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We consider a model of crystal precipitation, described mathematically as a 
conservation law with nonlinear nonlocal flux function. The initial data consist of a 
finite number of Dirac measures. It is proved that, as t -P co, the radii of the crystals 
tend to a critical radius. 0 1989 Academic Press, Inc. 

1. THE CRYSTAL PRECIPITATION PROBLEM 

In this paper we consider the problem: Find a function n(x, t) satisfying 

g+gp,=o for x > 0, t > 0, (1.1) 

4x3 0) = no(x) for x>O, (I.21 

where 

G(x, t) = 
i 

k,(c(t) - c*er’x)y if x>x*(t) 
-ks(c*eTIX - c(t))’ if x < x*(t), 

I- 
x*(f) = 

hidcwlc*)’ 
576 
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(1.3) 

(1.4) 



CRYSTAL PRECIPITATION 571 

and 

c(t) = co + /I? joa x3no(x) dx - p s,z x3n(x, t) dx. (1.5) 

Here y, 6, k.,, k,, r, c,,, c*, p are positive constants, 

and 

%(X) = 2 Pm w- -4 m=l (1.6) 

where p,,, are positive constants and 

o<x, <x2< .‘. <XN<Go 

are given; 6(x) is the Dirac measure with unit mass at x = 0. 
This problem was recently studied by Friedman and Ou [2] in case 

no(x) is a continuous nonnegative function with compact support. The 
system describes a model of crystal precipitation [S] (see also [1, 3, 41). 
The initial values of the form (1.6) are of particular interest for the model. 

In Section 2 we establish a solution for (1.1 t( 1.5). In Section 3 we prove 
that, as t + co, the radii of all the crystals that have not disappeared (in 
finite time) converge to a critical radius 5, which is either one of the two 
zeros 5 i , c2 of the transcendental equation 

N j?pNt3 + c*e”’ = c,+p c pmx;=cl. 
m=l 

(1.7) 

It follows that for a large class of initial data, 

c* < lim c(t) < c1 ; 
r-m 

this is in sharp contrast to the asymptotic behavior in case no(x) is a 
continuous function where (see [2]) 

lim c(t) is equal to either c* or c,. 
t-03 

In Section 4 we analyze for a given ci the three sets of initial data 
(all having the same c,) for which all the crystals disappear in finite time, 
converge to <i as t + cc or converge to r2 as t + 00. 
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2. SOLUTION OF THE CRYSTAL PRECIPITATION PROBLEM 

In order to arrive at a natural definition of the solution to the crystal 
precipitation problem we approximate n,,(x) by smooth initial data noi( 
Let pi(x) be smooth functions satisfying: 

if (xl >A, I 
m 

Pj a", Pjtx) = O 
J 

pi(x) dx= 1. 
-cc 

Then we take 

nOj(X)= i PmPj(x-xm). (2.1) 
??I=0 

By [2] there exists a solution (n(x, t), c(t)) of the crystal growth problem; 
we denote it by (nj(x, t), cj(x, t)). Then 

C*<c,(t)<cl,j, (2.2) 

where 

Cl,j=Co +p f /i-P X3pj(X-X,)dX+Cl as j-03. 
m=I 

Recall the relations 

Cj(f) = Cl,j - B Jam X3nj(X, f) dX, 

x2nj(x, t) cj(x, t) dx, 

(2.3) 

where 

Gj(X, t) = 
k,(c( t) - c*er’x)y if x>x,?(t) 
-kka(c*er'-' - c(t))' if x<x,+(t) (2.4) 

and 

x,?(t) = 
r 

l"!S(cj(t)lc)' 

Denote by xi(t) = x,(t; x) the solution of 

dx- 
A = Gj(X, t), dt 

(2.5) 

(2.6) 
x,(O) =x. 
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As in [2], 

dx 
--!<c 
dt 

and thus xi(t) < C(t + 1) if 0 < t 6 T. Using these estimates, we deduce 
from (2.3) that 

x%,(x, t) Gj(x, t) dx 

s 
cc 3-c 
.x;w 

nj(x, t) dx a -C, 

since Jr nj(x, t) dx G f; noj(x) dx d C (see [2]). 
It follows that the functions cj(t) + Ct are monotone increasing and 

uniformly bounded for 0 < t < T. Hence, by Helly’s theorem, we can extract 
a subsequence cj(t) which is pointwise convergent, say to a function c(t). 
We conclude, by diagonalization, that for some subsequence, 

cj(t) + c(t) for all t>O. (2.7) 

