start 2022)) into a single drug
efficacy, though their effects can be separated andmore detailed pharmacokineticmod-
els can be used to represent the implementation of ART (Rong et al. 2007). In this
way, our approach represents the introduction of a constant efficacy of antiretroviral
drugs at a prescribed time.

We assume that the efficacy, denoted by ε ∈ [0, 1], of the therapeutic regimen
remains constant throughout the treatment period and begins at a fixed time tε > 0.
Then, the introduction of ART with these constraints is modeled using a Heaviside
function H(t) so that

A(t) = 1 − εH(t − tε)

where

H(t) =
{
0, for t < 0

1, for t ≥ 0.

We note that, while tε is generally implemented on the timescale of days within this
formulation and resulting simulations, we will often provide this value on the scale of
years for expositional clarity. As ART disrupts both the viral infection process and the
maturation of newly produced virions via a variety of drug classes, for instance entry,
reverse transcriptase, integrase, or protease inhibitors, this effect is accounted for by
modifying the original model (1) to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṫ = sT + ρT V

cT + V
T − A(t)kT T V − δT T

Ṫ ∗ = A(t)kT T V − δT ∗T ∗

Ṁ = sM + ρMV

cM + V
M − kMMV − δMM

Ṁ∗ = kMMV − δM∗M∗

V̇ = A(t)pT T
∗ + pMM∗ − δV V .

(2)
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Fig. 9 T-cell population with
implementation of ART
(ε = 0.75) with varied
introduction times (in years)
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Here, the term A(t)kT T V describes a reduction in new T-cell infections due to the
implementation of an entry or reverse transcription inhibitor, each ofwhich disrupts the
HIV infection processwithin a healthyT-cell. Similarly, the termA(t)pT T ∗ represents
a depletion in the production of newly infectious virions due to the suppression of the
viral replication and maturation processes post-infection, and thus models the effects
of integrase and protease inhibitors. Therefore, the number of infected T-cells and
newly-produced virions are significantly reduced by antiretroviral therapy.

As previously mentioned, the infection process for macrophages within (2) is not
altered byA(t). This is because current ART often displays differential antiviral activ-
ity in macrophages relative to T-lymphocytes. Though a great deal of effort has been
exerted to establish the antiviral activity of many clinically approved antiretroviral
therapies in macrophages, a direct link between potential antiviral activity and spe-
cific mechanisms responsible for antiviral effects remains incompletely understood
(Gavegnano and Schinazi 2009). In particular, recent studies (Gavegnano and Schi-
nazi 2009; Gavegnano et al. 2008;McGee et al. 2006) suggest that ART is significantly
less impactful on the macrophage population than within T-cells, and the ability to
consistently deliver effective concentrations of drug to macrophages across all organs
and tissue compartments is particularly poor. Hence, within the augmented model it
is assumed that ART does not inhibit the viral infection or production processes in
macrophages.

To describe the effects of ART on the time course of the disease within an HIV-
infected individual, simulations were conducted with baseline parameter values given
in Table 1 with a total drug efficacy of 75% (ε = 0.75) at differing times of ART
initiation. Throughout, we consider tε = 3.5 years to be the average time of treatment
initiation (Centers for Disease Control and Prevention 2019). As Fig. 9 displays, the T-
cell count post-implementation ofART can vary bothwidely and in a nonlinear fashion
depending upon the time at which an individual first begins treatment. In particular,
the introduction of ART at tε = 4.5 years compared to tε = 5 years extends the
transition to AIDS by approximately 9 years, while earlier implementation - even by
an additional six months - can provide significantly improved longevity of the chronic
phase, often beyond the expected lifetime of the infected patient. Introduction at later
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Fig. 10 Sample of 25 random
trials with 10% parameter
variation and ART introduced at
tε = 3.5 years at an efficacy of
ε = 0.75
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times appreciably blunts the effects of treatment, as the viral load has already begun
its increasing trend toward explosion. Thus, as a first major observation, we note that
even patients who are continuously treated via antiretroviral therapy may progress to
AIDS within a relatively short time period, and the length of time until progression is
highly dependent upon both ε and tε .

Though these preliminary simulations clearly display the prolonging benefit of
ART, they do not account for fluctuations in parameter values, which represent dif-
ferences amongst physical characteristics of HIV-infected patients. Hence, to apply
ART with parameter variability, simulations with random parameter samples were
also conducted. A plot of 25 such random trials allowing for a uniformly-distributed
10% variation in parameter values is provided within Fig. 10. This represents one
collection of simulations incorporating ART implementation at tε = 3.5 years with
an efficacy of ε = 0.75. Ultimately, a larger simulation of N = 10, 000 trials with
uniformly-distributed 10% parameter variations was conducted, and the response to
ART for differing efficacies and administration times was measured. As displayed by
Table 2, these simulations show that for a drug efficacy of ε = 0.75, reducing the time
at which ART is administered from tε = 3.5 years to tε = 3 years leads to a 70%
reduction in the number of 20-year progressors - from approximately 9.2% to 1.3%
of the simulated population. In contrast, if ART is administered later, for instance at
tε = 4 years post-infection rather than tε = 3.5 years, then the probability that an
infected patient progresses to AIDS within 20 years nearly triples (from around 9% to
26%). Similarly, this probability increases to nearly 50% if ART is first implemented at
tε = 4.5 years after initial infection. This analysis extends to other drug efficacies and
implementation times, and we have provided results in Table 2, in which the drug effi-
cacies range from ε = 0.60 to ε = 0.85 and implementation times vary from tε = 2.5
years to tε = 4.5 years. We note that the average time to progression (provided by
the last row in each block of the table) does not change drastically with respect to
differing drug efficacies but is significantly altered by differing implementation times.
More specifically, fixing tε = 4.5 and moving down the last column yields a vari-
ation of about 20% in the probability of progression as ε is increased, while fixing
ε = 0.6 and moving across the middle column yields a variation of around 66% in the
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probability of progression as tε is increased. Hence, it appears that the time of ART
implementation tε influences the time until the onset of AIDS more than variations
in the drug efficacy ε. Furthermore, a decrease in implementation time by six months
for any efficacy generally results in an extension of the chronic phase by 1-2 years
upon averaging across all populations (i.e., parameters) with a much larger benefit for
a single individual. This provides a quantification of the qualitative understanding that
medical researchers have understood for quite some time, namely that early adminis-
tration of ART is critical to prolonging life expectancy for HIV-infected patients and
pushing the final stage of the disease process beyond standard human lifespans.

