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1.3 Aggregation of Slime Mold Amebae

In this section we shall formulate a mathematical mode! to describe the
aggregation of slime mold amebae. We shall thereby gain some understanding
of a phenomenon of considerable current interest in developmental biology.
(Developmental biology includes embryology, the study of how a single cell
develops into a complicated embryo, but also encompasses the development
of simpler organisms that cannot be said to have an embryo.) We begin with
some facts about slime mold amebae that provide a basis for our mathematical
model.

SOME FACTS ABOUT SLIME MOLD AMEBAE*

One can begin a description of the life cycle of the slime mold amebae at
the spore stage, where each ameba is dormant within a protective covering.
When conditions are favorable, an ameba emerges from its spore. Of the
order of 10 micrometers (10~3 cm) across, the amebae are rather shapeless
one-celled organisms that move by extending contractile portions of them-
selves (pseudopods).

The natural habitat of the amebae is soil or dung. An important element
of the food chain on earth, they feed on bacteria by engulfing them. If food
is plentiful, the amebae continually feed and multiply by mitosis (dividing
in two). If the food supply becomes exhausted there is an interphase period of
random and somewhat feeble movement, where the amebae are more or less
evenly distributed over the area available to them. During this period, the
disappearance of the food supply triggers certain changes in the amebae.
The details of these internal changes are not known, but there is no difficulty
in observing the striking external phenomenon that results. After a few hours,
the amebae begin to aggregate into a number of collection points. Typically,t
these are more or less regularly distributed, with a spacing of a few hundred
micrometers. (See the frontispiece. Figure 1.4 gives an idea of what the be-
ginnings of aggregation look like under conditions of lower cell density.)

After aggregation has been completed, the amebae that have collected at a
given point (ranging in numbers from a few in laboratory experiments, up to
200,000) form a multicelled slug. This moves as a unit, although the formerly
free living amebae retain their cell walls within the slug. Then the slug stops
and erects a stalk, on top of which is a roundish container of spores. The
cycle is thus completed.

* “There is no philosophy which is not founded upon knowledge of the phenomena, but to get
any profit from this knowledge it is absolutely necessary to be a mathematician.”—Daniel
Bernoulli. Quoted by C. Truesdell on p. 318 of Essays in the History of Mechanics (New York:
Springer, 1963).

1 There are several species of cellular slime mold, with various corresponding differences in
behavior. [See J. T. Bonner, The Cellular Slime Molds (Princeton, N. J.: Princeton U.P., 1967).]
Our description is appropriate for the most studied species, Dictyostelium discoideum.
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FiGuRrE 1.4. Population of amebae just beginning to aggregate. The
scale is indicated by a 100-micrometer line segment. (Courtesy of
B. Shaffer.)

What is responsible for the organized aggregation of the amebae? This is
an important question, for “ purposeful” movements occur frequently in
developmental processes. Usually, these movements take place rather
inaccessibly within a developing organism, but the cells of the slime mold
amebae will obligingly perform in a laboratory dish so that it is easy to
examine them and to experiment with them.

It has been discovered that the amebae move preferentially toward rela-
tively high concentrations of a chemical which they themselves secrete. In
some species the attractant has recently been identified as cyclic 3',5'-adenosine
monophosphate (AMP) a chemical with many important biological functions.
(E. W. Sutherland was awarded the Nobel Prize for medicine in 1971 for his
work in elucidating some of the roles of cyclic AMP.) It is also known that a
given quantity of attractant loses its potency in a matter of minutes. This has
been traced to the activity of an enzyme that alters the nature of the AMP.

Presumably, aggregation is caused by the fact that the amebae move up a
gradient of attractant, but what determines the time of onset? What deter-
mines the spacing of aggregation centers? Can one quantify the process?
A mathematical model is needed to answer such questions. We shall proceed
to devise the simplest model that could reasonably be supposed to bear on



24 What Is Applied Mathematics? [Ch. 1

the circumstances.* If analysis of this model is encouraging, one can add
detail later. For this, the reader is referred to the paper just cited and to
subsequent papers by various authors in the same journal.

