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1. Handout (Lin & Segal) p.31, Problem 2b
Let χ, µ,D > 0. Assume that a(t, x) and ρ(t, x) satisfy the nonlinear system of PDEs

∂a

∂t
=

∂

∂x

(
µ
∂a

∂x
− χa∂ρ

∂x

)
∂ρ

∂t
= fa− kρ+D

∂2ρ

∂x2

Perform a stability analysis of the uniform state a = a0 ∈ R and ρ = ρ0 ∈ R assuming
k = k(ρ) and f = f(ρ).

We will use the notation â and ρ̂ instead of a′ and ρ′, which is used in the handout. We
begin with equations (10) and (11) from the handout and use

a(t, x) = a0 + â(t, x)

ρ(t, x) = ρ0 + ρ̂(t, x).

Upon linearizing the resulting equations, we find

∂â

∂t
= µ

∂2â

∂x2
− χa0

∂2ρ̂

∂x2

for (10), while for (11) more analysis is needed. In particular, this equation becomes

∂ρ̂

∂t
= f(ρ0 + ρ̂)[a0 + â]− k(ρ0 + ρ̂)[ρ0 + ρ̂] +D

∂2ρ̂

∂x2
.

At this point, things become a bit more open-ended, depending upon what you assume about
f and k.

Since we don’t have any strict information about these functions evaluated at ρ0 + ρ̂, we
should approximate. The simplest approximation is to use

f(ρ0 + ρ̂) ≈ f(ρ0), k(ρ0 + ρ̂) ≈ k(ρ0).

Then, using the fact that the pair (a0, ρ0) must be a solution to the original equations, we
see that f(ρ0)ρ0 − k(ρ0)a0 = 0, and hence (11) becomes

∂ρ̂

∂t
= f(ρ0)â− k(ρ0)ρ̂+D

∂2ρ̂

∂x2
.



Of course, this is equivalent to the system we investigated in class and the outcome is the
same condition, namely

χa0f(ρ0)

µk(ρ0)
< 1.

A better idea is to use a first-order approximation

f(ρ0 + ρ̂) ≈ f(ρ0) + f ′(ρ0)ρ̂, k(ρ0 + ρ̂) ≈ k(ρ0) + k′(ρ0)ρ̂.

Since we’re linearizing the resulting equations, a second-order approximation or greater would
merely be eliminated anyway. Again, using the fact that the pair (a0, ρ0) must be a solution
to the original equations, it follows that f(ρ0)ρ0 − k(ρ0)a0 = 0, and hence (11) becomes

∂ρ̂

∂t
= f(ρ0)â+ (a0f

′(ρ0)− k(ρ0)− ρ0k′(ρ0)) ρ̂+D
∂2ρ̂

∂x2
.

Assuming that solutions are of the form

â(t, x) = C1e
σt sin(qx)

ρ̂(t, x) = C2e
σt sin(qx)

and using this in the linearized PDEs, we find the system of algebraic equations

C1(σ + µq2)− C2χa0q
2 = 0

−C1f + C2(σ + k + ρ0k
′ − a0f ′ +Dq2) = 0.

This is exactly the linear system(
σ + µq2 −χa0q2
−f σ + k + ρ0k

′ − a0f ′ +Dq2

)(
C1

C2

)
=

(
0
0

)
and the only way this can have a non-trivial solution is if the determinant of this matrix is
zero. This implies that

Aσ2 +Bσ + C = 0

where
A = 1, B = k + ρ0k

′ − a0f ′ + (D + µ)q2,

and
C = µq2(k + ρ0k

′ − a0f ′ +Dq2)− fχa0q2.
The Routh-Hurwitz criterion requires B > 0 and C > 0 in order to find negative solutions.
In order for this to hold for any choice of q 6= 0, we must have (from B > 0)

k + ρ0k
′ − a0f ′ > 0

and (from C > 0)
µ(k + ρ0k

′ − a0f ′) > fχa0.

Since µ > 0, these inequalities can be combined to yield the single condition

k + ρ0k
′ − a0f ′ > max

{
fχa0
µ

, 0

}
.



2. Handout (Lin & Segal) p.31, Problem 3
Consider two-dimensional variations so that a and ρ satisfy

∂a

∂t
= ∇ · (µ∇a− χa∇ρ)

∂ρ

∂t
= fa− kρ+D∆ρ.

Perform a stability analysis of the uniform state a = a0 ∈ R and ρ = ρ0 ∈ R assum-
ing all parameters are positive constants. Do this by assuming perturbations of the form
sin(q1x + q2y + θ)eσt where q1, q2, θ ∈ R. More specifically, show that if q2 = q21 + q22, then
the instability condition remains the same as the one-dimensional case.

