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Ebola virus disease is a dangerous infectious pathogen that poses clear and present danger to the human
population. The most recent outbreak of Ebola has taken root in Western Africa and has brought
destruction to the countries of Guinea, Liberia, and Sierra Leone. The international community has
provided some relief response to the epidemic, but this has not yet been enough to halt the epidemic
(see Appendix A Figure 6). Our primary goal for this project was to determine the optimal location
to place a hospital in Western Africa. To gain insight into the spread of the disease, we developed a
modified SEIR model and fit parameters to data pertaining to the current epidemic. After running
our simulations, we developed different metrics to determine the best location to place a hospital.
Through our analysis, we established that the country of Liberia was most susceptible to changes
in the rate of infectious individuals entering hospitals. This indicated a marginal benefit in adding
a hospital to Liberia when compared to Sierra Leone, and a significant benefit compared to Guinea
when measuring total change in cumulative infection numbers.
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1 Background

The most recent Ebola outbreak began in December 2013 and has resulted in a devastating loss of life
in the countries of Guinea, Liberia, and Sierra Leone. This outbreak has been the deadliest in the history
of the disease claiming more than 10,000 lives thus far [1]. The severity of this epidemic has prompted an
international response in an effort to halt the further spread of the disease.

The Ebola virus is infamous for its approximately 10 day incubation period, during which it is not
infectious. However, once a patient turns symptomatic, they are able to pass on the virus to others. The
virus can be transferred through direct contact with bodily fluids such as blood and vomit and is not known
to be transmitted through the air. Another prevailing characteristic of the virus is that people who have
died due to the disease are still able to transmit the virus. This is particularly a problem in areas where
burial rituals require the handling of the deceased. Furthermore, the lack of adequate health care between
Guinea, Liberia, and Sierra Leone has only perpetuated the disease. While several outside governments have
contributed aid in the form of health care workers and treatment beds, this has not yet been enough to curb
the rate of infection.

2 Goals of Project

Our first objective was to develop a model for the spread of Ebola in Western Africa, taking into account
the characteristics of the disease. We then determined realistic parameters that fit the given data for Guinea,
Liberia, and Sierra Leone. However, our main goal was to study and determine the optimal location to place
a treatment facility amidst the countries of Guinea, Liberia, and Sierra Leone: we determined this location
by looking at fitted parameter values, the sensitivity of our determined steady state, and by minimizing the
infectious population with parameter variation.

3 Assumptions

While SEIR models are often implemented when studying the spread of infectious disease, for Ebola we
needed to augment the original SEIR model with additional compartments, based on the assumptions which
follow.

• Infected individuals can move to three different compartments: removed and infectious (i.e. not buried),
removed and buried, removed and recovered

• Individuals who have died from the disease but who have not yet been buried can still infect susceptible
individuals

• Individuals who recover from the disease are no longer susceptible

• Once hospitalized, infected individuals can still infect others. However, those who die in the hospital
are buried immediately, and thus cannot infect others once dead

• Hospitals have unlimited space, but there is some delay in hospitalization

• Hospitalized individuals have a 10 percent greater chance of survival than non-hospitalized individuals

• There exist governmental, societal, or public health pressures encouraging the movement of symp-
tomatic individuals to seek getting tested or entering Ebola treatment facilities
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4 Mathematical Model

We used a modified SEIR model (Equation 1) to account for the assumptions related to the spread of
Ebola. 

dS

dt
= αS − β1SI − β2SRI − β3SH

dE

dt
= β1SI + β2SRI + β3SH − δE

dI

dt
= δE − γ1I − ψI

dH

dt
= ψI − γ2H

dRI
dt

= ρ1γ1I − ωRI
dRB
dt

= ωRI + ρ2γ2H

dRR
dt

= (1− ρ1)γ1I + (1− ρ2)γ2H

(1)

Here S is the susceptible population, E is the exposed population (i.e. those who have the disease but
are not yet symptomatic), I is the infectious population, H is the hospitalized population, RI is the removed
and infectious population (i.e. those who have died but not yet been buried), RB is the removed and buried
population, and RR is the removed and recovered population.