FORMULATION OF A MATHEMATICAL MODEL

Since the distance between amebae is small compared to the typical
distance between aggregation centers, we shall employ a continuum model.
Suppose that the aggregation takes place in the (x, y) plane. For simplicity
we shall assume that no quantities change with y, so that only x variation
need be considered. Exercise 3 shows that this assumption of unidimension-
ality is not at all essential, but it makes exposition easier.

Let a(x, t) denote the number of amebae per unit area at position x and
time t. Consider the amebae located in the region x, < x < x; + Ax, where
Ax is an arbitrary number (not necessarily small). We shall now write a
general balance law for this region; this states that the rate of change of the
net amount of 4 in the region equals the rate at which a flows across the
boundary, plus the net rate of creation of a within the region. In the present
case, q stands for amebae, and the net creation of amebae is equal to the
excess of births over deaths. But the balance law is “ general” because it
applies to any substance whatever. For how else can a substance appear in
the region except by creation or by flow across its boundaries ?

To proceed, we must define the flux denmsity J(x,, ¢). This gives the net
rate per unit length at which a crosses the line x = x,. Also, J is defined to be
positive if there are more amebae crossing in the direction of x increasing
than in the opposite direction. The term Q(x, ) is the net rate per unit area
at which a is being created. The desired balance law can now be written.
Considering the rectangle of Figure 1.5, we obtain

a xo+Ax
j a(x, 1) dx = J(xo, ) = J(%o + AX, ) + |

at X0 X0

It is convenient to use the integral mean value theorem (Appendix 13.2) to
write

xo+Ax

Qx, 1) dx. (1)

‘% [a(x,, 1) Ax] = J(xy, 1) ~ J(x4 + Ax, 1) + O(x,, 1) Ax;

Xo<Xx; €Xg+Ax, x0<x, <%+ Ax. (2)

We divide by Ax and then take the limit as Ax — 0, to obtain the general
balance law in differential equation form,

da oJ .
'a';' (xo ’ t) =- 5; (xo » t) + Q(xOs t), Xo arbltraf}’- (3)

* We adapt material in a paper by E. F. Keller and L. A. Segel, J. Theorer. Biol. 26, 399~415
(1970).
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FIGURE 1.5, The balance law (3) considers the rate of change of mass
in a rectangle of length Ax and unit width, in the case where y variation
is absent.

In the case of the amebae, reproduction can be ignored because there is
little or none of it in the absence of food. Deaths can also be ignored, since
there are few during the time interval of interest. Thus we take

g0=0. @

To obtain an expression for the flux J, let us first consider a situation when
attractant is absent. Then the amebae appear to move about randomly.
Owing to such “ diffusionlike”” movement, a concentration of amebae tends
to disperse. Thus there is 2 random flux J, from regions of high ameba
concentration to regions of low concentration. The magnitude of the flux at x
seems to depend on the concentration difference between x and nearby points.
We characterize this difference by da/dx (the simplest choice) and make the
hypothesis that

da(x, t)] ®)

J(x,)=F [ Em

for some function F. Now when a = constant, J = 0—for in random motion
there will be as many amebae moving to the left as to the right. In this case
dafox = 0. Therefore, given (5), it is only sensible to assume that

F(0) =0. 6)

Thus the graph of F must have an appearance such as that depicted in
Figure 1.6. For sufficiently small values of s, we can approximate the graph
by a straight line. Calling the slope of the line —p, we obtain F(s) = —us as
the simplest reasonable assumption concerning F; i.e.,

-’r(xs = —p aa(a": t)‘ Q)]
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-

Slope = —p 1 \

Fi1G URE 1.6. Possible plot of the function F defined in (5). The graph
provides negative values for s> 0 because there should be a leftward
(negative) flux if amebae density is higher at larger values of x. Similar
reasoning explains the positivity for s <0.

