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Control Theory

Standard problem in control theory:

state variable, x ∈ Rm

initial set, X 0, and target set, X 1

control variable, u ∈ U ⊂ Rn

U = set of all admissible controls

system dynamics {
ẋ = f (t, x ,u)
x(t0) = x0 ∈ X 0

cost functional

J(u) = ψ (x(t1)) +

∫ t1

t0

L(s, x ,u) ds

Goal: Find the optimal control u∗ ∈ U which minimizes the cost functional

J(u∗) ≤ J(u) for all u ∈ U
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Differential Game Theory

Definition (Differential Game)

A control theory problem with multiple controls, each operated by a
different player who is attempting to minimize their own cost functional, is
called a differential game.

Two-Player Game

System dynamics:
ẋ = f (t, x ,u1,u2)

Cost functionals:

J1(u1) = ψ1 (x(t1)) +

∫ t1

t0

L1(s, x ,u1,u2) ds

J2(u2) = ψ2 (x(t1)) +

∫ t1

t0

L2(s, x ,u1,u2) ds
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Differential Game Theory

Differential games appear in a variety of applications:

Flight and rocket/missile control

Political science

Economics and business management

Military strategy

Traffic

and take a variety of forms:

Cooperative vs. non-cooperative games

Open-loop vs. closed-loop games

Sequential-move vs. simultaneous-move games

Zero-sum vs. nonzero-sum games

Pursuit-evasion games
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The Hamiltonian

Definition (Hamiltonian)

Define λ ∈ Rm where λ = λ(t) to be the adjoint system. Then, the
Hamiltonian is given by

H (t, x(t),λ(t),u(t)) = L(t, x ,u) + [λ(t)]T f (t, x ,u).

The state and adjoint dynamics are given by

ẋ =
∂H

∂λ
and λ̇ = −∂H

∂x

with x(t0) = x0 and x(t1) ∈ X 1.

Definition (Transversality Condition)

Let T 0 and T 1 be the tangent spaces to X 0 and X 1, respectively. Then,

λ∗(t0) ⊥ T 0 and λ∗(t1) ⊥ T 1.
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Pontryagin Maximum Principle

Theorem (Pontryagin Maximum Principle)

Let u∗ ∈ U be the optimal control with corresponding optimal state x∗

and optimal adjoint λ∗. Then, u∗ minimizes the Hamiltonian.

H (t, x∗,λ∗,u∗) ≤ H (t, x∗,λ∗,u) for any u ∈ U

Thus,
∂H

∂u

∣∣∣∣
u=u

∗
= 0
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1D Example

Consider the one-dimensional domain Ω = (0, 1) with a single pedestrian.

x(t) =

[
r(t)
v(t)

]
,

X 0 =

{[
0
0

]}
, X 1 =

{[
1
α

]}
, where α ∈ R,

U = {u(t) ∈ R : u steers x to X 1},
ẋ(t) =

[
v(t)
u(t)

]
x(t0) =

[
0
0

]

J(u) =

∫ t

0

1

2

(
[u(t)]2 + 1

)
ds

Notice that t1 is not specified.
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1D Example

The Hamiltonian is given by

H (t, x(t),λ(t), u(t)) =
1

2

(
[u(t)]2 + 1

)
+ λ1(t)v(t) + λ2(t)u(t)

System of ODEs: 
ṙ(t) = v(t) r(0) = 0
v̇(t) = u(t) v(0) = 0

λ̇1(t) = 0 r(t1) = 1

λ̇2(t) = −λ1(t) λ2(t1) = 0

Maximum Principle:

∂H

∂u
(t, x∗(t),λ∗(t), u∗(t)) = u∗(t) + λ∗2(t) = 0

⇒ u∗(t) = −λ∗2(t)
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1D Example

Solution: 
r∗(t) = 1

6
√

3

(√
3− t

)3
+
√

3
2 t − 1

2

v∗(t) = − 1
2
√

3

(√
3− t

)2
+
√

3
2

λ∗1(t) = − 1√
3

λ∗2(t) = − 1√
3

(√
3− t

)
⇒ u∗(t) = −λ∗2(t) =

1√
3

(√
3− t

)
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Pedestrian Traffic Model

Assumptions:

1 Pedestrians continuously observe the current state and update their
plan

2 Pedestrians have perfect knowledge of the current state

3 Pedestrians have limited prediction capabilities

4 Pedestrians work harder to avoid groups than individuals

5 Pedestrians’ cost functional is made up of 3 components:

straying from the optimal velocity

discomfort from walking too near to other pedestrians

accelerating/decelerating/turning
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Pedestrian Traffic Model

System state: System dynamics:

x(t) =



r1(t)
...

rN(t)
v1(t)

...
vN(t)


ẋ =



v1
...
vN

u1 + w1
...

uN + wN



⇒ up = controllable portion of pedestrian p’s acceleration
⇒ wp = uncontrollable portion of pedestrian p’s acceleration

wp = wbound +
∑
q 6=p

[
kp,1

(
(R∗p + R∗q)− Rp,q)+

)
npq

+kp,2
(

(vq − vp)Tn⊥pq

) (
(R∗p + R∗q)− Rp,q

)+
n
⊥
pq

]
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Pedestrian Traffic Model

Cost functional for pedestrian p:

Jp (up) =

∫ ∞
t0

e−ηps [cp,1Lp,1 + cp,2Lp,2 + cp,3Lp,3] ds

where

Lp,1 =
1

2

(
v
∗
p − vp

)T (
v
∗
p − vp

)
⇒ cost of drifting from optimal velocity

Lp,2 =
∑
q 6=p

e−Dpq/R0
p

⇒ cost of discomfort from walking too near to other pedestrians

Lp,3 = θp

(
u
T
p ep

)2
+ (1− θp)

(
u
T
p e
⊥
p

)2

⇒ cost of accelerating/decelerating/turning
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Pedestrian Traffic Model

Hamiltonian:

H (t, x ,λ,u) = e−ηpt [cp,1Lp,1 + cp,2Lp,2 + cp,3Lp,3] + λT
f

Applying the maximum principle yields:

u
∗
p = − 1

cp,3
e−ηptMpλvp

and solving the adjoint dynamics for vp results in

u
∗
p = Mp

[
I − 1

ηp

(
∂v∗p
∂rp

)T
](

v∗p − vp

τp

)
− A0

pMp

[
∂Lp,2
∂rp

+ ηp
∂Lp,2
∂vp

]
where

Mp =
1

2

[
θpepe

T
p + (1− θp) e⊥p

(
e
⊥
p

)T]−1

, τp =
ηpcp,3
cp,1

, A0
p =

cp,2
η2
pcp,3
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2D Examples

Let’s go to the tape....
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Model Parameters

The model contains several (seemingly arbitrary) parameters:

R∗p - physical radius of pedestrians

R0
p - spatial discount factor

ηp - temporal discount factor

kp,1

kp,2

}
weighting factors for inter-pedestrian interactions

cp,1

cp,2

cp,3

 weighting factors for costs functions

c+
p

c−p

}
weighting factors for longitudinal/latitudinal discomfort

θp - relative weight of longitudinal vs. latitudinal acceleration
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Future Work

Eliminate simplifying assumptions in model

Introduce cooperation between pedestrians

Expand anisotropy property of pedestrians

Limit pedestrians’ knowledge of the current state

Study of parameter values

Macroscopic data vs. microscopic data

Relationship between parameters and outputs within model

Examine how variations in environment influence behavior
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