
Diffie-Hellman Key Exchange on the TI

MSP430F2618 Microprocessor

Shawn Johnson and Ben Sattelberg

May 3, 2015

Contents

1 Background 2
1.1 Private-Key Cryptosystems . 2
1.2 The Advanced Encryption Standard 2
1.3 Public-Key Cryptosystems . 2
1.4 Diffie-Hellman Encryption . 2
1.5 Our Problem . 3

2 Mathematical Theory 3
2.1 Discrete Logarithm Problem . 3
2.2 Diffie-Hellman Problem . 3
2.3 Diffie-Hellman Encryption . 4
2.4 Group Choices for Diffie-Hellman encryption 5
2.5 Choice of Cyclic Group . 7

3 Algorithms 7
3.1 Random Number Generation . 7
3.2 AES256 Key Generation . 9
3.3 Diffie-Hellman Key Generation 9
3.4 Security . 11
3.5 Time Complexity . 12

4 Results 13

5 Bibliography 14

A Code 15
A.1 Random Number Generation . 15
A.2 Exponentiation . 16
A.3 Multiplication . 17
A.4 Modulus . 18
A.5 Addition . 19
A.6 Subtraction . 20
A.7 Greater than or equal to . 21

List of Figures

1 Diffie-Hellman Encryption . 4
2 Addition of P and Q on an Elliptic Curve 6
3 Random Number Generation on the MSP430F2618 8
4 Pseudocode for the Generation of Random Numbers 9
5 Pseudocode for the exponential algorithm 10
6 Pseudocode for the multiplication algorithm 10
7 Pseudocode for the addition algorithm 11
8 Pseudocode for the subtraction algorithm 11
9 Pseudocode for the modulus algorithm, r = x mod y 11

1

1 Background

Cryptography is defined as the practice and study of techniques for secure
communication in the presence of third parties. The importance of cryptography
is to keep information transferred between two parties, whether they are public
individuals or government agents, safe from from prying eyes.

1.1 Private-Key Cryptosystems

Private-key systems require the transfer of a private, shared key before en-
cryption can take place. Since this key is used for both decryption and en-
cryption, it is important that it is not accessible by third parties. The most
common modern private-key cryptosystems have “symmetric” keys, meaning
that encryption and decryption follow the same process. They also encode bits
by applying certain bitwise operations involving the message and some set of
subkeys generated by the key.

1.2 The Advanced Encryption Standard

The Advanced Encryption Standard is a private-key cryptosystem with sym-
metric keys that is based on the Rijndael cipher. It uses multiple subkeys to
encrypt 128 bit blocks of a message using multiple bitwise operations and table
lookups.

In 2001, The Advanced Encryption Standard (AES) was announced by the
National Institute of Standards and Technology (NIST) as sufficient for sensitive
(unclassified) data [2]. It was later certified by the National Security Association
(NSA) as valid for up to top secret information [3].

AES encryption has become the standard for civilian and governmental use.
However, it requires transfer of a key between the parties sending information
before encryption. These transfers usually take place before encryption must
take place, or by using a key exchange system.

1.3 Public-Key Cryptosystems

Public-key systems utilize some computationally difficult problem to be able
to encode messages that are difficult to decode. Some private key is first gen-
erated — for example, in RSA encryption, this private key is two large primes.
This private key is used to generate a public key - for RSA, the product of the
two primes. The public key is used to encrypt messages, and the private key is
used to decrypt them.

Encryption and decryption using public-key systems are typically computa-
tionally intensive. Because of this, public-key systems are often used to exchange
keys for a private-key system so that the bulk of the encryption is done using
the private-key system.

1.4 Diffie-Hellman Encryption

Diffie-Hellman encryption is a form of encryption that relies on the difficulty
of the discrete logarithm problem to generate keys. It creates both public and
private keys using exponentiation in a cyclic group, and encrypts under the

2

group’s operation. For proper choices of group and exponents, Diffie-Hellman
encryption is safe and the generation of the keys can be done quickly. [1]

1.5 Our Problem

A medical device that operates using a Texas Instruments MSP430F2618
microprocessor with an AES256 encryption module needs to be able to transfer
sensitive data. It is infeasible for the AES256 keys to be stored on the proces-
sor, so we would like to transfer the AES256 keys using a Diffie-Hellman key ex-
change. We want to be able to generate AES256 keys daily and a Diffie-Hellman
key each month. To do this, we need to be able to generate the Diffie-Hellman
key within one hour and each AES256 key within 30 seconds. We also want
the Diffie-Hellman key to be able to withstand a month long attack costing less
than $100,000 in hardware in 2025.

