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Abstract

The purpose of this project is to model the propagation of seismic waves in a homogeneous,
elastic medium. The method that will be used to accomplish this will be a second order finite
difference method that has been derived to handle mixed spatial derivatives. The problem will be in
a 3D domain and will simulate waves propagating in materials such as sandstone and peridotite to
determine how the material properties affect wave propagation.

1 Introduction

Seismic events may cause strong motion shaking in the form of a propagating wave in a wide radius
around the source. Capturing the motion of these waves on the earth can provide valuable information
on the material properties of the earth or even give information for how the earth will shake in future
earthquake scenarios. Numerical methods provide a tool to approximate the motion of the earth during
an earthquake and can be useful in studying the structure of the earth and various seismic phenomena.
One such numerical method is the finite difference method (FDM) which approximates the solutions
to differential equations and may give close solutions to a wide variety of partial differential equations.
The focus of this project will be to capture the displacement of the earth during a seismic event using a
finite-difference time-domain method to approximate the solution to the equation of motion along with
a constitutive relation.

2 Background

Seismic events, such as earthquakes, can be powerful and destructive sources of energy. Although we
now have tools to measure the ground motion intensity during seismic events, there is still no method
of earthquake prediction and in most cases, little can be done to prevent loss near the source once the
event has occurred. Understanding how seismic waves move through different materials can prevent loss
of life and property by providing information on how and where to construct buildings, homes, and other
structures. It is now known that the areas with the highest population density tend to be the areas
impacted the most when a seismic event occurs. This is because large cities are most often built on
soft soil, which amplifies the ground motion shaking. Thus, understanding how the seismic waves travel
through the earth can determine what safety precautions should be taken for specific regions.

The modeling of seismic waves on the earth was first approximated using FDMs in the 1960’s. Since
then, several methods have been developed that accommodate for different sources, material properties,
attenuation, and boundary conditions, each capable of giving valuable information about the earth and
seismic phenomena. The developed finite difference methods provide approximations to the equation of
motion given by

piy — 0ij; — fi =0
with boundary condition
Pi = 0ijn;
where p is the material density, ii; represents the particle acceleration in the ith component, o;; ; repre-
sents partial of the stress tensor with respect to the jth component, p; is the traction vector, and n; is
a normal vector. Applying the equation of motion requires that we have information on how the stress



and strain of the medium are related. These relations are called constitutive laws. For this problem we
will use Cauchy’s generalization of Hooke’s law given by

1
Jij = I{Ekk(sij + 2#(61‘]‘ — ggkkéij)

where &, i1 are the bulk and shear moduli, € is the strain, and d;; is the Kronecker delta function. Since
A, the elastic modulus, is equivalent to A\ = xk — %u, this expression may also be written in the form

055 = /\Ekktsij + 2,ueij

Combining the equation of motion and the constitutive law, we may solve the equation of motion for
the parameter of interest, in this case the displacement, to get that

. 2
pU¢::KH‘*gu)UhkL¢+(MUAﬂa“+(MUxJJ‘*f%

where for component i, j, k € i, j, k. Using this equation we seek to model the behavior of the displace-
ment in a homogeneous material using finite differences as described in the next section.

3 Finite Difference Methods

In order to approximate solutions to the equation for displacement derived from the equation of motion,
we will use a second order finite-difference time-domain method on a standard grid. The functions
we are looking to approximate are the components of the displacement vector (u,v,w) which we will
denote U,V, and W for the x,y,and z components respectively. Then we will approximate each of
these functions at the spatial coordinates (x,y,z) and at each time ¢. To decimate these values, for

T € |ag, Bal Y € [ay, Byl, 2 € [z, 8], let
Qp =21 < T < - <xp; = P

ay =y <y2 < - <Yy =By
a,=21<z<--<zg=p,
where M, N, K are the number of grid points in each direction and the spatial step is h for all coordinates.

Additionally, for ¢ € [0,T] let
O=t1<ta<---<tp =T

where L is the number of time steps and At is the temporal step.
We will define the following notation:

Qb(xia Yjs 2k tm) = ijk

where ¢(z;,Y;, 2k, tm) represents the value of function ¢ € U, V,W at spatial coordinates z = z;,y =
Y, 2 = 2 and at time t = t,,.

The FDM approximations that we will use are the central difference approximation to first derivatives
and the second order approximation to the second derivative. These are given by

o) _ o) =l —1)
dx 2h
and
@6 Ha =) =26(x) + 6(z +h)
dx? B2

where ¢ € {U,V,W} and h is the spatial step. Using these approximations we will define the FDM in
the next section.



