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SOLUTIONS

1. Friedman & Littman, p.39, Problem 2.7.2
Let U > 0 be given. For the equation

∂tc+ U∂xc = 0,

investigate the stability of the FTFS (forward time, forward space) scheme

cn+1
j − cnj

∆t
+ U

cnj+1 − cnj
∆x

= 0.

Throughout this assignment, we will define and make use of the constant

σ :=
U∆t

∆x
.

As in class, we begin by using the discrete solution

cnj = αneiβj.

Multiplying through by ∆t and using this solution within the FTFS scheme yields

αn+1
j eiβj − αnj eiβj = −U ∆t

∆x

(
αnj e

iβ(j+1) − αnj eiβj
)
.

Dividing by cnj = αnj e
iβj 6= 0, this becomes

α = 1− σ(eiβ − 1)

which simplifies to
α = 1− σ(cos(β)− 1)− iσ sin(β)

using Euler’s formula. Computing the square modulus of this complex number and putting
the 1 on the left side gives us

|α|2 − 1 = −2σ(cos(β)− 1) + σ2(cos(β)− 1)2 + σ2 sin2(β)

= 2σ(1− cos(β)) + σ2(1− cos(β))2 + σ2 sin2(β).



Now, if cos(β) = 1 then this becomes |α| = 1, which is fine. However, since cos(β) ≤ 1, the
only other option is 1− cos(β) > 0, and in this case the right side of the equation above is
strictly positive (as long as σ > 0). Hence, in this case |α| > 1 regardless of the value of
σ, and there is no condition which guarantees that |α| ≤ 1 for all β ∈ R. Therefore, the
method is unconditionally unstable.

2. Friedman & Littman, p.40, Problem 2.7.5
For the same equation, investigate the stability of the Lax-Wendroff scheme

cn+1
j = cnj −

U

2

∆t

∆x

(
cnj+1 − cnj−1

)
+
U2

2

(
∆t

∆x

)2 (
cnj+1 − 2cnj + cnj−1

)
.

Proceeding as in the first problem, the scheme reduces to

αn+1
j eiβj = αnj e

iβj − 1

2
σ
(
αnj e

iβ(j+1) − αnj eiβ(j−1)
)

+
1

2
σ2

(
αnj e

iβ(j+1) − 2αnj e
iβj + αnj e

iβ(j−1)
)
.

As before, dividing by cnj 6= 0, this becomes

α = 1− 1

2
σ(eiβ − e−iβ) +

1

2
σ2(eiβ − 2 + e−iβ)

Using Euler’s formula and the symmetry of sin(−β) and cos(−β), this becomes

(1) α = 1− iσ sin(β) + σ2(cos(β)− 1)

Computing the modulus and subtracting one from both sides, we finally find

|α|2 − 1 = σ2 sin2(β) + 2σ2(cos(β)− 1) + σ4(cos(β)− 1)2

= σ2(1− cos2(β))− 2σ2(1− cos(β)) + σ4(1− cos(β))2

If cos(β) = 1 then this becomes |α| = 1, which is fine. The only other option is 1−cos(β) > 0,
and in this case imposing |α|2 − 1 ≤ 0 is equivalent to

σ2(1− cos2(β))− 2σ2(1− cos(β)) + σ4(1− cos(β))2 ≤ 0

Since σ2(1− cos(β)) > 0, we can divide by it and the condition becomes

(1 + cos(β))− 2 + σ2(1− cos(β)) ≤ 0

or after simplifying
(σ2 − 1)(1− cos(β)) ≤ 0.

Hence, it must be the case that |σ| ≤ 1 in order for the scheme to be stable.

3. Friedman & Littman, p.40, Problem 2.7.6
Use the Lax-Wendroff scheme for Problem 2.4.1 and compare your results with those of the
FTBS scheme we previously used. As in the directions for the first problem of HW#3, use



dt = 0.001 and dx = 0.1. For the spatial interval use [−2, 200], fix the y axis in your plots
to [0, 5], and create a 5× 1 matrix of plots on the same figure.

