Department of Applied Mathematics and Statistics
COLORADO SCHOOL OF MINES
MATH484: Capstone - Mathematical and Computational Modeling

Assignment #2, Spring 2015
SOLUTIONS

1. HIV Handout, p. 350, Problem 2.

The biological interpretation of r is that it represents the per capita rate at which the T-cell
population grows logistically due to the clonal selection of T-cells activated by a specific
antigen. The percent increase in the T-cell steady state is 3.16% and can be computed with
the following code and associated output.

MATLAB Code

% 4CM - Latent Model with Logistic growth
clc;clear;

% Parameter Initialization
s = 10;r = 0.03;Tmax = 1500;mu = 0.02;alpha = 2.4;beta = 0.24;
k1l = 2.4e-5;k2 = 3e-3;N = 1400;

J%Non-infective equilibrium T-cell count with r
p=r - mu;
TOr = (Tmax/(2*r))*(p + sqrt(p~2 + 4*s*x(r/Tmax)));

JNon-infective equilibrium T-cell count with r_n
rn=1.1x0.03;

p = r_n - mu;

TOr_n = (Tmax/(2*r_n))*(p + sqrt(p~2 + 4*s*x(r_n/Tmax)));

format short g
percent_inc = 100%(TOr_n - TOr)/TOr;
fprintf (’The T-cell steady state increases by %3.2f%) \n’, percent_inc);

%» This part can be used for Problem 2
1 - (alpha*(k2 + mu))/(k1*xTOr*[k2*(N-1) - mu])

Output
The T-cell steady state increases by 3.16Y%



2. One class of antiretroviral drug that is currently used to combat HIV is called a reverse
transcriptase inhibitor or RTI. Such drugs stop virions from copying their RNA within an
infected cell by stifling a key viral enzyme that is required for reverse transcription. The
overall effect is a decrease in latently, and hence actively, infected T-cells. We will incorporate
this into the model. Define egr; € [0, 1] to be the efficacy of an RTI, where egrr = 0 when
the drug is not present in the body and ezr; = 1 when the drug is 100% effective. Assume
that the person under study is being treated with an RTI and write down the new model.
If egrr = 1 what happens to the condition the ensures the stability of the non-infective
state? What efficacy is needed in order to guarantee that the non-infective state is stable?
Provide an expression for this efficacy in terms of system parameters, and then use numerical
parameter values (p. 350) to compute the egy; that guarantees stability. Finally, simulate
this system for two different values of egr; to demonstrate that your value is accurate.

Assuming treatment, the model becomes
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Note that the rate of infection is just decreased and k; has merely been replaced by
k1(1 — eryr) throughout. Now, we derived the stability condition in class, namely
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Replacing k; with the rate above, we find
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(]_ — ERTI) < 1.

Thus, if egrr = 1, then the stability condition is satisfied regardless of what the other
parameters in the system may be. Hence, perfect drug efficacy ensures that the system
always tends to the non-infective equilibrium. To determine the minimal efficacy necessary
to ensure that the stability condition is satisfied, we just solve for egyy, so that

Oé(kQ + ,U,)
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ERTI > 1-—

Using the parameter values in the handout, we find

errr > 0.4494.
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Figure 1: Graphs for Problem 2 with ezr; = 0.2 and egpr; = 0.7, respectively

The simulations are then given by the code below, in which the value of the eps variable is
altered to produce the necessary graph.

MATLAB Code

% 4CM - Latent Model with Logistic growth
clc;clear;

% Parameter Initialization

s = 10;

r = 0.03;
Tmax = 1500;
mu = 0.02;
alpha = 2.4;
beta = 0.24;
k1l = 2.4e-5;
k2 = 3e-3;

N = 1400;

sNon-infective equilibrium T-cell count

p =1 - mu;

TO = (Tmax/(2*r))*(p + sqrt(p”2 + 4*sx(r/Tmax)));
eps = 0.7;% eps_crit = 0.4494

k1 = ki1x(1-eps);

R = k1xk2xN*T0/((k2+mu) * (alpha+k1*T0))



% Let y = [(1) Uninfected T-cell count; (2) Latently Infected T-cell count;
% (3) Actively Infected T-cell count; (4) Virion count];

% Initial condition, time span
yO0 = [1e3; 0; 0; 1le-3];
tSpan = [0 365%20];

% Differential Equation

dy = @(t,y) [s + rxy(1)*x(1 - ((y(D)+y(2)+y(3))/Tmax)) - muxy(1) - klxy(1)x*y(4);
kixy(1)*y(4) - muxy(2) - k2*y(2);
k2*xy(2) - betaxy(3);
Nxbetaxy(3) - kilxy(1)xy(4) - alphaxy(4)];

% Solve ODE
[tOut yOut] = odelb5s(dy, tSpan, y0);

figi=figure(’Color’,[1 1 1]);
set(figl,’defaulttextinterpreter’,’latex’);

tO0utYr = t0ut/365;

plot (tOutYr, yOut(:,1), tOutYr, yOut(:,4),’-.r’);

legend (’T(t)’, *V(£)’);
xlabel(°Time (yrs)’);

ylabel (’Population (cells/mm$~3$)’);
title(’$\epsilon = 0.7$’)

3. Assume n = 1 and write down the mutation model. One important class of equilibrium

states are triples of the form
h
(’U,.CE,Z): U*vga_
k' k

where v* > 0 is arbitrary. Show that these equilibria are stable if and only if Ng;, > 1. This
can be expanded for arbitrary n € N to prove Observation 1 (on p. 353)

For n = 1, the mutation model is

(j—z:v(a—bz—cx)
) X (g~ k)
%:U(h—k‘z).