4 Derivation of the Method

We are considering deriving a finite difference method for the following equation:

pii; = [(k — %M)uk,k],z‘ + (i g) 5 + (puse) 5 + fi
where w is the displacement, p is the density, x and p are Lame parameters, and f is the forcing function.
The notation, ; denotes the partial derivative with respect to the it" component, and i represents the
second temporal derivative of the function u. We will use the second order approximation for the time
derivative described by equation CITE. In order to approximate the spatial derivatives, we must find a
scheme that will account for the mixed spatial derivatives present in the equation.
We begin by defining an auxiliary function,

O = pu g

and seek to define ¢ . the mixed derivative and ¢ ;, the non-mixed derivative. Using the central difference
formula, we have a second order approximation for ¢ , as

baliin = Giv1/2,5,k T Pim1/2,5,k
ST 12,7, h

using half spatial steps, h. To find the appropriate approximations for ¢;;1/2 ;1 and ¢;_1/2 j x, we will
take the following steps:
¢

¢:Mu,w<:>;:uw

)

Tit1j,k Tit1,jk
/ —dx = / u pdz
x /"L €T

@54,k i,4,k

Integrating with respect to = gives

Using the mean value theorem, we will approximate f;”;” ¢dx with ¢;41/2,; and thus the integral
57,
becomes
Ti+1,5,k 1
¢i+1/2,j,k/ ;dw = Uitk — Uijk-
x

i3,k

. 1 Ii+1,j,k 1 1
Hivi/2,56 = [ﬁ/ ;dm] .
xi,j,k

We will define

Then by dividing we get

Div1/2,5k = %Nf+1/27j’k(Ui+1,j,k —Uijk)
Similarly we have that

Gi—1/2,5,k = %fougj,k(Ui,j,k —Ui—1,5,k)-

Thus we have derived a form for the non-mixed spatial derivative, ¢ ;. To obtain an approximation for
the mixed spatial derivative, ¢ ., we begin with the second order, central difference formula

ook = Gi g k4172 — Pijk—1/2
1214,4, A

where ¢ = pu . Now we seek to find approximations to ¢; jry1/2 and ¢; jr_1/2. Then
Zi,j,k+1/2 ¢ Zi,j,k+1/2
/ —dz :/ U pdz.
Zi,j,k—1/2 H Zi,jk—1/2

p 1 Zi,j,k4+1 1 1
i 5 k+1/2 = [E/ ;dz] .
Zi, g,k

We will define



Then using the mean value theorem and approximating the right hand side, we have

h
e Bi k172 = Mzl jret1/2-
ijk41/2

We will approximate the derivative u .|; j x+1/2 using

1
Ualijkt1/2 = E[Ui—&-l,j,k—&-l — Ui, k41 + Uiv1 j k-1 — Ui—1,j,6-1]

Finally, combining these we have that
1
Gijk1/2 = Eﬂi,j,k+1/2(Ui+l,j,k+1 —Ui—1jk+1 + Uig1 k-1 — Uiz1 5 k—1)-

Now we will use these to find the approximation for

. 2
piii = [(k = gp)urrli + (uuig).j + (puga) g + fi
Then employing the approximation for the temporal derivative,
. U%21_2U]k+UZ]k

and [(k — 2p)upk)i + (pui;) 5 + (pug;) j + fi is approximated by
2
[(k— gﬂ)uk,k},i + (i z) 5 + (pugi) 5 + fi =
1
ﬁ[ i1k U e = Ul k) = N1 (Ui — Uil k)
+2(pi kUit e — Ul k) = i1 (Ui e — Ui 1)
1] kU, = Uls) = 17 51 Ui = U1 1)

z m m z m m
15 i k1 (Ul k1 = U k) — 15 k1 (Ui = U k1)

1
y m m m m
+ E[Ai,jJrl,k(‘/i,j«FLk + Vit e — Vilj—ie — Viti-1)

- /\?,jq Vil e TV = Vil o — Vili—ik)
F A e n W s W i1 = Wi e — Wik k1)
Tkt Wy s A W = W e = W 1)
11 e Vit e + Vit jene = ViZie — Vili-1e)
=i (Vi e Vi e = Vit mie — Vilie)
Wi e Wil e = Wil e — Wi k1)
Wiy e W e = Wil e — W )]

z
+ i1,k
4
— Hi—1,5k
ZT,m
FJk

where k =, We will take advantage of the following notation:
1 _
Ly(a,¢) = 2 [aﬂ_((bm ") —a’ (9™ — ¢™)]

where v € {z,y, 2}, a € {u,\} ¢ € {U,V,W}, and the notation v+ and ¢ refers to plus or minus one
in the v component. Additionally,
Y+ 1[/'Yn+1 1d]_1
a’m =~ - .
L'/, a K
We will also use the notation

