
Department of Applied Mathematics and Statistics
COLORADO SCHOOL OF MINES
MATH484: Capstone - Mathematical and Computational Modeling

Assignment #6, Spring 2014
SOLUTIONS

1. Let η = 1
4
, α = 2

10
, and β = 2. Use Fourier Series with N = 15 to solve the inverse Electron

Beam Lithography problem (i.e., find and plot D15(x)) on the spatial interval [−1, 1] with
dx = 10−3 and

E(x) =

{
1 if |x| < 1

2

0 else.

Also compute and plot E15(x) - the approximation to E(x) given by the first 15 terms of the
Fourier Series expansion - in the same figure as D15(x).
Hint: To check your code for D15(x), try it with N = 10 and compare to Figure 3.9.

Figure 1 displays a comparison between the original desired shape, the dosing Fourier ap-
proximation, and the resulting desired shape Fourier approximation. Below is the associated
code.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5
E(x), D(x), and Appx to E(x)

x

E
(x

)/
D

(x
)

E
E

15

D
15

Figure 1: Graphs for Problem 1

MATLAB Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Function used for the initial desired shape - E(x)

function out = Shape(x)

out = zeros(1, length(x));

for j = 1:length(x)

if ((abs(x(j)) <= 0.5))

out(j) = 1;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Other code

clear; clc;

dx = 1e-3;

a = -1;

b = 1;

x = a:dx:b;

N = 15;

%Constants

alpha = 0.2;

beta = 2;

eta = 0.25;

T1 = alpha^2/4;

T2 = beta^2/4;

E_target = @(s) Shape(s);

D = zeros(1,N);

E = D;

Ex = (1/pi)*integral(E_target, 0, pi)*ones(1,length(x));

Dx = Ex;

for n = 1:N

f = @(s) E_target(s).*cos(n*s);

E(n) = (2/pi)*integral(f, 0, pi);

% Similarly, you could just use

% E(n) = (2/pi)*integral(@(s) cos(n*s), 0, 0.5);

D(n) = ((1+eta)/(exp(-n^2*T1) + eta*exp(-n^2*T2)))*E(n);

Dx = Dx + D(n)*cos(n*x);

Ex = Ex + E(n)*cos(n*x);

end

figure;

plot(x, E_target(x), x, Ex,’--r’, x, Dx, ’-.k’),

title(’E(x), D(x), and Appx to E(x)’),

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5
E(x), D(x), and Fejer−summed D(x)

x

D
(x

)/
C

D
(x

)

E
D

15

CD
15

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5
E(x), Appx to E(x), and Fejer−summed E(x)

x

E
(x

)/
C

E
(x

)

E
E

15

CE
15

Figure 2: Graphs for Fejer Sums in Problem 2

axis([-1,1,-0.5,2.5]),

xlabel(’x’), ylabel(’E(x)/D(x)’),

legend(’E’, [’E_{’,num2str(N),’}’], [’D_{’,num2str(N),’}’])

2. Do the same as for Problem 1, but use the Fejer sums (i.e. D̃15(x) and Ẽ15(x)) instead.
Compare the new dosing function approximation to the old one - how are they different and
why is one better?

Figure 2 displays the Fejer Fourier approximations compared to those from the previous prob-
lem - D̃15(x) is represented by CD15(x) and Ẽ15(x) is represented by CE15(x) on the plots.
Notice that the Fejer approximations contain less oscillations than the standard Fourier se-
ries approximations and remain positive for more x values. Hence, they appear to serve our
purpose much better. In fact, Ẽ15(x) > 0 for all x ∈ [−1, 1]. Below is the associated code to
generate the graphs.