1.5.1 The TI MSP430F2618

The TI MSP430F2618 is a microprocessor designed to have low power con-
sumption. It has a 16 MHz processor, and so can perform 16,000,000 byte
operations per second. It has 8KB of RAM and 116KB of flash memory. It
stores signed integers, and so multiplications and additions are done using the
signed integer representation of bit strings. Operations can also operate either
on bytes (8 bits) or on “words” (16 bits). Byte operations typically take one
clock cycle and word operations typically take two clock cycles. [4] [7]

2 Mathematical Theory

2.1 Discrete Logarithm Problem

Definition 2.1. Given the elements g and b of a cyclic group G, the Discrete
Logarithm Problem is to find a natural number k such that

gk = b.

The discrete logarithm problem is currently considered to be “difficult.” The
current algorithms for general problems to solve it have run times of at least
O(
√
|G|) where |G| is the number of elements in the group G. For cryptographic

purposes, the run time is typically considered in terms of the number of digits in
|G|. In that case, the time complexity of the algorithms is exponential. Although
the discrete logarithm problem is considered difficult, no formal proofs of its
difficulty (NP-completeness) exist for anything but generic groups.

2.2 Diffie-Hellman Problem

Definition 2.2. Given a cyclic group G and the elements g, ga, and gb in the
group, then find gab.

The current most efficient solutions to a general Diffie-Hellman problem rely
on solving the discrete logarithm problem for either a or b and then taking

(ga)b = (gb)a = gab.

3

Since the discrete logarithm problem is difficult, so fare the Diffie-Hellman prob-
lem is considered difficult. The Diffie-Hellman problem has not been proven to
rely on the discrete logarithm problem.

2.3 Diffie-Hellman Encryption

Diffie-Hellman encryption uses the difficulty of the Diffie-Hellman problem
to create a secure public key cryptosystem. It uses gab as the private key and
both ga and gb as public keys. A third party cannot understand encrypted
messages without having determined gab.

Figure 1: Diffie-Hellman Encryption

4

We use figure 1 to illustrate the process of Diffie-Hellman encryption. For
this example we will let Alice and Bob be two parties who want to share in-
formation using a Diffie-Hellman scheme. In figure 1, the legend represents the
availability of information. Black is used to represent publicly known variables,
blue represents variables known only to Alice, red represents variables known
only to Bob, and purple represents variables that both Alice and Bob know.
The first step for Alice and Bob is to determine what cyclic group, G, and gen-
erator, g ∈ G, they will use. After they decide this, they will both determine
their respective private key. They generate random a, b ∈ N, respectively. Bob
only knows b and Alice only knows a. Alice and Bob transfer ga and gb publicly.
They use these to compute

(ga)b = gab = gba = (gb)a.

They each then have the secret key, gab and can exchange information privately.
To illustrate the process of sending information, assume Alice wishes to send

Bob a message, m. Alice would convert m into a set of group elements, and
take e = m ∗ gab, where ∗ represents the group operation. Bob is then able to
calculate m = e ∗ g−ab and receive the original message.

We now consider a third party, Eve, who wishes to know the message Alice
and Bob are transferring. Eve would know G, g, ga, gb, and e. To compute m,
Eve must find the element g−ab — to do this, she must solve the Diffie-Hellman
problem for gab. Since this is difficult, the message transferred between Alice
and Bob is safe. [1]

Diffie-Hellman encryption can be extended to include more than two parties
who want to exchange information. For this, each party calculates an xi ∈ N
and transfers gxi publicly to a different party. That party then sends (gxi)xj to
another and so on. This process is repeated until everyone has the secret key

g
∏N

i=1 xi

Where N is the number of parties that are exchanging information. The in-
formation that is public here is G, g, gxi , gxixj , ..., g

∏
j∈C xj , i = 1, ..., N , C =

{1, ..., N} − {i}, with the private information being xi, g
∏N

j=1 xj , i = 1, ..., N .