1
L%n(aa ¢) = 2 [an+(¢2+ + ¢3+ Pyt — ¢35t ) —al” (¢71n+ + ¢5n+ — o7 — ¢y )]

for the mixed derivatives with +1, 42, +3 standing for



XZ Xy yZ ZX yX zZy
+1 i+1,j, k1 i+1,j1,k i i+, k1 iljk+l il1,j+1,k il k+l
+2  i+1,jk i1, 5,k i,j+1,k iy, k+1 i,j+1,k iy, k+1
+3 i+1,j,k+l i+1,j+lL, k i, jE1, k1l il j k+1 i+l i1k i j+l k+1

Using this notation, we may write the method in the concise form:

m—+1 _ m m—
Ul =207, -U" 0 +—|

chac(>\7 U) +2L4, (Nv U) + Lyy(,uv U) + L., (,va U)

Lye\ V) + Law(\ W) + Loy (11, V) + Lo (0, W)] + F7T
At?

Pij,k [

m—+1 __ m m—1
Vigk =2Vije = Vije +

Lo (1, V) 4 Lyy(A, V) 4 2Ly (1, V) + L2 (1, V)

Ly (1, U) + Lay (A U) + Lay (1, W) + Ly (n, W) + F
At?

Pi,j.k [

Lo (p, W) + Lyy(:uv W)+ Loz (p, W) + 2L (1, W)
L

2N U) + Lay(N V) + Loz (0, U) + Ly (A V)] + Fy

m—+1 __ m m—1
Uijr =205, — Ui +

5 Stability Analysis

We will derive the stability condition for a second order central difference formula on the general equation
of motion in an isotropic, homogeneous medium.

pl; = 04jj + fi

Let a = 1/”% and 8 = \/% . Then the equation of motion becomes the set of equations:

Ut = OéQUac.’m’ + ﬂzuyyi + ﬂzuzzi + (042 - ﬂ2)umyi + (052 - ﬁz)uxzi + f1
Utty = BQUzazj + 042'U/yyj + 62uzzj + (a2 - 62>umy]’ + (a2 - BQ)Uyzj + fj

Utk = ﬁ2ummk + BQUyyi + 042uzzk + (a2 - 52)Uzzk + (052 - 62)uyzk + fk

Then we may rewrite the equation of motion in the following form:

uy = Aug, + Buyy, + Cu,, + Dugy + Eu,. + Huy, + F

where
(a2 0 0 (62 0 0 (62 0 0
A=10 B> 0 B=|0 o* 0 C=10 B> 0
|0 0 p° 0 0 p? [0 0 o
[0 a?—p5%2 0 [0 0 a?—p? [0 0 0
D= |a?-p? 0 0 E = 0 0 0 H=10 0 a? — B2
| 0 0 0 a? =% 0 0 0 o —p? 0



where u is the displacement vector, « is the compressional wave velocity, and [ is the shear wave

velocity. Using the central difference formula

AL ot t—At
Ugrye — 2y + Ugy _ A (u! Cout 4t )
At Ax2 " tHAzy.z z,y,z z—Ax,y,z
B
t t t
T oz U yray,: = 2y s gy ny )
Ay
C
t t t
+ 2 (uw,y,z—i-Az - 2ua:,y,z + ua:,y,z—Az)
Az
+ b [(uterAm y+Ay,z uthrAm y—Ay,z
4AxAy ’ ’ ’ ’
+ _r (ut - —u!
AAT A2 i+Ax,j,k+Az r4+Ax,y,z—Az
H

t t
+ 4AyAZ (ui7j+Ay,k+Az - uz,j+Ay,z—Az -

Let €1 = %, €2 = ﬁ—;, €3 = %. Then this may be rewritten as

ultAt = 2(1 — A2 — Bes — Ce2)ul, yr ul At

T.y.z T,y,2

t t
u:cfA:c,gﬁ»Ay,z + umfAm,yfAy,z)

t t
- uzwa,y,szAz + uaijz,yyzfAz)

t t
ur,y—Ay,z+Az + ur,y—Ay,z—Az)

2 t t 2 t t 2 t t
+ Ael(uw+Aac,y,z + uw—Aw,y,z) + B€2 (uLy-‘rAy,z + U’w,y—Ay,z) + 063(ua:,y,z+Az + um,y,z—Az)

+2 (t ot ot + t )
46162 Uzt Azy+Ay,z ~ Yat+Az,y—Ay,z ~ Yo—Azy+Ay,z T Ya—Azy—Ay,z

FE
t t t t
+ 26163(uz+AI,y,z+Az T Uzt Az,y,z—Az — Up—Az,y,z+Az + uzfAm,y,zfAz)