α = population growth constant [2]

β1 = transmission rate between infected and susceptible

β2 = transmission rate between removed and still infectious and susceptible

β3 = transmission rate between hospitalized and susceptible

δ = rate at which people move from exposed to infected [3]

γ1 = (average time with disease for unhospitalized individuals)−1[5]

γ2 = (average time with disease for hospitalized individuals)−1

ψ = (average time for people to become hospitalized)−1

ρ1 = 1.1× ρ2 = the proportion of people who die of the disease who are not hospitalized [4]

ρ2 = the proportion of people who die of the disease who are hospitalized [4]

ω = (time until one is buried)−1

S E I RB

RI

RRH

Figure 1: Illustration of mathematical model
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5 Methods & Simulation

We ran simulations using data from a country time-series GitHub repository managed and maintained by
Caitlin Rivers through the Network Dynamics and Simulation Science Laboratory at Virginia Tech [9]. The
time-series contains the best data set we were able to find, with cumulative values of infections and deaths
separate for each of the three countries. We parsed the data by removing outliers and areas containing a
large number of days with no data. The resulting number of data points for Liberia, Guinea, and Sierra
Leone were 30, 90, and 46 respectively.

The data set we worked with tracked the cumulative number of infections and deaths on any given day,
while our model represents the number of active infections on a particular day, and so we had to modify the
data set. To do this, we took the difference between the cumulative cases with the cumulative deaths, which
allowed us to approximate the number of active cases on a particular day. These modified data sets were
then applied in our parameter fitting simulations described below. In order to obtain our parameter values,
we used Matlab’s built in function fminsearch, which finds the minimum of unconstrained multivariable
functions using a derivative-free method. The error, εεε, that we sought to minimize was taken to be the sum
of squares between the removed population in the data and our simulated removed infectious and removed
buried populations as well as the difference between the number of infected in the data and our simulated
infectious and hospitalized populations, (see Equation 2).

εεε :=
∑√

(Rdata − (RI +RB))2 + (Idata − (I +H))2 (2)

Due to the presence of several non-linear transmission terms, our model required a stiff ODE solver— we
used Matlab’s built in ODE solver ode15s to find the solution of our model once we obtained all parameter
values. We were able to pass the Jacobian JJJ of our system to obtain a better approximation of our solu-
tion (since we were passing in analytically determined derivatives rather than having Matlab using a finite
difference approximation).

JJJ =


α− β1I − β2RI − β3H 0 −β1S −β3S −β2S 0 0
β1I + β2RI + β3H −δ β1S β3S β2S 0 0

0 δ −γ1 − ψ 0 0 0 0
0 0 ψ −γ2 0 0 0
0 0 0 ρ2γ2 ω 0 0
0 0 1− ρ1γ1 1− ρ2γ2 0 0 0


6 Parameter Values

In Table 1 we compile the parameter values used in the model for each independent country. Six of these
values were taken from literature, while five of the values were fitted to data (specifically, the values of β1,
β2, β3, γ2, and ψ were fitted). These fitted parameters are in bold in Table 1. In fitting these parameters, we
followed the procedure outlined in Section 5. Finally, we were able to run our model with the corresponding
parameter values for Guinea, Liberia, and Sierra Leone— in Figure 2, we show the country plots alongside
the data points.
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Guinea Liberia Sierra Leone

α .025
365

.024
365

.019
365

β1β1β1 2.68× 10−10 1.25× 10−7 4.26× 10−7

β2β2β2 6.38× 10−8 4.22× 10−7 7.5× 10−7

β3β3β3 3.57× 10−9 6.59× 10−9 2.66× 10−11

δ 1
9

1
9

1
9

γ1
1
10

1
10

1
10

γ2γ2γ2 0.0276 0.0528 0.0307

ψψψ 1.44 0.497 2.21

ρ1 0.649 0.77 0.451

ρ2 0.59 0.7 0.41

ω 1 1 1

Table 1: Parameter Values
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Figure 2: Independent Country Parameter Fits
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7 Steady States

To determine any non-zero steady state solutions, we set the rates of change for the S,E, I,H, and RI
populations to zero. We omit the rates of change for the removed-buried and removed-recovered populations
since they have no feedback within the model (i.e. no rate of change depends on the variables RB or RR),
and because these populations serve as sinks for our model. Following this analysis, we find

dS

dt
= αS − β1SI − β2SRI − β3SH = 0

dE

dt
= β1SI + β2SRI + β3SH − δE = 0

(3)

and 

dI

dt
= δE − γ1I − ψI = 0⇔ E =

γ1 + ψ

δ
I

dH

dt
= ψI − γ2H = 0⇔ H =

ψ

γ2
I

dRI
dt

= ρ1γ1I − ωRI = 0⇔ RI =
ρ1γ1
ω

I,

(4)

so that substitution of (4) into (3) yields

dS

dt
= S

[
α− I

(
β1 +

β2ρ1γ

ω
+
β3ψ

γ2

)]
= 0

dE

dt
= I

[
−(γ1 + ψ) + S

(
β1 +

β2ρ1γ1
ω

+
β3ψ

γ2

)]
= 0.

