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1 Introduction

The modeling of pedestrian traffic has been studied using a variety of techniques including fluid flow dy-
namics and continuum mechanics [1,2,3,4]. Here, we view pedestrian traffic as a differential game. The
application of differential game theory attempts to treat pedestrians as logically-thinking individuals trying
to reach their destination in the best possible manner as opposed to particles within a system whose behavior
is fully determine by the overall flow.

The study of pedestrian traffic continues to be of great interest as high traffic areas, such as airports, malls,
and businesses, attract larger crowds which must maneuver their environment as quickly as possible. Addi-
tionally, similar techniques to those developed for this model can be applied to other forms of traffic such as
automobile traffic. The ultimate goal in modeling these traffic patterns is to determine how environmental
changes can be implemented to influence more efficient traffic flow patterns from pedestrians.

This paper begins with a background discussion of optimal control theory and differential games. Then,
we develop the main solution techniques which are used in this model and offer a simple one-dimensional
example which illustrates how the techniques are applied. Next, the full pedestrian traffic model is devel-
oped, explained, and solved using the techniques discussed. Finally, the model is implemented in several
environments and the behavior of the model is analyzed.

2 Background

2.1 Optimal Control Theory

A standard problem in optimal control theory begins with a state variable x ∈ Rm and a control variable
u ∈ U ⊂ Rn. The set U is referred to as the set of admissible controls for the problem and is generally used
to place practical limits on the effectiveness of the control (i.e. a rocket cannot apply an infinite amount of
thrust to a shuttle). The goal of this problem is to find the optimal control, u∗ ∈ U , which steers the state
from some initial set X0 to a target set X1 subject to the state dynamics{

ẋ(t) = f(t,x,u)
x(t0) = x0 ∈X0.

(1)

The determination of the optimal control is subject to a given cost functional

J(u) = φ (x(t1)) +

∫ t1

t0

L(s,x,u) ds (2)

which we attempt to minimize. This cost functional is made up of two components: the terminal cost,
φ(x(t1)), and the running cost, L(s,x,u).

1



The standard problem in optimal control leads to questions regarding the existence and uniqueness of an
optimal control and methods for mathematically describing such a control. These questions have been studied
thoroughly [5,6,7]. Some useful methods for finding optimal controls are discussed later in the section.

2.2 Differential Game Theory

A problem in differential game theory is similar to a standard problem in optimal control. However, differen-
tial games involve several players who each operate their own control. Additionally, each player is attempting
to minimize their own cost functional.

An example of a two-player differential game includes system dynamics given by{
ẋ(t) = f(t,x,u1,u2)
x(t0) = x0 ∈X0

(3)

and cost functionals

J1(u1) = φ1 (x(t1)) +

∫ t1

t0

L1(s,x,u1,u2) ds

J2(u2) = φ2 (x(t1)) +

∫ t1

t0

L2(s,x,u1,u2) ds.

(4)

Hence, it becomes clear that both players can influence the dynamics of the system as well as both players’
costs.

Differential games and their theory were first introduced by Rufus Isaacs [8] who primarily studied their
applications in various warfare and combat scenarios. Many of the problems introduced by Isaacs were of
the pursuit-evasion form, where one player attempts to capture the other. In addition to military applica-
tions, differential games have appeared in the study of space flight, political science, economics, and traffic
management.

Depending on the scenario involved, differential games can be categorized based on various qualities:

• cooperative games - communication and non-conflicting goals allow the players to work together to
obtain the best possible outcome

• open-loop games - the controls for each player are decided at the beginning and cannot be changed
once the game begins

• sequential-move games - the players execute their controls in sequence so that later players can see
what earlier players are doing

• zero-sum games - the act of improving one player’s cost directly results in a worsening of another
player’s cost

2.3 The Maximum Principle

The calculus of variations is a well-developed tool for studying problems that arise in optimal control and
differential game theory. Here, we examine one of the main results for finding optimal controls subject to a
cost functional.