From (2.3)-(2.7) we thus easily deduce that, for any E >O, 

xj(t) + x(t) 

uniformly in bounded t-intervals as long as x(t) 2 E, where 

dx 
z = Gx, t), 

(2.8) 
x(0)=x, 

and G(x, t) is given by (1.3). 
Suppose x(t; x0) 2 E for 0 < t < T. Then x(t; x) 2 ~$2 if 0 < t < T and 

Ix - x0 ( < E’ for E’ small enough, and xj(t; x) --* x( t; x) uniformly in 
tE [0, T], XE [x0 -E’, x0 +&‘I. By [2, Lemma 5.11 we get 

s q(“xo+E)nj(x, t) dx=j-xo+“nj(x) dxcpo. x,(t;xo+s’) X0-E’ 
The same considerations apply to each of the points x,; further 

s 
x(1:1) 

nj(x, t) dx = 0 
x(r;a) 



580 FRIEDMAN, OU, AND ROSS 

if the interval {X < x < T} does contain any points x, andj is large enough. 
It follows that, for any O<a<b< cc, 

J” nj(x, t) dx + j” i p,,, cS(x(t; x,) -x) dx 
a * m=l 

as j -+ cc. Thus, in the sense of weak convergence of measures, for any t > 0 

where, upon setting x,(t) = x( t; x,), 

4x9 f) = : Pm Wr?l(~) - xl. 
f?I=l 

We also have 

c(t)=c, -P 2 &lx~w 
It?=1 

(2.9) 

(2.10) 

and, if x*(t) is defined as in (1.4) 

dx 
m = G(x,, c(t)), dt 

-%(O) =x,2 
(2.11) 

where 

G(xm c(t)) = 
k,(c, + xi”= * ppjxj(t) - c*f?my if x, > x*(t), 
-ky(C*erlxm- 

c1 - Cc 1 PPjx,? tz)16 if x, <x*(t). 
(2.12) 

THEOREM 2.1. There exists a unique solution of the differential system 
(2.11) with G defined by (2.12). 

Indeed, existence was already proved. To prove uniqueness we suppose 
that there is another solution with Z,(t), c”(t). From (2.12) we then deduce 
that, for 0 < t < T, 

IG(x,(t), c(t)) - W%n(~)> c”(t))1 
d C(Ilx - 4 T + IIC - Eli 7-k 
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where x = (x1, . . . . x,), 2 = (Z,, . . . . a,), l\ull T = supog,< T lu(t)l, and from 
(2.10) we get Ilc--?llr 6 C l\x-Zll T. Thus 

IWdt), c(t)) - W,(~), F(t))1 6 C lb- III T, 

and using (2.11) uiqueness easily follows. 
From the uniqueness part of Theorem 2.1 it follows that the limit 

function n(x, t) is independent of the choice of the approximating sequence 
pi, and that the full sequence nj is convergent to n. This motivates: 

DEFINITION 2.1. The function n(x, t) defined (uniquely) by (2.9) (with 
(2.10)-(2.12)) is called the solution of the crystal growth problem. 

3. ASYMPTOTIC BEHAVIOR 

Set 
N 

Cl =co+B c PL,x;. 

m=l 

Since the function 

(3.1) 

is convex and tends to + cc as 5 --) 0 and as 5 -+ co, there exist at most two 
positive zeros 5 1, t2 of the equation 

pm/It3 + PerI = c,. (3.2) 

We choose them so that {, < t2. We shall prove: 

THEOREM 3.1. (a) For any m < N, x,(t) +O in finite time; (b) either 
(i) xN(f) -+ 0 in finite time or (ii) xN(t) + ci (for i= 1 or i= 2) us t + 00. 

We note that case (b)(ii) cannot occur if (3.2) has no positive solutions. 
Clearly xj (t) < xi + ,(t) for each j as long as xj( t) remains positive. If all 

the x,(t) converge to zero in finite time, then the assertions (a), (b)(i) 
follow. Thus it remains to consider the case where, for some k < N, 
x,(t) > 0 for all t > 0 whereas xk _ ,(t) converges to zero in finite time t = Co. 
For simplicity we take t, = 0. 

We first consider the case k < N. 