(5)

Then, solving (5) explicitly for the steady state solution {S̄, Ē(Ī), Ī, H̄(Ī), R̄I(Ī)} we find

S̄ =
γ1 + ψ

β1 + β2ρ1γ1
ω + β3ψ

γ2

Ē(Ī) =
γ1 + ψ

δ
Ī

Ī =
α

β1 + β2ρ1γ1
ω + β3ψ

γ2

H̄(Ī) =
ψ

γ2
Ī

R̄I(Ī) =
ρ1γ1
ω

Ī.

(6)

We have therefore solved for an endemic steady state solution namely, Equation 6. Notice that this steady
state is completely defined by S̄ and Ī, and in turn, S̄ and Ī are defined by the parameters of the model.
We will use this explicitly defined steady state later, to investigate the model’s sensitivity with respect to
the system parameters.

8 Coupled System

Next, we added transportation coefficients to model transportation between countries. We assumed
that since the susceptible population is so large and the movement between countries is relatively small,
the movement of susceptible individuals was negligible. Additionally, we assumed that there are barriers
to movement for infectious individuals and hospitalized individuals would be clearly infectious (and hence
be prevented from crossing any borders) or must stay in the hospital, and therefore cannot move. Thus,
we concentrated our system coupling on the movement of the exposed population between countries. Our
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updated model, accounting for transportation

dSi
dt

= αS − β1SI − β2SRI − β3SH

dEi
dt

= β1SI + β2SRI + β3SH − δE − φijEi + φjiEj

dIi
dt

= δE − γ1I − ψI

dHi

dt
= ψI − γ2H

dRI,i
dt

= ρ1γ1I − ωRI
dRB,i
dt

= ωRI + ρ2γ2H

dRR,i
dt

= (1− ρ1)γ1I + (1− ρ2)γ2H,

(7)

where i = 1, 2, 3 represent Liberia, Guinea, and Sierra Leone respectively. The newly added term φij
represents the movement of exposed individuals from country i to country j, j = 1, 2, 3, j 6= i. To fit the
transportation coefficients between countries, we used the previously fitted and compiled parameter values
for each country (as discussed earlier), and then fit the transportation coefficients using the same error
function as for the previous fits.

In coupling these countries, we needed to splice together some numerical results to compensate for the
different initial conditions associated with each country. If we call the day of the first data point for each of
the three countries t1, t2, and t3 (let’s assume t1 < t2 < t3), then to splice together the coupled model we
simulated t1 through t3 to arrive at country 1’s “initial condition” (which is the state of country 1 at t3),
and similarly simulated t2 through t3 to find country 2’s state at t3. After this process, we had a legitimate
initial condition at the latest starting point of the data t3, and we were able to solve the ODEs using a
numerical solver (ode15s in our case). We should note that in evaluating the error associated with the
difference between the model and the data, we assumed each country’s error was weighted equally, and we
only calculated the error after the simulation time t > t3. The fitted φij values can be seen in Table 2, and
the numerical simulations of our coupled model are in Figure 3.

φ12 φ13 φ21 φ23 φ31 φ32
1.21E-10 0.0216 3.44E-7 0.0161 0.0237 0.0152

Table 2: Transportation coefficients for country coupling (countries 1, 2, 3, are Liberia, Guinea, Sierra Leone
respectively)
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Figure 3: Independent Country Parameter Fits

9 Sensitivity Analysis

If the change in the steady state value with respect to a certain parameter value is large, we can determine
that that parameter has a significant impact on the model. Accordingly, we will take the derivative of the
steady state values in Equation 6 with respect to each of the parameters. Since we are primarily concerned
with the I population to understand the disease dynamics and the effects of hospitalization, we have only
taken the derivatives of I with respect to each of the parameters.

We see that some of the most sensitive parameters are β1, β2 and ψ, all values that we fit, while the
values of γ1 and ρ1 (which we took from literature) are not as sensitive. The values that were more sensitive
were all values that we fit. This indicates that a small change in one of these parameters can have a large
impact on the disease dynamics; our values were fit to minimize error in the model compared to the data
set, and so are as accurate as we could make them.