H

t t t t
+ 16262(uw,y+Ay,z+Am T Upy—Ay,z4Az T Uz y+Ay,z—Ax + uw“y—Ay,z—Aw)

We will use Von Neumann analysis to investigate the stability of this scheme. Let

t

U _ ae( vjAz+SkAy+emAz)

A X", where j = .k = Ay,m = x,n = it Then substituting this into
the equation we have
X(aei('yij+5kAy+emAz)Xn) — 2(1 _ A€% _ B€2 CG ) 'y]Aer&kAerémAz)Xn
o X—l(aei('yjAw-‘rék:Ay-‘remAz)Xn)
+ A€ ez'yAm te 17Am)ael(’yjA$+§kAy+emAz)Xn

1
+B€ (ezéAy +e 15Ay) ei('yjAm-‘rékAy-l—emAz)Xn
(

+ 061 615Az 7ieAz)aei(vjAm+5kAy+emAz)Xn

+ Belez(eivAzJﬂéAy _ +e*i’yAz+i6Ay _ ei'yAmfiEAy

+ e*i'yAxfiSAy)aei(’yjAm+§kAy+emAz)Xn

E ) . . . . i
+ 76163(617Ax+16Az —e iyAx+ieAz ez’yAz ieAz

+ e*i'yAxfieAz)aei('yjAer&kAeremAz)

+ —eo€3(e
423

X’I’L

H ( W0AYy+ieAz e*iJAerieAz _ eiSAyfieAz

+ e*iéAyfieAz)aei('yjAer&kAeremAz)Xn



Dividing by e*(7Az+okAytemAz) n giyeg
ax = a(2(1 — Ae? — Be2 — Cé2) — x !
+ AE%(ei'yAw + efiwAa:) + Bﬁ%(eiéAy + efiéAy) + CG%(@“AZ + efieAz)

+ 26162(6i’7Aw+iéAy _ e*i'yAeriéAy _ eiyAifi(?Ay + efi'yAxfi(sAy)
4

+ 76163(617Am+leAz _ e—l’yA:c—HsAz _ eryAz—zeAz + e—ryAz—isAz)
H 0 Ay+ieAz —i0Ay+ieAz W0AYy—ieAz —i0Ay—ieAz
+*€263(€ — e —e +e ))

Ay eAz
2

Let p= WAx,q =%, 5= Then this equation is simplified to

[(—x +2 — x DI — 4( Asin®(p) + 2B sin?(q) + €2C sin?(s)+

€162 D sin(p) sin(q) cos(p) cos(q)+e1€e3F sin(p) sin(q) cos(p) cos(q)+eze3 H sin(p) sin(q) cos(p) cos(q))]a =0
where I is the identity matrix. We may rewrite the equation in matrix form:

) + B3 sin’(s))]
cos(q)

cos(s)

0s(q )

C
>+( & sin’(s))

2sin?(p) + B2€3 sin?(
)6162 sin(p) sin(q) cos(p

[—x +2— — 4(a? q
- B2 )
— ?)erezsin(p) sin(s) cos(p)
- B2 )

q

(
I 4(a®
_ 4(a? )61628111 )sin() cos(p
Ko = | —x +2—x"' —4(B% sin?(p) + a?e3 sin?(
— B?)eze3 sin(q) sin(s) cos(q

A(a® (q) cos(s)
4(a® — 8%)e1e3 sin(p) sin(s) cos(p) cos(s)
A(a® = B?)ezes sin(g) sin(s) cos(q) cos(s)
X +2 =Xt — 4(BPei sin? (p) + f7e5 sin’(q) + a’ef sin®(s))
where the matrix of coefficients x = [k1|k2|k3]. Then we will have that the equation above will be
satisfied if the determinant of the matrix of coefficients is zero, more specifically we will look at the
magnitude of the coefficients. Let

Rog =

2(p) + €232 sin?(q) + €2 8% sin?(s))

Cp =1—2(e2a”sin’(p) (9)
P+ sy + 337’ )
) (9)

( (
Cy =1 — 2(e33% sin’(
C3 =1 —2(e23%sin?(p) + €33? sin?(q) + e2a? sin?(s))
Cy = (4e1e2(a? — ?) sin(p) sin(q) cos(p) cos(q))?
Cs = (4erez(a® — B?) sin(p) sin(s) cos(p) cos(s))?
( ) (

Cs = (4eze3(a? — B?) sin(q) sin(s) cos(g) cos(s))?