Analogous random simulations were conducted without the implementation of
ART in order to provide greater context on the implications of therapy. In particular,
N = 10,000 random trials were performedwith a 10%uniformly-distributed variation
in parameter values and ε = 0. Results of model simulations demonstrate that without
ART, HIV-infected patients experienced a 98% probability of progression within 10
years, and this increased to 100% within 15 years. Additionally, the average time to
progression amongst untreated individuals is 7.28 years, while the average time to
progression when ART is implemented (at time tε = 3.5 years and an efficacy of
ε = 0.75—see Table 2) is 14 years, roughly doubling the projected time to the onset
of AIDS.

In order to visualize the effects of specific ART combinations on an individual
patient (i.e., the same set of parameters), random sets of parameter values from the
10, 000 samples were selected. Both the T-cell and virion populations were plotted
with (i) a fixed tε and varying ε, and then (ii) a fixed ε and varied tε as seen in Figs. 11
and 12. Within the latter figure, parameters were selected to demonstrate a worst-case
scenario in which all resulting combinations of ART still lead to a progression to AIDS
within 20 years. Here, we note that constant variations in either tε or ε can produce
a nonlinear effect in the time to the development of AIDS. For instance, Fig. 12(c)
shows that implementing ART at tε = 3 years post-infection instead of tε = 2.5 years
post-infection reduces the length of the chronic phase by approximately 5.5 years,
while extending the implementation time by an additional 6 months, moving from
tε = 3 years to tε = 3.5 years, reduces the chronic phase by only an additional 2.5
years. Hence, as the time of implementation becomes greater, the ability of ART to
significantly prolong the transition to AIDS is notably reduced. Similarly, Fig. 11(a)
displays the nonlinear response in the drug efficacy, as increasing ε from 0.75 to 0.8
extends the chronic phase by 2 years, while further increasing the drug efficacy from
0.8 to 0.85 extends the chronic phase by an additional 4.5 years.

Even after implementing ART, a clear distinction occurs between those HIV-
infected patients who progress to AIDS within shorter time frames and those for
whom this transition extends beyond the normal human lifespan. In order to better
understand the fundamental mechanisms of this dichotomy that may drive the pro-
gression to AIDS even in the presence of continuing antiretroviral therapy, we study
the same viral decomposition as in Section 2 modified by the introduction of ART. In
particular, we write

V (t) = VT ∗(t) + VM∗(t)
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Table 2 Probability (in %) of progressing to AIDS. Sample size is N = 10, 000, and parameters may vary
by up to 10% of baseline values. For tε = 2.5 years and ε ≥ 0.8, none of the trials progressed to AIDS
within a 50 year timespan

Progression Before (years) tε = 2.5 tε = 3.0 tε = 3.5 tε = 4.0 tε = 4.5

ε = 0.60

10 0.11 1.20 6.07 17.13 31.13

15 1.02 6.59 21.44 42.53 60.68

20 1.59 9.13 26.78 49.10 67.68

50 1.88 10.30 28.94 51.52 69.93

Average time 15.44 14.60 13.28 12.16 11.36

ε = 0.65

10 0.01 0.50 3.81 12.76 25.62

15 0.27 3.35 15.10 34.40 54.92

20 0.47 4.84 19.21 40.79 61.82

50 0.55 5.45 20.68 42.79 63.89

Average time 15.73 14.79 13.45 12.45 11.63

ε = 0.70

10 0.00 0.16 2.02 8.94 20.41

15 0.08 1.60 9.24 27.67 47.27

20 0.10 2.34 12.14 33.34 53.94

50 0.13 2.72 13.42 35.45 56.15

Average time 15.65 15.22 13.93 12.83 11.92

ε = 0.75

10 0.00 0.06 1.32 6.01 16.53

15 0.01 0.72 6.89 21.05 41.58

20 0.03 1.28 9.22 26.43 48.62

50 0.04 1.50 10.08 28.14 50.70

Average time 16.65 15.97 14.08 13.07 12.14

ε = 0.80

10 0.00 0.03 0.62 4.22 13.85

15 0.00 0.31 4.15 16.85 37.32

20 0.00 0.64 5.83 21.3 43.55

50 0.00 0.74 6.68 22.95 45.86

Average time N/A 16.01 14.70 13.41 12.39

ε = 0.85

10 0.00 0.01 0.35 3.42 10.57

15 0.00 0.21 3.20 14.25 33.28

20 0.00 0.38 4.46 18.52 40.38

50 0.00 0.49 5.08 20.12 42.50

Average time N/A 16.46 14.87 13.68 12.72
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Fig. 11 Time courses of T-cell and virion populations with respect to fixed implementation times tε (panels
a and b) and fixed efficacies ε (panels c and d), respectively. Notice that the virion population initially
decreases below the detectable threshold within a few months as routinely observed in a clinical setting
(National Institute of Allergy and Infectious Diseases 2020)

where VT ∗ satisfies

V̇T ∗ = A(t)pT T
∗ − δV VT ∗

and VM∗ satisfies

V̇M∗ = pMM∗ − δV VM∗

similar to (1), and simulate the dynamics of (2) while tracking these separate compo-
nents of V (t). Within these simulations, we fix ε = 0.5 and consider differing values
of the ART implementation time, namely at tε = 3, 3.5, and 4 years. The result is that
within the simulated viral time course, extremely subtle changes in the value of the
viral load at the time of ART implementation, namely V (tε), can have a pronounced
influence on the transition to AIDS. As shown in Fig. 13, the values of V (tε) are not
significantly different as tε is varied, but the outcomes differ dramatically. Indeed, the
viral load does not rebound when tε = 3 with V (tε) = 363, but experiences viral
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Fig. 12 Time courses of T-cell and virion populations with respect to fixed implementation times tε (panels
a and b) and fixed efficacies ε (panels c and d), respectively

explosion at around 18 years when tε = 3.5 with V (tε) = 387 and at around 12 years
when tε = 4 with V (tε) = 416.