MATLAB Code

clear; clc;

dx = 1e-3

a = -1;

b = 1;

x = a:dx:b;

N = 15;

%Constants

alpha = 0.2;

beta = 2;

eta = 0.25;

T1 = alpha^2/4;

T2 = beta^2/4;

E_target = @(s) Shape(s);

D = zeros(1,N);

E = D;

Dx = 1/(2*pi);

Ex = Dx;

CDx = Dx;

CEx = Ex;

for n = 1:N

E(n) = (2/pi)*integral(@(s) cos(n*s), 0, 0.5);

D(n) = (1+eta)*E(n)/(exp(-n^2*T1) + eta*exp(-n^2*T2));

Dx = Dx + D(n)*cos(n*x);

Ex = Ex + E(n)*cos(n*x);

%Add Cesaro Sum

CDx = CDx + (1 - (n/N))*D(n)*cos(n*x);

CEx = CEx + (1 - (n/N))*E(n)*cos(n*x);

end

figure;

plot(x, E_target(x), x, Dx,’--r’, x, CDx,’-.k’),

title(’E(x), D(x), and Fejer-summed D(x)’),

axis([a,b,-0.5,2.5]),

xlabel(’x’), ylabel(’D(x)/CD(x)’),

legend(’E’, [’D_{’,num2str(N),’}’], [’CD_{’,num2str(N),’}’])

figure;

plot(x, E_target(x), x, Ex,’--r’, x, CEx, ’-.k’),

title(’E(x), Appx to E(x), and Fejer-summed E(x)’),

axis([a,b,-0.5,2.5]),

xlabel(’x’), ylabel(’E(x)/CE(x)’),

legend(’E’, [’E_{’,num2str(N),’}’], [’CE_{’,num2str(N),’}’])

3. Friedman & Littman, p.102, Problem 5.7.3 - Implicit Method only
Define L = 10, t0 = 4, u0 = 2, as well as the functions

S1(t) = 1 for t ∈ [0, 4]

and

S2(t) =

{
1
2

if t ∈ [0, 2]
3
2

if t ∈ [2, 4]

where L is the length of the converter and impose the boundary condition ∂T
∂x

= 0 at the
right endpoint. Using these values and the implicit method on p.98 with dx = 0.05 and
dt = 0.01, solve (5.19)–(5.23) and determine which control function makes J(S) smaller, S1

or S2. Recall that J(S) is defined for the simplified problem by (5.25).

The first control, S1(t), provides a smaller value of the objective functional J(S). Below is
the associated code and results.

MATLAB Code

clear; clc;

dx = 5e-2;

dt = 1e-2;

sigma = dt/(dx^2);

u0 = 2;

a = 0;

b = 10;

x = a:dx:b;

m = length(x);

t0 = 4;

t = 0:dt:t0;

n = t0/dt;

S(1,1:n+1) = 1;

S(2,1:n+1) = 0.5 + (t(1:n+1) >= 2);

M = (1+2*sigma)*diag(ones(m-2,1))-sigma*diag(ones(m-3,1),1)...

-sigma*diag(ones(m-3,1),-1);

%Neumann BC at x = L

M(end, end) = M(end, end) - sigma;

[L,U] = lu(M);

for p = 1:2

T(1,:) = [S(p,1);zeros(m-1, 1)];

u(1,:) = u0*ones(m, 1);

for i = 1:n

%Control and Dirichlet BCs at x = 0

T(i+1, 1) = S(p,i+1);

u(i+1, 1) = u0;

NL = (u(i,1:m).*T(i,1:m))./(1 + T(i,1:m));

%Implicit Solution for T

b = T(i,2:m-1) + dt*NL(2:m-1);

b(1) = b(1) + sigma*T(i+1, 1);

y = L\b’;

T(i+1,2:m-1) = U\y;

%Neumann BC at x = L

T(i+1, m) = T(i+1, m-1);

%Explcit Solution for u

for k = 1:m-1

u(i+1, k+1) = u(i+1,k) - dx*u(i+1,k)*T(i+1,k)/(1 + T(i+1,k));

end

end

J(p) = trapz(t,u(1:n+1, m));

clear u;

clear T;

end

format long g

J

J =

2.17689494366807 2.7273835653439

