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ABSTRACT

The Human Immunodeficiency Virus (HIV) disables many components of the body’s immune

system and, without antiretroviral treatment, leads to the onset of Acquired Immune Deficiency

Syndrome (AIDS) and subsequently death. The infection progresses through three stages: initial

or acute infection, an asymptomatic or latent period, and finally AIDS. Modeling the entire time

course of HIV within the body can be difficult as many models have oversimplified its biological

dynamics in the effort to gain mathematical insight but fail to capture the three stages of infection.

Only one HIV model has been able to describe the entire time course of the infection, but this

model is large and is expensive to simulate. In this paper, we’ll show there are two viral free steady

states and conduct a stability analysis of one of the steady states. Then, we’ll present a reduced

order model for the T-cell count 1700 days after initial infection using active subspace methods.

Building on the previous results, we’ll create a global in time approximation of the T-cell count at

any time using dynamic active subspaces.
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CHAPTER 1

INTRODUCTION

The human immune system is a complex network of cells, cell products, and cell-forming tissues

that protect the body from harmful bacteria, viruses, and other harmful substances. A key com-

ponent of the complex network of cells that protects the body is the T-cell. T-cells are a type of

white blood cell that respond to harmful pathogens. One particular type of T-cell is the CD4+

T-cell, or helper T-cell, which responds to harmful pathogens by directing other varieties of T-cells

to destroy the pathogens. The CD4+ T-cells are created in the bone marrow, and then undergo

a maturation process in the thymus. These ‘mature’ helper T-cells are called immunocompetent

T-cells and now have the ability to fight infections. Immunocompetent T-cells lie dormant until a

pathogen presents itself on the surface of an antigen-preserving cell. Healthy individuals typically

have 1000 healthy CD4+ T-cells per cubic millimeter of blood. Because of the important role CD4+

T-cells play in the body it is necessary for individuals to maintain a population density at or around

this level.

The basic structure of a virus includes a nucleus which contains nucleic acids and a virus specific

enzyme. The enzyme is coated with a layer of protein, called a capsid. In addition, there is an outer

layer comprised of carbohydrates, lipids, or proteins. A virus, like a parasite, requires a host cell

to reproduce. The virus attaches itself to a host cell and fuses itself to the host cell’s membrane.

However, a virus will not attach itself to any cell. Viruses have a method of recognition which is

used so that the virus will only attach itself to an accommodating host cell. After attaching itself to

the correct host cell, the envelope of the virus and the host cell will merge. At this time, the virus

releases its contents into the host cell. These contents include viral nucleic acids and viral specific

enzymes. If all of the necessary enzymes are present, then the virus replicates and new virions,

which bud from the cell membrane, are released. Then, the new virions repeat the process.

The human immunodeficiency virus (HIV) recognizes the CD4+ T-cells as an accommodating

host cell. HIV is different than a standard virus, it is called a retrovirus. Retroviruses replicate

within a host via a process called reverse transcription. Reverse transcription is a process by

which an enzyme of the HIV virus, called reverse transcriptase, creates a complementary strand of

DNA from RNA. The newly created HIV DNA is called a provirus. When the provirus is created,

the CD4+ T-cell ceases to have immunological function and the host cell continues to create HIV
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virions. The process by which the HIV virus transcribes DNA from RNA is highly error prone. The

errors in the transcription process create mutations, which allow the virus to continue to elude the

immune system. In some cases, the HIV enters a CD4+ T-cell but is unable to replicate for some

time. The CD4+ T-cell in this case is called a latently infected T-cell. Eventually, the latently

infected T-cells become infected T-cells and the replication process begins.

The HIV infection is characterized by three distinct stages: the acute infection, the chronic

infection, and the transition to Acquired Immune Deficiency Syndrome (AIDS). The first stage,

the acute infection, takes place within about the first 10 weeks of being introduced to the virus

and is characterized by rapid fluctuations in the T-cell and virus population. With respect to the

T-cell population there is initially a rapid decrease, and then a rapid increase. Symptoms during

this phase of the infection include fever, swollen glands, fatigue, rash, and sore throat. The next

stage of the infection is the chronic infection, also known as the latency period. This phase lasts

for seven to ten years. During the latency period the T-cell population and the virus population

remain at relatively constant levels with the T-cell population decreasing at a slow rate. The third

stage of the infection, the transition to AIDS occurs when the T-cell population reaches a density

lower than 200 cells per cubic millimeter.

Many models have been proposed for the HIV infection. However, many of these models are

overly simplistic and can only accurately capture the first stage of the infection. These simplified

models show the T-cell count asymptotically approaching a nonzero limit in the second phase of

the infection, which experimentally and biologically we know to not be the case. Only one model

has been able to accurately capture all three stages of the HIV infection. This model, proposed by

Hadjiandreou et al in [3], is a system of seven nonlinear autonomous coupled differential equations

with twenty-seven parameters. In this paper we will analyze this model and use methods from

sensitivity analysis to approximate solutions of the T-cell count as a function of time.
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CHAPTER 2

HIV MODEL AND ANALYSIS

This paper is concerned with analysis of the following long term model examined and created in

[3]:

dT

dt
= s1 +

p1
V + C1

V T − δ1T − (K1V +K2M1)T

dTI
dt

= ψ(K1V +K2MI)T + α1TL − δ2TI −K3TICTL

dTL
dt

= (1− ψ)(K1V +K2MI)T − α1TL − δ3TL
dM

dt
= s2 +K4VM −K5VM − δ4M

dMI

dt
= K5VM − δ5MI −K6MICTL

dCTL

dt
= s3 + (K7TI +K8MI)CTL− δ6CTL

dV

dt
= K9TI +K10MI −K11V T − (K12 +K13)VM − δ7V



(2.1)

In this long term model, a variety of cells in the immune system are considered; however, CD4+

T-cells rank as one of the most critical components in determining the body’s response to HIV

infection. In (2.1) the T-cell (T ) population is increased by a standard source, s1, which pro-

duces such cells at a constant rate, and a nonlinear generation term p1
V+C1

V T . Hence, we assume

that the body will provide a steady rate of T-cell production; accordingly, its associated rate is

constant.

In contrast, a natural death term δ1T removes T-cells at a proportion depending on the T-cells

count and the average T-cell life span, providing negative feedback to growth; lastly an “infected”

term, (K1V + K2M1)T , represents the T-cell’s infection by a HIV virion or infected macrophage,

dependent upon the infectious particle’s infection rate. Then, some proportion ψ of these newly in-

fected T-cells are converted into active infected T-cells, while the remainder are sent into temporary

dormancy as latent T-cells.

The infected T-cells (TI) receive, in addition to the number created by the virions and macrophages,

a supply of “activated” latent T-cells, at a rate α1TL. A natural death, as in the T-cell case, is pro-

vided by δ2T1, while a more interesting term, K3T1CTL, represents the extermination of infected
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T-cells by cytotoxic lymphocytes, one of the many attacker cells the immune system employs.

The proportion (1−ψ) of latent T-cells created by the virions and macrophages remain as sleeper

cells for some time; however at a rate α1TL, these dormant cells activate into the actively hostile

infected T-cells. Not surprisingly, latent T-cells suffer from a natural death rate δ3TL.