::3

Then this matrix may be written as

x? —2C1x + 1 xCy”? XCy'?
XCi/Z X2 —=2Cx +1 xCé/Q
XC;/2 XCl/Q X2 —2Csx +1

and the determinant is found by
(¢ = 2C1x + D[ = 2Cox + D — 2Csx + 1) — (xC5 ) (xC5"*)]

—xCPI(xCP) (02 = 2Cx + 1) — (xCa"*) (xCe'?)]
O P I(XC ) (xCg"%) — (X2 — 2Cax + 1) (xC3 )]



Then for this equation to be zero, we may rewrite this equation as
(X* —2E1x + 1)(X* = 2Eax + 1)(x* —2E3x +1) =0

where
Ei+Ey+E3=C+Cr+C3 =k

E\Ey + E\E3 + ExEy = C1Co + C1C3 + C2C3 — (Cs + Cs5 + Cs) /4 = ko
1
E1EyE3 = C1C2C3 — 1(0106 + C2C5 + C3C4 4 1/ C4C5C5) = k3
Then in order for x to be bounded by unity, |E;| <1 for ¢ = 1,2,3. Additionally, for E;, we see that
E} —k\E? + kyF; — ks = E} — F?E) — E?Ey — E?E3 + E;F\Ey + E;E\F3 + E;EyE3 — B1EoE3 = 0
for i = 1,2,3. Equivalently, each E; is a solution to the equation
$2—k1$2+k21}—k3:0

. . . . *(szks)g 1/6 0+2nm
Using the known solution to the cubic equation we have that £;—k; /3 = y where y = 2(—5=-1~)"/" cos(=5"")
and 0 = cos™((2k3$ /27 — k1ka/3 + k3) /(2(a3 /3 — a2)®/? /+/27). Then |E;| <1 = |y + k1/3| < 1 which is

satisfied if 2(7(’“2;717@/3)3)1/6 +k1/3 <1andky > 0. Since k; >0, 2(7(’“32727];%/3)3)1/6 < —k1/3 and since
—k1/3 > 0, the stability condition becomes:

. 1.2/9)\3
SRUELT

This condition may be rewritten as C;Cy + CoCs + C1C3 — (Cy + Cs + Cs) /4 > (1/3) % (C1 + Co + C3)2.
Solving this yields

Wo<0e —(ks—k2/3)3 <0 (ky—k2/3)3 >0 ke —k2/3>0

3
202 2 2y ¢
(€] + €5 +€3) < 201 + 232/a?)
where 8/a > 1/2. Under the assumption that Az = Ay = Az = h, this condition is equivalent to

h2
At? <
~ 2a2(1+ 252/042)

where a = ,/% is the P-wave velocity and § = \/% is the S-wave velocity

6 Problem Specifics

The method will be coded using the FDM outlined in section 4. The parameter values chosen for the
simulations are given below.

parameter | value interpretation

h 0.5 m spatial discretization parameter

At 0.05 sec temporal discretization parameter

Qg By 0,10 m min and max x values

ay, By 0,10 m min and max y values

o, B, 0,1 m min and max z values

T 50 sec max time value

o 2500 kg/m? material density

A 12.66 10° Pa elastic modulus

7 17 10° Pa shear modulus

F* {O Tns Yms 2k 7 2h force in the x component
sin(mty,),m =1,---,4 otherwise

FY 0 force in the y component

= 0 force in the z component

The parameter values given are consistent with the material sandstone. In order to investigate how
the motion of the waves is dependent on the material, the code will also be run using the material
properties of peridotite, a much harder rock. The parameters for peridotite are: p = 3300 kg/m3, \ =
86 x 10°Pa, u = 63 x 10° Pa



7 Computational Results

In order to see how the waves propagate in the sandstone material, the following graphs depict the
displacement in the z direction for z, = 2h at different times. We can see the that force in the x
direction creates an initial displacement which then propagates through the domain. Since the boundaries
are non-absorbent, the waves reflect off the boundaries and interact moving throughout the domain. The
magnitude of the wave heights for this material is approximately 2.5 m.

Displacernent Uatz=2,1=200 Displacernent Uatz=2,1=500

displacement, U
displacernent, U

displacement, U
displacernent, U

The next graph depicts the profile of the displacement at various times along the line y = 10h, z = 2h.
The edges in this graph are sharp due to the large step size. We can see the initial wave propagating
through the material at time ¢ = 200A¢, and the interaction of the waves thereafter. On these graphs
we can see the the magnitude begins at approximately 102 and grows to about 0.4.
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The following graphs were generated using the material properties of peridotite. The first depicts the
displacement in the x component for z = 2k for various times. These graphs, displaying the same spatial
and temporal data as the sandstone graphs, show that the waves do not propagate well in the material.

In fact, comparing the two sets of graphs it appears that the waves propagate faster in the peridotite
but the amplitude of the waves decreases over time.