As such minor fluctuations in the viral load induce exceedingly distinct outcomes,
we further investigate the detailed role that the size of the macrophage and infected
macrophage populations play in this process. In this direction, the percent increase
in each of the V , M , and M∗ populations was quantified subject to varying ART
implementation times and with a uniformly-distributed 10% parameter variation by
evaluating the average values of these populations at the implementation time tε . This
metric provides insight into which of these populations plays the largest role in the
viral explosion that dominates the third phase of HIV disease progression. As seen
by Table 3, the average percent increase of these quantities indicates that, relative to
their scale, infected macrophages are most greatly altered by the change in tε . In fact,
the increase in M∗ is approximately 1.5 times greater than non-infected macrophages
and 4 times that of the virion population, thereby indicating that the increased strength
of the infected macrophage population prior to the implementation of antiretroviral
therapy is truly driving the distinction between short-term and long-term progression
to AIDS. This result further matches the current understanding of the disease process
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Fig. 13 Comparison of viral decomposition (inset: T-cell count) with different time courses for different
introduction times of ART, ε = 0.5

Table 3 Average relative increase in virion, V , macrophage, M , and infected macrophage, M∗ populations
generated by changes in time ofART implementation tε with a uniformly-distributed 10% randomparameter
variation and 10, 000 trials

Change in tε tε = 3 → tε = 3.5 tε = 3.5 → tε = 4

Populations V M M∗ V M M∗
Average Relative Increase 6.45% 19.73% 27.89% 7.46% 19.63% 27.21%

over long times, as viral reservoirs in myeloid cells are believed to drive progression
from the chronic phase toAIDS (Mitchell et al. 2019;Koppensteiner et al. 2012). Thus,
we conclude that (i) ARTmay have a limited ability to sustain long term control of HIV
infection due to the impact of viral reservoirs via productively infected macrophages
that are generally unaffected by drug therapy, (ii) seemingly negligible differences in
the viral load at the time of ART initiation may correspond to significant changes in
the relative onset time of AIDS, and (iii) the time of ART implementation is markedly
more important than drug efficacy to prolonging the chronic phase of the disease.
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6 Interruption of ART

As displayed within the previous section, the influence of ART, and in particular the
time at which ART is implemented, is paramount to understanding and predicting the
long term outcomes of HIV-infected patients. Another natural question to ask in this
direction is how the interruption of ART may further influence treatment outcomes,
as breaks in treatment may further expedite the growth of viral reservoirs and lead to
an increase in time to progression.

It has been well documented that discontinuation or interruption of antiretroviral
therapy can result in viral rebound, immune decompensation, or clinical progression
to AIDS (Minority HIV Fund 2022; Lau et al. 2019). In fact, since the halting of
the Strategies of Management of Antiretroviral Therapy (SMART) study in 2006
due to safety concerns around the 250% increase in risk of progression generated by
interrupted therapy, clinical guidelines have discouraged treatment interruption and
favored the implementation of continuous antiretroviral therapy (The Strategies for
Management 2006). Adherence to treatment is also crucial to reducing the rise of
drug resistance, as treatment interruption allows HIV to more consistently multiply,
thereby increasing the risk of viral mutation and hence production of new, drug-
resistant strains. Despite the evidence now in favor of continuous ART from both
therapeutic and public health perspectives, ART adherence is not a given for many
HIV-infected patients. Reasons for short-term (days to months) interruption or failure
ofARTvarywidely andmay include drug toxicity or interaction, poor drug absorption,
intolerable side effects, pill burden, financial constraints, lack of access to medication,
and a range of other co-morbidities, including psychiatric or medical illnesses (Guy
2013). Thus, due to the potentially insurmountable impact of small alterations to the
implementation time tε , and the degree to which an increased infected macrophage
population, serving as a viral reservoir, can drive the system more rapidly to AIDS,
we explore how interruption in treatment will influence the time to progression.

To simulate treatment interruptions, we again use the model (2) but redefine A(t)
by

A(t) = 1 − ε [H(t − tε) − H(t − tI ) + H (t − tR)] ,

where H(t) is again the Heaviside function, tε is the time at which ART is first
implemented with assumed efficacy ε, tI is the time at which treatment interruption
occurs, and tR is the time at which ART is reinstated. The times tI and tR can be further
decomposed into

tI = tε + Dε,

tR = tI + DI ,

where Dε represents the duration of initial treatment, i.e., the length of time after tε
until treatment is interrupted, and DI is the duration of the treatment interruption,
i.e., the amount of time that a patient remains off of ART until the time of treatment
reinstatement, tR . For instance, if Dε = 6 months, then ART is ceased 6 months after
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Fig. 14 Comparison of T-cell populations subjected to ART interruption with fixed duration of treatment
Dε and varied lengths of interruption DI , the latter represented in the legend as seen in figure (a) (tε = 3
years and ε = 0.7)

tε , while if DI = 3 months, then ART is reinstated 3 months after interruption tI . In
particular, we note that A(t) only takes on two distinct values and may be written as

A(t) =
{
1, 0 ≤ t < tε or tI ≤ t < tR
1 − ε, tε ≤ t < tI or t ≥ tR .

In order to study the implications of altering Dε and DI , we fix the values of the
treatment efficacy and time of initiation to ε = 0.7 and tε = 3 years, respectively,
throughout all simulations.We note that for other values thatwere used in previous sec-
tions, for instance tε = 3.5 and ε = 0.8, nearly all patients progressed to AIDS within
25 years when treatment was appreciably interrupted. Hence, the aforementioned val-
ues were chosen to highlight the outcome differences that may appear due only to
treatment interruption. Additionally, though interruptions may lead to the emergence
of drug-resistant viral strains, we will neglect such mutations in the current study in
order to capture the basic features of the viral rebound phase and its long term effects
on patient outcomes.