Macrophages (M) possess a natural birth rate, s2, as well as a natural death rate, δ4. In addition,

they are created in response to HIV infection, with rate K4VM . Once these macrophages are

created, they attempt to eliminate the virions. The virions fight back by infecting the macrophages,

transforming them into infected macrophages, which then serve to infect T-cells.

These infected macrophages (MI) die at a certain rate δ5 due to natural death, and are also hunted

by cytotoxic lymphocytes at a rate K6. Once infected, these macrophages assist the infected T-cells

in producing virions, which infect more T-cells and macrophages, which produce more virions. This

viscous circle provides positive feedback for the infection, allowing for massive amounts of virions

to be produced and flow rampant throughout the body. In addition, these infected macrophages

don’t attack the virions, their uninfected counterparts do.

The main defender of the body against infected cells is the cytotoxic lymphocyte (CTL), which

seeks to destroy the renegade body cells that HIV has infected and altered, namely TI and MI

(these attacks are carried out alongside the uninfected macrophages). These CTL, also known as

killer T-cells, are lymphocytes like the helper T-cells, T ; similarly, these CTL are produced at a

constant rate s3 by the bone marrow. Furtively, the original model contains an “adjustment factor”

K7TI +K8MI , which is “fitted” to make the model fit clinical data.

Lastly, and potentially most critically, the growth of virions V depends on a variety of parameters.

The viruses are continually produced by the infected T-cells and infected macrophages at rates K9

and K10, respectively. In addition, the virions are lost at some rates K12 and K13, proportional to

the infection of T-cells and macrophages by virions, respectively. Also, macrophages, in accordance

with their bodily function, kill the virions at a rate K13. Finally, the virion particles die at some

natural death rate δ7.

Note that all parameter values in (2.1) are positive. Typical values and ranges for the parameters

taken from [3] can be seen below in Table 1.
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Table 1: Parameter values and ranges

Number Notation Value Range Value taken from: Units

1 s1 10 5 - 36 [4] mm−3d−1

2 s2 0.15 0.03 - 0.15 [4] mm−3d−1

3 s3 5 - Fitted mm−3d−1

4 p1 0.2 0.01 - 0.5 Fitted d−1

5 C1 55.6 1 - 188 Fitted mm−3

6 K1 3.87 x 10−3 10−8 - 10−2 Fitted mm3d−1

7 K2 10−6 10−6 [4] mm3d−1

8 K3 4.5 x 10−4 10−4 - 1 Fitted mm3d−1

9 K4 7.45 x 10−4 - Fitted mm3d−1

10 K5 5.22 x 10−4 4.7 x 10−9 - 10−3 Fitted mm3d−1

11 K6 3 x 10−6 - Fitted mm3d−1

12 K7 3.3 x 10−4 10−6 - 10−3 Fitted mm3d−1

13 K8 6 x 10−9 - Fitted mm3d−1

14 K9 0.537 0.24 - 500 Fitted d−1

15 K10 0.285 0.005 - 300 Fitted d−1

16 K11 7.79 x 10−6 - Fitted mm3d−1

17 K12 10−6 - Fitted mm3d−1

18 K13 4 x 10−5 - Fitted mm3d−1

19 δ1 0.01 0.01 - 0.02 Fitted d−1

20 δ2 0.28 0.24 - 0.7 Fitted d−1

21 δ3 0.05 0.02 - 0.069 Fitted d−1

22 δ4 0.005 0.005 [4] d−1

23 δ5 0.005 0.005 [4] d−1

24 δ6 0.015 0.015 - 0.05 [6] d−1

25 δ7 2.39 2.39 - 13 [4] d−1

26 α1 3 x 10−4 - Fitted d−1

27 ψ 0.97 0.93 - 0.98 Fitted -
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2.1 Mathematical Analysis of (2.1)

Though the system (2.1) possesses a large number of steady states, the authors discovered at

least ten using standard parameter values and a computational root finder, one is often most

interested in the disease-free equilibrium. In this section, we investigate the stability properties of

the disease-free equilibrium state.

Our first result demonstrates that only one such equilibrium state exists when all populations of

(2.1) are positive.

Theorem 2.1. The only biological relevant steady state of (2.1) satisfying V ≡ 0 is

ENI :=

(
s1
δ1
, 0, 0,

s2
δ4
, 0,

s3
δ6
, 0

)

Hence, the only guarantee of viral clearance as t→∞ occurs when actively and latently infected

populations are also eradicated, resulting in healthy cell and macrophage populations tending

asymptotically to background values.

If we do not assume that all of the populations in (2.1) are positive, then there exists another

virus free steady state.

Theorem 2.2. A steady state of the system (2.1) satisfying V ≡ 0 is given by

E :=

(
s1

δ1 − ωK2K9
, ωK10,

ωK10ξ

K6(α1 + δ3ψ)
,
s2
δ4
,−ωK9,−

δ5
K6

, 0

)

where

ω =
s3K6 + δ5δ6

δ5(K7K10 −K8K9)
and ξ = (1− ψ)(δ2K6 − δ5K3)

The proofs of Theorem 2.1 and 2.2 are contained in Appendix A. Plugging in the standard

parameter values from Table 1 we get the following values for the populations:
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T = 1010.39 mm−3

TI = 54.57 mm−3

TL = −15.77 mm−3

M = 30 mm−3

MI = −102.83 mm−3

CTL = −1666.67 mm−3

V = 0 mm−3

The proof of Theorems 2.1 and 2.2 guarantee that ENI and E are the only two viral free steady

states. Also, assuming the parameter values in (2.1) are all positive, the steady state E given in

Theorem 2.2 is guaranteed to have a negative cytotoxic T-lymphocyte population. So, under no

parameter regime will the steady state E be biologically relevant. Additionally, it would not make

sense to set δ5 = 0 (even though this would take care of the problem) since this would imply that

the infected macrophages do not have a natural death rate, and can only be eliminated by the

cytotoxic T-lymphocytes.

2.2 Stability Analysis

Next, we provide necessary and sufficient conditions which guarantee the local asymptotic sta-

bility of the disease-free equilibrium ENI .

Theorem 2.3. The equilibrium state ENI is locally asymptotically stable if and only if R0 ≤ 1,

where

R0 = max{R1, R2, R3}

and

R1 =
K1K9

δ2K11

R2 =
K5K10

(K12 +K13)δ5

R3 =
K2K5K9s1s2

δ1δ2δ4δ5δ7 + δ4δ5K1K9s1 + δ1δ2K5K10s2
.
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The proof of Theorem 2.3 is also contained within Appendix A. Computing the basic reproduction

number of Theorem 2.3 by using the standard parameter values given in Table 1, we find that

R0 = 953 >> 1. Hence, as expected, the non-infective steady state ENI is not locally asymptotically

stable.

Upon further inspection, Theorem 2.3 implies that slight perturbations in parameter values (per-

turbations which will obviously occur naturally, as the body is an inherently stochastic mechanism)

may result in drastically different outcomes. In addition, the lack of asymptotic stability implies

that there is no “disk of convergence” for each parameter value; unless the body’s inner workings

reduce to parameter values which precisely mimic the values in [3], there is no guarantee that the

virus’ prominence will follow the predicted path of [3].