First, we must define a useful tool which appears in various ways across optimization, the Hamiltonian. In
the case of optimal control or differential games, the Hamiltonian is given by

H(t,x,λ,u) = L(t,x,u) + λTf(t,x,u). (5)
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The vector λ ∈ Rm is known as the adjoint system and is time-dependent so that λ = λ(t). The adjoint be-
haves much like the Lagrangian multipliers used in optimization. Given the Hamiltonian, the state dynamics
can be written in the form

ẋ =
∂H

∂λ
= f(t,x,u). (6)

Using results from calculus of variations, the adjoint state dynamics can be shown to be

λ̇ = −∂H
∂x

. (7)

Equations (??) and (??) result in a system of ODEs which must then be solved. Initial conditions arise from
x(t0) = x0 ∈ X0 and some terminal conditions may be obtained from x(t1) ∈ X1. Additional conditions
come from the so-called transversality condition on the adjoint system. Transversality states that

λ(t0) ⊥ T 0

λ(t1) ⊥ T 1
(8)

where T 0 and T 1 are the tangent spaces to X0 and X1, respectively.

The main result in this section which will be used to find the optimal control is called the Pontryagin
Maximum Principle, or simply the maximum principle. The maximum principle states that if u∗ ∈ U is the
optimal control for a given system with associated optimal state x∗ and optimal adjoint λ∗, then u∗ must
minimize the Hamiltonian subject to these optimal state and adjoint variables. That is,

H(t,x∗,λ∗,u∗) ≤ H(t,x∗,λ∗,u) for any u ∈ U . (9)

In special cases, when the Hamiltonian is independent of time, it can be shown that the minimum value of
the Hamiltonian is given by

H(x∗,λ∗,u∗) = 0. (10)

This result will be important for the example that is studied in the next section.

The maximum principle allows us to determine possible optimal controls u∗ by using a simple result from
calculus:

∂H

∂u

∣∣∣∣
u=u∗

= 0. (11)

The optimal control is then found by combining this result from the maximum principle with the system of
ODEs found above.

3 One-dimensional Example

In this section, we consider a simple one dimensional example in order to illustrate how the Hamiltonian and
maximum principle are used to solve problems of optimal control. Consider the case of a single pedestrian
walking down a straight hallway alone. Since only a single player is present, this is a problem of optimal
control and not a differential game. The state vector is set to be the pedestrian’s position and velocity

x(t) =

[
r(t)
v(t)

]
(12)

and the dynamics of the system are given by

ẋ(t) =

[
ṙ(t)
v̇(t)

]
=

[
v(t)
u(t)

]
. (13)
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The only costs to minimize in this problem will be those relating to time and acceleration. We will assume
a quadratic cost functional of the form

J(u(·)) =
1

2

∫ t1

0

[
u(s)2 + 1

]
ds. (14)

Notice that the final time for the problem is not given. In this case, we must solve for the final time using
the state dynamics. This is called a free-time problem.

The initial and target states are given by

X0 = x(0) =

[
r(0)
v(0)

]
=

[
0
0

]
, X1 =

{[
1
α

]
∈ R2 : α ∈ R

}
, (15)

respectively. Hence, the pedestrian starts at the origin with zero velocity and ends at r(t1) = 1 with any
velocity. The Hamiltonian for the system is

H(t,x(t),λ(t), u(t)) =
1

2

(
u(t)2 + 1

)
+ λ1(t)v(t) + λ2(t)u(t) (16)

where λ(t) = [λ1(t), λ2(t)]T is the adjoint system. The dynamics of the adjoint are given by[
λ̇1(t)

λ̇2(t)

]
= −∂H

∂x
=

[
0

−λ1(t)

]
. (17)

Finally, the transversality conditions of the adjoint, λ(t0) ⊥ T0 and λ(t1) ⊥ T1 where T0, T1 are tangent
planes to the initial and terminal states, give us that λ2(t1) = 0. Thus, we obtain the system

ṙ(t) = v(t) r(0) = 0
v̇(t) = u(t) v(0) = 0

λ̇1(t) = 0 r(t1) = 1

λ̇2(t) = −λ1(t) λ2(t1) = 0

(18)

This system cannot be solved yet as u(t) is still unknown. The maximum principle is used to determine that
the optimal control u∗ is given by

∂H

∂u

∣∣∣∣
u=u∗

= λ2(t) + u∗(t) = 0⇒ u∗(t) = −λ2(t). (19)

This gives the closed differential system
ṙ(t) = v(t) r(0) = 0
v̇(t) = −λ2(t) v(0) = 0

λ̇1(t) = 0 r(t1) = 1

λ̇2(t) = −λ1(t) λ2(t1) = 0

(20)

This system can be solve analytically to obtain

r∗(t) =
1

2t31
(t1 − t)3 +

3

2t1
t− 1

2

v∗(t) = − 3

2t31
(t1 − t)2 +

3

2t1

λ∗1(t) = − 3

t31

λ∗2(t) = − 3

t31
(t1 − t)