With this, we first focus on the influence of the duration of interruption by fixing the
duration of treatment Dε (thus fixing the time at which ART is interrupted tI ) while
varying the values of DI . The results of these simulations are displayed by Fig. 14 for
Dε = 1, 3, and 12 months with differing time courses for values of DI ranging from
1 week to 3 years. Here, we have primarily concentrated on times during which the
T-cell population is rebounding directly after ART is introduced so that Dε is between
2 weeks and 1 year. If ART is interrupted after the T-cell count has been restored
to healthy levels of approximately 1000 copies/mm3, treatment interruption does not
drive the system to AIDS unless an individual is off of ART for more than 1 year.
Additionally, if ART is interrupted within the first month of initial implementation,
the interruption merely acts as an extension of the implementation time tε . That is,
if Dε < 1 month and DI < 1 month, then the effects of treatment interruption are
negligible, while if Dε < 1 month, an interruption length DI between 1 month and 1
year yields the same qualitative outcome as redefining the ART implementation time
to tε + DI . Therefore, this scenario produces the same behavior as prolonging the
implementation time by DI .
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For these reasons, we focus on the effects of interruption during the Dε = 1 month
through Dε = 1 year post-ART initiation time frame. Figure14 shows that for such
values of Dε , the time to AIDS remains largely unchanged for a sufficiently large
interruption duration (DI ≥ 3 months) regardless of treatment duration. However,
under an interruption of DI = 1 month, a notable effect arises wherein an initial
treatment period of Dε = 1 month does not lead to progression within 25 years,
but a longer treatment period of Dε = 2 months or more will cause progression
to AIDS, and treatment lasting between Dε = 3 and Dε = 12 months induces an
even more rapid progression. Simulations further demonstrated that for a treatment
duration of Dε = 18 months or more, a one-month treatment interruption does not
progress to AIDS within 25 years. Hence, there is a specific time period of Dε = 2
to Dε = 12 months post-initiation during which patients are particularly sensitive to
interruptions in treatment. This effect is likely due to the fact that during the initial
stages of ART (within 1-year post-implementation) T-cell populations return to previ-
ous healthy levels and thus provide additional target cells for virions.With an increased
viral population stemming from treatment interruption and bolstered by reservoirs in
the form of infected macrophages, the restoration of the T-cell population provides
an hospitable environment for infection and production of new virions. However, if
treatment has been continued for a sufficiently long time period (> 1 year), wherein
viral reservoirs are appreciably reduced by ART, the increased T-cell population does
not give rise to a rapid increase in the number of new infections, due to the depletion
of the viral load. This dual dependence on virions and susceptible T-cells creates a
non-monotonic influence of Dε on viral explosion.

Such nonlinear responses become evident upon fixing the duration of interruption,
DI at 1 month. Then, as Dε increases over the time course of 1 to 12 months the time
to progression decreases. Said another way, interrupting ART during the beginning
stages of treatment is not as detrimental as interruption after 1 year on ART. This
is displayed by Fig. 14; in particular, by following the yellow curve which represents
DI = 1month. This fixed interruption duration in Fig. 14(a) does not progress toAIDS
if ART is interrupted after 1 month of treatment. However, in Figs. 14(b) and 14(c),
respectively, if interruption occurs 3 months post-initiation, a progression to AIDS
transpires within 20 years, while if interruption occurs after 12 months, an infected
patient progresses within 16.5 years.

In order to further illustrate this interruption phenomenon we fix the duration of
interruption, DI = 1 month and study the time courses of all relevant populations
in the model, seen in Fig. 15. This figure - in particular, Fig. 15(a) - illustrates the
decreasing, nonlinear response on the time to progression generated by increasing Dε

between 1 and 12 months. After approximately 12 months this effect disappears and
the time to AIDS increases instead. This cannot be attributed directly to prior values
of the T-cell count, as progression is most rapid when ART is interrupted after 1 year,
but this curve does not correspond to the greatest value of T (tI ) or the smallest value
of T (tR). Thus, the nonlinear behavior stems from information contained within a
different population.

Therefore, we further study the possible links between one of the populations and
this nonlinear behavior, by plotting virion, macrophage, and infectedmacrophage time
courses in Figs. 15(b), 15(c), and 15(d), respectively. Both the virion and macrophage
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Fig. 15 Comparison of T-cell, virion, macrophage, and infected macrophage populations subject to ART
interruption. Here, Dε is varied, while DI = 1 month, ε = 0.7, and tε = 3 years are all fixed. Legends
within panels (b) and (c) are valid for all figures

Fig. 16 Comparison of different populations at the time of reimplimentation tR . Figure (a) represents
infected macrophages at tR compared to the time of progression. Figure (b) represents macrophages and
virions at tR with DI = 3 months, ε = 0.7, tε = 3 years
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populations maintain a linearly increasing progression as Dε increases, in particular
at the times of interruption tI and reinstitution tR . However, Fig. 15(d) demonstrates
that the infected macrophage population increases at different rates depending upon
Dε . In particular, we expect that the relative density of macrophages and virions at the
time of interruption leads to this non-monotonic response in the number of infected
macrophages, which are generally responsible for the transition to the final stage of
infection. To further verify that infected macrophages are correlated to the pattern
caused by interruption of ART, population values at time tR were plotted as a function
of Dε . More specifically, the values M∗(tR), M(tR) and V (tR) were compared to the
time at which the disease progresses to AIDS as a function of Dε , seen in Fig. 16. Panel
(a) of the figure clearly demonstrates the inversely proportionate relationship between
the infected macrophage population at the time of reimplementation, M∗(tR) and the
time of progression to AIDS; namely as the values of M∗(tR) increase, the time to the
development of AIDS necessarily decreases in a nearly identical fashion. As seen in
Fig. 16(b) the macrophage and virion populations do not follow the same nonlinear
trend as the infected macrophage population and hence, are not directly correlated
to this non-monotonic response. We note, in particular, that the oscillatory behavior
of the virion population as a function of Dε occurs because of small corresponding
oscillations in the infected T -cell population as Dε is altered. Additionally, the T-cell
population is not responsible for changes in the time to the onset of AIDS as the
viral explosion that leads to this transition are induced by the virions produced from
infected macrophages. This is reiterated in Fig. 17 wherein a viral decomposition, in
terms of the production mechanism of new virions, is displayed under ART interrup-
tion. The figure shows that changes in the number of virions produced by infected
macrophages at the time of ART reinstitution drastically impacts the appearance of
viral explosion even though the viral load at the time of interruption is identical and the
reimplementation of ART initially decreases the viral load to similar levels. Therefore,
viral explosion is clearly driven by production of virions from infected macrophages
and subtle changes in the values of the infected macrophage population at the time
of treatment reinstatement M∗(tR) are correlated to these nonlinear viral explosion
patterns.