Displacement Uatz =2, t= 200 Displacement Uatz=2,t=500
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The second figure which displays a profile of the displacement at various times along the line y = 10h, z =
2h confirms this. We can see that the initial displacement has a magnitude of about 0.3 m; however,
unlike in the sandstone model, the magnitude decreases at further time steps.
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These data confirm what has been suggested about the manner with which waves propagate through
softer and hard rock: waves propagate and are amplified in soft rock (i.e. sandstone) while they are
dampened by hard rock (i.e. peridotite). Even though the waves are dampened, we can still see movement
in the graph. This is because the PDE is hyperbolic and the boundary conditions are non-absorbing,
and so the waves continue to propagate for a long period of time.

8 Conclusion

Numerical methods provide a valuable tool to approximate the motion of the earth and may be useful in
studying various seismic phenomena. The focus of this project was to approximate the solution to the
equation of motion along with a constitutive relation in order to model the displacement of the earth.
Using finite difference methods to approximate the motion of seismic waves can be a valuable resource
for many reasons. While much is known about the behavior of seismic waves, there is still much to be
gained from using numerical methods to approximate the motion of waves. The work done here served to
simply confirm what has been previously proven, that waves are amplified in softer rock and dampened
in harder rock; however this method could be extended to model various types of scenarios, source and
object elements. For example, adding in components of fault structure, dispersion, or inhomogeneous
material properties would allow this work to apply to other problems.
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Code

clear; clc;

h = 0.5;

stability = h/(sqrt(2x( ((0.21 + 2x17)/2500) + (17/2500)
dt = 0.05;

x = 0:h:10;

y = x;

z = 0:h:1;

t = 0:dt:75;

M = length (x);

N = length(y);

R = length (z);

T = length (t);

U = zeros (M,N,R,T);

A zeros (M,N,R,T);

W = zeros (M,N,R,T);

rho = 2500%ones (M,N,R);
lambda = 12.66%ones (M,N,R);
mu = 17%ones (M,N,R);

% rho = 3300xones (M,N,R);

% lambda = 86xones (M,N,R);

)))s

% mu = 63xones (M,N,R);
Fx = zeros (M,N,R,T);
Fy = Fx;
Fz = Fx;
for m = 1:4
Fx(2,2,2,m) = sin(pi*t(m));
end
for m = 2:T
for i = 2:M-1
for j = 2:N—1
for k = 2:R—-1
U(i,j,k,m+t1) = 2%U(i,j,k,m) — U(i,j,k,m—1)+...
(dt"2/rho(i,j, k))*...
(L_opl(lambda, U(:,:,:,m), 1, h, i,j,k)+...
L_opl(mu, U(:,:,:,m), 1, h, i,j,k)+...
L_oopl(mu, U(:,:,:,m), 2, h, i,j,k)+...
Loopl(mu, U(:,:,:,m), 3, h, i,j,k)+...
L_op2(mu, V(:,:,:,m), 2, 1, h, i,j,k)+...
L-op2(mu, W(:,:,:,m), 3, 1, h, i,j,k)+...
L.op2(lambda, V(:,:,: ,m), 1, 2, h, i,j,k)+...
L_op2(lambda, W(:,:,: ,m), 1, 3, h, i,j,k))+...
Fx(i,j,k,m);
V(i,j,k,m+1) = 2%V(i,j,k,m) — V(i,j,k,m—1)+...
(dt"2/rho(i,j, k))*...
(L_opl (lambda, V(:,:,:,m), 1, h, i,j,k)+...
L_oopl(mu, V(:,:,:,m), 1, h, i,j,k)+...
Loopl(mu, V(:,:,:,m), 2, h, i,j,k)+...
L_opl(mu, V(:,:,:,m), 3, h, i,j,k)+...
L_op2(mu, U(:,:,:,m), 2, 1, h, i,j,k)+...
L.op2(mu, U(:,:,:,m), 3, 1, h, i,j,k)+...
L_op2(lambda, W(:,:,: ,m), 3, 2, h, i,j,k)+...
L_op2(lambda, W(:,:,: ,m), 2, 3, h, i,j,k))+...
Fy(i,j . k.m);
W(i,j,k,mt+1) = 2+W(i,j,k,m) — W(i,j,k,m—1)+...
(dt"2/rho(i,j, k))*...
(L_opl (lambda, W(:,:,:,m), 1, h, i,j,k)+...
L_opl(mu, W(:,:,:,m), 1, h, i,j,k)+...
L_opl(mu, W(:,:,:,m), 2, h, i,j,k)+...
L_oopl(mu, W(:,:,:,m), 3, h, i,j,k)+...
L-op2(mu, U(:,:,:,m), 3, 1, h, i,j,k)+...
L_.op2(mu, V(:,:,:,m), 3, 2, h, i,j,k)+...
L_op2(lambda, U(:,:,:,m), 1, 3, h, i,j,k)+...
L_op2(lambda, V(:,:,: ,m), 2, 3, h, i,j,k))+...
Fz(i,j,k,m);
end
end
end
end
Y%
loops = 4001;
F(loops) = struct (’cdata’,[], colormap’ ,[]);
for j = 1:loops
Surf(U(:,:.2,i))
zlim ([—10 10])
drawnow
F(j) = getframe;
end

movie (F,2)