Note that in Theorem 2.3, the local asymptotic stability of the virus free steady state ENI depends

only on 15 of the 27 parameters in (2.1). This indicates that parameter reduction may be possible.

In Chapters 3 and 4 we will see a method by which to accomplish parameter reduction.
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CHAPTER 3

ACTIVE SUBSPACE MODELING

In this chapter we will use active subspaces in order to approximate the T-cell count at a specific

time given the parameter values in (2.1).

3.1 Defining An Active Subspace

The theory behind active subspaces begins with the matrix C defined as

C =

∫
(∇xf)(∇xf)Tρ dx (3.1)

where f is the quantity of interest in a given computational model, the gradients of f are taken

with respect to the model parameters, and ρ is a probability density. The matrix C is the average

of the outer product of the gradient of f with itself and has some useful properties that will allow

us to deduce information about f .

Looking at the entries of the matrix C

Cij =

∫
∂f

∂xi

∂f

∂xj
ρ dx

we can see that it is a symmetric matrix. Since it is a symmetric matrix, it permits the eigende-

compostion

C = WΛW T , where Λ = diag(λ1, . . . , λm), λ1 ≥ . . . ≥ λm ≥ 0 (3.2)

andW is an orthogonal matrix whose columns are the orthonormal eigenvectors wi, i = 1, . . . ,m.

From (3.2) we can solve for the eigenvalues of the C matrix. They are given by

λi =

∫ (
(∇xf)Twi

)2
ρ dx i = 1, . . . ,m. (3.3)

From (3.3) we can see that the eigenvalues of the C matrix are the mean squared directional
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derivatives of f , in the direction of the corresponding eigenvector. Thus, the eigenvalues of C give

us useful information about our quantity of interest because, for instance, if an eigenvalue is small

then (3.3) tells us that, on average, the quantity of interest f does not change significantly in the

direction of the corresponding eigenvector. Conversely, if the eigenvalue under consideration is

large, then we know that f changes considerably in the direction of the corresponding eigenvector

and therefore, we need to investigate what happens in that direction.

Then, once we have the eigendecomposition (3.2) we can separate the eigenvalues and eigenvectors

in the following way

Λ =

Λ1

Λ2

 , W =
[
W1 W2

]
. (3.4)

In (3.4), Λ1 contains the ‘large’ eigenvalues, Λ2 contains the ‘small’ eigenvalues, W1 contains the

eigenvectors associated with the ’large’ eigenvalues, and W2 contains the eigenvectors associated

with the ‘small’ eigenvalues.

An easy way to differentiate between the ‘large’ and ‘small’ eigenvalues is to plot the eigenvalues

on a log plot from greatest to least and look for gaps. Gaps in the plot will correspond to differences

of an order of magnitude. Put all of the eigenvalues before the gap into Λ1 and the rest in Λ2. A more

systematic method of choosing how many eigenvalues to put in Λ1 will be given in section 3.3.

With the decomposition (3.4), we can represent any element x in the parameter space in the

following way

x = WW T︸ ︷︷ ︸
I

x = W1W
T
1 x︸ ︷︷ ︸
y

+W2W
T
2 x︸ ︷︷ ︸
z

= W1y +W2z. (3.5)

Now, when we evaluate our quantity of interest at a specific value in the parameter space x, this

is the same as evaluating the quantity of interest at the point W1y +W2z, i.e.

f(x) = f(W1y +W2z).

Because of the way we defined W1 and W2 we know that small perturbations in y will not change

f much on average. But, small perturbations in z will, on average, change f significantly. For this

reason we define the active subspace to be the range of W1 and the inactive subspace to be the

range of W2.
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3.2 Approximating C

In this section we will be approximating the eigenvalues and eigenvectors of the matrix C defined

by (3.1) using a random sampling algorithm. The algorithm that we will be using is outlined in [1]

(Algorithm 3.1) and [2] and is given as follows:

Algorithm 3.1

1. Draw N samples {xj} independently according to the density function ρ.

2. For each parameter sample xj , compute ∇xfj = ∇xf(xj).

3. Approximate

C ≈ Ĉ =
1

N

N∑
j=1

(∇xfj)(∇xfj)T

4. Compute the eigendecompositions Ĉ = Ŵ Λ̂Ŵ T .

The last step is equivalent to computing the singular value decomposition of the matrix

1√
N

[∇xf1 . . .∇xfN ] = Ŵ
√

Λ̂V̂ , (3.6)

where it can be shown that the singular values are the square roots of the eigenvalues of Ĉ and

the left singular vectors are the eigenvectors of Ĉ. The singular value decomposition method of

approximating Ĉ was developed by Russi in his PhD thesis [5].

3.3 Approximating the T-cell Population After 1700 Days

Now we will apply Algorithm 3.1 to the HIV model (2.1) with our quantity of interest being the

T-cell count 1700 days after initial infection. We will choose each sample so that every element is

uniformly distributed between -1 and 1, i.e. xj ∼ [−1, 1]27. The T-cell count population was chosen

to be the quantity of interest because it is a good indicator of a patient’s overall health and 1700

days was chosen because typically, regardless of parameter values, the patient’s T-cell count will

not be zero after 1700 days. However, if a time later than 1700 days is chosen, then the patient’s
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T-cell count might be zero before the final time is reached.

Since we do not have an explicit function for the T-cell count after 1700 days as a function of our

parameters we can not explicitly compute the gradients required in step 3 of Algorithm 3.1. Instead

we will approximate the gradients using a forward finite difference with a step size of 10−6.

More specifically, for each of the random samples xj ∼ [−1, 1]27 we use the linear mapping

x =
1

2

(
diag(xu − xl)xj + (xu + xl)

)
,

where xu and xl are the upper and lower bounds of the parameters respectively, to map the

normalized parameters into their biologically relevant range. Here x are the parameter values

inputted into the simulation. Then, a stiff differential equations solver in MATLAB, ode23s, is

used to calculate the T-cell count after 1700 days. Then, one by one we will perturb each of the

27 parameters by 10−6 and again calculate the T-cell count after 1700 days. With these two values

we then use a forward finite difference to approximate the gradient of the T-cell count after 1700

days with respect to the model parameters.

For the above mapping, xu and xl are taken to be 2.5% above and below the typical values

given in Table 1. The reason the ranges in Table 1 were not used is twofold. First, not all of

the parameters are given ranges. Secondly, when the entire ranges were used the results of the

simulation appeared to be very different than what is expected biologically. Highly oscillatory

solutions were found for the T-cell count as a function of time. Because of this, we chose to limit

the parameter ranges to 2.5% above and below the typical value. For parameter values within this

range, all solutions of the T-cell count as a function of time were shown to exhibit all three stages

of the HIV infection.

Figure 1 below shows the approximate eigenvalues of the matrix C using the T-cell count after

1700 days as the quantity of interest. From this figure we can see that there is a gap between the

first and second eigenvalues.