In looking at our sensitivity analysis, we consider the absolute sensitivity
∂Ī

∂q
as well as the relative

sensitivity
∂Ī

∂q
∆q ∼ ∂Ī

∂q
q for some parameter in our model q; we make the assumption that ∆q ∼ q, or that a

change in some parameter is proportional to the size of the parameter. With this, we can consider, roughly,
∆Ī for variation in each of the parameters (a measure which yields more productive values than the absolute
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Guinea
(absolute)

Guinea
(relative)

Liberia
(absolute)

Liberia
(relative)

Sierra Leone
(absolute)

Sierra Leone
(relative)

∂Ī

∂α
5.245×106 344.856 4.555×106 299.526 2.167×106 112.736

∂Ī

∂β1
-1.809×109 -0.485 -1.364×109 -170.554 -2.442×108 -104.010

∂Ī

∂β2
-1.174×108 -7.489 -1.051×108 -44.3358 -1.101×107 -8.259

∂Ī

∂β3
-11.539 -7.489 -57.579 -44.336 -18.312 -8.259

∂Ī

∂γ1
-74.8896 -7.48896 -443.358 -44.3358 -82.586 -8.259

∂Ī

∂γ2
7.489 7.489 44.336 44.336 8.259 8.259

∂Ī

∂ψ
-9.436×1010 -336.882 -1.284×1010 -84.637 -1.758×1010 -0.468

∂Ī

∂ρ1
-233.946 -336.882 -170.295 -84.637 -0.212 -0.468

∂Ī

∂ω
12205.900 336.882 1602.970 84.637 15.2287 0.468

Table 3: Sensitivity Analysis Values

sensitivity). We have supplied all of the sensitivities for our model for each of the three countries in Table 3.

10 Hospital Placement

We considered three different metrics to determine the optimal location to place a hospital. First we
looked at some of the specific parameter values (see Table 4)— we found that Liberia has the smallest ψ
value, corresponding to the longest wait time for hospitalization. Liberia also had the largest fatality rates,
ρ1 and ρ2, indicating that the disease is the most fatal in Liberia. Thus, based on comparing ψ, ρ1 and ρ2
for each country, Liberia is the country most in need of additional hospital capacity.

Guinea Liberia Sierra Leone
(hospitalization rate)−1 ψψψ 1.44 0.497 2.21

death rate (not hospitalized) ρ1 0.649 0.77 0.451
death rate (hospitalized) ρ2 0.59 0.7 0.41

Table 4: Parameter Values

Next, we considered the hospital placement’s impact on our nonzero steady state populations by investi-
gating how the infectious steady state changes given a small relative change in the hospitalization parameter
ψ. The important results are highlighted in the Table 5. Since this value is large for Guinea and Liberia, we
can conclude that a small relative change in the hospitalization parameter would lead to a drastic change
in the infectious steady state. This might suggest that these two countries would be good places to add
additional hospital aid. If the wait time for hospitalization decreases slightly in either of these countries, the
infectious steady state decreases significantly. Thus, hospital aid in either of these countries could largely
affect the model dynamics. However, these conclusions can only be made for the steady state, which our
simulations have not yet reached by the end of the simulation. Thus,the rest of the model dynamics may
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react differently to a small change in ψ. However, this metric is still a good indicator relating the effectiveness
of a hospital in each country respectively.

∂Ī

∂ψ
∆ψ

Guinea -336.882
Liberia -84.6367

Sierra Leone -0.467521

Table 5: Steady State Values

Finally, we looked at the change in the infected population based on changing ψ. In Figure 4 we
demonstrate the relative change in the infectious population at the end of the time span given a relative
change in ψ (for this, we use the coupled model). For each country, ψ was varied from the initial fitted value
up to twice that that amount, corresponding to a hospital wait time decreased by a factor of 2.
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Figure 4: Sierra Leone

We see that a decrease in hospitalization time has the least impact on Guinea. It has similar impacts
on Sierra Leone and Liberia, but the largest impact on Liberia. An increase in ψ by 10 percent leads to a
nearly 50 percent decrease in infectious individuals in Liberia and Sierra Leone by the end of the simulation.

With these three metrics, we have concluded that the optimal placement for a hospital in West Africa is
Liberia. Based on our parameter values, Liberia is most in need of a hospital, and based on our simulations,
a hospital would be effective at decreasing the end infectious population in Liberia. Our sensitivity analysis
also suggests that additional hospital capacity would help curb the infection in Liberia.

11 Future Work

In studying the Ebola epidemic, we were (as is common) restricted by our access to current and correct
data. If we had data with more resolution (e.g. legitimate data at the province level), we could fit parameters
to individual towns and cities instead of fitting parameters to each country as a whole— this would better
capture the density of the infection and thus lead to a more accurate placement of the treatment facility.