We proceed as for the previous problem. First, expressing the equations in terms of direc-
tional derivatives, they become

∂a

∂t
= µ

(
∂2a

∂x2
+
∂2a

∂y2

)
− χ

[
∂a

∂x

∂ρ

∂x
+
∂a

∂y

∂ρ

∂y
+ a

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)]
∂ρ

∂t
= fa− kρ+D

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
.

Upon linearizing the resulting equations, we find

∂â

∂t
= µ

(
∂2â

∂x2
+
∂2â

∂y2

)
− χa0

(
∂2ρ̂

∂x2
+
∂2ρ̂

∂y2

)
for (10), while for (11) this becomes

∂ρ̂

∂t
= fâ− kρ̂+D

(
∂2ρ̂

∂x2
+
∂2ρ̂

∂y2

)
.

Assuming that solutions are of the form

â(t, x, y) = C1e
σt sin(q1x+ q2y + θ)

ρ̂(t, x, y) = C2e
σt sin(q1x+ q2y + θ)

and using this in the linearized PDEs, we find the same system of algebraic equations as in
the one-dimensional case, namely(

σ + µq21 + µq22
)
C1 − χa0

(
q21 + q22

)
C2 = 0

−fC1 +
(
σ + k +D

(
q21 + q22

))
C2 = 0

with q2 = q21 + q22.

3. Assume x ∈ R and use the FTBS method to approximate solutions to the system of
PDEs given by (10) and (11) in the handout. In particular, use the spatial interval [−5, 5];
constant parameter values µ = 1, D = 0.2, f = 0, k = 1, χ = 10; and initial conditions

a0(x) =

{
2 if |x| < 1

10

0 else



ρ0(x) =

{
1 if x ∈ [−1.1,−0.9]

⋃
[−3.1,−2.9]

⋃
[−4.1,−3.9]

0 else

For step sizes use dx = 0.1, dt = 1 × 10−4. Create three different figures - a 1 × 2 matrix
of plots with a0(x) in the left column and ρ0(x) in the right column, a 1× 2 matrix of plots
with a(0.5, x) in the left column and ρ(0.5, x) in the right column, and a 1 × 2 matrix of
plots with a(1, x) in the left column and ρ(1, x) in the right column.

The concentration values appear to skew to the left over time and migrate towards the
attractant. Below is the associated code.
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Figure 1: Graphs for Problem 3 at T = 0.

MATLAB Code

clear; clc;

dx = 1e-1;

dt = 1e-2*dx^2;

a = -5;

b = 5;

T = 1;

x = a:dx:b;

t = 0:dt:T;

n = floor(T/dt);

%Constants

mu = 1;

D = 2e-1;
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Figure 2: Graphs for Problem 3 at T = 0.5.

−5 0 5
−0.5

0

0.5

1

1.5

2
SMA Concentration

x

a
(1

,x
)

−5 0 5
−0.5

0

0.5

1

1.5

2
SMA Density

x

p
(1

,x
)

Figure 3: Graphs for Problem 3 at T = 1.

f = 0;

k = 1;

chi = 10;

%Because a is used for left endpoint, it is replaced by c in code

c(1,:) = zeros(1,length(x));

p(1,:) = zeros(1,length(x));

J1 = find(abs(x) < dx);



c(1,J1) = 2;

J2 = find((abs(x+1) < dx) | (abs(x+3) < dx) | (abs(x+4) < dx));

p(1,J2) = 1;

subplot(1,2,1), plot(x, c(1, :)), title(’SMA Concentration’),

axis([a,b,-0.5,2.5]), xlabel(’x’), ylabel(’a(0,x)’)

subplot(1,2,2), plot(x, p(1, :)), title(’SMA Density’),

axis([a,b,-0.5,2]), xlabel(’x’), ylabel(’p(0,x)’)

for i = 1:n

for j = 2:length(x)-1

c(i+1,j) = c(i,j) +(dt/dx^2)*(mu*(c(i,j+1) -2*c(i,j) + c(i,j-1))...

- chi*((c(i,j) - c(i, j-1))*(p(i,j) - p(i,j-1))...

+ c(i,j)*(p(i,j+1) -2*p(i,j) + p(i,j-1))));

p(i+1,j) = p(i,j) + dt*(f*c(i+1,j) - k*p(i,j))...