Combining (3), (4), and (7), we obtain

da 0 Oa
2 (o2

Equation (8) is the diffusion equation, which will be studied at length
beginning in Chapter 3. This equation is used to model the concentration
variation of any kind of randomly moving set of particles, for example smoke
particles in air (see Chapter 3). The constant p, which governs the vigor of
the random movement, is generally calied the diffusivity. Here we call p the
motility, giving precise meaning to a biological term that is often used only in
a qualitative manner.

Equation (8) was obtained under the assumption that no attractant was
present. To account for chemotaxis, which is directional motion induced by
variations in chemical concentration, we add to J, of (7) an additional
contribution J,. Let p(x, ¢) be the density of the attractant. Arguing as
before, we pass from an initial assumption that J is a function of the attract-
ant gradient 8p/0x to the assumption that J, is proportional to the attractant
gradient, at least for small values of the gradient. For a given gradient, if
the amebae density is twice as great, the net flux should be twice as great.
The proportionality factor should thus be a multiple of 2. We are led to the
hypothesis that

dp
Jo=xa g &)
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The factor y measures the strength of chemotaxis. Note that in contrast to (7),
there is no negative sign in (9). This is because amebae tend to move roward
attractant concentrations (and away from ameba concentrations).

Assuming that the total flux J in (3) is the sum of the random contribution
J. and the chemotactic contribution J,, we are led to our final equation for
the change in ameba density:

fa _2 ( %8 _a ap)_ (10)

at  0x

We shall take y and y to be positive constants. It is not difficult to take into
account a variation with p which is probably present, but this would only
change some details of the analysis to come [Exercise 2(a)]- Note that even
with constant x and g, (10) contains a (quadratic) nonlinear term ya(ép/0x),
because this term is proportional to the product of two unknown functions,
a and &p/dx. [Such a quadratic nonlinearity was also found in our study of
galactic structure—compare the remarks following Equation (2.4.)] Nonlinear
terms generally make mathematical analysis more difficult, and hence more
challenging and more rewarding.

We also need an equation for the attractant density p. This will be of the
general form (3):

op oJ,
—3_2‘— -+ Qa'

ox

(The subscript *“ a” refers to attractant.) The random motion of the attractant
molecules will be modeled by a proportionality of flux to gradient, as in (7):

op

J,=—-D=.

2 o0x
The net creation term @, has a positive contribution fa as a result of the
secretion of attractant by the amebae. Here f is the rate of secretion per unit
amebae density. What of the decay in attractant activity? We take the rate
of decay (as in radioactivity or some other spontaneous process) to be
proportional to the amount of attractant present,* via the constant %.

Thus @, =fa — kp, and the desired equation for dp/dt is

dp 9%p
gt——fa—kp-f-DE)?- an

We shall take f, k, and D to be positive constants.

* As we stated above, decay is actually due to the action of an enzyme. If Michaclis-Menten
kinetics (Chapter 10) are assumed, this can be modeled by making k a certain function of p.
But the essentials of the analysis are unchanged [Exercise 2(b)].
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Partial differential equations (10) and (11), for the two unknown functions
a(x, t) and p(x, t), provide the basic formulation of our problem.

AN EXACT SOLUTION: THE UNIFORM STATE

It is very easy to find an exact solution of (10) and (11). This is the uniform
solution,

a=4ay, P = Po> (12)

where a, and p, are constants. [When (12) holds, the system is said to be in
the uniform state.] Upon substitution into (10) and (11), we find that (12) will
indeed provide a solution if

Jag =kpo. (13)

Equation (13) is physically reasonable. 1t says that in the uniform state the
secretion rate of attractant must be exactly balanced by the decay rate.

ANALYSIS OF AGGREGATION ONSET AS AN INSTABILITY

We identify the uniform state with the interphase period prior to aggre-
gation. We also model the onset of aggregation as the breakdown of the
uniform state due to the growth of inevitable small disturbances to ameba and
attractant density. That is, we identify the onset of aggregation with the sort
of instability of the uniform state whose investigation forms a classical part of
applied mathematics (see Sections 11.1 and 15.2). The instability is presumed
to occur because of changes, during interphase, of the parameters y, y, and f
that characterize ameba behavior.