F%

% subplot (2,2,1), surf(U(:,:,2,200))

% title (’Displacement U at z = 2, t = 200’), xlabel(’x’),
% xlim ([0 20])

% ylim ([0 20])

% zlim ([—-5 5])

% subplot (2,2,2), surf(U(:,:,2,500))

% title ('Displacement U at z = 2, t = 500°), xlabel(’x’),
% xlim ([0 20])

% ylim ([0 20])

% zlim ([—5 5])

% subplot (2,2,3), surf(U(:,:,2,1000))

% title (’Displacement U at z = 2, t = 1000’), xlabel(’x’),

12

ylabel ("y’),

ylabel ("y’),

ylabel ("y’),

zlabel (’displacement ,

zlabel (*displacement ,

zlabel (’displacement ,

u’)

u’)

U’)



% xlim ([0 20])

% ylim ([0 20])

% zlim ([—-5 5])

% subplot (2,2,4), surf(U(:,:,2,1500
% title (’Displacement U at z = 2

% xlim ([0 20])

% ylim ([0 20])

% zlim ([—5 5])

)
t = 1500°), xlabel(’x’), ylabel(’y’), zlabel(’displacement, U’)

ind = 1:21;
subplot (2,2,1), plot(ind, U(:,10,2,200))
title (’Displacement Profile U at y = 10, z = 2, t = 200°), xlabel(’x’), ylabel(’y’), zlabel(’displacement, U’)
subplot (2,2,2), plot(ind, U(:,10,2,500))
title (’Displacement U Profile U at y = 10, z = 2, t = 500°), xlabel(’x’), ylabel(’y’), zlabel(’displacement, U’)
subplot (2,2,3), plot(ind, U(:,10,2,1000))
title (’Displacement U Profile U at y = 10, z = 2, t = 1000°’), xlabel(’x’), ylabel(’y’), zlabel(’displacement, U’)
subplot (2,2,4), plot(ind, U(:,10,2,1500))
title ("Displacement U Profile U at y = 10, z = 2, t = 1500’), xlabel(’x’), ylabel(’y’), zlabel(’displacement, U’)
function out = a_.gamma(a, h, sign, n, i, j, k)
if n =1

int = (1/h)*(1/a(i,j,k))*(1/a(it+sign, j, k))xh/2;
elseif n 2

int = (1/h)*(1/a(i,j,k))*(1/a(i, j+sign, k))*h/2;

elseif n == 3

int = (1/h)=(1/a(i.j,k))*(1/a(i, j. ktsign))=h/2;

out = 1/int;
function out = L_opl(argl, arg2, gamma, h, i,j,k)
al = a.gamma(argl, h, 1, gamma, i, j, k);
a2 = a_gamma(argl, h, —1, gamma, i, j, k);
if gamma 1
phil arg2 (i+1, j, k);
phi3 = arg2(i—1, j, k);
elseif gamma == 2
phil = arg2(i, j+1, k);
phi3 = arg2(i, j—1, k);
elseif gamma —= 3
phil = arg2(i, j, k+1);
phi3 = arg2(i, j, k—1);
end
phi2 = arg2(i,j k);
out = (1/h"2)*(al*(phil—phi2)—a2%(phi2—phi3));
function out = L_op2(argl, arg2, gamma, ada, h, i,j,k)
al = a.gamma(argl, h, 1, ada, i, j, k);
a2 = a_gamma(argl, h, —1, ada, i, j, k);
if gamma == 1
if ada == 2
phil = arg2(i+1, j, k);
phi2 = arg2(i+1, j+1, k);
phi3 = arg2(i—1, j, k);
phi4 = arg2(i—1, j+1, k);
phis = arg2(i+1, j—1, k);
phi7 = arg2(i—1, j—1, k);
elseif ada == 3
phil = arg2(i+1, j, k);
phi2 = arg2(i+1, j, k+1);
phi3 = arg2(i—1, j, k);
phid = arg2(i—1, j, k+1);
phis = arg2(i+1, j, k—1);
phi7 = arg2(i—1, j, k—1);
end
elseif gamma == 2
if ada == 1
phil = arg2(i, j+1, k);
phi2 = arg2(i+1, j+1, k);
phi3 = arg2(i, j—1, k);
phid = arg2(i+1, j—1, k);
phis = arg2(i—1, j+1, k);
phi7 = arg2(i—1, j—1, k);
elseif ada == 3
phil = arg2 (i, j+1, k);
phi2 = arg2(i, j+1, k+1);
phi3 = arg2(i, j—1, k);
phi4 = arg2(i, j—1, k+1);
phi5 = arg2 (i, j+1, k—1);
phi7 = arg2(i, j—1, k—1);
end
elseif gamma == 3
if ada == 1
phil arg2 (i, j, k+1);
phi2 = arg2(i+1, j, k+1);
phi3 = arg2 (i, j, k—1);
phi4 = arg2(i+1, j, k—1);
phi5s = arg2(i—1, j, k+1);
phi7 = arg2(i—1, j, k—1);
elseif ada == 2
phil = arg2(i, j, k+1);
phi2 = arg2(i, j+1, k+1);
phi3 = arg2(i, j, k—1);
phid = arg2(i, j+1, k—1);
phis = arg2(i, j—1, k+1);
phi7 = arg2(i, j—1, k—1);
end
end
out = (1/4%h"2)*(al*(phil+phi2—phi3—phid)—a2x(phis+phil—phi7—phi3));
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clear; clc;