We would also like to look at more current data. Our hospital placement is valid up through the validity
of our data, which is December 2014. Accordingly, given more current data we could make a more current
decision about the optimal hospital placement. Since December 2014, China has sent aid to Liberia which
have proved highly effective, which lends credence to our hospital placement decision.

We would also like to add a logistic growth factor to our current model to account for the carrying
capacity of hospitals. However, this modification would only be realistic if we were able to achieve a higher
resolution of the data, with more detailed information about the current hospital situation in Western Africa,
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data needed due to the discrepancies in hospitalization rates that occur in the different regions of Guinea,
Liberia, and Sierra Leone. While conducting our research, we found that in some rural areas, hospital beds
were available but not being used, while in larger cities people were often waiting to get into hospitals. Thus,
when we ran the simulations for each country as a whole, it was hard to capture the disparities between
hospital capacity regions within each country. With the addition of logistic growth our model would become

dS

dt
= αS − β1SI − β2SRI − β3SH

dE

dt
= β1SI + β2SRI + β3SH − δE

dI

dt
= δE − I(γ1 + ψ)

(
1− H

κ

)
dH

dt
= I(γ1 + ψ)

(
1− H

κ

)
− γ2H

dRI
dt

= ρ1γ1I − ωRI
dRB
dt

= ωRI + ρ2γ2H

dRR
dt

= (1− ρ1)γ1I + (1− ρ2)γ2H.

(8)

With this modificatoin, our hospitalized population H now grows to a carrying capacity κ and no further.
Such a change would warrant new analysis and simulations, but most importantly would require accurate
data as to the historical values of κ in each of the countries of interest (i.e. the number of beds available to
Ebola patients in each country). For this extended model, we would change κ as opposed to ψ to determine
how additional hospital beds would effect the overall disease dynamics.

We would also like to investigate additional metrics for optimal hospital placement. In particular, we
investigated how additional hospitalization would effect the model, given that it starts at the beginning of
the model. More realistically, aid is given at some point further in to the epidemic. It would be interesting
to see if the overall dynamics changed with additional hospitalization introduced on some given day in the
model as opposed to at the beginning.

Finally, we would like to model the spread of Ebola staring with the initial infection, ‘patient zero’. Then,
using our coupled system, accurately capture the spread of the disease over all three countries. This would
give a better indication about the disease dynamics for the entire outbreak. We would hope to see similar
parameter values as the ones we have fit previously. This would add validity to our model and suggest that
our results are valid for a much longer time frame than just for the data we used. Even further, introducing
time-varying coupling parameters (presumably the ease of moving between countries has grown more difficult
as the epidemic has progressed) would allow for a more cohesive understanding of our model.

12 Conclusion

For this project, we developed a modified SEIR model to address the characteristics of the Ebola epidemic
in Western Africa. After creating this model, we were able to use Matlab to fit values to our unknown
parameters and run simulations against known data for Guinea, Liberia, and Sierra Leone. We then coupled
our individual models to account for transportation of exposed individuals between the three countries. With
this coupled model in place, we were able to use different metrics in determining the optimal location to place
a hospital. First, we looked at parameter values and their variation between Guinea, Liberia, and Sierra
Leone. Second, we looked at the sensitivity of our steady state with respect to the parameters. Finally, we
looked at the effect the hospitalization rate parameter ψ had on reducing the infectious population in each
country.

Our results indicate that Liberia is the best location to place a hospital. This conclusion is valid up until
the end of our data set which ends in December 2014. These results are partially verified by the state of
Liberia in April 2015. As of April 29, there have been no new cases in the state of Liberia for 34 days (see
Appendix A Figure 6) and many of the Ebola treatment centers of Liberia have closed, are scheduled to
scale-down, or are closing (see Appendix A Figure 7). The reason for this improvement might be related
to the placement of a treatment facility by China in the state of Liberia in December 2014 [11]. Further,
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the fact that the Chinese government was planning to open another Ebola treatment facility in Liberia as
of December 2014 lends credence to our findings, as we were able to come to the same conclusion using
data specifically from March-December 2014. Based on our model and assumptions, we have determined
the optimal placement for a hospital in December 2014 (at least based upon our various metrics for hospital
placement). Given a more current and more detailed data set, this same model and process for parameter
fitting could be used to determine the current optimal placement for a hospital.

All of the code used in for this project is compiled at github.com/erijones/ebola modeling 484, and
may be used by any parties wishing to further our research.
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Appendix A: Figures

Figure 5: Case Counts - 29 April 2015 [10]
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Figure 6: Days Since Last Case - 29 April 2015 [10]
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Figure 7: ETC Decommission Status - 29 April 2015 [10]
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