In order to more accurately test the best decomposition of Λ we can use the follow measure of

separation

λ̂k =
λk − λk+1

λ1
, k = 1, 2, . . . , 26. (3.7)

Then, the dimension of the active subspace, i.e. the number of eigenvalues put into Λ1, will be

12
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Figure 1: Approximation of eigenvalues of C using 1000 random samples.

given by

dim = argmax
k=1,...,26

λ̂k (3.8)

While the index of the largest value of λ̂k tells us where the largest gap in the eigenvalues of C is

located, it is most convenient to only look at the first two values λ̂1 and λ̂2. By doing this, we limit

the dimension of the active subspace to one and two respectively, which allows us to easily plot the

quantity of interest as a function of the active subspace and allows us to fit a curve or surface to

the data. Plotting the the values of λ̂k results in Figure 2 below.

Clearly, with the measure of separation given by (3.7), the best choice for the dimension of the

active subspace is one. Consequently, we put λ1 in the matrix Λ1 and the rest of the eigenvalues

λi, i = 2, . . . , 27, along the diagonal of the matrix Λ2. From the definition of the active subspace

given in section 3.1 the active subspace will be the span of the first eigenvector.

Figure 3 shows the eigenvector corresponding to the largest eigenvalue shown in Figure 1. We

can see that there are three parameters with weights greater than 0.3. These are parameters 9, 22,
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Figure 2: Measure of separation for eigenvalues of C.

and 25. From Table 1 we can see that these parameters are K4, δ4, and δ7 which represent the

increase in macrophage population due to the immune system, the death rate of the macrophage

population, and the death rate of the virus population respectively. So, small perturbations in

these parameters will change the T-cell count after 1700 days because they are the most heavily

weighted. Whereas, changing the parameters whose weights are at or near zero will not change the

T-cell count after 1700 days significantly.

Looking at the T-cell count along the active subspace results in Figure 4. We will call plots of

the quantity of interest along the active subspace sufficient summary plots, the term used for these

plots in [1]. From Figure 4 (left) we can see a trend, namely that as you increase the value of the

active variable, the inner product of the weight vector with the normalized parameter values, then

the T-cell count decreases.

So, in order to be able to approximate the T-cell count after 1700 days we will fit a four pa-

rameter arctangent function to the data. We did this by using the MATLAB command lsqcurvefit

which minimizes the residual, in the least squares sense, of the difference in the data and the

14
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Figure 3: Approximation of the 1st eigenvector of C using 1000 random samples.
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Figure 4: Sufficient summary plot after 1700 days (left). Approximation to the T-cell count after
1700 days (right).
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approximation. Using this we find that the data is best fit by the function

T (x) = −79.2532− 492.5680tan−1(0.8933x− 1.9069).

The result of plotting the above approximation of the T-cell count after 1700 days on top of the

simulation data can be seen in Figure 4 (right).

In order to test the efficacy of the above approximation we ran 100 simulations and computed

the relative error in the approximation. The results of this can be seen in Figure 5 below. Figure 5

shows that at most the approximation is slightly less than 10% off from the value given by solving

(2.1) using a stiff ordinary differential equations solver. Furthermore, for all but seven of the

simulations, the approximation was less than 5% off.
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CHAPTER 4

Dynamic Active Subspaces

Now that we have calculated the approximation for the T-cell count at 1700 days along the active

subspace, we can repeat the methods used in the previous section for many different time values in

order to create a global in time T-cell approximation. In this section we will go over methods for

doing this.

4.1 Method

First, it is necessary to choose what time values to approximate the T-cell count at. We chose to

break up the time from 0 to 3400 days into 55 non-uniform intervals. The time discretization can

be found in Appendix B. After partitioning the time interval from 0 to 3400 days into non-uniform

partitions we then computed the eigenvalues and eigenvectors at each time step.

Next, we need to orient the eigenvectors to be in approximately the same direction so that they

transition smoothly from one time step to the next. By this we mean that from one time step to the

next, the magnitude of the components of the consecutive weight vectors differ only slightly, but

they have different signs. So, we multiply certain weight vectors by −1 so that they are all oriented

the same. The active subspace method given in section 3.1 and 3.2 gives the active subspace up

to a plus or minus sign. This occurs because the active subspace is based on the eigenvectors

of the matrix C, and multiplying an eigenvector by a constant results in another eigenvector and

multiplying an orthonormal vector by negative one preserves the orthonormality of the vector.

After orienting the weight vectors, we computed and fitted curves to the sufficient summary plots.

For each sufficient summary plot we used one of three approximations. The three approximations

used were linear approximations, arctangent approximations, or arctangent approximations multi-

plied by a heaviside step function. The latter approximation was used for later times when for a

certain value of the active variable all T-cell count values to the right of the active variable were

zero, and for the T-cell count values to the left of the active variable the fit resembled an arctangent

function. For example, if we look at Figure 6 we can see that for values of the active variable greater

than about 0.5 the T-cell count is zero, but for values of the active variable greater than 0.5 T-cell

count trend resembles an arctangent function.
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Figure 6: Sufficient summary plot after 2600 days using 1000 trials.

We used the arctangent function multiplied by a heaviside function approximation for time

values greater than or equal to 1800 days. To compute the fits for these sufficient summary plots,

we remove the data points corresponding to a zero T-cell value and fit a four parameter arctangent

function to the leftover data points. Then, we approximate the zero of the resulting arctangent

function in MATLAB using the fzero function. Next, we multiply the arctangent approximation by

the heaviside function with the argument of the heaviside function being the zero of the arctangent

approximation minus the active variable. The result of this process on the sufficient summary plot

after 2600 days can be seen below in Figure 7.

The next step is to piece together the approximations using linear basis functions, i.e.

T (x, t) ≈
55∑
i=1

Tti(x)φti(t) (4.1)

where x is the active variable, Tti(x) is the approximation to the T-cell count in the ith time
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Figure 7: Sufficient summary plot after 2600 days with the approximation.

interval, and φti(t) is the linear basis function given by

φti(t) =



t− ti−1
ti − ti−1

: ti−1 ≤ t ≤ ti

ti+1 − t
ti+1 − ti

: ti ≤ t ≤ ti+1

0 : t /∈ [ti−1, ti+1]

4.2 An Example

To see an example of how dynamic active subspaces works, suppose we have the weight vectors

and an approximation to the sufficient summary plot for T-cell counts at 60 and 65 days and we

want to approximate what the T-cell count after 62 days will be.

The sufficient summary plots and weight vectors for the T-cell count after 60 and 65 days are

shown below in Figures 8 and 9.
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Figure 8: T-cell approximation after 60 days (left). First eigenvector of C with the quantity of
interest being the T-cell count after 60 days (right).
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Figure 9: T-cell approximation after 65 days (left). First eigenvector of C with the quantity of
interest being the T-cell count after 65 days (right).

The T-cell count for any time t between 60 and 65 is given by

T (x, t) ≈ T60(x)φ60(t) + T65(x)φ65(t), 60 ≤ t ≤ 65.

Plugging in t = 62 into the above approximation gives the results shown below in Figure 10.
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Figure 10 shows that the approximation is in good agreement with the data points.
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Figure 10: Sufficient summary plot after 62 days with the approximation.

Also, the approximation to the weight vector at 62 days is a linear interpolation between the

weight vectors at 60 days and 65 days. Figure 11 below shows the absolute error of the approxi-

mation to the weight vector and the actual weight vector computed using algorithm 3.1.

