
  

2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 12
	

REVIEW Lecture 11: 

•		 End of (Linear) Algebraic Systems 
–		Gradient Methods 

–		Krylov Subspace Methods 

–		Preconditioning of  Ax=b 

•		 FINITE DIFFERENCES 
–		Classification of Partial Differential Equations (PDEs) and examples 

with finite difference discretizations 
• Parabolic PDEs 
• Elliptic PDEs 
• Hyperbolic PDEs 
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FINITE DIFFERENCES - Outline
	

•		 Classification of Partial Differential Equations (PDEs) and examples with 
finite difference discretizations 
–		 Parabolic PDEs, Elliptic PDEs and Hyperbolic PDEs 

•		 Error Types and Discretization Properties 
– Consistency, Truncation error, Error equation, Stability, Convergence 

•		 Finite Differences based on Taylor Series Expansions 
–		 Higher Order Accuracy Differences, with Example 
–		 Taylor Tables or Method of Undetermined Coefficients 

•		 Polynomial approximations 
–		 Newton’s formulas 
–		 Lagrange polynomial and un-equally spaced differences 
–		 Hermite Polynomials and Compact/Pade’s Difference schemes 
–		 Equally spaced differences 

• Richardson extrapolation (or uniformly reduced spacing) 
• Iterative improvements using Roomberg’s algorithm 
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References and Reading Assignments
	

• Part 8 (PT 8.1-2), Chapter 23 on “Numerical Differentiation” 
and Chapter 18 on “Interpolation” of “Chapra and Canale, 
Numerical Methods for Engineers, 2010/2006.” 

• Chapter 3 on “Finite Difference Methods” of “J. H. Ferziger
and M. Peric, Computational Methods for Fluid Dynamics. 
Springer, NY, 3rd edition, 2002” 

• Chapter 3 on “Finite Difference Approximations” of “H. Lomax, 

T. H. Pulliam, D.W. Zingg, Fundamentals of Computational
Fluid Dynamics (Scientific Computation). Springer, 2003” 
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Classification of 

Partial Differential Equations
	

(2D case, 2nd order) 
y	 n(x,y2) 

x yQuasi-linear PDE for ( ,  )

A,B and C Constants   n(x1,y)	  n(x2,y) 

Hyperbolic 

Parabolic 

Elliptic 
 n(x,y1)(Only valid for two independent variables: x,y) 

x y  , • In general: A, B and C are function of: , ,  x , y 

• Equations may change of type from point to point if A, B and C vary with x, y, . etc 
Du u	 1• Navier-Stokes, incomp., const. viscosity: 	   (u   ) u    p  2u  g
Dt t  
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D(x,y) 

Partial Differential Equations
	
ELLIPTIC: B2 - 4 A C < 0
	

 n(x,y1) 

x yQuasi-linear PDE for ( ,  )

A,B and C Constants 

Hyperbolic 

Parabolic 

Elliptic 

y 
 n(x,y2) 

  n(x1,y)  n(x2,y) 
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Partial Differential Equations
	
Elliptic PDE
	

Laplace Operator
 

Laplace Equation – Potential Flow 

Poisson Equation 
• Potential Flow with sources 
• Heat flow in plate 

Helmholtz equation – Vibration of plates 

Convection-Diffusion 

• Smooth solutions (“diffusion effect”) 
• Very often, steady state problems 
• Domain of dependence of u is the full domain D(x,y) => “global” solutions 
• Finite differ./volumes/elements, boundary integral methods (Panel methods) 

Examples: 

U u  2u
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Partial Differential Equations
	
Elliptic PDEs
	

y
 

Equidistant Sampling u(x,b) = f2(x)
 

Discretization
 
ua,y)=g2(y)u0,y)=g1(y) 

j+1 
j

j-1
Finite Differences 

u(x,0) = f1(x) 
ii-1 i+1 
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Partial Differential Equations
	