2.4 Group Choices for Diffie-Hellman encryption

Although Diffie-Hellman encryption works over any finite cyclic group, the
most common choices are elliptic curves over a finite field and the multiplicative
integers modulo a prime p [6].

2.4.1 Elliptic Curves over a finite field

Definition 2.3. An elliptic curve is a smooth projective algebraic curve of
genus one, on which there is a specified point O.

This curve can be considered to be a commutative group under algebraic
multiplication with the point O being the identity. The elements of this group
are the points on the curve that the finite field creates. We will use figure 2 to
help explain how the elliptic curves work.

Here, we will denote the operation of the group with +. To find R = Q+P
we first make a straight line intersecting both Q and P . We then follow the line

5

Figure 2: Addition of P and Q on an Elliptic Curve
Available: http://a5.typepad.com/6a01a510678336970c01a511bfe2c5970c-320wi

until it intersect the elliptic curve a third time at the point −R. We then find
the inverse of −R, R, so that −R + R = O.

The numerical computation of R requires more steps. Q and P are defined
by their 2-D points, that is P (xP , yP) and Q(xQ, yQ). The first step is to
determine if xP 6= xQ. If this is true,

s =
yP − yQ
xP − xQ

,

xR = s2 − xP − xQ and

yR = yP + s(xR − xP)

Otherwise, must change s, xR to

s =
3x2

P − p

2yP

xP = s2 − xP − xQ.

Here, p is determined from the elliptic curve of the form y2 = x3 − px − q.
Without the proper hardware, these calculations are slow for useful finite fields.
[8]

6

2.4.2 Multiplicative integers modulo a prime p

Definition 2.4. U(p) is the set of all x ∈ N such that x < p and x is relatively
prime to p.

This is a group under the operation “·p”:

a ·p b = ab mod p.

Unlike elliptic curves over finite fields, calculations in U(p) are easy to imple-
ment.

When p is prime, this group is cyclic, and so it can be used for Diffie-Hellman
Encryption. It will also have |U(p)| = p− 1, so the discrete logarithm problem
will be difficult for large p.

For the actual implementation, we would like |U(p)| to have a large prime
factor. To accomplish this, we pick p to be a large Sophie Germain prime, that
is, p = 2q + 1 where q is another large prime. We do this to limit the order of
subgroups generated by an element in U(p) to be either 1, 2, q or 2q. We know
this will occur because |U(p)| = 2q, and by Lagrange’s Theorem that the order
of a subgroup must divide the order of a group.

Next, the element g, as discussed in the Diffie-Hellman Encryption section,
is chosen to generate a subgroup with order q. If g was chosen to generate
the entire group U(p), there are attacks that are able to determine the least
significant bit of a (whether a is even or odd) and thus halve the amount of
security. Any such g is equally secure, so it is typically chosen to be small to
aid in computation.

2.5 Choice of Cyclic Group

We will implement our Diffie-Hellman scheme using the multiplicative in-
tegers modulo a prime p. Although this requires larger group sizes and more
data to be stored, the computations required to implement elliptic curves would
make it infeasible to stay within the time parameters.

3 Algorithms

Implementing the AES256 key generation and the Diffie-Hellman key gen-
eration on the MSP430F2618 requires implementations of certain operations.
Although MSP430F2618 includes binary operations for signed, 8 or 16 bit inte-
gers, we use arbitrary length unsigned integers. We also need algorithms that
the MSP430F2618 does not have naturally. The following sections discuss our
implementations, and code written for the MSPF2618 for these algorithms is
included in the appendix.

3.1 Random Number Generation

Random numbers are required for true security. If the variables were not
created randomly, there could be attacks that analyze the generation method
instead of trying to crack the key. We would like to generate our AES256
key and a, our private key, randomly to keep our system secure. To do this,
we will use the Very Low frequency Oscillator (VLO) and Digitally Controlled

7

Oscillator (DCO) in the MSP430F2618 to generate sequences of random bits.
This process is described in figure 3.

Figure 3: Random Number Generation on the MSP430F2618
[5]

In one clock cycle of the VLO, there are roughly the same number of DCO
pulses. Since the two systems are independent, whether the DCO oscillates an
odd or even number of times per VLO oscillation is random. Additionally, the
previous number of pulses doesn’t affect the number for the next VLO clock
cycle. The system determines how many DCO pulses are made in one VLO
clock cycle, and saves whether this number is odd or even. We do this 16 times
to fill a register. To add more randomness, each time we save a bit we modify
the settings of the DCO based upon our sequence of random bits.[5]

This generation of random numbers has not been officially certified as having
sufficient entropy for cryptographic use, but it satisfies all NIST tests. We
assume that it generates sufficient entropy, but if further research shows this is
not true another method could be used.