Though this behavior was initially identified by fixing values of Dε and varying
DI , similar trends emerge under a variety of Dε and DI combinations. Hence, we next
focus on fixing the duration of interruption, DI , and varying the time at which ART
is interrupted so that Dε is altered. In these simulations, displayed within Fig. 18, the
change in interruption duration has a significant effect on the system. In particular,
while small breaks of DI < 1week have no appreciable influence (Fig. 18(a)), extend-
ing the duration of interruption by an additional 2weeks induces a progression toAIDS
within 20 years (Fig. 18(b)), and this increase in the time to progression is amplified by
further boosting the value of DI . If the duration of interruption is extended to DI = 3
months as shown in Fig. 18(c), progression to AIDS occurs within 20 years even for
infected individuals who had only been initially treated for short time periods, e.g.
Dε ≈ 1 month. Indeed, only those individuals who have experienced continuously
uninterrupted treatment for 3 years or more remain above the clinical threshold for
AIDS throughout the 25 year period. Moreover, the progression time again displays
a non-monotonic dependence on Dε , as patients who have been on ART for 1 year
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Fig. 17 Viral decomposition ofmodel undergoingART interruptionwith ε = 0.7, tε = 3 years, and DI = 1
month

Fig. 18 Comparison of T-cell populations subjected to ART interruption with fixed duration of interruption
DI and varied lengths of treatment Dε , the latter represented in the legend as seen in panel (c) (tε = 3
years and ε = 0.7)

progress to AIDS faster than those who have been on ART for 6 months, while those
who have been on ART for 3 years do not progress to AIDS at all within the 25 year
period. Additionally, this effect remains in place for those who experience a treatment
interruption lasting DI = 1 month or DI = 3 months.

Thus, we draw two major conclusions. First, the duration of interruption DI has
a more pronounced effect on the time to progression and patient outcomes than does
the initial treatment period Dε . More specifically, any interruption period longer
than DI = 2 weeks has the ability to induce a progression to AIDS within 25
years. Second, interruption of ART between Dε = 6 months and Dε = 12 months
post-implementation significantly increases the probability of progression within the
normal human lifespan. This represents a “sweet-spot” for viral proliferation, as ART
has suitably restored the strength of the primary infection target (T-cells) and an inter-
ruption in treatment triggers a suitably large viral rebound so as to spur additional
infection of macrophages prior to the reinstatement of ART. Additionally, the time of
progression to AIDS possesses a nonlinear structure that is strongly correlated to the
strength of the infected macrophage population at the time of treatment reinstitution,
M(tR).
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7 Conclusions and future work

In this paper, a mathematical model for HIV infection, originally proposed within
Hernandez-Vargas and Middleton (2013), was formulated to suitably capture all three
stages of the disease process while being shown to guarantee both the positivity and
boundedness of populations and ensure their limited sensitivity to parameter varia-
tions. Additionally, a dynamical analysis of the unique, infection-free steady state
was performed, thereby identifying the basic reproduction numbers corresponding to
T-cell and macrophage infection. The subtle, but crucial, interplay between these two
infection mechanisms was elucidated. This provides further evidence to bolster the
idea (Hernandez-Vargas and Middleton 2013) that long-term HIV infection, and in
particular, the progression to AIDS via viral explosion, is a multiscale process with
differing infection pathways operating at disparate timescales. Here, the infection of
T-cells provides the fast dynamics of the system, while the slower, but continued,
macrophage infection process ultimately leads to viral explosion and drives the T-cell
count below the threshold for AIDS over the course of many years, in many cases,
even with the initiation of antiretroviral therapy. A global sensitivity analysis was
performed via active subspace methods that demonstrates the importance of immuno-
logical recruitment ofmacrophages (thoughother classes of viral reservoir can be used)
on the progression to AIDS. In particular, this parameter ρM does not influence the
stability properties of the disease-free state through basic reproduction numbers, but
greatly impacts the quantitative behavior of the disease process by partially governing
the rate at which an HIV-infected individual undergoes the transition to AIDS. Finally,
time-dependent indicator functionswere used to study both the introduction ofARTon
an infected individual and the influence of treatment interruption. While both the drug
efficacy and time of initiation influence the time until the onset of AIDS, the latter was
demonstrated to be significantly more impactful than the former, further solidifying
the significance of consistent testing and early identification of HIV infection. Thus,
we reiterate the crucial importance of beginning ART immediately upon receiving a
positive diagnosis, as earlier ART implementation yields considerably more desirable
outcomes for HIV-infected individuals. Additionally, assuming the presence of an
interruption to ART, the time of treatment interruption (via the duration of treatment
Dε) was shown to be more impactful to the eventual onset time of AIDS than the
duration of interruption DI . More specifically, variations in the duration of ART prior
to interruption induce a nonlinear response in the time to the development of AIDS,
as for a three month interruption in ART, treatment durations of one month or twelve
months both yield longer AIDS progression times than that of a six month treatment
duration. Hence, individuals undergoing antiretroviral therapy are more detrimentally
affected by interruptions occurring within the first year of treatment than afterward.
This conclusion further reinforces a similar finding in Haering et al. (2014), in which
it was determined that ART switching strategies are not beneficial to prolonging the
onset of AIDS if initiated more than two years post-infection. In this way, quantitative
estimates were provided herein regarding the ability of ART to extend the chronic
phase of the disease beyond the expected lifetime of the patient, even in the presence
of treatment interruptions.
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Though our study has provided a number of new insights, it is by no means exhaus-
tive. In the future, it would be advantageous to expand the scope of the model by
incorporating additional complexities; for instance, introducing the effect of viral
mutations and more detailed immune responses, thereby providing a more nuanced
understanding of the dynamics of HIV infection and treatment. Hence, future work
may focus on the impact of different treatment switching strategies, similar to those of
Haering et al. (2014) or Hernandez-Vargas et al. (2014), to combat new, and possibly
drug-resistant, strains of HIV arising from viral mutation while also incorporating
a variety of drug efficacies to study the impact of treatment interruption. As demon-
strated herein, interruptions of antiretroviral therapy, even of mild duration, can induce
drastic differences in long-term patient outcomes, and the additional emergence of
drug-resistant viral mutations would be a particularly critical avenue to explore in
the future. Furthermore, an investigation into different interruption patterns and their
potential consequences for the efficacy of antiretroviral therapy could provide greater
insight into the interplay between the suppression of the viral reservoir and the time
to the onset of AIDS. In summary, the introduction of more complex and realistic
mathematical models of HIV infection dynamics will improve our general knowledge
of patient outcomes affecting treatment scheduling and implementation.