Elliptic PDE
	

Discretized Laplace Equation 

y 

xu(x,0) = f1(x) 

ua,y)=g2(y) 
j+1 

j-1
j 

ii-1 i+1 

u(x,b) = f2(x)
Finite Difference Scheme 

Global Solution Required 

Boundary Conditions 
u0,y)=g1(y) 

i 

i 
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Elliptic PDE: 

Poisson Equation
	

SOR Iterative Scheme, with Jacobi 
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Partial Differential Equations
	
Hyperbolic PDE: B2 - 4 A C > 0
	

Examples: 2u 2 
2u Wave equation, 2nd order(1)  c 

t2 x2
 

u u
 Sommerfeld Wave/radiation equation, (2)  c  0 
t x 1st order 
u Unsteady (linearized) inviscid convection(3)	  (U   ) u  g
t (Wave equation first order) 

(4) (U ) u  g Steady (linearized) inviscid convection 

• Allows non-smooth solutions 
t 

• Information travels along characteristics, e.g.: 
c– For (3) above: d x 
 ( ( ))  U xc t

dt 
d xc– For (4), along streamlines:  U
ds 

• Domain of dependence of u(x,T) = “characteristic path” 
• e.g., for (3), it is:  xc(t) for 0< t < T 0 x, y

• Finite Differences, Finite Volumes and Finite Elements 
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Partial Differential Equations
	
Hyperbolic PDE
	

Waves on a String 
2 2 t ( , )  2  (  , )  u x t  u x t  

2  c 2 0  x  L, 0  t    
t x 

Initial Conditions 

Boundary Conditions u0,t) uL,t) 

Wave Solutions 

u(x,0), ut(x,0) x 

Typically Initial Value Problems in Time, Boundary Value Problems in Space
 
Time-Marching Solutions: Explicit Schemes Generally Stable 
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Partial Differential Equations
	
Hyperbolic PDE
	

Wave Equation 

2 ( , )  2 
2 (  , )  u x t  u x t  

 c 0  x  L, 0  t    t

t2 x2
 

Discretization: 

Finite Difference Representations uL,t)u0,t) 
j+1 

j
j-1

u(x,0), ut(x,0) x 
ii-1 i+1 

Finite Difference Representations 
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Partial Differential Equations
	
Hyperbolic PDE
	

t 

x
u(x,0), ut(x,0) 

u0,t) uL,t) 
j+1 

j-1
j 

ii-1 i+1 

Introduce Dimensionless Wave Speed 

Explicit Finite Difference Scheme 

Stability Requirement: 

c tC   1 Courant-Friedrichs-Lewy condition (CFL condition) 
x 

Physical wave speed must be smaller than the largest numerical wave speed, or,
 
Time-step must be less than the time for the wave to travel to adjacent grid points: 


x x c     or    t
t c 
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Error Types and Discretization Properties:
	
Consistency
	

Consider the differential equation ( L symbolic operator) 
L	 ( )  0 

and its discretization for any given difference scheme 

 Lˆ 
x ( )ˆ 0 

 Consistency (Property of the discretization) 
–		The discretization of a PDE should asymptote to the PDE itself as 

the mesh-size/time-step goes to zero, i.e 
for all smooth functions  : ˆL	 ( )   Lx ( )   0   when  x  0 

(the truncation error vanishes as mesh-size/time-step goes to zero) 
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Error Types and Discretization Properties: 

Truncation error and Error equation
	

Truncation error ( )   Lˆ ( ) Remember:  L x x  does not satisfy the FD eqn. 