8

1 Set up the c l o ck
2 Clear R12 , R13

3 f o r i = 16, ..., 1
4 Clear R11

5 f o r j = 5, ..., 1
6 C = Output from the c l o ck
7 R11 = R11 + 0x0001 & C
8 f o r j = 1 , . . . , 1 5
9 R12(j) = R12(j + 1)

10 i f R11 ≥ 3
11 R12(16) = 1
12 e l s e
13 R12(16) = 0
14 Change the c l o ck s e t t i n g s based on R12

15 Return R12

Here, Rm, m = 1, ..., 16 refers to the mth register, and Rm(j), j = 1, ..., 16
refers to the jth bit of Rm, starting at the least significant bit.

Figure 4: Pseudocode for the Generation of Random Numbers

3.2 AES256 Key Generation

The AES256 key must have 224 randomly generated bits, and 32 parity bits.
We generate the key by sampling 256 bits from our random number generator.
We then modify every eighth bit based on the sum of the preceding seven bits
to ensure that the key is transferred without added noise.

3.3 Diffie-Hellman Key Generation

For the Diffie-Hellman key we have p and g, and we need to calculate gab.
For this process we need to generate a by sampling some number of bits from
the random number generator and then take ga. We then send our ga to the
other party and receive their gb. Once we receive gb we can then calculate gab.
For these calculations, we require algorithms beyond what the MSP430F2618
offers [4].

3.3.1 Exponentiation

The main operation we need is exponentiation modulo p. We use a modified
exponentiation formula based on the binary representation of a to allow for quick

computation on a binary machine. We can represent a as a =
∑|a|

i=1 ai2
i−1,

where |a| is the number of binary digits of a and ai is the ith binary digit of a.
This gives that

ga mod p = g
∑|a|

i=1(ai)2
i−1

mod p =

|a|∏
i=1

(
g2

i−1
)ai

mod p.

To do this we need to be able to multiply arbitrarily long unsigned integers, and
take the modulus of the results of these multiplications.

9

1 g2 = g
2 r = 1
3 f o r each b i t ai o f a
4 g2 = g2g2 mod p
5 i f ai = 1
6 r = rg2 mod p

Figure 5: Pseudocode for the exponential algorithm

3.3.2 Multiplication

We need to be able to multiply unsigned integers with arbitrary numbers of
digits, so we use the formula

xy = y

|x|∑
i=1

xi2
i−1 =

|x|∑
i=1

xi(y � i− 1),

where |x| is the number of digits in x and a� b represents b arithmetic left shifts
of a. Since our numbers are stored in binary, multiplication by 2 is equivalent
to a left shift — similarly to how a multiplication by 10 in decimal is equivalent
to a left shift in decimal.

1 r = 0
2 f o r each b i t xi o f x
3 i f xi = 1
4 r = r + y � i− 1

Figure 6: Pseudocode for the multiplication algorithm

3.3.3 Addition & Subtraction

We need the ability to add and subtract unsigned integers with arbitrary
numbers of digits. For addition we simply add each bit together. We include
a carry bit so that if the result is 2 it can be added to the next bits. For
subtraction we use the formula for unsigned subtraction of binary integers,

x− y = x + ¬(y + C) + 1,

where C is the carry bit from previous subtractions and we assume x ≥ y. We
apply this to each word, and use our addition formula to avoid issues with signed
representations.

10

1 Zero extend y to have the same number o f b i t s as x
2 f o r each b i t xi o f x
3 ri+1,i = xi + yi + C
4 C = ri+1

5 ri+1 = 0

Figure 7: Pseudocode for the addition algorithm

1 f o r each word xi in x
2 ri = xi + ¬(yi + C) + 1
3 i f yi > xi

4 C = 1
5 e l s e
6 C = 0

Figure 8: Pseudocode for the subtraction algorithm

3.3.4 Modulus

To implement our modulus operation, we use the basic binary long division
formula and ignore the quotient.