for k = 0:2
h = 0.5/2"k;

stability = h/(sqrt(2+( ((0.21 + 2%17)/2500) + (17/2500)

)))s

+...
Y

JK) .

k) -

+...
)ho

JK)

k) -

+...
.

JK)

k) -

dt = h/10;%0.05;
x = 0:h:10
y = x;
z O:h:1;
t = 0:dt:10;
M = length (x);
N = length(y);
R = length(z);
T = length(t);
U = zeros (M,N,R,T);
v zeros (M,N,R,T);
W = zeros (M,N,R,T);
rho = 8300«ones (M,N,R);
lambda = 86xones (M,N,R);
mu = 63%ones (M,N,R);
Fx = zeros (M,N,R,T);
Fy Fx;
Fz = Fx;
for m = 1:4
Fx(2,2,2,m) = sin(pi*xt(m));
end
for m = 2:T
for i = 2:M—1
or j = 2:N—1
for k = 2:R—-1
U(i,j,km+l) = 2+U(i,j,k,m) — U(i,j,k,m—1)
(dt 2/rho(i,j,k))=*...
(L_ opl(lambda, U(:,:,:,m), 1, h, i,j,k
L_opl(mu, U(:,:,:,m), 1, h, i,j,k)+...
L_oopl(mu, U(:,:,:,m), 2, h, i,j,k)+...
L_oopl(mu, U(:,:,:,m), 3, h, i,j,k)+...
L_oop2(mu, V(:,:,:,m), 2, 1, h, i,j,k)+...
L_op2(mu, W(:,:,:,m), 3, 1, h, i,j,k)+...
L_op2(lambda, V(: m), 1, 2, h, i,j
L_op2 (lambda, W(: m), 1, 3, h, i,j
Fx(i,j,k,m);
V(i,j,k,m+1)=2*V(1 ,k,m) — V(i,j,k,m—1)
(dt"2/rho(i,j, k) ..
(L-.opl(lambda, V :,m), 1, h, i,j,k
L_opl(mu, V(:,: 1, h, i,j,k)4...
L_opl(mu, V(:,: 2, h, i,j,k)+...
L_opl(mu, V(: 3, h, i,j,k)4...
L_op2(mu, U(:, 2, 1, h, i,j,k)+4...
L_op2(mu, U(:, 3, 1, h, i,j,k)+...
L_op2(lambda, W vm), 3, 2, h, i,j
L_op2(lambda, W ,m), 2, 3, h, i,j
Fy(i,j,k,m);
W(i,j,k,m+1) = 2«W(i,j,k,m) — W(i,j,k,m—1)
(dt"2/rho(i,j,k))=*...
(L,opl(lambda, W( :,m), 1, h, i,j,k
L_opl (mu, W(: 1, h, i,j,k)+.
L_opl (mu, W(: . 2, h, i,j.k)+.
L_opl (mu, W(: 3. h, iLjik)4...
L_op2(mu, U(: 3, 1, h, i,j,k)+...
L_op2(mu, V(: 3, 2, h, i,j,k)+...
L_op2 (lambda , vm), 1, 3, h, i,j
L_op2(lambda, ,m), 2, 3, h, i,j
Fz(i,j,k,m);
end
end

values (k) = U(2,2,2,end);
fprintf (' Finishing %d’, k)
end

G%
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