– Since    L ( )  0 , the truncation error is the result of inserting the exact 
solution in the difference scheme 

( )  L ( )  O x p )   for  x  0– If the FD scheme is consistent: x  L  ˆ 
x  ( 

– p (>0) is the order of accuracy for the FD scheme Lˆ 
x 

– Order p indicates how fast the error is reduced when the grid is refined 

Error evolution equation 
– From        0 and      where ε is the discretization error, for 
Lˆ 

x ( )ˆ ˆ 
 
linear problems, we have:   ˆ ˆ  ) ˆ 
 L ( )   L (       L ( )  x x x 

 Lˆ ( )    x x 

– The truncation error acts as a source for the discretization error, which is 
ˆconvected and diffused by the operator L x 
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Error Types and Discretization Properties: 

Stability
	

with the Const. not a function of 
• If inverse was not bounded, discretization errors ε would increase with 

x1ˆ Const. x 
 
 L 

Stability 
– A numerical solution scheme is said to be stable if it does not amplify 


errors that appear in the course of the numerical solution process
	

– For linear(-ized) problems, since Lˆ ( )   , stability implies:
	  x x 

iterations 
ˆ1– In practice, infinite norm    Const. is often used. Lx  

x 

– However, difficult to assess stability in real cases due to boundary 
conditions and non-linearities 

• It is common to investigate stability for linear problems, with constant 
coefficients and without boundary conditions 

• A widely used approach: von Neumann’s method (see lectures 13-14) 
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Convergence 

Error Types and Discretization Properties: 

Convergence
	

– A numerical scheme is said to be convergent if the solution of the 
discretized equations tend to the exact solution of the (P)DE as the grid-
spacing and time-step go to zero 

ˆ1– Error equation for linear(-ized) systems:   L ( )x x 

– Error bounds for linear systems: 
ˆ1 ˆ1  L ( )x x Lx x 

For a consistent scheme: ( p )   for x  0 O xx 

ˆ1Hence    ( p )O xLx x 
x 

Convergence <= Stability + Consistency (for linear systems) 
= Lax Equivalence Theorem (for linear systems) 

– For nonlinear equations, numerical experiments are often used 
• e.g., iterate or approximate true solution with computation on successively finer 

grids, and compute resulting discretization errors and order of convergence 
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Finite Differences - Basics
	

•		 Finite Difference Approximation idea directly borrowed 
from the definition of a derivative. 

( ix 1 ) ( ix ) '(xi )  lim 
x	  0 x 

•		 Geometrical Interpretation 

–		Quality of approximation 

improves as stencil points 

get closer to xi
 

–		Central difference would be 

exact if  was a second 

order polynomial and points 

were equally spaced
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FINITE DIFFERENCES: 

Taylor Series, Higher Order Accuracy
	

How to obtain differentiation formulas of arbitrary high accuracy?
	

1) First approach: Use Taylor series, introducing higher-order terms
	
2 3	 nx x	 x nf (x )  f (x )    x f '(x )  f ''(x )  f '''(x )  ...  f (x )  Ri1 i i i i	 i n2! 3!	 n! 

n1x ( 1)  Rn  f n ( ) 
n 1! 

•		 For example, how can we derive the forward finite-difference 
estimate of the first derivative at xi with second order accuracy? 

x2
3 	 f xi1 ( i x 2(	 )  f x  )f '(xi ) 	  f ''(xi )  O(x )f (xi1)  f (xi )    x f  '(xi )  f ''(xi )  O(x ) x 2!2!  

•		 If we retain the second-derivative, and estimate it with first-order 
accuracy, the order of accuracy for the estimate of f’(xi) will be p=2 
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FINITE DIFFERENCES: 

Taylor Series, Higher Order Accuracy Cont’d
	

2 3	 nx x	 x• Using  f (x )  f (x )  x f '(x )  f ''(x )  f '''(x )  ...  f n (x )  Ri1 i i i i	 i n2! 3!	 n! 
n1
x ( 1) 
  Rn  f n ( )

n 1! 