(21)
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To determine the optimal final time, we recognize that the Hamiltonian is time-independent so that is optimal
value is 0. Hence, we have

H(x∗(t1),λ∗(t1), u∗(t1)) =
1

2
+

(
−3

t31

)(
3

2t1

)
= 0. (22)

Solving this algebraic expression for the final time yields t1 =
√

3. This is then plugged into the solution to
obtain

r∗(t) =
1

6
√

3

(√
3− t

)3
+

√
3

2
t− 1

2

v∗(t) = − 1

2
√

3

(√
3− t

)2
+

√
3

2

λ∗1(t) = − 1√
3

λ∗2(t) = − 1√
3

(√
3− t

)
(23)

Finally, using the result from the maximum principle, we get the optimal control to be

u∗(t) = −λ∗2(t) =
1√
3

(√
3− t

)
. (24)

Figure 1 shows the evolution of the state and the control in time. This result appears logical as the pedestrian
attempts to balance a desire to get to the target state as quickly as possible with a desire to not accelerate
too aggressively. Hence, we see a large acceleration early in order to get the velocity up. As time passes, it
is less beneficial to continue to accelerate aggressively so the control diminishes to 0.

Figure 1: The evolution of the state and control variables in time for the simple one-dimension example.

4 Pedestrian Traffic Model

4.1 Building the Model

In this section, we will build up the pedestrian traffic model in the form of a differential game as described
in [4]. The pedestrians are assumed to all have their own initial and target sets. As the game unfolds, the
pedestrians will move based on what appears to be the best for them given their final goals and cost functional.
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Several major assumptions in the model will be that

1. pedestrians continuously observe the current state and update their plan

2. pedestrians have perfect knowledge of the current state

3. pedestrians have limited prediction capabilities

4. pedestrians work harder to avoid groups that individuals

The first assumption means that we have a closed-loop control which allows the pedestrians to examine the
state and decide what course of action to take at each time step. The second assumption simplifies imple-
mentation, but can be unrealistic since we know that pedestrians cannot see around corners or behind them.
The third assumption results in a “temporal discount factor” which will be described later. This causes the
pedestrian to more heavily weigh their cost functional in regards to events that will happen in the near future.
The final assumption means that the desire to avoid other pedestrians is additive so that a pedestrian will
take evasive action sooner and more dramatically to avoid a cluster of pedestrians compared to an individual.

The state of the system is made up of the locations and velocities of all the pedestrians so that

x(t) =



r1(t)
...

rN (t)
v1(t)

...
vN (t)


(25)

where there are N pedestrians in the system. Similar to the one-dimensional example, the dynamics of the
system will be given by

ẋ(t) =



v1(t)
...

vN (t)
a1(t)

...
aN (t)


. (26)

The acceleration of each pedestrian, ap(t) for p = 1, . . . , N , is made up a controllable portion up(t) and
an uncontrollable portion wp(t). The controllable portion is obviously determined by the state and cost
functional while the uncontrollable portion is used to describe physical contact with other pedestrians and
boundaries. The uncontrollable portion has the form

wp = wbound+
∑
q 6=p

[
kp,1

(
(R∗p +R∗q)−Rp,q

)+
np,q + kp,2

(
(vq − vp)Tn⊥p,q

) (
(R∗p +R∗q)−Rp,q

)+
n⊥p,q

]
. (27)

The wbound term represents accelerations due to contact with the wall and takes a similar form to the
summation, which represents accelerations due to contact with other pedestrians. The parameters kp,1 and
kp,2 are weights for the direct contact and friction terms, respectively. The values R∗p and R∗q represent the
physical radii of pedestrians p and q while the term Rp,q is the distance between pedestrians p and q. Thus,
if the distance between the two pedestrians is less than the sum of their physical radii, then a force is applied
along the normal vector pointing from pedestrian q to p, denoted np,q. In the friction term, we see that
(vq − vp)Tn⊥p,q is simply the difference in the two pedestrians’ velocities projected along the vector perpen-
dicular to the normal vector described earlier. Hence, if the two pedestrians walk past each other and make
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physical contact, then their velocity is slowed due to a “friction” between them. As mentioned earlier, the ac-
celerations due to contact with the boundaries behave very similarly to those due to inter-pedestrian contact.