1 r = 0
2 f o r each b i t xi o f x , s t a r i n g with the most s i g n i f i c a n t
3 r = r � 1
4 r0 = xi

5 i f r >= y
6 r = r − y

Figure 9: Pseudocode for the modulus algorithm, r = x mod y

3.4 Security

For our security constrain, we would like the Diffie-Hellman key to stay
secure for a one month attack costing $100,000 of machinery in 2025. This is
equivalent to having the discrete logarithm problem be unsolvable in that time.
NIST recommendations suggest that p and a should have 2048 bits and 224 bits,
respectively, to be computationally unsolvable until 2030 [6]. These constraints
are conservative compared to other estimates, and they are for unsolvability
until 2030 — smaller values could be used to maintain unsolvability for a month
long attack in 2025.

11

3.5 Time Complexity

3.5.1 AES256 Generation

To generate the AES256 key, we read 16 words from the random generation
algorithm and set every eight bit to be a parity check bit. The majority of
the time taken to do this will be spent generating the random numbers, so we
consider that time. Each run of the random generation takes 1290 clock cycles,
assuming there is no data race for usage of the clock. This gives that the entire
generation will take 10−3 seconds. This allows for significant waits during data
races for the generation to fall within the 30 second bound.

3.5.2 Diffie-Hellman Generation

The majority of the time spent generating the Diffie-Hellman key will be in
the exponentiation of ga and (gb)a. Computing a should take fewer than 10−3

seconds, as it is shorter than the AES256 key. There should also be no data
races for use of the clock, as the Diffie-Hellman generation is run when starting
the microprocessor.

The number of clock cycles it takes for an exponentiation is given by twice
the number of commands executed — each command operates on a word, and
so takes two clock cycles. We assume |a| and |p| to be the length of a and p in
bits and assume the number of bits in each multiplication is g, so that the time
taken for an exponentiation is

cexp =
|a|
16

1290 + 12 +

|a|∑
i=1

66 + 2 (mult(g) + mod(g, |p|)) .

We know the time taken for mult to be

cmult = 14 + g(42 + 32g)

and the time taken for mod to be

cmod = 22 +
g

16
(82 + 14p) + 94p.

This gives that the number of clock cycles per exponentiation is given by

cexp = 165132 + 126|a|+
|a|∑
i=1

64(g)2 +
159pg

4
+

999g

4
.

We use the recommendations from NIST of 2048 bits for p and 224 bits for a
and assume that the size of g is on average p/2. This gives that

cexp = 35.1697 minutes.

Then, the time for the generation would be approximately 70 minutes. Although
this is more than one hour, it is a worst case estimation. If the time constraint
of one hour is necessary, we recommend using a p having 1890 binary digits to
ensure that each exponentiation takes at most 30 minutes. The security loss
from doing this should not affect the solvability of the problem using a $100,000
machine in 2025.

12

4 Results

Our algorithm for the generation of AES256 keys is able to finish within
the time constraint, so that generation is sufficient. We recommend allowing at
least 70 minutes for the Diffie-Hellman key to be generated for security lasting
through 2030 using NIST recommendations. If the constraint of one hour is
necessary, we recommend doing more research into the security of the Diffie-
Hellman key with respect to a $100,000 machine in 2025.

13

5 Bibliography

References

[1] W. Diffie and M. Hellman, ”New Directions in Cryptography” in IEEE
Transactions on Information Theory (Vol. IT-22 No. 6), 1976 [Online]. Avail-
able: http://ee.stanford.edu/~hellman/publications/24.pdf

[2] ”Announcing the Advanced Encryption Standard (AES)” in Federal Infor-
mation Processing Standards Publication, 2001 [Online]. Available: http:

//csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[3] ”National Policy on the Use of the Advanced Encryption Standard (AES)
to Protect National Security Systems and National Security information” in
CNSS Policy No. 15, Fact Sheet No. 1 June 2003 [Online]. Available: http:
//csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf

[4] ”MSP430x2xx Family User’s Guide” 2013 [Online]. Available: http://www.
ti.com/lit/ug/slau144j/slau144j.pdf