•		 Estimate the second-derivative with forward finite-differences at first-
order accuracy: 

x2	
3 

( i1)  f xi )    x f  '(xi )  f ''(xi )  O( f x  ( x )
2!   ( )  2 f x  )  ( )* (  2)  	 f x  ( f xi2 i1 i 

2	    f ''(xi )  2  O(x)
4x 3  * (1)  	 xf (x )  f (x )  2x f '(x )  f ''(x )  O(x )i2 i i	 i2!	 

(	 )  f x  )f x  ( xi1 i	 2'( i ) 	  f ''(xi )  O(f x 	  x )
x 2! 

 2 21 2 1 2 1 
2 

( ) ( ) ( ) 2 ( ) ( ) ( ) 4 ( ) 3 ( )'( ) ( ) ( )
2! 2 

i i if x  f x i i i i i 
i 

f x  x  f  x  f  x  f  x  f x  f  xf x O x O x 
x x 

 

x 
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Forward 
Differences Forward finite-divided-difference formulas: 

First Derivative Error 

f (x )  f (x ) O(h)i1 if (xi )  
h
 

 f (x )  4 f (x )  3 f (x )
i2 i1 if (x )  O(h2)
i 2h 

Second Derivative 
f (x )  2 f (x )  f (x ) O(h)i2 i1 if "(xi )  2h 
 f (xi3)  4 f (xi2 )  5 f (xi1)  2 f (xi ) O(h2)f "(xi )  2h 

Third Derivative 
f (xi3)  3 f (xi2 )  3 f (xi1)  f (xi ) O(h)f '"(xi )  

h3 

 3 f (x ) 14 f (x )  24 f (x ) 18 f (x )  5 f (x )i4 i3 i2 i1 if '"(xi )  3 
O(h2)

2h 
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Backward 
Differences Backward finite-divided-difference formulas: 

First Derivative Error 

f (x )  f (x ) O(h)i i1f (xi )  
h
 

3 f (x )  4 f (x )  3 f (x )
i i1 i2f (xi )  O(h2)
2h 

Second Derivative 
f (x )  2 f (x )  f (x ) O(h)i i1 i2f "(xi )  2h 
2 f (xi )  5 f (xi1)  4 f (xi2 )  f (xi3) O(h2)f "(xi )  2h 

Third Derivative 
f (x )  3 f (x )  3 f (x )  f (x ) O(h)i i1 i2 i3f '"(xi )  3h 
5 f (x ) 18 f (x )  24 f (x ) 14 f (x )  3 f (x )i i1 i2 i3 i4f '"(xi )  3 

O(h2)
2h 

2.29 Numerical Fluid Mechanics PFJL  Lecture 12,  22 
22



  

     

  

                  

     

     

  

Centered Centered finite-divided-difference formulas: 
Differences 

Error 
First Derivative 

f (x )  f (x ) O(h)

i1 i1f (x ) 
i 2h
 

 f (xi2 )  8 f (xi1)  8 f (xi1)  f (xi2 ) O(h2)f (xi )  
12h 

Second Derivative 
O(h)f (x )  2 f (x )  f (x )i1 i i1
f "(xi )  2
h 

 f (x ) 16 f (x )  30 f (x ) 16 f (x )  f (x ) O(h2)i2 i1 i i1 i2
f "(xi )  2
1
Third Derivative 

2 h 

O(h)f (x )  2 f (x )  2 f (x )  f (x )i2 i1 i1 i2
f '"(xi )  3
2h 
 f (x )  8 f (x ) 13 f (x ) 13 f (x )  8 f (x )  f (x ) O(h2)i3 i2 i1 i1 i2 i3
f '"(xi )  3
8h 
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FINITE DIFFERENCES
	
Taylor Series, Higher Order Accuracy: EXAMPLE
	

Problem: Estimate 1st derivative of f = -0.1*x^4 - 0.15*x^3-0.5*x^2-0.25*x +1.2 at 
x=0.5, with a step size of 0.25 and using successively higher order schemes. 
How does the solution improve? 