4.3 Results

The results of computing the active subspace for 55 time steps can be seen below in Figure 12.

From Figure 12 we can see that the trends in the sufficient summary plot transition smoothly from

one time step to the next. Also, we can see the transitions back and forth from linear trends to

arctangent trends. Lastly, for the times greater than or equal to 1800 days we can see the trends

resemble arctangent function multiplied by heaviside step functions.
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Figure 11: Absolute error in the approximation to the weight vector after 62 days.
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Figure 12: Sufficient summary plots throughout the course of the infection

When computing the measure of separation for all 55 time steps, Figure 13 (left) below shows

the best dimension of the active subspace at each time step using (3.8)
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Figure 13: Dimension of the active subspace for each time step (left). Eigenvalues of the matrix C
after 2000 days (right).
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Figure 14: T-cell approximation after 65 days (left). First eigenvector of C with the quantity of
interest being the T-cell count after 65 days (right).

From Figure 13 (left) we can see that at time step 48, which corresponds to 2000 days after

infection, the best choice for the dimension of the active subspace is two. The plot of the eigenvalues

of the matrix C can be seen in Figure 13 (right).

Clearly, the largest gap in the eigenvalues occurs between the second and third eigenvalues.

Figure 14 shows the one and two dimensional sufficient summary plots respectively for the T-cell

count after 2000 days.

Looking at the two dimensional sufficient summary plot in Figure 14 (right), we can see that

there is not much variation in the T-cell count in the vertical direction. All of the variation in the

T-cell count appears to be in the horizontal direction. Also, in Figure 14 (left) we can see that

the one dimensional sufficient summary plot clearly shows a distinct trend. For these reasons, and

also because of the simplicity in fitting a curve, rather than a surface, we chose to just use the one

dimensional trend.

After following the method outlined in Section 4.1, Figure 15 below show the plots of the T-cell

count with our approximation to the T-cell count using dynamic active subspaces. All of the data

fits and the time discretization can be found in Appendix B.

From Figure 15 we can see that the approximation is not so good after 2000 days. This is

because from 2000 days to 3400 days (or until the T-cell count hits zero) the step size in our global

approximation is 200 days. In order to get a more accurate approximation we could decrease this
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Figure 15: Global approximation of the T-cell count.

step size.

In order to test the accuracy of our analytical approximation to solutions of (2.1), we ran 100

simulations and computed the relative error in our approximation. For these error calculations,

we randomly picked a time uniformly between 0 and 1500 days, and also randomly picked the

parameter values uniformly within their ranges. The results can be seen below in Figure 16. From

Figure 16 we can see that for all but four simulations our approximation was less than 5 percent

off from the value given by the stiff differential equation solver, ode23s, in MATLAB.
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CHAPTER 5

Conclusion

In this paper we considered the system (2.1) which is one of the first to accurately represent

all three stages of the HIV infection. We showed that only one biologically feasible virus free

steady state exists and gave conditions which guarantee the asymptotic stability of this steady

state. Then, by using dynamic active subspaces, we reduced the computational model (2.1) into an

analytic model (4.1). The efficacy of the model (4.1) was investigated by calculating the relative

error compared to the system (2.1) solved with a stiff differential equations solver.

Going forward, we can now look at reducing the dimension of the system (2.1). This can be

accomplished by looking at the weight vectors throughout the entire course of the infection and

seeing which parameter weights were at or near zero the whole time. Then, by eliminating these

interactions from (2.1) we hope to be able to derive a simpler system that still accurately predicts

all three stages of the HIV infection.

Another direction to look in will be computing errors and convergence results for the dynamic

active subspaces. The methods used in Chapters 3 and 4 can be used for any system of differential

equations. So, by examining how the error, L2 or L∞, decreases with the step size h = max{ti+1−

ti | i = 0, . . . ,N− 1} we can determine a rate of convergence for this scheme.
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APPENDIX A

PROOFS OF THEOREMS 2.1, 2.2, and 2.3

In the appendix, we outline the proofs of the theorems given in Chapter 2.

Proof of Theorem 2.1. Beginning with (2.1), we search for steady states by assuming that all time

derivatives are zero within the equations, and attempt to solve for the constant states (T, TI , TL,M,MI , CTL, V ).

Assuming V = 0 within the system of ODEs provides a significant reduction in the complexity of

the system. The M equation implies M = s2
δ4

. Using this within the equation for MI implies that

MI = 0, and it follows from the equation for V that TI = 0 as well. Collecting these terms in the

CTL differential equation implies that CTL = s3
δ6

. The equations for TI and TL together imply

TL = 0, and finally, with the remaining populations determined, the first equation implies T = s1
δ1

.

Hence, the only non-infective steady state is

ENI :=

(
s1
δ1
, 0, 0,

s2
δ4
, 0,

s3
δ6
, 0

)
.

Proof of Theorem 2.2. Beginning the same way as in the above proof, we set all time derivatives

equal to zero and also assume V = 0. Once again the M equation implies M = s2
δ4

. Using this

within the equation for MI implies that either MI = 0 or CTL = − δ5
K6

. For this steady state we

choose the latter. Then, multiplying the TI equation by (1 − ψ) and the TL equation by ψ and

adding gives

0 = (α1 + ψδ3)TL +

(
(1− ψ)K3δ5

K6
− (1− ψ)δ2

)
TI (A.1)

Creating a linear system with (A.1), the CTL equation, and the V equation and then solving for

TI , TL, and MI gives

TI = K10ω

TL =
K10ξω

K6(α1 + δ3ψ)

MI = −K9ω
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where

ω =
s3K6 + δ5δ6

δ5(K7K10 −K8K9)
and ξ = (1− ψ)(δ2K6 − δ5K3)

Lastly, plugging in the value of MI into the T equation and solving for T gives

T =
s1

δ1 − ωK2K9

Finally, we sketch the proof of the asymptotic stability result, which utilizes a standard method

from the theory of dynamical systems (i.e. the Hartman-Grobman and Routh-Hurtwitx theorems)

to determine the qualitative behavior of (2.1).

Proof of Theorem 2.3. We begin by computing the Jacobian of (2.1) evaluated at the steady states

ENI

J(ENI) =



−δ1 0 0 0 −K2s1
δ1

0 (p1−c1K1)s1
c1δ1

0 − δ2δ6+K3s3
δ6

a1 0 pK2s1
δ1

0 pK1s1
δ1

0 0 −a1−δ3 0 − (p−1)K2s1
δ1

0 − (p−1)K1s1
δ1

0 0 0 −δ4 0 0 (K4−K5)s2
δ4

0 0 0 0 − δ5δ6+K6s3
δ6

0 K5s2
δ4

0 K7s3
δ6

0 0 K8s3
δ6

−δ6 0

0 K9 0 0 K10 0 −δ7−K11s1
δ1

− (K12+K13)s2
δ4



From this, we can see that three eigenvalues are certainly real and negative

λ1 = −δ1, λ2 = −δ4, λ3 = −δ6.

