
Department of Applied Mathematics and Statistics
COLORADO SCHOOL OF MINES
MATH484: Capstone - Mathematical and Computational Modeling

Assignment #6, Spring 2015
SOLUTIONS

1. Let η = 1
4
, α = 2

10
, and β = 2. Use Fourier Series with N = 15 to solve the inverse Electron

Beam Lithography problem (i.e., find and plot D15(x)) on the spatial interval [−1, 1] with
dx = 10−3 and

E(x) =

{
1 if |x| < 1

2

0 else.

In the same figure as D15(x), plot E(x), and compute and plot E15(x) - the approximation
to E(x) given by the first 15 terms of the Fourier Series expansion. Use a solid blue line
(default) for E(x), a dashed red line for E15(x), and a dot-dashed black line for D15(x).
Hint : To check your code for D15(x), try it with N = 10 and compare to Figure 3.9.

Figure 1 displays a comparison between the original desired shape, the dosing Fourier ap-
proximation, and the resulting desired shape Fourier approximation. Below is the associated
code.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5
E(x), D(x), and Appx to E(x)

x

E
(x

)/
D

(x
)

E
E

15

D
15

Figure 1: Graphs for Problem 1

MATLAB Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Function used for the initial desired shape - E(x)

function out = Shape(x)

out = zeros(1, length(x));

for j = 1:length(x)

if ((abs(x(j)) <= 0.5))

out(j) = 1;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Other code

clear; clc;

dx = 1e-3;

a = -1;

b = 1;

x = a:dx:b;

N = 15;

%Constants

alpha = 0.2;

beta = 2;

eta = 0.25;

T1 = alpha^2/4;

T2 = beta^2/4;

E_target = @(s) Shape(s);

D = zeros(1,N);

E = D;

Ex = (1/pi)*integral(E_target, 0, pi)*ones(1,length(x));

Dx = Ex;

for n = 1:N

f = @(s) E_target(s).*cos(n*s);

E(n) = (2/pi)*integral(f, 0, pi);

% Similarly, you could just use

% E(n) = (2/pi)*integral(@(s) cos(n*s), 0, 0.5);

D(n) = ((1+eta)/(exp(-n^2*T1) + eta*exp(-n^2*T2)))*E(n);

Dx = Dx + D(n)*cos(n*x);

Ex = Ex + E(n)*cos(n*x);

end

figure;

plot(x, E_target(x), x, Ex,’--r’, x, Dx, ’-.k’),

title(’E(x), D(x), and Appx to E(x)’),

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5
E(x), D(x), and Fejer−summed D(x)

x

D
(x

)/
C

D
(x

)

E
D

15

CD
15

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5
E(x), Appx to E(x), and Fejer−summed E(x)

x

E
(x

)/
C

E
(x

)

E
E

15

CE
15

Figure 2: Graphs for Fejer Sums in Problem 2

axis([-1,1,-0.5,2.5]),

xlabel(’x’), ylabel(’E(x)/D(x)’),

legend(’E’, [’E_{’,num2str(N),’}’], [’D_{’,num2str(N),’}’])

2. Do the same as for Problem 1, but use the Fejer sums (i.e. D̃15(x) and Ẽ15(x)) instead.
Compare the new dosing function approximation to the old one - how are they different and
why is one better?

Figure 2 displays the Fejer Fourier approximations compared to those from the previous prob-
lem - D̃15(x) is represented by CD15(x) and Ẽ15(x) is represented by CE15(x) on the plots.
Notice that the Fejer approximations contain less oscillations than the standard Fourier se-
ries approximations and remain positive for more x values. Hence, they appear to serve our
purpose much better. In fact, Ẽ15(x) > 0 for all x ∈ [−1, 1]. Below is the associated code to
generate the graphs.