The maximum concentration values appear to overestimate the true value, rather than under-
estimate it. These values are 6.3917, 6.2192, 5.8773, 5.3328, and 4.7589 for U = 1, 5, 10, 20, 40,
respectively. Below is the associated code.
MATLAB Code

clear; clc;

dx = 1e-1;

dt = 1e-3;

U = [1, 5, 10, 20, 40];

a = -2;

b = 200;

T = 4;

x = a:dx:b;

n = T/dt;

I = find(abs(x) < 1);

c(1,:) = zeros(1,length(x));

c(1,I) = 5;

for vel = 1:5

sig = U(vel)*(dt/dx);

sig2 = sig^2;

for i = 1:n

for j = 2:length(x)-1

c(i+1,j) = c(i,j) - (sig/2)*(c(i,j+1) - c(i,j-1)) + ...

(sig2/2)*(c(i,j+1) -2*c(i,j) + c(i,j-1));

end

end

subplot(5,1, vel);

plot(x, c(n+1, :)), title([’Problem 3, U = ’, num2str(U(vel))]),

axis([-2,200,0,7]), xlabel(’x’), ylabel(’c(t,x)’)

%Maximum concentration at t=4

M = max(c(end, :))

end
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Figure 1: Graphs for Problem 3: U = 1, 5, 10, 20, 40.

4. Draw the stencil for the Lax-Wendroff scheme above. Then, show that this numerical
method is consistent with the advection equation

∂tc+ U∂xc = 0

and use this to demonstrate that it is first-order accurate in time and second-order accurate
in space, i.e.

|En
j | ≤ O

(
∆t+ (∆x)2

)
.

The stencil is the same as a central difference method would be, i.e.



u u u

u

Next, we derive the wave speed of solutions to the equation. As in class, we consider
solutions of the form

c(t, x) = evteiκx

and if this is to solve the given advection equation, we see that

v = −iUκ.

So, computing the first part of the consistency definition by Taylor expansion, we find

(2) ev∆t = e−iUκ∆t = 1− iUκ∆t+O((∆t)2)

Next, we use the second problem to derive a representation for α. More specifically, beginning
with (1) and using β = κ∆x along with the Taylor expansions

sin(x) = x+O(x3) cos(x) = 1 +
1

2
x2 +O(x4)

provides the representation

α = 1− iσ sin(β) + σ2(cos(β)− 1)

= 1− iσ sin(κ∆x) + σ2(cos(κ∆x)− 1)

= 1− iσ
(
κ∆x+O((κ∆x)3)

)
+ σ2

(
1

2
(κ∆x)2 +O(κ∆x)4

)
= 1− iU

(
κ∆t+ ∆tO((∆x)2)

)
+ U2(∆t)2

(
1

2
κ2 +O((∆x)2)

)
= 1− iUκ∆t+ ∆tO((∆x)2) +O((∆t)2).

Thus, using (2) with this expression for α in the definition for consistency, we see that the
first portions cancel and∣∣∣∣ev∆t − α

∆t

∣∣∣∣ =
1

∆t

(
∆tO((∆x)2) +O((∆t)2)

)
= O

(
∆t+ (∆x)2

)
.

Therefore, the quantity on the left tends to 0 as ∆t,∆x ↓ 0. Moreover, using the inequalities
from class, this implies

|En
k | ≤ Ct

∣∣∣∣ev∆t − α
∆t

∣∣∣∣ = O
(
∆t+ (∆x)2

)



which further implies that the scheme is first-order accurate in t and second-order in x.
Additionally, it can be shown that the second-order ∆t terms cancel as well! This happens

because the O((∆t)2) term in (2) is actually

1

2
(iUκ∆t)2 = −U2(∆t)2 1

2
κ2

which cancels with this same term in the representation of α above (see the second-to-last
line).