Appendix A: Proofs of Theorems

We first prove the positivity result.

Proof of Theorem 1 Assume T (0), M(0), V (0) > 0 and T ∗(0), M∗(0) ≥ 0. Define

τ∞ = sup{s > 0 : T (s), M(s), V (s) > 0}.

Due to the continuity of these functions, we find τ∞ > 0. Then, for t ∈ [0, τ∞) we
have

Ṫ ∗(t) ≥ −δT ∗T ∗(t)

from (1) and upon multiplying by eδT∗ t and integrating, we find

d

dt

(
T ∗(t)eδT∗ t) ≥ 0,

and thus

T ∗(t) ≥ T ∗(0)e−δT∗ t ≥ 0

on this interval. Analogously, the same analysis yields

M∗(t) ≥ M∗(0)e−δM∗ t ≥ 0
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for t ∈ [0, τ∞). This idea can also be applied to V (t) to find

V (t) ≥ V (0)e−δV t > 0

for t ∈ [0, τ∞).
To obtain lower bounds on the remaining compartments, we will first need to

establish upper bounds on these quantities. In particular, letting

S(t) = T (t) + T ∗(t),

and adding the equations for T and T ∗ gives

Ṡ(t) = sT + ρT V

cT + V
T (t) − δT T (t) − δT ∗T ∗(t)

≤ sT + ρT T (t) − δT T (t) − δT ∗T ∗(t)
≤ sT + ρT S(t)

for t ∈ [0, τ∞).With this,wehave a linear differential inequality and, uponmultiplying
by e−ρT t and integrating, we find

S(t) ≤
(

S(0) + sT
ρT

)

eρT t .

As both T (t) and T ∗(t) are positive on [0, τ∞), the upper bound on S(t) further
implies

T (t) ≤
(

S(0) + sT
ρT

)

eρT t

and

T ∗(t) ≤
(

S(0) + sT
ρT

)

eρT t

for t ∈ [0, τ∞). An analogous argument can be applied to M(t) and M∗(t) to find

M(t) ≤
(

P(0) + sM
ρM

)

eρMt

and

M∗(t) ≤
(

P(0) + sM
ρM

)

eρMt

where

P(t) = M(t) + M∗(t).
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These upper bounds imply the same for the viral compartment, namely

V̇ (t) ≤ pT

(

S(0) + sT
ρT

)

eρT t + pM

(

P(0) + sM
ρM

)

eρMt ,

and upon integrating, we arrive at an exponential upper bound

V (t) ≤ C0e
αt

where

C0 = max

{

V (0),
pT
ρT

(

S(0) + sT
ρT

)

+ pM
ρM

(

P(0) + sM
ρM

)}

and α = max{ρT , ρM }.
Finally, with the upper bound on V (t), we can lower bound the T (t) and M(t)

compartments. More specifically, using the upper bound on V (t) in the equation for
T (t) yields

Ṫ (t) ≥ −kTC0e
αt T (t) − δT T (t) ≥ −C1

(
1 + eαt) T (t)

for t ∈ [0, τ∞) where C1 = max {kTC0, δT } . Using an integrating factor as before,
then yields

d

dt

[

T (t) exp

(

C1

∫ t

0
(1 + eαs) ds

)]

≥ 0

and

T (t) ≥ T (0) exp

(

−C1

∫ t

0
(1 + eαs) ds)

)

> 0

for t ∈ [0, τ∞). The same argument applies directly to M(t) so that

M(t) ≥ M(0) exp

(

−C2

∫ t

0
(1 + eαs) ds)

)

> 0

for t ∈ [0, τ∞), where C2 = max{kMC0, δM }. Finally, if τ∞ < ∞ then the expo-
nentially decreasing lower bounds on T (t), M(t), and V (t) imply that each is strictly
positive at τ∞. This contradicts the maximality of τ∞. Hence, τ∞ = ∞ and each
function must remain positive for all t ≥ 0. Furthermore, the nonnegativity of T ∗(t)
and M∗(t) are maintained for t ∈ [0,∞) as shown above. �


We may use similar tools to derive the steady states of the model.
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Proof of Theorem 2 In order to determine time-independent solutions, the time deriva-
tives in (1) are set to zero, and we solve for each population. Doing so yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = sT + ρT V

cT + V
T − kT T V − δT T

T ∗ = kT
δT ∗

T V

0 = sM + ρMV

cM + V
M − kMMV − δMM

M∗ = kM
δM∗

MV

V = pT
δV

T ∗ + pM
δV

M∗.

(3)

From the second and fourth equations, taking V = 0 directly implies T ∗ = M∗ = 0.
Upon simplifying the first and third equations using V = 0, the unique uninfected
steady state is obtained.

Turning to the uninfected steady state, we insert the second and fourth equations
into the final equation in (3). Assuming V �= 0, the result is

pT kT
δV δT ∗

T + pMkM
δV δM∗

M = 1.

This equation is then solved for M to obtain a linear dependence on T and inserted
into the third equation of (3) to provide a quadratic equation in the T and V variables.
As cT + V > 0, we can multiply by this term throughout the first equation above and
solve for the steady-state T -cell count in terms of V , namely

T = sT (cT + V )

δT cT − (ρT − kT cT − δT ) V + kT V 2 .