LEMMA 3.2. For any m > k + 1, 

x,(t) -x,_ ,(t) is strictly increasing in t (3.3) 

4,9/137/2-19 
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and 

( > 
113 

x/v(t) < & (3.4) 

Proof Since G(x, c(t)) is strictly monotone increasing in X, 

dx 
%=G(x&), c(t))>G(x,_,(t), c(t))=* 

and (3.3) follows. Next, since c’(t) > 0, 

m=k 

and (3.4) follows. 

LEMMA 3.3. There exists t, such that either 

x,(t) > x*(t) for all t > t, (3.5) 

or 

x,(t) <x*(t) forall t>t,. (3.6) 

ProoJ It suffices to show that whenever x = x,(t) and x = x*(t) inter- 
sect at some time t = t,, then dxN(tl)/dt = 0 and dx*(t,)/dt ~0. The 
equality is obvious. To prove the inequality we use 

de(t) -= 
dt m=k 

= -3P 2 L,J;(~) W,(t), c(t)) > 0 at t=t, 
m=k 

since G(xN(tl), c(t,)) = 0 whereas G(x,(t,), c)tl)) < 0 if k <m < N. Hence, 
from (1.4), dx*(t,)/dt<O. 

Consider first the case (3.6). Then 

%=G(x,(t), c(t))<0 (3.7) 

and similarly dx,/dt < 0 if k <m < N. From (2.10) we then deduce that 
dc/dt > 0. Hence c( cc ) = lim, _ a, c(t) exists. From (3.7) we also deduce that 
x,(co)~lim,,, xN(t) exists and 

G(x,v(~), c(~))=O. (3.8) 
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From Lemma 3.2 we see that, for some q0 > 0, 

x,(t) 6 XN(W) - ‘lo (kfm<N) (3.9) 

for all t large enough and therefore, by (3.8) 

~=G(x,(t),c(r))< -q<O (3.10) 

for all such t’s It follows that x,(t) must converge to zero in finite time, 
which is a contradiction. 

It remains to consider the case (3.5). In this case dx,/dt > 0 for all t > 0, 
and xN(a)=lim,,, xN(t) exists and is finite (by (3.6)). Proceeding as in 
[2, Sect. 51 we can prove that x*(00) =lim,,, x*(r) exists and 
x*(oo)=x,(co). But then c(co)rlim,,, c(t) exists and therefore (3.8) 
must hold. Proceeding to argue as in (3.9), (3.10) we again derive a 
contradiction. 

We have thus proved that the case k < N cannot occur. Thus all the 
x,(t) with m < N must tend to zero in finite time. If x = xN(f) intersects 
x = x*(t) for some r = to then x,(t) = x,(t,) is a solution of the differential 
equation (2.11) with c(t) = c(to) for t > to. It follows that r = lim,, o. xN(t) 
satisfies (3.8) with x*(cc)= 5; consequently 5 is a solution of (3.2) and 
(b)(ii) follows. 

It remains to consider the case where x = xN(t) does not intersect 
x = x*(t). In this case either (3.5) or (3.6) hold. In both cases we can argue 
as before and deduce that xN( co) and x*(a) exist and are equal. In view of 
(3.8), their common value must satisfy (3.2), and this completes the proof 
of Theorem 3.1. 

In Section 4 we shall show that the case (b)(ii) occurs for a large class of 
initial data x,, . . . . xN. 

COROLLARY 3.4. In case (b)(ii) OCCUTS, 

c*<c(oo)<cl. (3.11) 

This is in sharp contrast to the situation when no(x) is a continuous 
function; in fact, in that case, as shown in [2], c(co) must be equal either 
to c1 or to c*. 
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4. ASYMPTOTIC BEHAVIOR (CONTINUED) 

We define 

(4.1) 

(4.2) 

and notice that c; > c; if N= 1. 
If c, > c; then the equation 

c*&i-‘-(c, -/$iLNx3)=0 (4.3) 

has two roots which we have labeled 5, and rZ. For c, < c’, this equation 
has no roots. If ci > c; then the equation 

p&-/x -(c, -8(~,P,)x’)=o (4.4) 

has two roots which we shall denote by ni and q2, vi < n2. For ci < c; this 
equation has no roots. 