Next, we examine the cost functional which will ultimately determine the behavior of all pedestrians in the
model. It is assumed that the cost is made up of three components:

1. Lp,1: the cost of drifting from the optimal velocity

2. Lp,2: the cost of discomfort from walking too near to other pedestrians

3. Lp,3: the cost of accelerating, decelerating, or turning

Thus, the cost functional can be written in the form

Jp(up) =

∫ ∞
t0

e−ηps [cp,1Lp,1 + cp,2Lp,2 + cp,3Lp,3] ds. (28)

The exponential term enforces the third assumption mentioned earlier. The parameter ηp is the referred to
as the temporal discount factor and determines how heavily to weigh issues in the near future versus those
further down the road.

The cost of drifting from the optimal velocity is represented using the quadratic function

Lp,1 =
1

2

(
v∗p − vp

)T (
v∗p − vp

)
(29)

where v∗p is the optimal velocity of pedestrian p. This velocity is determined by the shortest route (ignoring
other pedestrian who may be in the way) from the pedestrian’s current position to his target set. This term
coaxes the pedestrian towards his final destination as quickly as possible.

The cost of discomfort from walking too near to other pedestrians can be written as

Lp,2 =
∑
q 6=p

e−Dp,q/R
0
p . (30)

The parameter R0
p is called the spatial discount factor and weighs how intensely a pedestrian works to avoid

other pedestrian in relation to how far away they are from him. The value Dp,q is a sort of distance measure
between pedestrians p and q. However, the distance is weighted by whether pedestrian q is directly in front
of pedestrian p or to the side. In this way, the pedestrian will work harder to avoid others who are directly
in his path as opposed to those who are near him but not in his way.

The cost of accelerating, decelerating, or turning is given by the equation

Lp,3 = θp
(
uTp ep

)2
+ (1− θp)

(
uTp e

⊥
p

)2
(31)

where θp is a weighting parameter between accelerations longitudinally versus accelerations laterally. The
normal vector ep represents the direction that pedestrian p is facing. In this model, the pedestrian is
determined to be facing the direction he is walking, that is

ep =
vp
||vp||2

. (32)
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4.2 Solving the Model

Now that the model has been built up, we apply the techniques from earlier to solve the differential game
presented. The first step is to construct the Hamiltonian

H(t,x,λ,u) = e−ηpt [cp,1Lp,1 + cp,2Lp,2 + cp,3Lp,3] + λTf . (33)

In applying the maximum principle to this Hamiltonian, we first recognize that the control only appears in
the third running cost functions, Lp,3, and in the state dynamics, f . Hence, we have

∂H

∂up
= cp,3e

−ηpt ∂Lp,3
∂up

+
∂
(
λTf

)
∂up

. (34)

Taking these derivatives and solving for the optimal control yields

u∗p = − 1

cp,3
e−ηptMpλ

∗
vp

(35)

where the matrix Mp is given by

Mp =
1

2

[
θpepe

T
p + (1− θp) e⊥p

(
e⊥p
)T ]−1

(36)

and λ∗vp
is the optimal adjoint associated with the optimal state velocities of pedestrian p. In order to find

the optimal control, the adjoint dynamics must be solved for λ∗vp
. We know the dynamics have the form

λvp = − ∂H

∂xvp

, (37)

and since the state dynamics, f , and the running cost components, Lp,1, Lp,2, and Lp,3, are time-independent,

we can write λvp
(t,x) = e−ηptλ̃vp

(x). Hence, the adjoint system be solved to get the optimal control

u∗p = Mp

[
I − 1

ηp

(
∂v∗p
∂rp

)T](v∗p − vp
τp

)
−A0

pMp

[
∂Lp,2
∂rp

+ ηp
∂Lp,2
∂vp

]
(38)

where τp = (ηpcp,3)/cp,1 and A0
p = cp,2/(η

2
pcp,3).

The first term of the optimal control attempts to keep the pedestrian from starying from the optimal
velocity, v∗p. The derivative of the optimal velocity with respect to space allows the pedestrian to anticipate
upcoming changes in the optimal velocity so that adjustments can be made early. The second term relates
to the pedestrian’s desire to avoid getting too close to other pedestrians. Finally, the costs associated with
accelerating, decelerating, or turning are packaged into the constant τp and A0

p as well as the matrix Mp.
These factors weigh how heavily accelerations in the two terms are applied.