This is then inserted into the quadratic equation in T and V to obtain a quartic equation
in V only, which can be reduced to the form

α4V
4 + α3V

3 + α2V
2 + α1V + α0 = 0 (4)

where

α4 = −kT δV δM∗

pM
,

α3 = sT kT pT δM∗

pMδT ∗
+ δV δM∗

pM
(ρT − kT cT − δT )

+kT

[

sM + (ρM − kMcM − δM )
δV δM∗

kM pM

]

,

α2 = sT cT kT pT δM∗

pMδT ∗
− sT (ρM − kMcM − δM ) + kT

(

sMcM − cMδMδM∗δV
kM pM

)
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−cT δT δM∗δV
pM

−
[

sM + (ρM − kMcM − δM )
δM∗δV
kM pM

]

(ρT − kT cT − δT ) ,

α1 = cT δT

[

sM + (ρM − kMcM − δM )
δV δM∗

kM pM

]

−cM

(

sM − δMδM∗δV
kM pM

)

(ρT − kT cT − δT )

−sT cT (ρM − kMcM − δM ) + sT kT pT cMδMδM∗

kM pMδT ∗
,

α0 = cT cM

(

δT

[

sM − δMδM∗δV
kM pM

]

+ sT kT pT δMδM∗

kM pMδT ∗

)

.

Descartes’ Rule of Signs can be used to determine conditions on α0, α1, α2, and α3
that guarantee one sign change amongst consecutive coefficients, and thus exactly
one positive, real solution. However, in simulating steady state solutions over a 10%
(or greater) parameter variation, we have determined that two, or even four, positive
solutions often arise, and these may be generally associated with the two distinct
infected steady states in the reduced model of Pankavich et al. (2020). �


Finally, we prove the stability result.

Proof of Theorem 3 Recalling the unique uninfected steady state

EN I =
(
sT
δT

, 0,
sM
δM

, 0, 0

)

,

we compute the eigenvalues of the Jacobian matrix of (1) to determine the stability
properties of the equilibrium. In particular, we will identify conditions which ensure
that all eigenvalues have negative real part, and thus imply EN I is stable. Denoting
population values by y1, . . . , y5 and computing the Jacobian of the right side of (1)
yields

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρT y5
cT +y5

− kT y5 − δT 0 0 0
( −ρT y5

(cT +y5)2
+ ρT

cT +y5

)
y1 − kT y1

kT y5 −δT ∗ 0 0 kT y1

0 0 ρM y5
cM+y5

− kM y5 − δM 0
( −ρM y5

(cM+y5)2
+ ρM

cM+y5

)
y3 − kM y3

0 0 kM y5 −δM∗ kM y3
0 pT 0 pM −δV

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

The Jacobian is then evaluated at EN I , resulting in the constant 5 × 5 matrix

J (EN I ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−δT 0 0 0
(

ρT
cT

− kT
)

sT
δT

0 −δT ∗ 0 0 kT
sT
δT

0 0 −δM 0
(

ρM
cM

− kM
)

sM
δM

0 0 0 −δM∗ kM
sM
δM

0 pT 0 pM −δV

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)
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and upon computing the characteristic polynomial, we find

|J (EN I ) − λI| = −(δT + λ)(δT ∗ + λ)(δM + λ)(δM∗ + λ)(δV + λ)

+ (δT + λ)(δT ∗ + λ)(δV + λ)
pMkMsM

δM

+ (δT + λ)(δM + λ)(δM∗ + λ)
pT kT sT

δT
.

The common factors (δT + λ) and (δM + λ) can be removed from each term and
correspond to the negative, real eigenvalues

λ = −δT and λ = −δM .

Solving for the roots of the remaining polynomial leads directly to

0 = −(δT ∗ + λ)(δm∗ + λ)(δv + λ) + (δT ∗ + λ)RMδM∗δV + (δm∗ + λ)RT δT ∗δV

where

RM = pMkMsM
δMδM∗δV

and RT = pT kT sT
δT δT ∗δV

.

Finally, this is a cubic equation of the form

λ3 + a2λ
2 + a1λ + a0 = 0

where

a2 = δT ∗ + δM∗ + δV ,

a1 = δT ∗δM∗ + (1 − RM )δM∗δV + (1 − RT )δT ∗δV ,

and

a0 = δV δT ∗δM∗ (1 − RM − RT ) .

Using the Routh-Hurwitz Criteria, the roots of this equation will all possess negative
real part when

a2 > 0, a0 > 0, and a2a1 > a0.

Due to the positivity of the parameters, the first condition is trivially satisfied. The
second condition clearly requires the stated inequality, namely

RT + RM < 1,
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which further implies the last condition, as

a2a1 > δV δT ∗δM∗ > a0

for 0 < RM + RT < 1. Thus, EN I is stable under this condition, and unstable if

RT + RM > 1,

which implies the existence of a root with positive real part under the same argument.
�


Appendix B: Active subspaces

In the final appendix, we provide a brief description of the gradient-based active sub-
space method (Russi 2010) used to analyze T (5; p), T (10; p), and F(p). In addition
to the current discussion, the method has also been recently summarized within Con-
stantine (2015). First, we normalize the values of input parameters. Thus, while p
represents the vector of varying parameters, let q ∈ Q = [−1, 1]15 denote the vector
of normalized input parameters, where Q represents the space of normalized parame-
ter values. Namely, we assume that the independent inputs have been shifted and scaled
so that they are centered at the origin and possess unit variation. Additionally, assume
that a quantity of interest g(q) has been selected, and the input space is equipped with
a probability density function ψ(q) that is strictly positive in the domain of g(q), zero
outside the domain, and normalized so that

∫

Q ψ(q) dq = 1. In practice, ψ identifies
the set of input parameters of interest and quantifies their variability. We choose ψ

so that each parameter is uniformly distributed on an interval determined by a 10%
variation of its baseline value. For instance, the baseline value of sT is 10, and thus we
consider uniformly-distributed parameter variations satisfying 9 ≤ sT ≤ 11 within
the construction of ψ(q). Assume that g : Q → R is continuous, square-integrable
with respect to the weightψ , and differentiable with gradient vector∇g ∈ R

15, which
is also square-integrable with respect to ψ . The active subspace is then defined by the
first n < 15 eigenvectors of the 15 × 15 symmetric positive semi-definite matrix

