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overview
In this paper, we numerically model the Korteweg-de Vries equation with
a one-dimensional collocation method and a finite difference scheme under
a variety of conditions. To analyze the error introduced in our numerical
approximation, we run our simualtion given initial conditions where the
analytical solution is known.

1 korteweg-de vries equation
The Korteweg-de Vries Equation:

∂tφ(x, t) + εφ(x, t)∂xφ(x, t) + µ∂xxxφ(x, t) = 0 (1)

x ∈ [a,b], t ∈ [0,∞)

ε,µ ∈ R+

Analytically, KdV is often treated on an infinite spatial domain. Imposing
no boundary conditions, a solution to (1) on this domain is called a soliton,
or a solitary wave. Solitons are a distinguishing feature of KdV. Despite
being a nonlinear PDE, solitons display behavior that appears similar to
the property of superposition for a linear PDE. It is of note that for an in-
titial waveform with a large enough traveling velocity, KdV will eventually
decompose this waveform into solitons. Looking at a variety of initial wave-
forms, we will see the qualitative behavior of KdV with regard to solitons.

2 numerical considerations
Although, KdV is a hyperbolic PDE, we consider finite difference schemes
developed for parabolic PDEs. We use these alternative methods as directly
applying an implicit method to KdV leads to an equation which must be
iteratively solved. However by making use of these methods, we may con-
sider a linearly implicit method, which greatly reduces the computational
difficulty. Additionally, given that we make use of the one-dimensional col-
location method, the spatial domain on which we consider (1) must be finite.
Throughout the paper, we enforce three boundary conditions:

φ(a, t) = 0, (2)

φ(b, t) = 0, (3)

∂xφ(b, t) = 0. (4)

Although these boundary conditions are not analytically true for the given
initial conditions in the simulations, the true values are close enough to
zero that this approximation is justified. Furthermore, for each simulation
we consider a bounded time domain.

3 collocation method
Given the interval [a,b] we create a uniform partition of the interval, P =

{x1, . . . , xN}, x1 < x2 < . . . < xN, with xk+1 − xk = h for appropriate k.
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In this problem, we choose to approximate our solution to KdV in S3:

S3 := {f ∈ C2[a,b] : f|Ik = c1 + c2x+ c3x
2 + c4x

3 ∀k ∈ {1, . . . ,N− 1}},

where Ik = [xk, xk+1].
S3 is finite dimensional with a basis of N+ 2 elements. We denote this

basis B = {v1, . . . , vN+2}. The basis elements are the cubic B-splines, each of
which spans four intervals. For a given vk,

vk(x) =



h−3g1(x− xk−2) x ∈ [xk−2, xk−1]

g2(
x−xk−1

h ) x ∈ [xk−1, xk]
g2(

xk+1−x
h ) x ∈ [xk, xk+1]

h−3g1(xk+2 − x) x ∈ [xk+1, xk+2]

0 else,

where g1(x) = x3 and g2(x) = 1 + 3x + 3x2 − 3x3. To define the ba-
sis functions, we extend P uniformly three steps on either side: Pext =

{x−2, x−1, x0, x1, . . . , xN, xN+1, xN+2, xN+3}, where xN+1 = xN +h and the
others are defined similarly. Letting Pext define the nodal points, B =

{vk|[a,b] : k = 0, . . . ,N+ 1}.
We approximate the solution to KdV with

Φ =

N+1∑
i=0

αi(t)vi(x).

Thus we see the approximation will be an element of S3 for fixed t.
We construct Φ such that it satisfies the PDE at the midpoints of each Ik:

∂tΦ(xk+1/2, t)+Φ(xk+1/2, t)∂xΦ(xk+1/2, t)+∂3xΦ(xk+1/2, t) = 0 ∀ k ∈ {1, . . . ,N−1}

This defines a system of N− 1 ODEs. In combination with the prescribed
boundary conditions, (2) - (4), we have N+ 2 equations defining the system
of N+ 2 unknowns.

Using our defintion of Φ, we may more explicitly write this system as
follows:

Vα ′ + (Vα) ∗C (Vxα) + Vxxxα = 0,

(C1 +C2 +C3)α = 0
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where ∗C represents component wise multiplication of vectors.

V =



v1(x1+1/2) . . . vN+2(x1+1/2)
...

. . .
...

v1(xN−1/2) . . . vN+2(xN−1/2)

0 . . . 0
...

