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About two years ago, a small tumor on my nose was diagnosed as basal cell 

carcinoma, the most common type of skin cancer. I was relieved to learn that this type of 

cancer is very slow growing, and it does not metastasize or spread to other parts of the 

body so it is usually not fatal. Surgical removal is advised, and as long as a good margin of 

healthy tissue is removed with it, the tumor usually does not come back. I had my tumor 

surgically excised, but I couldn’t help wondering how large it would have grown (and how 

fast) otherwise! 

For this project, I decided to research basal cell carcinoma and find a mathematical 

model that I could use to simulate the growth of a tumor. The only model I could find was 
developed by Tohya et al (1998) to study the processes of cell proliferation and spatial 

pattern formation of the skin tumor. Their model consists of a pair of non-dimensionalized, 

non-linear partial differential equations describing the relationship between tumor cells 

and nutrients. 

The authors made three assumptions in developing the model: 

1) The proliferation rate of tumor cells depends on the availability of nutrients, which 

diffuse out of capillaries; 

2) Nutrients are consumed by active tumor cells; 

3) The cell diffusion coefficient expressing tumor cell movement increases with the cell 

density and the nutrient availability. 

 

 

The Model 

The two-dimensional model indicates a vertical slice of skin, with the x-axis parallel to 

the skin and the y-axis vertical to the skin, where x ranges from 0 to L and y ranges from 0 

to H. n(x,y,t) represents the nutrient concentration, and c(x,y,t) is the density of tumor 

cells. 

 

The concentration of nutrients is given by: 

𝝏𝒏/𝝏𝒕 = 𝜵^𝟐 𝒏 − 𝒏𝒄 

The first term indicates a simple diffusion of nutrients, and the second term 

expresses the consumption of the nutrients by tumor cells, the rate of which increases with 

the activity of tumor cells. 



The density of tumor cells is given by: 

𝝏𝒄

𝝏𝒕
= 𝜵 ∙ (𝝈𝒏𝒄𝜵𝒄) + 𝒏𝒄 

The second term reflects the consumed nutrients that are used for the maintenance 

and proliferation of tumor cells, while the first term indicates the random movement of 

tumor cells. The diffusion coefficient of cells depends on a constant σ, as well as both n and 

c, because the general activity of the cell movement increases with the nutrient level as well 

as the tumor cell density. 

The initial conditions for the model are: 

𝑐(𝑥, 𝑦, 0) = {
𝑐0,   𝑓𝑜𝑟 0 ≤ 𝑦 ≤ 𝑦0

0,   𝑓𝑜𝑟 𝑦0 < 𝑦 ≤ 𝐻
 

𝑛(𝑥, 𝑦, 0) = 𝑛0,   𝑓𝑜𝑟 0 < 𝑥 < 𝐿 𝑎𝑛𝑑 0 < 𝑦 < 𝐻 

The initial distribution of tumor cells is assumed to be smooth with cell density c0, 

and the nutrients are uniformly distributed with a constant level n0. 

The boundary conditions are: 

𝑛(𝑥, 𝐻, 𝑡) = 𝑛𝑜,   𝑓𝑜𝑟 0 < 𝑥 < 𝐿 

𝜕

𝜕𝑦
𝑛(𝑥, 0, 𝑡) =

𝜕

𝜕𝑦
𝑐(𝑥, 0, 𝑡) =

𝜕

𝜕𝑦
𝑐(𝑥, 𝐻, 𝑡) = 0,   𝑓𝑜𝑟 0 < 𝑥 < 𝐿 

𝜕

𝜕𝑥
𝑛(0, 𝑦, 𝑡) =

𝜕

𝜕𝑥
𝑐(0, 𝑦, 𝑡) =

𝜕

𝜕𝑥
𝑛(𝐿, 𝑦, 𝑡) =

𝜕

𝜕𝑥
𝑐(𝐿, 𝑦, 𝑡) = 0, 

𝑓𝑜𝑟 0 < 𝑦 < 𝐻 

The concentration of nutrients is fixed at n=n0 at y=H, because the nutrient is 

supplied by the capillary which exists at this layer. 

 

Equilibrium States 

I started by analyzing the equilibrium states of the one-dimensional version of the system: 

𝝏𝒏

𝝏𝒕
=

𝝏𝟐𝒏

𝝏𝒙𝟐
− 𝒏𝒄 

𝝏𝒄

𝝏𝒕
= 𝝈𝒏𝒄

𝝏𝟐𝒄

𝝏𝒙𝟐
+ 𝝈𝒏 (

𝝏𝒄

𝝏𝒙
)

𝟐

+ 𝝈𝒄
𝝏𝒏

𝝏𝒙

𝝏𝒄

𝝏𝒙
+ 𝒏𝒄 

 

Any 𝑛0, 𝑐0 ∈ ℝ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑛0𝑐0 = 0 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑏𝑜𝑡ℎ 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠. 