[5] L. Westlund, ”Random Number Generation Using the MSP430,”
Texas Instruments, 2006 [Online.]. Available: http://www.ti.com/

mcu/docs/litabsmultiplefilelist.tsp?sectionId=96&tabId=1502&

literatureNumber=slaa338&docCategoryId=1&familyId=912

[6] E. Barker et al., ”Recommendation for Key Management - Part 1:
General (Revision 3),” National Institute of Standards and Technology,
Gaithersburg MD, July 2012 [Online]. Available: http://csrc.nist.gov/

publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

[7] Texas Instruments, 2012 [Online]. Available: http://www.ti.com/lit/ds/
symlink/msp430f2618.pdf

[8] S. Seo, D. Han, S. Hong, “TinyECCK: Efficient Elliptic Curve Cryptography
Implementation over GF (2m) on 8-bit MICAz Mote,” Korea University.
[Online]. https://eprint.iacr.org/2008/122.pdf

14

A Code

We do not consider specific memory locations for our storage. We also
leave out code for the generation of our AES256 keys, code for Diffie-Hellman
encryption step, and code for setting up for the exponentiation steps.

A.1 Random Number Generation

Code for the generation of random numbers is written by L. Westlund of
Texas Instruments and is available at http://www.ti.com/mcu/docs/litabsmultiplefilelist.
tsp?sectionId=96&tabId=1502&literatureNumber=slaa338&docCategoryId=

1&familyId=912 [5].

15

A.2 Exponentiation

1 ; r4 log of g

2 ; r5 length of g

3 ; r8 loc of a

4 ; r9 length of a

5 ; r10 loc of p

6 ; r11 length of p

7 expo
8 push r6
9 push r7

10 push r12
11 push r13
12 move r4 , r6
13 c l e a r r13
14 oloop
15 ; We need 16 iterations per word

16 b i s 0x01 , r13
17 b i s 16 , r14
18 loop
19 ; set up for multiply

20 push r4
21 push r5
22 push r6
23 push r11
24 mov r6 , r4
25 mov r11 , r5
26 pop r11
27 pop r6
28 push r7
29 mov r11 , r7
30 c a l l mult
31 c a l l modulus
32 pop r7
33 pop r6
34 pop r5
35 pop r4
36 ; Check if we need to multiply into the result

37 cmp @(r8 +16(r9−r13)) , r13
38 jne loopend
39 ; multiply result=r6, length r12 and r7,length r13

40 push r4
41 push r5
42 push r7
43 mov r7 , r4
44 mov r12 , r5
45 mov r13 , r7
46 c a l l mult
47 pop r7
48 pop r5
49 pop r4
50 loopend
51 dec r14
52 jnz loop
53 inc r13
54 cmp r13 , r9
55 jne oloop

16

A.3 Multiplication

1 ; r4 loc of msw of x

2 ; r5 length of x

3 ; r6 loc of msw of y

4 ; r7 length of y

5 ; r8 loc of prime p

6 ; r9 length of prime p

7 mult
8 push r10 ; result

9 push r11 ; length of result

10 b i s 0x00 , r10
11 c l e a r r11
12 c l e a r r12
13 loop
14 b i s 16 , r13
15 b i s 0x01 , r14
16 cmp @(r6 + 16(r7−r12)) r14
17 j eq loopend
18 add r12 , r5
19 ; set up for addition for y and result

20 push r13
21 push r14
22 push r15
23 push r16
24 mov r6 , r13
25 mov r7 , r14
26 mov r10 , r15
27 mov r11 , r16
28 c a l l add i t i on
29 pop r16
30 pop r15
31 pop r14
32 pop r13
33 loopend
34 inc r12
35 cmp r12 , r7
36 jne loop
37
38 pop r11
39 pop r10

17

A.4 Modulus

1 ; r4 = loc of MSW g^a
2 ; r5 = length of g^a
3 ; r6 loc of msw of g^b
4 ; r7 length of g^b
5
6 modulus
7 push r5
8 push r8
9 push r9