The remaining four eigenvalues are more difficult to identify as they are determined by the quartic

equation

a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 0

where

a4 = δ1δ4δ
2
6 > 0
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a3 = α1δ1δ4δ
2
6 + δ4δ

2
6K11s1 + δ1δ

2
6K12s2 + δ1δ

2
6K13s2 + δ1δ4δ6K3s3

+δ1δ4δ6K6s3 + δ1δ2δ4δ
2
6 + δ1δ3δ4δ

2
6 + δ1δ4δ5δ

2
6 + δ1δ4δ7δ

2
6

> 0

and a0, a1, and a2 are much longer and not necessarily positive.

Instead, we must impose conditions on each term to guarantee positivity, which is needed for the

roots of the quartic to possess negative real part by the Routh-Hurwitz criteria. In particular, the

two negative terms in a2 are dominated by the remaining positive terms if and only if

K1K9 ≤ δ2K11

and

K5K10 ≤ (K12 +K13)δ5.

The same conditions imply the positivity of a1. For a0, the negative terms are dominated by

positive terms if and only if these two conditions hold and

K2K5K9s1s2 ≤ δ1δ2δ4δ5δ7 + δ4δ5K1K4s1 + δ1δ2K5K10s2.

The final inequalities of the Routh-Hurwitz criteria are also implied by these conditions. Hence,

defining

R1 =
K1K9

δ2K11

R2 =
K5K10

(K12 +K13)δ5

R3 =
K2K5K9s1s2

δ1δ2δ4δ5δ7 + δ4δ5K1K9s1 + δ1δ2K5K10s2

and

R0 = max{R1, R2, R3}

we see that the equilibrium is locally asymptotically stable if and only if R0 ≤ 1.
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APPENDIX B

TIME DISCRETIZATION AND CURVE FITS

Throughout this paper we used three different curve fits. They are given as follows:

T (X, x) = X1x+X2 (B.1)

T (X, x) = X1 +X2arctan
(
X3x−X4

)
(B.2)

T (X, x) = U
(
X5 − x

)(
X1 +X2arctan

(
X3x−X4

))
(B.3)

In (B.3), U(x) represents the heaviside step function. In the table below, if only X1 and X2 are

given then fit (B.1) was used. If only X1, X2, X3, and X4 are given the fit (B.2) was used. Lastly,

if all of X1, X2, X3, X4, and X5 are specified, then fit (B.3) was used.

Step Time (days) X1 X2 X3 X4 X5

1 2 -0.7001 999.9998 - - -

2 24 -7.5385 999.8561 - - -

3 30 -9.1399 999.1159 - - -

4 31 -9.4223 998.7555 - - -

5 32 -9.7547 998.2877 - - -

6 33 -10.0848 997.5888 - - -

7 34 -10.8047 996.5409 - - -

8 35 -11.8506 994.9286 - - -

9 36 409.5503 -391.4344 5.1000 12.9873 -

10 37 920.4146 -62.0121 1.3540 2.2269 -

11 38 831.2210 -123.0287 1.8728 3.2643 -

12 39 883.6065 -87.2336 1.7616 2.1759 -

13 40 822.9661 -132.5512 1.7187 2.1786 -

14 45 690.1227 -264.6748 1.1813 0.6638 -

15 50 700.7747 -280.6336 1.1062 -0.5182 -

16 55 666.5974 -202.0994 1.4524 -1.7229 -

17 60 676.6785 -179.1918 1.5455 -3.0025 -
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18 65 851.8952 -306.5000 0.6299 -2.9093 -

19 70 -18.5318 494.0200 - - -

20 75 -18.1534 514.7776 - - -

21 80 -18.3724 534.3451 - - -

22 90 -19.8289 568.7354 - - -

23 100 -22.3309 595.8887 - - -

24 110 -25.6259 614.6021 - - -

25 120 -29.7189 624.2096 - - -

26 130 -33.4046 625.7675 - - -

27 140 -35.7335 622.7802 - - -

28 160 -36.2728 616.0632 - - -

29 180 -36.4516 613.5536 - - -

30 200 -37.4263 611.6527 - - -

31 300 -41.0519 596.0775 - - -

32 400 -42.9225 579.6616 - - -

33 500 -44.1441 564.7162 - - -

34 600 -45.8963 551.3280 - - -

35 700 -47.6779 539.2665 - - -

36 800 -49.4288 528.3012 - - -

37 900 -51.8465 518.2273 - - -

38 1000 -55.4417 508.8040 - - -

39 1100 -59.1658 499.9343 - - -

40 1200 -62.0424 491.0517 - - -

41 1300 -68.1405 482.0779 - - -

42 1400 -7.0270 x 104 -4.5331 x 104 0.0016 x 104 0.0099 x 104 -

43 1500 -6.9171 x 104 -4.4546 x 104 0.0032 x 104 0.0134 x 104 -

44 1600 -6.9172 x 104 -4.4544 x 104 0.0034 x 104 0.0133 x 104 -

45 1700 -6.8164 x 104 -4.3859 x 104 0.0056 x 104 0.0161 x 104 -

46 1800 -364.8267 -664.2612 1.3581 2.7775 1.5945

47 1900 -314.2482 -612.6825 1.6793 2.8535 1.3639
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48 2000 57.2136 -354.2093 1.5486 1.8115 1.2794

49 2200 -82.1383 -442.8312 2.0436 2.0987 0.9351

50 2400 -178.0935 -497.9389 2.7357 2.2393 0.6819

51 2600 -70.6040 -423.2509 2.9292 1.6720 0.5133

52 2800 -134.7672 -459.1508 3.6991 1.5891 0.3479

53 3000 -17.5600 -375.5894 4.0446 0.9448 0.2220

54 3200 -214.5754 -504.5574 5.3670 0.9768 0.0976

55 3400 -17.1234 -365.0256 5.7169 0.0915 0.0078
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APPENDIX C

CODES

This is the code used to calculate the weight vector for the one dimensional active subspace.

1 %X(1) −−> T = Healthy T−c e l l s

2 %X(2) −−> T I = I n f e c t e d T−c e l l s

3 %X(3) −−> T L = Latent ly−i n f e c t e d T−c e l l s

4 %X(4) −−> M = Healthy macrophages

5 %X(5) −−> M I = I n f e c t e d macrophages

6 %X(6) −−> C = Cytotoxic T−lymphocytes populat ion

7 %X(7) −−> V = HIV populat ion

8

9 %I n i t i a l i z e a lgor i thm parameters

10 N = 1000 ; %Number o f samples f o r each time step

11 time = [ ] ; %Time va lue s

12 h = 1e−6; %F i n i t e d i f f e r e n c e s tep s i z e

13 t r i a l = 1 ; %T r i a l number ( used when sav ing f i g u r e s )

14

15 %Pre−a l l o c a t e memory

16 q = ze ro s (N, numel ( time ) ) ; %Output o f i n t e r e s t (T−c e l l count

a f t e r time ( i i ) days )

17 qplus = ze ro s (27 ,1 ) ; %Perturbed output o f i n t e r e s t

18 gradq = ze ro s (27 ,N, numel ( time ) ) ; %Gradient o f output o f i n t e r e s t