The idea behind instability theory is this. Suppose that at some initial time,
the state of the system is slightly disturbed from the uniform state. (Suppose
that there is a local clumping of amebae, for example, and an accompanying
local concentration of attractant.) Will the small disturbance tend to disappear
with the passage of time or will it become more intense? In the former case
we say that the uniform state is stable to small disturbances, in the latter
unstable. Unstable states will not be observed, for disturbances are inevitable.
In the case of instability, they will grow, so the uniform state will be replaced
by some other state.

To perform a stability analysis, we introduce the variables a’ and p’ by the
definitions

a(x, 1) =aq + a'(x, t), px, 1) =po + p'(x, D). (14)

Here a’ = a — a,, for example, measures departure from uniformity; there-
fore, it can be identified with the disturbance in ameba density.
To obtain equations for &’ and p’, we substitute (14) into (10) and (11).
From the former we obtain
oa’ 9%a’ ~0%p’ da’ dp
a—"a;f"f[“o“)aﬂm;]'

(15)
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This equation is nonlinear, owing to the presence of the quadratic terms
a'(6*p’/ox?) and (8a’/ox)(dp’/0x). We shall assume that the disturbances
(and their derivatives) are small, in which case we call a’ and p’ perturbations.
The perturbations are involved quadratically in some terms and linearly in
others. Products of two small terms should be negligible in comparison with
the other terms of (15), which contain but a single perturbation function.
We thus linearize the equation by deleting all nonlinear terms. We obtain
’ 2 7 2

LA LI 4 (16
as the linearized version of (10). As for (11), upon substituting (14) and em-
ploying (13), we obtain
2.

9%p

a 7
i:fa’—kp'+D—2-, (17
Ox

ot
which is already linear.

We are faced with a pair of linear partial differential equations with
constant coefficients. We guess that there are solutions of the form

a' =C,singxe”, p =C,singxe™, (18)

where C,; and C, are constants.* It is easily seen [Exercise 1(a)] that there are
indeed solutions of the form (18), provided that

(o + ﬂq2)cl — Xao qzcz =0, (192)
—fC, + (0 + k + Dg*)C, =0. (19b)

This system of algebraic equations has the trivial solution C, =C, =0.
[From (18) we see that we have merely verified that it is possible to have an
identically zero perturbation of an exact solution.] For a nontrivial solution,
the determinant of the coefficients must vanish. We thus obtain the following
quadratic equation for o:

c2+bo+c=0; b=k+u+D)g?: c=ug’lk+ Dg*) — yaofq*
(20)

The quadratic equation can be shown to have real roots [Exercise 1(b)].
To ensure stability, both roots must be negative, so that the exponential
factor exp (at) brings about decay of the perturbations. It is not difficult to
show (Exercise 1) that a necessary and sufficient condition for stability is
¢ > 0, which requires that

xaof < utk + Dg®), g #0. (21)

* The reasons that lie behind such an assumption as {18) are more fully discussed in Section
15.2. We mention here that a cosine dependence in (18) will yield exactly the same results. (Com-
pare Exercise 3.) Also, more general disturbances can be obtained by the superposition of sinu-
soidal solutions, using Fourier analysis (as discussed in Chapters 4 and 3).
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From (18), 2n/g is the wavelength of the perturbation under investigation.
Since y and k are positive, the right side of (21) decreases monotonically as ¢
decreases, toward a greatest lower bound of uk. Therefore, the longer the
wavelength 2n/q, the more *‘ dangerous” the perturbation [for (21) is more
easily violated]. We conclude that instability is possible whenever

for then (21) is violated for a range of sufficiently small values of ¢°.

1, (22)

INTERPRETATION OF THE ANALYSIS

The view of aggregation that emerges is this. During the beginning of the
interphase period, inequality (22) does not hold and the uniform state is stable.
Triggered by the stimulus of starvation, the various parameters gradually
change. Eventually, (22) is satisfied, and aggregation commences. We identify
the size of the * aggregation territory ™ with the instability wavelength; our
analysis predicts that the territory size is ““ very large” in some sense.