5 Results

For the first problem, we examine a straight hallway with pedestrians walking from one end to the other.
The code is such that at each time step, the pedestrians observe the current state of the system and update
their control. The optimal velocity is constant in this case since the pedestrians are only concerned with
reaching the other end of the hallway. Thus, the optimal control simplifies to

u∗p = Mp

(
v∗p − vp
τp

)
−A0

pMp

[
∂Lp,2
∂rp

+ ηp
∂Lp,2
∂vp

]
. (39)
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Figure 2: The evolution of pedestrian flow for a straight hallway. The target set of the pedestrians are
indiciated by their color. In the long term, we see lanes begin to naturally form.

As the model unfolds, we see lanes form which allow pedestrians to avoid any direct interactions with other
pedestrians and reach their final destination quickly. Figure 2 shows the overall flow as the individuals
progress through the hallway. In addition to the formation of lanes, we see that pedestrians along the walls
have a greater difficulty reaching their destination than those in the middle of the hallway.

For the second problem, we examine a four-way intersection with pedestrians coming from two directions and
attempting to walk straight through the intersection. The optimal velocity is constant within their straight
hallway for the pedestrians. However, if inter-pedestrian interaction forces a pedestrian from their straight
hallway, then the optimal velocity guides them back into the flow of traffic heading to their same destination.

Similar to the formation of lanes in the straight hallway, we see the eventual formation of diagonal groups
of pedestrians heading in each direction in Figure 3. This pattern allows the pedestrians to move past each
other in optimal time by inter-weaving their walking patterns. Additionally, we begin to see some build-up at
the corner as pedestrians who were pushed out their straight hallways attempt to return. This phenomenon
is examined further in the last example.

The final problem is again a four-way intersection. However, now pedestrians are coming from all directions
and heading towards any other random exit. This allows for interesting examination of traffic patterns near
the corners. We see heavy build-ups at these location which are not quickly resolved as pedestrians compete
for position. This appears to be one of the major flaws within the model. Despite corners being a potentially
difficult part of real-life pedestrian traffic, we generally do not see the kind of build-ups shown in Figure 4.
This is discussed further in the next section.
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Figure 3: The evolution of pedestrian flow for a four-way intersection. The target set of the pedestrians are
indiciated by their color. In the long term, we see diagonal groups begin to naturally form in the intersection
area.

Figure 4: The evolution of pedestrian flow for a four-way intersection. The target set of the pedestrians are
indiciated by their color. This problem highlights the models difficulty in handling behavior near corners
where we see heavy build-ups that take a long time to dissipate
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6 Conclusions

Overall, the models performance closely resembles the style and form that we expect from crowds of pedes-
trians. The major qualitative behavior which we observe is the formation of lanes or groups by pedestrians in
order to more quickly and conveniently reach their destination. The model does have difficulties associated
with pedestrians attempting to turn corners. However, this is commonly an area of difficulty for pedestrians
in real life who cannot see what is coming around the corner.

Several additional implementations may be added to the model in order to more realistically represent the
flow of pedestrians. The first is to add a level of cooperation to the game. In real life, pedestrians’ goals
are generally non-conflicting and communication (verbal or nonverbal) is not restricted. Thus, we would
expect a level of cooperation to improve the flow of traffic, especially at difficult junctions such as corners.
Implementing cooperation can be done by applying the maximum principle to all the controls at once such
that

∂H

∂u

∣∣∣∣
u=u∗

= 0. (40)

In this way, pedestrian p has some understanding of how the other pedestrians will likely update their
controls for the next time step and can plan accordingly. The second addition to the code would be to
limit the pedestrians’ knowledge of the state. In real life, pedestrians cannot see behind them, around
corners, or around other pedestrians, and this fact can complicate things. This can be done by applying
some observation matrix to the current state in order to obtain the observable state

yp = Bpx. (41)

The same solution techniques are then applied to the observable state rather than the entire state.

Lastly, the model contains a variety of seemingly arbitrary parameters such as

• R0
p - spatial discount factor

• ηp - temporal discount factor

• kp,1

• kp,2

}
weighting factors for inter-pedestrian interactions

• cp,1

• cp,2

• cp,3

 weighting factors for costs functions

• c+p

• c−p

}
weighting factors for longitudinal/latitudinal discomfort

• θp - relative weight of longitudinal vs. latitudinal acceleration

A deeper understanding of how these parameters affect the flow of pedestrians needs to be obtained in order
to build the best possible model. This can be done by studying pedestrian flow either on a macroscopic
scale (general flow patterns) or a microscopic scale (individual behaviors) and using this data to determine
the best parameter values. Without understanding the true impact of these parameters on the model, the
results cannot be practically applied to real-life problems.
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