+ D*(dt/dx^2)*(p(i,j+1) -2*p(i,j) + p(i,j-1));

end

end

subplot(1,2,1), plot(x, c(n+1, :)), title(’SMA Concentration’),

axis([a,b,-0.5,2]), xlabel(’x’), ylabel(’a(1,x)’)

subplot(1,2,2), plot(x, p(n+1, :)), title(’SMA Density’),

axis([a,b,-0.5,2]), xlabel(’x’), ylabel(’p(1,x)’)

4. Friedman & Littman, p.53, Problem 3.3.3
For the equation

∂tu = ∂xxu

use the von Neumann criterion to discuss the stability of the Forward Euler scheme

un+1
j − unj

∆t
=
unj+1 − 2unj + unj−1

(∆x)2
.

Define the constant

σ :=
∆t

(∆x)2
> 0.

As in the previous assignment, we begin by using the discrete solution

unj = αneiβj.

Multiplying through by ∆t, using this solution within the scheme, and dividing by αnj e
iβj 6= 0

yields
α = 1 + σ(eiβ − 2 + e−iβ)



which simplifies to
α = 1 + 2σ(cos(β)− 1)

using Euler’s formula. Computing the square and putting the 1 on the left side gives us

|α|2 − 1 = 4σ2(cos(β)− 1)2 + 4σ(cos(β)− 1)

= 4σ(cos(β)− 1) [σ(cos(β)− 1) + 1] .

Now, if cos(β) = 1 then this becomes |α| = 1, which is fine. However, since cos(β) ≤ 1, the
only other option is 1− cos(β) > 0, and in this case we must have

σ(cos(β)− 1) + 1 ≥ 0

in order for |α|2 − 1 ≤ 0. Subtracting the 1 to the right side and dividing by cos(β) − 1
which is negative, we find

σ ≤ 1

1− cos(β)
.

Since we need this to be true for every β, we must impose the condition that σ be less than
the minimum of the right side of the inequality, which occurs when β = −π, and this implies

σ ≤ 1

2
.

5. Friedman & Littman, p.54, Problem 3.5.1
Use a letter of your choice (preferably with a corner or two, and not “L”) to create 2 plots
- one for the dose D(x) and another containing the backscattered exposure E(x). To create
the plot of E, use the parameters α = 1

4
, β = 1

2
, and η = 1

2
, and implement the Forward

Euler method (from Problem 4) to solve the diffusion equation with dx = dy = 0.05 and
dt = 2.5× 10−4 on the two-dimensional grid [−2, 2]× [−2, 2].

The graphs display the effects of the scattering, and the associated code is included below.

MATLAB Code

clear; clc;

dx = 5e-2;

dy = dx;

dt = 1e-1*dx^2;

a = -2;

b = 2;

%Constants

alpha = 0.25;

beta = 0.5;

eta = 0.5;
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Figure 4: Graph of the dosed “L” region for Problem 5.
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Figure 5: Graph of the scattered shape for Problem 5.

T1 = alpha^2/4;

t1 = 0:dt:T1;

n1 = floor(T1/dt);

T2 = beta^2/4;

t2 = 0:dt:T2;



n2 = floor(T2/dt);

x = a:dx:b;

y = x;

u(:,:,:) = zeros(length(t1)+1,length(x),length(y));

for j = 1:length(x)

for k = 1:length(x)

if ((abs(x(j)) <= dx & y(k) >= -dy & y(k) <= 1)...

| (abs(y(k)) <= dy & x(j) >= 0 & x(j) <= 0.5))

u(1,j,k) = 1;

end

end

end

z = squeeze(u(1,:,:));

surf(x, y, z’,’EdgeColor’, ’none’), title(’Initial Dose D(x,y)’),

axis([a,b,a,b,0,1.5]), xlabel(’x’), ylabel(’y’), zlabel(’D(x,y)’)

for i = 1:n1

for j = 2:length(x)-1

for k = 2:length(y)-1

u(i+1,j,k) = u(i,j,k)...

+ (dt/dx^2)*(u(i,j+1,k) -2*u(i,j,k) + u(i,j-1,k))...

+ (dt/dy^2)*(u(i,j,k+1) -2*u(i,j,k) + u(i,j,k-1));

end

end

end

w(1,:,:) = u(1,:,:);

for i = 1:n2

for j = 2:length(x)-1

for k = 2:length(y)-1

w(i+1,j,k) = w(i,j,k)...

+ (dt/dx^2)*(w(i,j+1,k) -2*w(i,j,k) + w(i,j-1,k))...

+ (dt/dy^2)*(w(i,j,k+1) -2*w(i,j,k) + w(i,j,k-1));

end

end

end

z(:,:) = (1/(1+eta))*(u(n1+1,:,:) + eta*w(n2+1,:,:));

figure;

surf(x, y, z’,’EdgeColor’, ’none’), title(’Scattered shape E(x,y)’),



axis([a,b,a,b,0,1.5]), xlabel(’x’), ylabel(’y’), zlabel(’E(x,y)’)