. . .
...

0 . . . 0



Vx = ε



v ′1(x1+1/2) . . . v ′N+2(x1+1/2)
...

. . .
...

v ′1(xN−1/2) . . . v ′N+2(xN−1/2)

0 . . . 0
...

. . .
...

0 . . . 0



Vxxx = µ



v ′′′1 (x1+1/2) . . . v ′′′N+2(x1+1/2)
...

. . .
...

v ′′′1 (xN−1/2) . . . v ′′′N+2(xN−1/2)

0 . . . 0
...

. . .
...

0 . . . 0



C1 =


1 4 1 0 . . . 0

0 0 0 0
. . .

...
...

. . . . . . . . . . . .
...

0 . . . . . . . . . . . . 0



C2 =



0 . . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

0
. . . 0 0 0 0

0
. . . 0 1 4 1

0 . . . 0 0 0 0



C3 =


0 . . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

0
. . . 0 0 0 0

0 . . . 0 −3/h 0 3/h

 ,

where each matrix is N + 2×N + 2, each of the V matrices represent the
points evaluated in the intervals Ik, and the matrices C1, C2, and C3 repre-
sent the boundary conditions (2) - (4) respectively.
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Note that (Vα) ∗C (Vxα) = ((Vα) ∗C Vx)α if we allow ∗C to represent row
wise multiplication on Vx by the corresponding scalar in the preceeding
vector.

4 methods for time stepping
We consider modifications of both backwards Euler and Crank-Nicolson.

Consider our time interval, [0, T ]. Let us make a uniform partion: Pt =

{t0, . . . , tm}, tk+1 − tk = r for appropriate k and r = T/m.
To allow explicit comparison with KdV, (1), we let Φn = Vαn, DxΦ

n =

Vxα
n, and D3

xΦ
n = Mαn where M = Vxxx + C1 + C2 + C3. We include

our boundary conditions in this term as it allows for the most succinct rep-
resentation, while still conveying the same information.

4.1 Linearly Extrapolated Backward Euler

For KdV, applying Backwards Euler in time, our implicit approximation is
given by

Φn+1 −Φn

r
+Φn+1Dx(Φ

n+1) +D3
x(Φ

n+1) = 0

Using extrapolation, we contruct our new method, the linearly extrapolated
backward Euler (BELE):

Φn+1 −Φn

r
+ΦnDx(Φ

n+1) +D3
x(Φ

n+1) = 0

Writing this in terms of α, we have

Vαn+1 − Vαn

r
+ (Vαn) ∗C (Vxα

n+1) +Mαn+1 = 0

Thus,

(Vαn+1 + r(Vαn) ∗C Vx + rM)αn+1 = Vαn,

and we see that BELE is linearly implicit.
To implement BELE, we must find the initial condition for α given g(x) =

φ(x, 0). To do this we solve the following equation for α0:

(V +C1 +C2 +C3)α
0 = G, (5)

where

G =
[
g(x1+1/2) . . . g(xN−1/2) 0 0 0

]T ,

This system constructs α0 such that it satisfies our initial condition at the
midpoints of Ik and the three boundary conditions. This choice is congruent
with the collocation method. For further work on BELE, see Schatz [1, p.
199]. We will also discuss the method further in Section 6.

4.2 Linearly Extrapolated Crank-Nicolson

We derive the extrapolated method from the approximation:

αn+1 −αn

r
= F
(αn+1 +αn

2

)
, (6)



simulations 6

As F is Lipschitz, it is straightforward to show that this method is convergent
with O(r2).

Equation (6) is equivalent to

Φn+1 −Φn

r
+
(Φn+1 +Φn

2

)
Dx

(Φn+1 +Φn

2

)
+D3

x

(Φn+1 +Φn

2

)
= 0.