19 Xs = ze ro s (N, 2 7 , numel ( time ) ) ; %To save the normal ized paramters

20 w = ze ro s (27 , numel ( time ) ) ; %Weight ve c to r s

21 eva lue s = ze ro s (27 , numel ( time ) ) ; %Eigenva lues o f the C matrix

22 d i f f = ze ro s ( numel ( time ) ,1 ) ; %D i f f e r e n c e s in l a r g e s t and s m a l l e s t

element o f gradq

23 I = eye (27) ; %27x27 i d e n t i t y matrix

24

25 %Set upper and lower bounds f o r paramters

26 x l = . 9 7 5 ∗ [ 1 0 ; . 1 5 ; 5 ; . 2 ; 5 5 . 6 ; 3 . 8 7 e−3;1e−6;4 .5 e−4;7.45 e−4;5.22 e−4;3e
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−6;3 .3 e−4;6e−9;5.37 e−1;2.85 e−1;7.79 e−6;1e−6;4e

− 5 ; . 0 1 ; . 2 8 ; . 0 5 ; . 0 0 5 ; . 0 0 5 ; . 0 1 5 ; 2 . 3 9 ; 3 e − 4 ; . 9 7 ] ;

27 xu = 1 . 0 2 5 ∗ [ 1 0 ; . 1 5 ; 5 ; . 2 ; 5 5 . 6 ; 3 . 8 7 e−3;1e−6;4 .5 e−4;7.45 e−4;5.22 e−4;3e

−6;3 .3 e−4;6e−9;5.37 e−1;2.85 e−1;7.79 e−6;1e−6;4e

− 5 ; . 0 1 ; . 2 8 ; . 0 5 ; . 0 0 5 ; . 0 0 5 ; . 0 1 5 ; 2 . 3 9 ; 3 e − 4 ; . 9 7 ] ;

28

29 %Set i n i t i a l c o n d i t i o n s

30 IC = [1000 ,0 , 0 , 30 , 0 , 500 , 1 e−3] ;

31

32 %Run s imu la t i on

33 f o r i i = 1 : numel ( time )

34

35 f o r j j = 1 :N

36

37 %Randomly sample parameters with in acceptab l e ranges

38 Xs( j j , : , i i ) = 2∗ rand (1 ,27 ) − 1 ;

39 params = 1/2∗( d iag ( xu − x l ) ∗Xs( j j , : , i i ) ’ + ( xu + x l ) ) ;

40

41 %Create func t i on handles

42 f 1 = @(X) params (1) + params (4 ) /(X(7) + params (5 ) ) ∗X(7) ∗X(1) −

params (19) ∗X(1) − ( params (6) ∗X(7) + params (7) ∗X(5) ) ∗X(1) ;

43 f 2 = @(X) params (27) ∗( params (6) ∗X(7) + params (7) ∗X(5) ) ∗X(1) +

params (26) ∗X(3) − params (20) ∗X(2) − params (8 ) ∗X(2) ∗X(6) ;

44 f 3 = @(X) (1 − params (27) ) ∗( params (6) ∗X(7) + params (7) ∗X(5) ) ∗X

(1) − params (26) ∗X(3) − params (21) ∗X(3) ;

45 f 4 = @(X) params (2) + params (9 ) ∗X(7) ∗X(4) − params (10) ∗X(7) ∗X

(4) − params (22) ∗X(4) ;

46 f 5 = @(X) params (10) ∗X(7) ∗X(4) − params (23) ∗X(5) − params (11) ∗X

(5) ∗X(6) ;

47 f 6 = @(X) params (3) + ( params (12) ∗X(2) + params (13) ∗X(5) ) ∗X(6)

− params (24) ∗X(6) ;

48 f 7 = @(X) params (14) ∗X(2) + params (15) ∗X(5) − params (16) ∗X(7) ∗X
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(1 ) − ( params (17) + params (18) ) ∗X(7) ∗X(4) − params (25) ∗X(7) ;

49 f = @( t ,X) [ f 1 (X) , f 2 (X) , f 3 (X) , f 4 (X) , f 5 (X) , f 6 (X) , f 7 (X) ] ’ ;

50

51 %Numerical ly s o l v e system o f ODEs

52 opt ions = odeset ( ’ events ’ , @totalZero ) ;

53 [ tout , f out ] = ode23s ( f , [ 0 , time ( i i ) ] , IC , opt ions ) ;

54 q ( j j , i i ) = fout ( end , 1 ) ;

55

56 f o r kk = 1:27

57

58 %Numerical ly s o l v e perturbed system o f ODEs

59 xplus = Xs( j j , : , i i ) ’ + h∗ I ( : , kk ) ;

60 paramsplus = 1/2∗( d iag ( xu − x l ) ∗ xplus + ( xu + x l ) ) ;

61 f 1 = @(X) paramsplus (1 ) + paramsplus (4 ) /(X(7) + paramsplus

(5 ) ) ∗X(7) ∗X(1) − paramsplus (19) ∗X(1) − ( paramsplus (6 ) ∗X

(7) + paramsplus (7 ) ∗X(5) ) ∗X(1) ;

62 f 2 = @(X) paramsplus (27) ∗( paramsplus (6 ) ∗X(7) + paramsplus

(7 ) ∗X(5) ) ∗X(1) + paramsplus (26) ∗X(3) − paramsplus (20) ∗X

(2) − paramsplus (8 ) ∗X(2) ∗X(6) ;

63 f 3 = @(X) (1 − paramsplus (27) ) ∗( paramsplus (6 ) ∗X(7) +

paramsplus (7 ) ∗X(5) ) ∗X(1) − paramsplus (26) ∗X(3) −

paramsplus (21) ∗X(3) ;

64 f 4 = @(X) paramsplus (2 ) + paramsplus (9 ) ∗X(7) ∗X(4) −

paramsplus (10) ∗X(7) ∗X(4) − paramsplus (22) ∗X(4) ;

65 f 5 = @(X) paramsplus (10) ∗X(7) ∗X(4) − paramsplus (23) ∗X(5) −

paramsplus (11) ∗X(5) ∗X(6) ;

66 f 6 = @(X) paramsplus (3 ) + ( paramsplus (12) ∗X(2) + paramsplus

(13) ∗X(5) ) ∗X(6) − paramsplus (24) ∗X(6) ;

67 f 7 = @(X) paramsplus (14) ∗X(2) + paramsplus (15) ∗X(5) −

paramsplus (16) ∗X(7) ∗X(1) − ( paramsplus (17) + paramsplus

(18) ) ∗X(7) ∗X(4) − paramsplus (25) ∗X(7) ;

68 f = @( t ,X) [ f 1 (X) , f 2 (X) , f 3 (X) , f 4 (X) , f 5 (X) , f 6 (X) , f 7 (X) ] ’ ;
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69 opt ions = odeset ( ’ events ’ , @totalZero ) ;

70 [ tout , f out ] = ode23s ( f , [ 0 , time ( i i ) ] , IC , opt ions ) ;

71 qplus ( kk ) = fout ( end , 1 ) ;

72

73 end

74

75 %Calcu la te the g r a d i e n t s us ing f i n i t e d i f f e r e n c e s

76 gradq ( : , j j , i i ) = ( qplus − q ( j j , i i ) ) /h ;