To determine the stability of these states, consider perturbations 

𝑛(𝑥, 𝑡) = 𝑛0 + 𝑛̂(𝑥, 𝑡)  𝑎𝑛𝑑  𝑐(𝑥, 𝑡) = 𝑐0 + 𝑐̂(𝑥, 𝑡) 

Then 

𝜕𝑛̂

𝜕𝑡
=

𝜕2𝑛̂

𝜕𝑥2
− (𝑛0 + 𝑛̂)(𝑐0 + 𝑐̂)  

𝜕𝑐̂

𝜕𝑡
= 𝜎(𝑛0 + 𝑛̂)(𝑐0 + 𝑐̂)

𝜕2𝑐̂

𝜕𝑥2
+ 𝜎(𝑛0 + 𝑛̂) (

𝜕𝑐̂

𝜕𝑥
)

2

+ 𝜎(𝑐0 + 𝑐̂)
𝜕𝑛̂

𝜕𝑥

𝜕𝑐̂

𝜕𝑥
+ (𝑛0 + 𝑛̂)(𝑐0 + 𝑐̂) 

Multiplying the terms out yields 

𝜕𝑛̂

𝜕𝑡
=

𝜕2𝑛̂

𝜕𝑥2
− 𝑛0𝑐0 − 𝑛0𝑐̂ − 𝑐0𝑛̂ − 𝑛̂𝑐̂ 

𝜕𝑐̂

𝜕𝑡
= 𝜎(𝑛0𝑐0 + 𝑛0𝑐̂ + 𝑐0𝑛̂ + 𝑛̂𝑐̂)

𝜕2𝑐̂

𝜕𝑥2
+ 𝜎(𝑛0 + 𝑛̂) (

𝜕𝑐̂

𝜕𝑥
)

2

+ 𝜎(𝑐0 + 𝑐̂)
𝜕𝑛̂

𝜕𝑥

𝜕𝑐̂

𝜕𝑥
+ 𝑛0𝑐0 + 𝑛0𝑐̂

+ 𝑐0𝑛̂ + 𝑛̂𝑐̂ 

Replacing n0c0 with zero and removing all non-linear terms gives the linearized system: 

𝜕𝑛̂

𝜕𝑡
=

𝜕2𝑛̂

𝜕𝑥2
− 𝑛0𝑐̂ − 𝑐0𝑛̂ 

𝜕𝑐̂

𝜕𝑡
= 𝑛0𝑐̂ + 𝑐0𝑛̂ 

 

Next consider 

𝑛̂(𝑥, 𝑡) = 𝐶1 sin(𝑞𝑥) 𝑒𝛼𝑡   𝑎𝑛𝑑   𝑐̂(𝑥, 𝑡) = 𝐶2sin (𝑞𝑥)𝑒𝛼𝑡 

Then the system can be written as 

𝛼𝑛̂ = −𝑞2𝑛̂ − 𝑛0𝑐̂ − 𝑐0𝑛̂ 

𝛼𝑐̂ = 𝑛0𝑐̂ + 𝑐0𝑛̂ 

Or equivalently 

𝛼𝐶1 = −𝑞2𝐶1 − 𝑛0𝐶2 − 𝑐0𝐶1 

𝛼𝐶2 = 𝑛0𝐶2 + 𝑐0𝐶1 

Combining like terms gives: 

(𝛼 + 𝑞2 + 𝑐0)𝐶1 + 𝑛0𝐶2 = 0 

−𝑐0𝐶1 + (𝛼 − 𝑛0)𝐶2 = 0 



To find non-trivial solutions we need 

𝑑𝑒𝑡 [
𝛼 + 𝑞2 + 𝑐0 𝑛0

−𝑐0 𝛼 − 𝑛0
] = 0 

So we have 

(𝛼 + 𝑞2 + 𝑐0)(𝛼 − 𝑛0) + 𝑛0𝑐0 = 0 

Multiplying gives 

𝛼2 − 𝑛0𝛼 + 𝑞2𝛼 − 𝑞2𝑛0 + 𝑐0𝛼 − 𝑛0𝑐0 + 𝑛0𝑐0 = 0 

𝛼2 + (−𝑛0 + 𝑞2 + 𝑐0)𝛼 − 𝑞2𝑛0 = 0 

Using the Routh-Hurwitz stability criterion, 𝛼 < 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 − 𝑞2𝑛0 > 0, 

which would require that n0<0. But n0 can’t be less than zero, so the equilibrium states are 

unconditionally unstable! 

 

Simulations 

To simulate the one dimensional model, I devised a finite difference method using a 

uniform space-time discretization, and forward in time and central in space 

approximations. 