C =
∫

Q
∇g(q)∇g(q)Tψ(q) dq =: W	WT , (7)

where the right side of (7) represents the spectral decomposition of C (Axler (1997);
Pankavich (2020)). Said another way, W represents the orthogonal matrix whose
columns w
, (
 = 1, . . . , 15) are the orthonormal eigenvectors of C , and 	 is the
diagonal matrix of eigenvalues of C , denoted λ1, . . . , λ15. The matrix C represents an
average derivative functional which weights input values according to the probability
density ψ . Within this decomposition, the eigenvalues in 	, which must be non-
negative, are listed in descending order and the associated eigenvectors are listed
within the same column as their corresponding eigenvalues.
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The eigenvalue λ
 measures the average change in g subject to perturbations in q
along the direction corresponding to the eigenvectorw
, as these quantities are related
by the identity

λ
 =
∫

Q
|∇g(q) · w
|2ψ(q) dq (8)

for 
 = 1, . . . , 15. For example, if λ
 = 0, then g is constant along the direction w
,
and directions along which g is constant can be essentially ignored when studying the
behavior of g under changes in the parameter space Q. Conversely, if the eigenvalue
under consideration is large, then wemay deduce from (8) that g changes considerably
in the direction of the corresponding eigenvector. Now, suppose that a spectral gap
exists and the first n < 15 eigenvalues are significantly larger than the trailing 15− n.
Let W1 be the matrix containing the first n columns of W . Then, as we will show
below, a reasonable approximation for g is g(q) ≈ h(WT

1 q), where h is the projection
of g onto the range of W1, i.e. h(y) = g(W1y).

Once the eigendecomposition involving W and 	 in (7) has been determined, the
eigenvalues and eigenvectors can be separated as

	 =
[
	1 0
0 	2

]

, W = [
W1 W2

]
(9)

where 	1 contains the larger eigenvalues of C , 	2 contains the smaller eigenvalues,
and Wk contains the eigenvectors associated with each 	k , for k = 1, 2. A simple
way to differentiate between the larger and smaller eigenvalues is to list them on a
log plot from greatest to least and determine the appearance of a spectral gap. This
gap will correspond to differences of at least an order of magnitude, allowing us
to compartmentalize the greatest eigenvalues within 	1 and the remaining, lesser
eigenvalues in 	2. A more systematic method of choosing the number of eigenvalues
to store within 	1 can also be utilized, as developed in Constantine (2015).

With the decomposition (9), we can represent any normalized parameter q by

q = WWT
︸ ︷︷ ︸

=I

q = W1 W
T
1 q

︸ ︷︷ ︸
=r

+W2 W
T
2 q

︸ ︷︷ ︸
=s

= W1r + W2s. (10)

Hence, evaluating the quantity of interest at the point q is equivalent to doing so at
W1r + W2s, and we can approximate g(q) using

g(q) = g(W1r + W2s) ≈ g(W1r) = g(W1W
T
1 q) = h(WT

1 q).

By the definition of W1 and W2, we see that small perturbations in s will not, on
average, alter the values of g. However, small perturbations in r will, on average,
change g significantly. Hence, the outputs ofW1 are defined to be the active subspace
of the model and the outputs of W2 are the corresponding inactive subspace. The
linear combinations that generate these subspaces then represent the contributions of
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differing parameters in themodel and describe the sensitivity of the quantity of interest
with respect to parameter variations.

In general, the eigenvalues and eigenvectors of C defined by (7) can be well-
approximated computationally, using finite difference methods and Monte Carlo
sampling. Though we only briefly outline the method below, full details can be found
in Constantine (2015) (Algorithm 3.1) and Constantine andGleich (2014). The numer-
ical algorithm can be described concisely as follows:

1. Draw N parameter samples {q j }Nj=1 independently according to the density ψ .
2. For each parameter sample q j , compute the gradient ∇qg j = ∇qg(p j ) for each

entry i = 1, .., 15 by using the finite difference approximation

∂qi g(q j ) ≈ g(q j + εi ) − g(q j )

|εi |

where (εi )k = �δik represents a vector perturbation from the sampled parameter
values, δik is the Kronecker delta, and � > 0 can be taken as small as desired.

3. Approximate the matrix C by the finite sum

C ≈ Ĉ = 1

N

N∑

j=1

(∇qg j )(∇qg j )
T

4. Compute the corresponding eigendecomposition Ĉ = Ŵ 	̂Ŵ T .

In practice, we take N ≈ 1000 sets of parameter samples from Q. Once Ŵ and
	̂ are computed, the eigenspace is decomposed into its active and inactive portions,
namely Ŵ1 and Ŵ2, which correspond to the set of eigenvectors associated with
the large eigenvalues along the diagonal of 	̂1 and the small eigenvalues along the
diagonal of 	̂2, respectively. In practice, many systems possess a one-dimensional
active subspace, so that 	̂1 ∈ R and Ŵ1 = w ∈ R

m . In such a scenario, the values
of the vector w represent the weights in a linear combination of the input parameters
along which the quantity of interest is most variable. In this way, the entries of w

describe the relative importance of the parameters with respect to this quantity. For
instance, if w2 � w1, then we generally expect g(q) to vary more when the second
entry of q is altered from the w direction than when the first entry of q is altered.
Similarly, if say w3 ≈ 0 then g(q) does not change much on average when the third
entry of q is altered. With this information, the ultimate goal is to produce a model
possessing reduced dimensional dependence, and this can be done using a sufficient
summary plot. In particular, if the active subspace is one-dimensional, then we have
identified the single direction in the parameter space along which g is most variable,
and theMonteCarlo sample points {q j }Nj=1 are used to construct an approximatemodel

h along this direction, given by wT q. To create the reduced model, a simple linear
fit, or if greater precision is required a nonlinear least-squares curve fit, can be used.
This method has previously been utilized to study the global sensitivity of parameters
within a variety of scientific models (Constantine and Diaz 2017; Constantine and
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Doostan 2017; Diaz et al. 2018; Martinez et al. 2022; Pankavich and Loudon 2017;
Shutt et al. 2017; Terrab and Pankavich 2020, 2022).
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