As easily seen from (4.3), 

d51 >o 
&ii ’ 

and therefore 

for c1 > c”, (4.5) 

with strict inequalities if N> 1 
We define 

G(x, c) = 
k,(c - c*erIx)? if x>x*(t) 
-kd(c*P - cy if x <x*(t), (4.6) 

where x=x*(t) is defined by c= c*erIx. We would like to analyze the 
asymptotic behavior of the solution (x,(t), . . . . xN(t)) given initial data 
(x,, . . . . xN) in the set 

N 

s= 
1 

(x,, . ..) XNhP 1 bP;=c1 -co ; 
m=l 1 

each such data yields the same concentration c, , and thus, the roots 5 i , t2, 
n, , n2 are independent of the particular point in S. 
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Introduce 

so = {(Xl 9 ..., xN) E S; xN(t) -+ 0 in finite time}, 

sj = {(x,, . . . . xN) E S; x,(t) --) tj if t + cc } 

forj=l, 2. Then, by Theorem3.1, S=S,,uS, US,. 
Consider first the case N = 1 and assume that c1 > c’, . Then 

W,, cl < 0 if ~~<<iorx~>[~ 

and 
W,, cl > 0 if l1 <xN < t2. 

Hence x,,,(f) -P 0 in finite time if ~~(0) < 5i, xN(f) + c2 if ~~(0) > tl, and 
xN(t)-t1 if xN(0)=[,. 

For N > 1 the situation is much more difficult to analyze. We shall give 
some partial results. 

If ci < c’, then Theorem 3.1 implies that S = S,. We also have, for fixed 
co > 0, 

s=s, if c1 -co is sufficiently small. (4.7) 

Indeed, x,.,(O) is then sufficiently small and, as easily seen, xN( t) 10 in finite 
time. 

THEOREM 4.1. Zf c, > c; and 

then S=S>. 

Proof Set 

Since ci - co = /I C pL,xi(0), it follows from 
claim that 

xN(t)>ql for all 

(4.8) 

z<c,. (4.9) 

(4.8) that ~~(0) > ql. We 

t. (4.10) 

Indeed otherwise consider the smallest t such that xN(t) = vi; then 
xh( t) < 0. Also 

c(t)=c, -/I 2 ,&X;(t)>C by (4.9) 
WI=1 
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(some of the x,(t) may vanish). Since G(r], , F) = 0 (by the definitions of v], 
and C) and G is strictly monotone increasing in c, 

0 <WV,, c(t)) = W,(t), c(t)) 

and thus dxN( I)/& > 0, a contradiction. 

The above proof of (4.10) also shows that x,(t) 2 4, + E for some suf- 
ficiently small E > 0. It follows that lim,, oD xN(t) > )1i and, in view of (4.5) 
and Theorem 3.1, lim x,.Jf) = 12, i.e., (x,, . . . . xN) E S, for any (x,, . . . . x,) 
in S. 

THEOREM 4.2. The sets S, and Sz are open subsets of S. 

It follows that S, is closed in S; further if So and S, are both nonempty 
then any continuous curve in S which connects a point in S,, to a point in 
S, must intersect S, . Thus S, “separates” S, from S,. 

Proof To prove that So is open, let (xy, . . . . xO,)E S, and let 
(2 , , ..., ZN) E S with C 1x7 - Xi1 < 6, 6 small. Denote the corresponding 
solutions by (x:(t), . . . . x:(t)) and (Z;(t), . . . . .Z,Jf)). Then, for some t, > 0, 
xi(t)>0 for O<t<t,, and xN(t,)=O. Further, if Z-,(t)>0 for t,<tO, then 

ThJ(to) < 46)? 

where a(6) + 0 if 6 --) 0 (by continuous dependence of solutions on the 
initial data). If a(6) is small enough then 

dZN( t)/dt < 0 for t,<f<t,, 

for some t,, and ZN( ti) = 0. Thus (2,) . . . . TN) E S, and, consequently, S, is 
open. 

We next prove that S2 is open. Let (xy, . . . . x’$)E S, and (a,, . . . . ZN)eS 
with x Ix: - Zi 1 < 6, 6 small. Choose T large enough such that 

XII- ,(t) = 0, 2-,-,(t)=O if t> T. 

