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81.“ ¢(X7 t) + :u’a)3( (b(X, t) + 6¢8X ¢(X7 t)
Physical
Background

0,

x €la,b], t>0

@ KdV is commonly used in Hydrodynamics to model
shallow water waves.

@ Similar to Advection Equation
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@ Electrical Transmission in Lines
Physical
Background @ Blood Pressure

@ Gravity Waves in Geophysics
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Stod for In one dimension, a collocation method approximates a solution

Msndol  to an ordinary differential equation, F(¢) = 0, with a function

Vries Equation
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@ Given our function space, let our basis functions be
{vi,...,vn}
ocation @ We approximate the solution to our differential equation
with a linear combination of these basis functions:

N
(b ~ ¢ = ZO&,‘V,‘(X).
i=1



Collocation Method Cont.
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Ml [, b] with a uniform partition {xi,...,Xn}. We construct ¢
Kerrek

Stinson suCh that

F(®(Xj112)) =0V je{l,.... M -1}
Collocation

Method Where
, _ X1t X
Xji+1/2 = =5
We now have a system of M — 1 equations.
Using boundary conditions, more equations can be constructed.




Collocation Method Cont.
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N

P~ b= Za;(t)v;(x).

Collocation i=1
Method

Following the same process as before, we come up with a

system of differential equations, with unknown «;, which may
be solved by a Finite Difference Method.
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With boundary conditions:
e ¢(a,t)=0
the Method - ° ¢(b,t)=0
@ Ox¢(b,t)=0
And an initial condition:

° ¢(x,0) = do(x)



Function Space
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splines on P such that f € S3, then f € C?[a, b).

@ For a given P, S3 has a basis consisting of N + 2 elements:
B={u,..., iz}

Implementing

the Method Th us



System of ODEs
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vjie{l,...,N—-1}

represents our system of differential equations.
With boundary conditions:

Implementing ("] ¢(a, t) - O
the Method
o O(b,t)=0
o 0y (b, t) =0

we have N-1 differential equations and 3 algebraic relations for
the boundary conditions.



Inital Condition for System of ODEs
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¢(><j+1/27 0) = ¢0(Xj+1/2)a VJje {17 sy N = 1}

Using these equations and the boundary conditions, our initial
condition is found solving a linear system.

Implementing
the Method

Let t € [0, T], and choose a uniform partition of [0, T]:
{to, ..., tm}, At =1/m.



Backward Euler
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p 0% O(ti1, Xj1j2) + -

Implementing qu(tl'? Xj+1/2) aX ¢(ti+17 Xj+1/2) = 07
the Method

where we have assumed ®(t;, Xj11/2) = ®(tit1, Xj11/2)-



Implementation in Summary
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Kemek @ Using Collocation, we reduced KdV to a system of
nonlinear ODEs.
@ With the aid of Backward Euler and a reasonable
assumption, we reduced finding the solution at each time
step to a linear system.

Implementing
the Method

All that is left is to model.
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Spatial Interval and Parameters:
x € [~15,15]

At = .01

Ax = .01

e=1

w=.05

Simulations
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Maxwellian Initial Condition
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Soliton Initial Condition
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: ‘ @ 1 = 3
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0 5= /()2

Spatial Interval and Parameters:
x € [-1,3]

At = .005

Ax = .01

e=1

© = 0.0005

Simulations
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Numerical Finding on Convergence
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@ The method exhibits O(Ax? + At) convergence.

This rate was found with respect to the Soliton Initial
Condition, where we know the analytic solution.

Convergence



In Conclusion
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KdV equation.

@ Reduces nonlinear PDE to system of linear equations at
each time step.

Conclusion
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