The instability criterion (22) has the following interpretation. Suppose
that there is a concentration of amebae and attractant at some point. Random
“ diffusion > of amebae with motility p tends to disperse this concentration,
as does the attractant decay, whose strength is measured by k. Larger yand &
means larger stabilizing effects. 1t is therefore appropriate that increases in
u and k mean that the instability criterion (22) is more difficult to satisfy.

By contrast, a local concentration of attractant tends to draw amebae
toward it by chemotaxis (strength y). Also, a concentration of amebae will
provide a corresponding increase of attractant concentration because of the
higher local concentration of secretion sources. The strength of this effect is
measured by a,f. This explains the appearance of the destabilizing factors
a,f and y in the numerator of (22). Instability ensues if destabilizing effects
outweigh stabilizing.

The explanation of aggregation provided in the previous paragraph could
perhaps have been provided without doing a mathematical analysis. But, as
is typical, only after carrying through some calculations does one seem able
to discern the physical essence of a situation. Also, the criterion (22) is a
quantitative one, capable of experimental test. No full quantitative tests have
been performed as yet, but it has been discovered that both the chemotactic
sensitivity y and the attractant secretion rate f go up by about 100-fold at the
time aggregation commences. As illustrated in our discussion of galactic
structure, future quantitative tests might reveal defects in understanding that
would never emerge from qualitative considerations.

The above analysis is based on a paper (op. cit.) that appeared in 1970
in the Journal of Theoretical Biology. Since that time, several other papers
on slime mold aggregation, by various authors, have appeared in that journal
and elsewhere. They deal with such matters as (i) a more accurate modeling of
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the chemical kinetics and hence (among other things) a possible refinement of
the ““ very large territory size” prediction mentioned above; (ii) the streaming
type of aggregation, as in the frontispiece; and (iii) the influence of pulsatile
attractant secretion and refractory periods. Future work will doubtless
examine theeffects of nonlinearity. Two survey articles on slime mold aggrega-
tion and other collective chemotactic motions, written for a mathematical
audience, can be found in Some Mathematical Questions in Biology, Vol. II1
(Providence, R.I.: American Mathematica! Society, 1972).

EXERCISES
1. (a) Venfy (19).
(b) Show that the roots of the quadratic equation (20) are real.
(c) Show that both roots are negative if and only if both b and ¢ are
positive.
(d) Show thatsincef, D, and y are positive, if ¢ > 0, then & > 0. Thereby
deduce (21).

2. Investigate the changes in the analysis that would occur under the follow-
ing conditions.

(a) If uand y were functions of p.
(b) If k and f were functions of p.

3. If two-dimensional variation is considered, the governing equations (10)

and (11) are replaced by

2—;1 =V-(uVa — xaVp), gtg =fa — kp + DV?p.
Assume disturbances with spatial dependence sin (g,x + g,y + 9), where
91> g2 » and @ are constants. Show that if g*> = ¢3 + ¢2, then 2n/g remains
the disturbance period and the instability condition remains (22).

4. Define A by ya,f/uk = 1 + A and suppose that A is small and positive.
[Compare (22).] Ignoring higher order terms in A, find an approximation
for the larger root of the quadratic. Deduce that the wavelength of the
fastest growing disturbance is approximately 2z(2D/kA)!/2.

Appendix 1.1 Some Views on Applied Mathematics
ON THE NATURE OF APPLIED MATHEMATICS

1. .. describe applied mathematics as the bridge connecting pure mathematics
with science and technology. I have deliberately described this bridge as cornecting
two areas of activity rather than leading from one to the other, because the bridge
carries two-way traffic. Its importance to science and technology is obvious, but it
is not less important to pure mathematics, which would be poorer without the
stimuli coming from the applications.

W. Prager, “ Introductory Remarks™ in the special issue, “Sympo-
sium on the Future of Applied Mathematics,” Quart. Appl. Math. 30,
1-9 (1972).