Denote the concentrations c(t) corresponding the solutions (xy( t), . . . . x”,(t)) 
and (Zi(t), . . . . Z,,,(f)), respectively, by co(t) and Z(t). Consider the functions 

IO(f) = co(t) - c*ef~4(‘) 

= 
( 

CO + 1 pp,(xi)’ - pj?(~%(t))~ - c*evx~(‘) 
> 

T(t) = C(t) - C*er/-M) 

= 
( co +c 8&Z > 

- p/l(Z,(t))3 - c*ef’aN(‘). 
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Since lim x,(t) = c2, we may assume that 

5, +r2 -<x‘w(t) 
2 

Vt> T; 

hence I’(t) > 0 and dxO,( t)/dt > 0 for t > T (as in case N = 1) as long as 
x”,(t) < t2. Similarly, as long as 

5, +52 ~ < Z:N(t) < 52 2 

we have r(t) > 0 and dZ,(r)/dt > 0. We can choose 6 small enough so that 
ZN( T) > (r, + g,)/Z (by continuous dependence of solutions on the initial 
data) and, then, by the previous observation, Z,.,(t) cannot decrease to 
(rI + 5,)/2 for any t > T. It follows, by Theorem 3.1, that lim TN(t) = e, 
and thus (2,) . . . . ZN) E Sz. 

THEOREM 4.3. Zf S, # 0 then S, n so # 0 and S1 n $1 f 0; con- 
sequently int S, = 0. 

Proof Let (xy, . . . . x”,) E S, and set 

Bg= 
1 
(~.1,...,~~)ES;CI~i-xP12<62 ) 

I 
6 > 0. 

Choose T such that x”,- r(T) = 0. For any E > 0 there is 6 > 0 such that for 
each solution with initial data in B, 

Z,-,(t)=0 for all t> T+E. 

We have, by assumption, 

G(t) --, 51 as t+co. (4.11) 

We claim that actually 

xO,(t)= t1 for all t 2 T. (4.12) 

Indeed, if x”,( To) > 5 r for some To > T then, as in the proof of Theorem 4.2, 

I”(t) > 0 and - d4,W>0 
dt 

for t> To 

and thus (4.11) cannot occur. Similarly x”,( To) < 5 1 implies 

ZO(t)-cO d.W<, and - 
dt 

if t2To 

and (4.11) cannot occur. 
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From the diffeomorphism 

(2.1, “., ZN) -+ G,(f), . . . . Z.N(f)) 

(for t fixed) it follows that for any 0 < 6’ < 6 there exists a point (Zr , . . . . ZN) 
in B,, with 

Arguing as above we find that 

Jf.N(f) 2 zN(T+ E) > 51 forall ~ET+E; 

consequently (a,, . . . . ~2~) E S2. Thus S, n S, # a. Similarly one can prove 
that S, nS, #0. 

From the above proof we get: 

COROLLARY 4.4. g(xl, . . . . xN) E S, then x,(t) -+ 5, is finite time. 

Set 

c(x)=c, -B g pL,x;li, 
m=l 

5= {(x,, . . . . x/./); xj > 0 vj, c, <c(x) < Cl} 

and consider the dynamical system 

2 = G(x,, c(x)) (x1 <x, d ... Gx,) (4.13) 

with initial values (x,(O), . . . . x,,,(O)) in 3. Then the flow remains in 3 (since 
G(x,, c*)>O). The roots ti, vi can be defined as before (they depend only 
on c, ), and we also define: 

S, = {all (x,, . . . . xN) E Ssuch that x,(t) + 0 in finite time}, 

Sj = {all (x,, . . . . xN) E 3 such that xN( t) + ei as t -+ co }. 

For each c0 E (0, cr - c*) the sets 

P=Sn {c(x)=cI -co}, SF=Sjn {c(x)=cl -co} 

coincide with the sets S, S, defined above, for the same cO. The previous 
analysis can easily be extended to the present sets; in particular, 

3, and 3, are open subsets of 3, (4.14) 
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FIG. 1. Phase diagrams for the dynamical system for N = 2. (a) c, CC;, (b) c; -C cI CC;, 
and (c) c; <cl. 
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and 

int S, # 0 if 9, #%, (4.15) 

s,=co, -5,Lc ={L}, s2= 5 ( ,, (=)“‘I if N= 1. (4.16) 

The system (4.13) is autonomous and this suggests that some dynamical 
system approach may be useful for analyzing the set 3,. It can be shown 
that G(c(x), xi) < 0 on the set 3,) for all j. 

Phase diagrams of the dynamical system are in Fig. 1 for N = 2. 
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