10 b i s 0x00 , r8
11 c l e a r r9
12 loop b i s 16 , r10
13 b i s 0x01 , r11
14 loop2 mov r9 , r12
15 ; Rotate the result
16 r l mov C, r13
17 r l a @(r8 + 16 r12)
18 xor r13 , @(r8 + 16 r12)
19 dec r12
20 jnz r l
21
22 mov r11 , r12
23 and @(r4 + 16 r5) , r12
24 b i s r12 , @(r8+16r9)
25
26 push r12
27 push r11
28
29 mov r4 , r11
30 mov r6 r12
31
32 c a l l goe
33
34 pop r11
35 pop r12
36 jnz sub
37 r l a r11
38 dec r10
39 jnz loop
40 dec r5
41 jnz loop2
42 jump end
43 sub
44 ; set up for subtraction
45 push r9
46 push r10
47 push r11
48 push r12
49 mov r12 r9
50 mov r14 , r10 ; r14 is the length of g^ ab
51
52 mov r15 , r11 ; r15 and r16 hold the value of p
53 move r16 , r12 ; and number of words p uses
54
55 c a l l sub t ra c t i on
56
57 pop r12
58 pop r11
59 pop r10
60 pop r9
61
62 end pop r9
63 pop r8
64 pop r5

18

A.5 Addition

1 ; rx = r13 r#x = r14 ry = r15 r#y = r16

2 add i t i on push r12
3 push r8
4 ; Ensure that x > y

5 cmp r14 , r15
6 j g e xLarge
7 mov r14 , r12
8 mov r16 , r14
9 mov r12 , r16

10 mov r13 , r12
11 mov r15 , r13
12 mov r12 , r15
13 c l e a r r12
14
15 xLarge c l r c
16 b i s 0x00 , r12
17 ; Add the current word with the last carry

18 loop dadd @(r15 + 16 r12) , C
19 ; Add the current words of x and y

20 dadd @(r13+16 r12) @(r13+16 r 12)
21 ; Move to the next word

22 inc r12
23 cmp r12 , r14
24 jne loop
25 pop r8
26 pop r12

19

A.6 Subtraction

1
2 ; r#y = r12 ry = r11 r#x = r10, rx = r9

3
4 subt ra c t i on
5 c l r c
6 push r8
7 b i s 0x00 , r8
8 nextword adc @(r11 +16 r8) ; adds carry to ith word of y

9 inv @(r11+16 r8) ; takes the opposite of ith word of y.

10 push r16
11 push r15
12 push r14
13 push r13
14 b i s 16 , r16
15 b i s 16 , r14
16 mov @(r9 +16 r8) , r13 ; sets up xi for addition

17 mov @(r11 + 16 r8) , r15 ; sets up yi for addition

18 c a l l add i t i on
19 pop r13
20 pop r14
21 pop r15
22 pop r16
23 dadd @(r9 + 16 r8) , 0x001 ; adds one more to resulting xi

24 inc r8
25 cmp r8 , r10
26 JNE nextWord
27
28 pop r8

20

A.7 Greater than or equal to

1 ; r11 loc of x

2 ; r12 loc of y

3 ; r10 length of x

4 ; r9 length of y

5 goe
6 ; Make sure x has the longer length

7 cmp r10 , r9
8 j g e xgey
9 mov r11 , r13

10 mov r12 , r11
11 mov r13 , r11
12 mov r10 , r13
13 mov r9 , r10
14 mov r13 , r9
15 b i s 0x01 , C
16 ; Get how much longer x is than y

17 xgey
18 mov r11 , r14
19 sub r12 , r14
20 b i s 0x00 , r13
21 loop ; Make sure the extra bits are 0

22 cmp @(r11+16(R10− r13)) , 0x00
23 j eq t rue
24 inc r13
25 cmp r14 , r13
26 jne loop
27 ; Check all the words are bigger

28 loop2
29 b i s 0x00 , r13
30 loop3 xor @(r11+16r13) , @(r12+16r13)
31 jnz d i f f e r e n t
32 inc r13
33 cmp r13 , r11
34 jne loop3
35 b i s 0x00 , r13
36 jump end
37 ; Go here if the first >= second

38 true
39 inv C
40 b i s C, r13
41 jump end
42 d i f f e r e n t
43 b i t @(r11+16r13) , 0x80000000
44 b i t @(r12+16r13) , 0x80000000
45 j eq loop4
46 cmp @(r12+16r13) , @(r11+16r13)
47 j l f a l s e
48 jgeq t rue
49 loop4
50 b i c @(r11+16r13) , 0x80000000
51 b i c @(r12 +16r13) , 0x80000000
52 cmp @(r11+16r13) , @(r12 + 16 r13)
53 jqe t rue
54 inv C
55 b i s C, r13
56 jump end
57 end ; Return r13

21