We denote the equilibrium state by

o[y 9
y_ akak .

In order to determine conditions for stability of these equilibria, we compute the Jacobian:

a—bz—cx —cv —-bu
J = g—kx —kv 0
h—kz 0 —kv

and evaluate this at the state to find

a—% -9 —cr —b*
A=, = 0~k 0
0 0 —kv*

Then, we find the eigenvalues of this matrix using

bh
0= det (A — AI) = (kv + \)? <a— ZCQ—A).

Hence, they are

)\172 = —kv* <0
and
bh + cg
)\3 = a— 2

In order for Re(\3) < 0, the parameters must satisfy the condition
ak —bh < cg

or stated another way, Ny, > 1.

4. Assume that the individual in the mutation model (with n € N arbitrary) is treated
with an RTT of efficacy err; € [0, 1]. How does this alter the model? Determine the efficacy
needed to ensure that the infection is controlled - derive both an expression and a number for
this by using given parameter values (p. 354) as in Problem 2. Finally, simulate this system
with n = 6 for two different values of egrr; to demonstrate that your value is accurate.

Introducing a reverse transcriptase inhibitor merely decreases the rate of growth within the
virus population. Hence, we replace a in the model with a(1l — egypy). Since the condition
needed to control the infection was

cg

Niv:
div = ok — bh

> n,

we replace a as in the model and after some algebra we find

cg + nbh

€rrr > 1 —
R nak
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Figure 2: Graphs for Problem 4 with ezr; = 0.01 and egpy = 0.1, respectively

Using the parameter values given in the handout, this is just
errr > 0.033.

Alternatively, if a(1 — egpr)k < bh then the infection is controlled regardless of the value of
n, and this occurs for

bh
€prr > 1— —=10.2
ak

Finally, the MATLAB code to simulate the system and produce the associated graphs is
given below.

MATLAB Code

% HIV Mutation Model with immune response
clear;clc;

% Coefficients
a=5;b=4;, c=5;g=1;, h=1; k =1;

eps = 0.1;
a = ax(1l-eps);
Ndiv = cxg/(a*k - bxh)

% Initial condition, time span
y0 = [0.05; zeros(12,1)];

i Differential Equation



dy = @(t,y) [(a-b*xy(13) - c*xy(7))*y(1);
(a-bxy(13) - cxy(8))*y(2);

(a-b*xy(13) - c*xy(9))*y(3);

(a-b*xy(13) - c*xy(10))*y(4);
(a-bxy(13) - cxy(11))*y(5);
(a~b*xy(13) - cxy(12))*y(6);

gxy (1) - kxy(7)*sum(y(1:6));
gxy(2) - kxy(8)*sum(y(1:6));
gxy(3) - kxy(9)*sum(y(1:6));
gxy(4) - kxy(10)*sum(y(1:6));
gxy(5) - kxy(11)*sum(y(1:6));
gxy(6) - kxy(12)*sum(y(1:6));
(h-k*y(13)) *sum(y(1:6))];

figi=figure(’Color’,[1 1 1]);
set(figl,’defaulttextinterpreter’,’latex’);

% Solve ODE up to first mutation

[t1 yOut] = ode45(dy, [0, 0.5], y0);
V = yOut(:,1:6);

S1 = sum(yOut(:, 7:12));

zl = yOut(:, 13);

plot(tl, V)

hold on

%New "initial" data
yl = yOut(end,:);
y1(2) = y1(2) + le-2;

% Solve ODE to second mutation

[t2 yOut] = ode45(dy, [0.5, 1], y1);
V = yOut(:,1:6);

S2 = sum(yOut(:, 7:12));

z2 = yOut(:, 13);

plot(t2, V)

%New "initial" data
y2 = yOut(end,:);
y2(3) = y2(3) + le-2;

% Solve ODE to second mutation

[t3 yOut] = oded45(dy, [1, 1.5], y2);
V = yOut(:,1:6);

S3 sum(yOut(:, 7:12));

z3 = yOut(:, 13);



plot(t3, V)

%New "initial" data
y3 = yOut(end,:);
y3(4) = y3(4) + le-2;

% Solve ODE to second mutation

[t4 yOut] = ode45(dy, [1.5, 2], y3);
V = yOut(:,1:6);

S4 = sum(yOut(:, 7:12));

z4 = yOut(:, 13);

plot(t4, V)

%New "initial" data
y4 = yOut(end,:);
y4(5) = y4(5) + le-2;

% Solve ODE to second mutation

[t5 yOut] = ode45(dy, [2, 2.5], y4);
V = yOut(:,1:6);

S5 = sum(yOut(:, 7:12));

z5 = yOut(:, 13);

plot(t5, V)

%New "initial" data
y5 = yOut(end,:);
y5(6) = y5(6) + le-2;

% Solve ODE to second mutation
[t6 yOut] = ode45(dy, [2.5, 20], y5);

V = yOut(:,1:6);

S5 = sum(yOut(:, 7:12));
z5 = yOut(:, 13);
plot(t6, V)

legend(PV_1(t)’, ’V_2(t)’, ’V_3(t)’, ’V_4(t)’, ’V_6(t)’, *V_6(t)’);
xlabel(°Time (yrs)’);

ylabel(’Strain Population’);

title(’$\epsilon = 0.1$°)