(7)

To implement (7) we must solve a nonlinear system at each timestep; this
is a result of the term Φn+1Dx(Φ

n+1). To avoid this, we use the linearly
extrapolated Crank-Nicolson method (CNLE):

Φn+1 −Φn

r
+
(
Φ̂n
)
Dx

(Φn+1 +Φn

2

)
+D3

x

(Φn+1 +Φn

2

)
= 0, (8)

Φ̂n =
3

2
Φn −

1

2
Φn−1

Φ̂n was chosen as such because 3
2φ(tn)−

1
2φ(tn−1) = (φ(tn+1)+φ(tn))/2+

O(r2), which is found by expanding Taylor Series.
Putting (8) in terms of α:

V
(αn+1 −αn

r

)
+ α̂n ∗C Vx

(αn+1 +αn

2

)
+M

(αn+1 +αn

2

)
= 0,

α̂n = V
(3
2
αn −

1

2
αn−1

)
Rearranging,(

V +
r

2
α̂n ∗C Vx +

r

2
M
)
αn+1 =

(
V −

r

2
α̂n ∗C Vx −

r

2
M
)
αn.

Once again, we have obtained a linearly implicit method. However, this is
a multistep method, and to begin use CNLE, we must have both α0 and α1.
We compute α0 as in (5) and use a predictor corrector method to compute
α1.

Predictor-corrector method:

V
(α1,0 −α0

r

)
+ Vα0 ∗C Vx

(α1,0 +α0

2

)
+M

(α1,0 +α0

2

)
= 0,

V
(α1 −α0

r

)
+ V

(α1 +α0

2

)
∗C Vx

(α1 +α0

2

)
+M

(α1 +α0

2

)
= 0.

We consider in further detail CNLE in Section 6. For further reading on
CNLE and the predictor-corrector method, we recommend the reader to
Schatz [1, p. 204].

5 simulations
All simulations in this section use CNLE. The primary focus of the simula-
tions is to assess whether the numerical model appropriately describes the
qualitative behavior of KdV.
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5.1 Maxwellian Initial Condition

See Figures 1 and 2.
The Maxwellian initial condition simply refers to a Gaussian distribution

at t = 0.
Initial Condition:

φ(x, 0) = e−x2

We consider t ∈ [0, 12.5] and x ∈ [−15, 15], and run the simulation for two
values of µ while fixing ε = 1. We set h = 0.1 and r = 0.01. Note the be-
havior as µ decreases. The shallow ripples move towards soliton waveforms
as µ decreases. This is a characteristic behavior of the Maxwellian initial
condition. For further information on the Maxwellian initial condition we
direct the reader to Canivar [2].

5.2 Soliton

See Figure 3.
We consider one soliton with initial condition

φ(x, 0) = 3c sech2(ax− 6).

Parameters:

c = .3

ε = 1

µ = 5× 10−4

a =
1

2

√
εc/µ

For the soliton, we consider t ∈ [0, 3] and x ∈ [0, 2]. We set both h and r
to 0.01. The simulation displays the expected behavior of the soliton. The
numerical approximation maintains its waveform and velocity as it travels.
For further references on the topic of solitons, we direct the reader to Brauer
[3] and Canivar [2].

5.3 First Wave Interaction

See Figure 4.
We use the prescribed initial condition

φ(x, 0) = 12
3+ 4cosh(2x) + cosh(4k)

(3cosh(k) + cosh(3k))2
.

Parameters:

ε = 6

µ = 1

For the first wave interaction, we consider t ∈ [0, 0.3] and x ∈ [−5, 15]. We
choose h = 0.1 and r = 0.01.
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Figure 1: Maxwellian IC with µ = 0.04

Figure 2: Maxwellian IC with µ = 0.08
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Figure 3: Soliton

Figure 4: First Wave Interaction
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Figure 5: Second Wave Interaction

5.4 Second Wave Interaction

See Figure 5.
The intitial condition:

φ(x, 0) = 5
4.5(csch(1.5(k+ 14.5)))2 + 2(sech(k+ 12))2

(3coth(1.5(k+ 14.5)) − 2tanh(k+ 12))2
.

Parameters:

ε = 6

µ = 1

For the second wave interaction, we consider t ∈ [0, 1] and x ∈ [−20, 0]. We
choose h = 0.1 and r = 0.01.

Comparing our results for the First and Second Wave interaction to those
in Dehghan [4], we see that our model correctly captures the behavior of
KdV in regards to wave motion. Most notably in the second wave interac-
tion, although the waves intersect, and do affect each other’s path, intensity
is not lost in the waveforms after passing. This exemplifies the idea of soli-
ton superposition in KdV.

6 numerical error analysis for the 2-d method
We note that further analysis should be performed on the one-dimensional
Collocation method; however, this report focuses on the integrated colloca-
tion method and finite difference scheme.