MATLAB Code

clear; clc;

dx = 1e-3

a = -1;

b = 1;

x = a:dx:b;

N = 15;

%Constants

alpha = 0.2;

beta = 2;

eta = 0.25;

T1 = alpha^2/4;

T2 = beta^2/4;

E_target = @(s) Shape(s);

D = zeros(1,N);

E = D;

Dx = 1/(2*pi);

Ex = Dx;

CDx = Dx;

CEx = Ex;

for n = 1:N

E(n) = (2/pi)*integral(@(s) cos(n*s), 0, 0.5);

D(n) = (1+eta)*E(n)/(exp(-n^2*T1) + eta*exp(-n^2*T2));

Dx = Dx + D(n)*cos(n*x);

Ex = Ex + E(n)*cos(n*x);

%Add Cesaro Sum

CDx = CDx + (1 - (n/N))*D(n)*cos(n*x);

CEx = CEx + (1 - (n/N))*E(n)*cos(n*x);

end

figure;

plot(x, E_target(x), x, Dx,’--r’, x, CDx,’-.k’),

title(’E(x), D(x), and Fejer-summed D(x)’),

axis([a,b,-0.5,2.5]),

xlabel(’x’), ylabel(’D(x)/CD(x)’),

legend(’E’, [’D_{’,num2str(N),’}’], [’CD_{’,num2str(N),’}’])

figure;

plot(x, E_target(x), x, Ex,’--r’, x, CEx, ’-.k’),

title(’E(x), Appx to E(x), and Fejer-summed E(x)’),

axis([a,b,-0.5,2.5]),

xlabel(’x’), ylabel(’E(x)/CE(x)’),

legend(’E’, [’E_{’,num2str(N),’}’], [’CE_{’,num2str(N),’}’])

3. Friedman & Littman, p.82, Problem 4.6.1
Use the implicit finite difference method included on p.82 above the problem statement with
step sizes dt = 1 sec and dx = 500µm, and the stopping time T = 180 sec. After computing
the solutions create two figures - one with A(0, x), A(90, x), and A(180, x) and another with
B(0, x), B(90, x), and B(180, x). Within each of these figures, use a solid blue line (default)

0 5 10 15

x 10
4

−2

0

2

4

6

8

10

12

14
x 10

−10 Implicit Method

x

A
(t

,x
)

A(0)

A(90)

A(180)

0 5 10 15

x 10
4

−2

0

2

4

6

8

10

12
x 10

−12 Implicit Method

x

B
(t

,x
)

B(0)

B(90)

B(180)

Figure 3: Graphs for A(t, x) and B(t, x) in Problem 3

for the t = 0 solution, a dashed red line for the t = 90 solution, and a dot-dashed black line
for the t = 180 solution.

Figure 3 displays the representations of A(t, x) and B(t, x) at the three different times. Be-
low is the associated code and results.

MATLAB Code

clear; clc;

dx = 5e2;

dt = 1;

a = 0;

b = 1.5e5;

T = 180;

D = 100;

k = 6.6e12;

gamma = 7.5e-12;

B0 = 1.125e-11;

sigma = D*dt/(dx^2);

x = a:dx:b;

m = length(x);

n = T/dt;

J = find((x > 1e4 & x < 2e4) | (x > 3e4 & x < 4e4));

E = zeros(1,m);

E(J) = 1;

A = zeros(n,m);

B(1,:) = B0*ones(1,m);

M = (1+2*sigma)*diag(ones(m-2,1))-sigma*diag(ones(m-3,1),1)...

-sigma*diag(ones(m-3,1),-1);

for i = 1:n

for j = 1:m

B(i+1, j) = B(i,j)/(1 + k*dt*A(i,j));

end

%Assuming Dirichlet BCs so that A(i,1) = A(i, m) = 0

b = (1 - k*dt*B(i+1,2:m-1)).*A(i,2:m-1) + gamma*dt*E(2:m-1);

A(i+1,2:m-1) = M\b’;

end

figure;

plot(x, A(1, :), x, A(n/2+1, :),’--r’, x, A(n+1, :),’-.k’), title(’Implicit Method’),

xlabel(’x’), ylabel(’A(t,x)’), legend(’A(0)’, ’A(90)’, ’A(180)’);

figure;

plot(x, B(1,:), x, B(n/2+1, :),’--r’, x, B(n+1, :),’-.k’), title(’Implicit Method’),

xlabel(’x’), ylabel(’B(t,x)’), legend(’B(0)’, ’B(90)’, ’B(180)’);