77

78 end

79 end

80

81 %Compute the weights , e i genva lue s , and p lo t r e s u l t s

82 c l o s e a l l

83 f o r nn = 1 : numel ( time )

84

85 %Compute the s i n g u l a r va lue decomposit ion o f C

86 [U, S ,V] = svd (1/ s q r t (N) ∗gradq ( : , : , nn ) ) ;

87 w( : , nn ) = U( : , 1 ) ;

88 w2 = U( : , 2 ) ;

89

90 %Compute the e i g e n v a l u e s o f C

91 eva lue s ( : , nn ) = diag (S . ˆ 2 ) ;

92

93 %Plot the e i g e n v a l u e s o f C on a log p l o t

94 f i g = f i g u r e ;

95 semi logy ( 1 : 2 7 , eva lue s ( : , nn ) , ’ .−b ’ , ’ MarkerSize ’ ,30)

96 t i t l e ( [ ’ E igenva lues o f C After ’ i n t 2 s t r ( time (nn) ) ’ Days (N = ’

i n t 2 s t r (N) ’ ) ’ ] , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ ,16 , ’ FontWeight ’

, ’ bold ’ , ’ Po s i t i on ’ , [ 1 2 . 5 180 0 ] )

97 xlim ( [ 0 , 2 8 ] )

98 s e t ( get ( gca , ’ T i t l e ’ ) , ’ Units ’ , ’ Normalized ’ , ’ Po s i t i on ’ , [ . 4 5 , 1 . 0 4 ] )

42



99 s e t ( f i g , ’ PaperUnits ’ , ’ i n che s ’ , ’ PaperSize ’ , [ 1 0 8 ] )

100 hgexport ( f i g , [ ’ Evalues ’ i n t 2 s t r ( t r i a l ) ’ ’ i n t 2 s t r ( time (nn) ) ’ . pdf

’ ] , hgexport ( ’ f a c t o r y s t y l e ’ ) , ’ Format ’ , ’ pdf ’ ) ;

101

102 %Plot the weight vec to r

103 f i g = f i g u r e ;

104 p lo t ( 1 : 2 7 ,w( : , nn ) , ’ .−b ’ , ’ MarkerSize ’ ,30)

105 t i t l e ( [ ’ Weight Vector After ’ i n t 2 s t r ( time (nn) ) ’ Days (N = ’

i n t 2 s t r (N) ’ ) ’ ] , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ ,16 , ’ FontWeight ’

, ’ bold ’ , ’ Po s i t i on ’ , [ 1 2 . 5 1 .05 0 ] )

106 x l a b e l ( ’ Parameters ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ , 14)

107 y l a b e l ( ’ Parameter Weights ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i ze ’ ,14)

108 s e t ( get ( gca , ’ T i t l e ’ ) , ’ Units ’ , ’ Normalized ’ , ’ Po s i t i on ’ , [ . 4 5 , 1 . 0 4 ] )

109 xlim ( [ 0 , 2 8 ] )

110 ylim ( [ −1 ,1 ] )

111 s e t ( f i g , ’ PaperUnits ’ , ’ i n che s ’ , ’ PaperSize ’ , [ 1 0 8 ] )

112 hgexport ( f i g , [ ’WV’ i n t 2 s t r ( t r i a l ) ’ ’ i n t 2 s t r ( time (nn) ) ’ . pdf ’ ] ,

hgexport ( ’ f a c t o r y s t y l e ’ ) , ’ Format ’ , ’ pdf ’ ) ;

113

114 %Plot the abso lu t e va lue o f weight vec to r components

115 f i g = f i g u r e ;

116 p lo t ( 1 : 2 7 , abs (w( : , nn ) ) , ’ .−b ’ , ’ Markers ize ’ , 30)

117 t i t l e ( [ ’ Parameter Weight After ’ i n t 2 s t r ( time (nn) ) ’ Days (N = ’

i n t 2 s t r (N) ’ ) ’ ] , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ ,16 , ’ Fontweight ’

, ’ bold ’ , ’ Po s i t i on ’ , [ 1 2 . 5 1 .05 0 ] )

118 x l a b e l ( ’ Parameters ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ , 14)

119 y l a b e l ( ’ Magnitude o f Weight ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ ,14)

120 xlim ( [ 0 , 2 8 ] )

121 ylim ( [ 0 , 1 ] )

122 s e t ( f i g , ’ PaperUnits ’ , ’ i n che s ’ , ’ PaperSize ’ , [ 1 0 8 ] )

123 hgexport ( f i g , [ ’WVmag’ i n t 2 s t r ( t r i a l ) ’ ’ i n t 2 s t r ( time (nn) ) ’ . pdf ’

] , hgexport ( ’ f a c t o r y s t y l e ’ ) , ’ Format ’ , ’ pdf ’ ) ;
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124

125 %S u f f i c i e n t summary p lo t

126 f i g = f i g u r e ;

127 p lo t (Xs ( : , : , nn ) ∗w( : , nn ) , q ( : , nn ) , ’ ko ’ ) ;

128 t i t l e ( [ ’ S u f f i c i e n t Summary Plot After ’ i n t 2 s t r ( time (nn) ) ’ Days (N

= ’ i n t 2 s t r (N) ’ ) ’ ] , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ ,16 , ’

FontWeight ’ , ’ bold ’ , ’ Po s i t i on ’ , [− .15 1130 0 ] )

129 x l a b e l ( ’$wˆT x j $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ ,14)

130 y l a b e l ( ’T−c e l l count ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ ,14)

131 s e t ( get ( gca , ’ T i t l e ’ ) , ’ Units ’ , ’ Normalized ’ , ’ Po s i t i on ’ , [ . 4 5 , 1 . 0 4 ] )

132 xlim ( [ −2 ,2 ] )

133 ylim ( [ 0 , 1 1 0 0 ] )

134 a x i s square ;

135 g r id on ;

136 s e t ( f i g , ’ PaperUnits ’ , ’ i n che s ’ , ’ PaperSize ’ , [ 1 0 8 ] )

137 hgexport ( f i g , [ ’SSP ’ i n t 2 s t r ( t r i a l ) ’ ’ i n t 2 s t r ( time (nn) ) ’ . pdf ’ ] ,

hgexport ( ’ f a c t o r y s t y l e ’ ) , ’ Format ’ , ’ pdf ’ ) ;

138

139 %Find the d i f f e r e n c e o f max and min gradq to check f o r e r r o r s

140 d i f f (nn ) = max(max( gradq ( : , : , nn ) ) ) − min (min ( gradq ( : , : , nn ) ) ) ;

141

142 end

143

144 %Save the t r i a l data

145 save ( [ ’ t r i a l ’ i n t 2 s t r ( t r i a l ) ’ data . mat ’ ] , ’ eva lue s ’ , ’Xs ’ , ’ q ’ , ’w ’ , ’ d i f f ’ ,

’ time ’ )

This code is used to stop the stiff differential equations solver when the T-cell count is almost at

zero.

1 f unc t i on [ val , i sterm , d i r ] = t o t a l Z e r o (˜ , y )

2

3 va l = min ( ( y (7 ) − 1e−16) , ( y (1 ) − 1) ) ;
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4 i s t e rm = 1 ;

5 d i r = −1;
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