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COLORADO SCHOOL OF MINES
MATH484: Capstone - Mathematical and Computational Modeling

Assignment #4, Spring 2015
SOLUTIONS

1. Friedman & Littman, p.39, Problem 2.7.2
Let U > 0 be given. For the equation

Oyc+ U0,c =0,

investigate the stability of the FTFS (forward time, forward space) scheme
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Throughout this assignment, we will define and make use of the constant

UAt
o= ——"
Ax
As in class, we begin by using the discrete solution
_ iBj
cj =a"e"™.

Multiplying through by At and using this solution within the FTFS scheme yields

a?“e’ﬁ] — a?e’f/”] = _UA_:U (@?626(7“) — a;‘e’fgj) )

Dividing by ¢ = aJe’ # 0, this becomes
a=1-0(” 1)

which simplifies to
a=1—o(cos(B) — 1) —iosin(B)

using Fuler’s formula. Computing the square modulus of this complex number and putting
the 1 on the left side gives us
lal* =1 = —20(cos(B) — 1) + o*(cos(B) — 1)? + o?sin?(B)
= 20(1 —cos(B)) + (1 — cos(3))?* + o?sin*(3).



Now, if cos(5) = 1 then this becomes |a| = 1, which is fine. However, since cos(/3) < 1, the
only other option is 1 — cos(f) > 0, and in this case the right side of the equation above is
strictly positive (as long as ¢ > 0). Hence, in this case |a| > 1 regardless of the value of
o, and there is no condition which guarantees that |o| < 1 for all 5 € R. Therefore, the
method is unconditionally unstable.

2. Friedman & Littman, p.40, Problem 2.7.5
For the same equation, investigate the stability of the Lax-Wendroff scheme

U At U? (At
a1 . n n n n mn n
Cj+ =6 - EA,]; (Cj+1 - ijl) + 2 <Al’> (Cj+1 - 2Cj + ijl) .

Proceeding as in the first problem, the scheme reduces to

a;wrlezﬁy = O/j@gﬁ] iy (a?€26(9+1) _ a?ezB(J—l)) + 502 (a?626(3+1) _ 204?6263 + a;}615(1—1)) _

As before, dividing by ¢} # 0, this becomes

1 . . 1 . .
a=1-— 50(62’8 — 6_16) + 502(61ﬁ — 24 e

Using Euler’s formula and the symmetry of sin(—/) and cos(—/), this becomes
(1) a=1—iosin(B) + o*(cos(B) — 1)
Computing the modulus and subtracting one from both sides, we finally find

la? =1 = o%sin®(B) + 20%(cos(B) — 1) + o*(cos(B) — 1)*
= 0%(1 —cos*(B)) — 20%(1 — cos(B)) + o*(1 — cos(B))?

If cos(f) = 1 then this becomes || = 1, which is fine. The only other option is 1 —cos(8) > 0,
and in this case imposing |a|* — 1 < 0 is equivalent to

0?(1 — cos*(B)) — 202(1 — cos(B)) + o*(1 — cos(B))* < 0
Since 02(1 — cos(3)) > 0, we can divide by it and the condition becomes
(1+cos(B)) — 2+ o*(1 —cos(B)) <0

or after simplifying
(0* — 1)(1 — cos(B)) < 0.

Hence, it must be the case that |o| < 1 in order for the scheme to be stable.
3. Friedman & Littman, p.40, Problem 2.7.6

Use the Lax-Wendroff scheme for Problem 2.4.1 and compare your results with those of the
FTBS scheme we previously used. As in the directions for the first problem of HW#3, use



dt = 0.001 and dx = 0.1. For the spatial interval use [—2,200], fix the y axis in your plots
to [0, 5], and create a 5 x 1 matrix of plots on the same figure.

The maximum concentration values appear to overestimate the true value, rather than under-
estimate it. These values are 6.3917,6.2192, 5.8773,5.3328, and 4.7589 for U = 1, 5, 10, 20, 40,
respectively. Below is the associated code.

MATLAB Code

clear; clc;

dx = le-1;

dt = 1le-3;

U=1[1, 5, 10, 20, 40];

a = -2;

b = 200;

T = 4;

X = a:dx:b;

n = T/dt;

I = find(abs(x) < 1);

c(1,:) = zeros(1,length(x));

c(1,I) = 5;

for vel = 1:5
sig = U(vel)*(dt/dx);
sig2 = sig™2;

for i = 1:n
for j = 2:length(x)-1
c(i+1,j) = c(i,j) - (sig/2)*(c(i,j+1) - c(i,j-1)) + ...
(sig2/2)*(c(i,j+1) -2*c(i,j) + c(i,j-1));

end
end
subplot (5,1, vel);
plot(x, c(n+1l, :)), title([’Problem 3, U = ’, num2str(U(vel))]),

axis([-2,200,0,7]), xlabel(’x’), ylabel(’c(t,x)’)

%Maximum concentration at t=4
M = max(c(end, :))
end



Problem 3, U =1
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Figure 1: Graphs for Problem 3: U = 1,5, 10, 20, 40.

4. Draw the stencil for the Lax-Wendroff scheme above. Then, show that this numerical
method is consistent with the advection equation

Owc+U0,c=0

and use this to demonstrate that it is first-order accurate in time and second-order accurate
in space, 1.e.

|E}| < O (At + (Az)?).

The stencil is the same as a central difference method would be, i.e.



Next, we derive the wave speed of solutions to the equation. As in class, we consider
solutions of the form
c(t,z) = e’

and if this is to solve the given advection equation, we see that

v = —1URK.
So, computing the first part of the consistency definition by Taylor expansion, we find
(2) VAl = T URA — 1 _URAL + O((At)?)

Next, we use the second problem to derive a representation for a. More specifically, beginning
with (1) and using § = KAz along with the Taylor expansions

sin(z) = z + O(z?) cos(z) =1+ %xQ +O(z*)

provides the representation

a = 1—iosin(B)+ o*(cos(B) — 1)
1 —iosin(kAz) + 0*(cos(kAx) — 1)

= 1—io (kAz + O((kA2)?)) + 0 (%(/{A@z + O(/{Am)“)

= 1—4iU (KAt + AtO((Az)?)) + UP(At)? (%HQ + O((Aw)z))
= 1 —iUrAt + AtO((Az)?) + O((At)?).

Thus, using (2) with this expression for « in the definition for consistency, we see that the
first portions cancel and

eUAt —a

1
At

= & (AO((Ax)) + O((At))

= O(At+(Az)).

Therefore, the quantity on the left tends to 0 as At, Ax | 0. Moreover, using the inequalities
from class, this implies

v At

B < Ct

Tta‘ — 0 (At + (Az)?)



which further implies that the scheme is first-order accurate in ¢ and second-order in x.
Additionally, it can be shown that the second-order At terms cancel as well! This happens
because the O((At)?) term in (2) is actually

1 1

—(iUKAL)* = —U*(At)*=k?

2 2

which cancels with this same term in the representation of o above (see the second-to-last
line).