To perform the analysis, we consider the simulation for the soliton. This
allows us to compare the numerical approximation generated by the method
with the analytic solution at a given time. We analyze both the BELE and
CNLE methods and use both the ∞-norm and 2-norm in the analysis.
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6.1 BELE

For the soliton, we consider the same parameters as in Section 5. We choose
h, the spatial step, and set r = h2.

We find the absolute error of the numerical approximation with respect
to the analytic solution,

φ(x, 0) = 3c sech2(ax− aεct− 6). (9)

The data is presented in Table 1.

Table 1: Errors for Soliton, BELE

Norm

j, h = (1/2)j ‖E‖∞ ‖E‖2
4 2.014159 8.696917
5 0.346916 1.554004
6 0.108652 0.479781
7 0.028750 0.126591
8 0.007296 0.032077

We fit a line of best fit to the plot of log(h) vs. log(‖E‖). For the ∞ and
2-norm we have a lines with slope 1.9811 and 1.9783 respectively.

In Schatz [1, p. 199], BELE is considered for parabolic FEM Galerkin
method. For a given time that is included in our partition of the temporal
interval, it is found that

‖Φn −φ(·, tn)‖ = O(‖Φ0 −φ(·, 0)‖+ h2 + r)

for some C > 0. Given that r = h2,

‖Φn −φ(·, tn)‖ = O(‖Φ0 −φ(·, 0)‖+ h2)

Furthermore, from convergence tests on the time independent collocation
method, we expect ‖Φ0 − φ(·, 0)‖ = O(h2). Thus, under the given condi-
tions we expect

‖Φn −φ(·, tn)‖ = O(h2).

This is precisely what the errors show with comparison to the line of best
fit, which has slope ≈ 2, indicating second order convergence.

6.2 CNLE

Once again, we consider the same parameters as in Section 5. We choose h,
the spatial step, and set r = h.

We find the absolute error of the numerical approximation with respect
to the analytic solution (9).

We fit a line of best fit to the plot of log(h) vs. log(‖E‖). For the ∞ and
2-norm we have a lines with slope 1.3554 and 1.2566 respectively.

In Schatz [1, p. 204], CNLE is considered for parabolic FEM Galerkin
method. For a given time that is included in our partition of the temporal
interval, it is found that

‖Φn −φ(·, tn)‖ = O(‖Φ0 −φ(·, 0)‖+ h2 + r2)
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Table 2: Errors for Soliton, CNLE

Norm

j, h = (1/2)j ∞ 2

6 0.081917 0.384133
7 0.030287 0.141727
8 0.012900 0.060480
9 0.005964 0.027979

for some C > 0. Given that r = h,

‖Φn −φ(·, tn)‖ = O(‖Φ0 −φ(·, 0)‖+ h2)

Furthermore, from convergence tests on the time independent collocation
method, we expect ‖Φ0 −φ(·, 0)‖ = O(h2). Thus, we expect

‖Φn −φ(·, tn)‖ = O(h2).

Given our lines of best fit, we see that the data for error does not agree
with the expected order of convergence. Given that our approximation be-
haved as expected for BELE, we imagine this error was introduced in the
implementation of CNLE, perhaps the predictor-corrector method. Lastly, it
is possible that this bound for convergence does not hold for KdV. This will
demand further attention in a later report.

7 results and discussion
Through numerous qualititative examples, it was found that this model does
capture the behavior of KdV’s waveforms. Furthermore, using a the linearly
implicit BELE, we numerically found convergence rates similar to rates for
FEM Galerkin for parabolic PDEs. This numerical result indicates that it will
be worth exploring the theoretical convergence of BELE for KDV. Somewhat
surprisingly, CNLE’s convergence was not comparable to the theoretical con-
vergence rates for FEM Galerkin for parabolic PDEs. This too indicates that
further work should be done with the method. However, in contrast to
BELE, more numerical computations should be ran before venturing into
theoretical territory.

Extending the error analysis done in this paper, more initial conditions
for which the analytic solution is known should be simulated. For com-
putational feasibility, these analytic solutions should be found on spatial
domains similar to that of the soliton explored in this paper. This is in
contrast to the wave interaction simulations, which have analytic solutions,
but on too large of a domain for finding convergence rates in a reasonable
amount of time.

Once an appropriately accurate time-stepping method has been imple-
mented, such as a second order method, higher order collocation should be
explored. This means the next step is correcting the current implementation
of CNLE or adopting a new method.
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