%Define the function L11_FD.m 
f=@(x) -0.1*x^4 - 0.15*x^3-0.5*x^2-0.25*x +1.2; 

%Define Step size 

h=0.25; 

%Set point at which to evaluate the derivative 

x = 0.5; 

%% Using forward difference 

%First order: 

df=(f(x+h)-f(x)) / h; 

fprintf('\n\n First order Forward difference: %g, with
error:%g%% \n',df,abs(100*(df+0.9125)/0.9125)) 

%Second order: 

df=(-f(x+2*h)+4*f(x+h)-3*f(x)) / (2*h); 

fprintf('Second order Forward difference: %g, with
error:%g%% \n',df,abs(100*(df+0.9125)/0.9125)) 

%% Backwards difference 

%First order: 

df=(-f(x-h)+f(x)) / (h); 

fprintf('First order Backwards difference: %g, with 
error:%g%% \n',df,abs(100*(df+0.9125)/0.9125)) 

%Second order: 

df=(f(x-2*h)-4*f(x-h)+3*f(x)) / (2*h); 

fprintf('Second order Backwards difference: %g, with
error:%g%% \n',df,abs(100*(df+0.9125)/0.9125)) 

%% Central difference 

%Second order: 

df=(f(x+h)-f(x-h)) / (2*h); 

fprintf('Second order Central difference: %g, with
error:%g%% \n',df,abs(100*(df+0.9125)/0.9125)) 

%Fourth order: 

df=(-f(x+2*h)+8*f(x+h)-8*f(x-h)+f(x-2*h)) /
(12*h); 

fprintf('Fourth order Central difference: %g, with
error:%g%% \n',df,abs(100*(df+0.9125)/0.9125)) 

Output 
First order Forward difference: -1.15469, with error:26.5411% 
Second order Forward difference: -0.859375, with error:5.82192% 
First order Backwards difference: -0.714063, with error:21.7466% 
Second order Backwards difference: -0.878125, with error:3.76712% 
Second order Central difference: -0.934375, with error:2.39726% 
Fourth order Central difference: -0.9125, with error:2.43337e-014% 
Why is the 4th order “exact”? 
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FINITE DIFFERENCES: 

Taylor Series, Higher Order Accuracy
	

Summary
• Approach: 
– Incorporate more higher-order terms of the Taylor series expansion 

than strictly needed and express them as finite differences themselves 
–		e.g. for finite difference of mth derivative at order of accuracy p, express 

the m+1th, m+2th, m+p-1th derivatives at an order of accuracy p-1, .., 2, 1. 
m s– General approximation:   u  

 a u   m   i ji x
 x  j ir 

– Can be used for forward, backward, skewed or central differences
	

– Can be computer automated 
– Independent of coordinate system and extends to multi-dimensional 

finite differences (each coordinate is usually treated separately) 

• Remember: order p of approximation indicates how fast the error is 
reduced when the grid is refined (not the magnitude of the error) 
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FINITE DIFFERENCES: 

Interpolation Formulas for Higher Order Accuracy
	

2nd approach: Generalize Taylor series using interpolation formulas 
• Fit the unknown function solution of the (P)DE to an interpolation curve 

and differentiate the resulting curve. For example: 
• Fit a parabola to data at points              x x x  ( x    x , then, ,   x )i1 i i1 i i i1 

differentiate to obtain: 
2 2 2 2( ) x   f x  ) x   f x  )     f x  ( (  x    x 

i1 i i1 i1 i i1 i
f x'( i )  

x x (x    x )i1 i i i1 

• This is a 2nd order approximation 
• For uniform spacing, reduces to centered difference seen before 
• In general, approximation of first derivative has truncation error of the order 

of the polynomial 

• All types of polynomials or numerical differentiation methods can be 
used to derive such interpolations formulas 

• Polynomial fitting, Method of undetermined coefficients, Newton’s 
interpolating polynomials, Lagrangian and Hermite Polynomials, etc 
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