𝐿𝑒𝑡 𝑥𝑖 = 𝑖∆𝑥,   𝑓𝑜𝑟 𝑖 = 0, … , 𝐼 

𝑎𝑛𝑑 𝑡𝑘 = 𝑘∆𝑡,   𝑓𝑜𝑟 𝑡 = 0, … , 𝐾 

𝑤ℎ𝑒𝑟𝑒 ∆𝑥 =
𝐿

𝐼
 𝑎𝑛𝑑 ∆𝑡 =

𝑇

𝐾
 

The nutrient equation 

𝜕𝑛

𝜕𝑡
=

𝜕2𝑛

𝜕𝑥2
− 𝑛𝑐 

Can be approximated by 

𝑛𝑖
𝑘+1 − 𝑛𝑖

𝑘

∆𝑡
=

𝑛𝑖+1
𝑘 − 2𝑛𝑖

𝑘 + 𝑛𝑖−1
𝑘

(∆𝑥)2
− 𝑛𝑖

𝑘𝑐𝑖
𝑘 

𝑖 = 1, … , 𝐼 − 1    𝑎𝑛𝑑 𝑘 = 0, … , 𝐾 − 1 

Where 𝑛𝑖
𝑘 ≈ 𝑛(𝑥𝑖 , 𝑡𝑘).  

 

 



Likewise the tumor equation 

𝜕𝑐

𝜕𝑡
= 𝜎𝑛𝑐

𝜕2𝑐

𝜕𝑥2
+ 𝜎𝑛 (

𝜕𝑐

𝜕𝑥
)

2

+ 𝜎𝑐
𝜕𝑛

𝜕𝑥

𝜕𝑐

𝜕𝑥
+ 𝑛𝑐 

Can be approximated by 

𝑐𝑖
𝑘+1 − 𝑐𝑖

𝑘

∆𝑡
= 𝜎𝑛𝑖

𝑘𝑐𝑖
𝑘 (

𝑐𝑖+1
𝑘 − 2𝑐𝑖

𝑘 + 𝑐𝑖−1
𝑘

(∆𝑥)2
) + 𝜎𝑛𝑖

𝑘 (
𝑐𝑖+1

𝑘 − 𝑐𝑖−1
𝑘

2∆𝑥
)

2

 

+𝜎𝑐𝑖
𝑘 (

𝑛𝑖+1
𝑘 − 𝑛𝑖−1

𝑘

2∆𝑥
) (

𝑐𝑖+1
𝑘 − 𝑐𝑖−1

𝑘

2∆𝑥
) + 𝑛𝑖

𝑘𝑐𝑖
𝑘 

𝑖 = 1, … , 𝐼 − 1    𝑎𝑛𝑑 𝑘 = 0, … , 𝐾 − 1 

Where 𝑐𝑖
𝑘 ≈ 𝑐(𝑥𝑖 , 𝑡𝑘). 

 

The initial conditions  𝑛(𝑥, 0) = 𝑛0, 𝑐(𝑥, 0) = 𝑐0,   𝑓𝑜𝑟 0 < 𝑥 < 𝐿 

Yield 𝑛𝑖
0 = 𝑛0 𝑎𝑛𝑑  𝑐𝑖

0 = 𝑐0, 𝑓𝑜𝑟 𝑖 = 0, … , 𝐼. 

To enforce the boundary conditions 

𝜕

𝜕𝑥
𝑛(0, 𝑡) =

𝜕

𝜕𝑥
𝑐(0, 𝑡) =

𝜕

𝜕𝑥
𝑛(𝐿, 𝑡) =

𝜕

𝜕𝑥
𝑐(𝐿, 𝑡) = 0, 

I simply set 𝑛0
𝑘 = 𝑛1

𝑘 , 𝑛𝐼
𝑘 = 𝑛𝐼−1

𝑘 , 𝑐0
𝑘 = 𝑐1

𝑘, 𝑎𝑛𝑑 𝑐𝐼
𝑘 = 𝑐𝐼−1

𝑘 , 𝑓𝑜𝑟 𝑘 = 1, … , 𝐾. 

 

I used parameter values similar to those in the paper (Tohya et al, 1998). For 

simplicity, I used n0=1, c0=1, and σ=1 for all simulations, but these parameter values can 

easily be changed in my code for future experimentation.  

My first MATLAB simulation solves the 1-D system in the x-direction using the initial 

and boundary conditions given above.  I used L=300, Δx=0.5, and Δt=0.02. 

The results show that the nutrient concentration decreases uniformly until it 

reaches zero, and the tumor density increases uniformly to approximately 2. When the 

nutrient level reaches zero, the tumor density stops increasing. 

For my second simulation, I changed the initial conditions slightly to reflect a 
smaller interval with tumor density equal to one. 

𝑐(𝑥, 0) = {
𝑐0,   𝑓𝑜𝑟 140 ≤ 𝑥 ≤ 160

0,                   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 



The results show that the tumor density reaches a maximum value in the initial 

region, then it spreads in the positive and negative x-direction, consuming the available 

nutrients as it moves along. 

My third simulation solves the 1-D system in the y-direction. I used the same finite 

difference method in y instead of x, with initial and boundary conditions: 

𝑛(𝑦, 0) = 𝑛0,   𝑓𝑜𝑟  0 < 𝑦 < 𝐻 

𝑐(𝑦, 0) = {
𝑐0,   𝑓𝑜𝑟 0 ≤ 𝑦 ≤ 𝑦0

0,   𝑓𝑜𝑟 𝑦0 < 𝑦 ≤ 𝐻
 

𝑛(𝐻, 𝑡) = 𝑛𝑜 

𝜕

𝜕𝑦
𝑛(0, 𝑡) =

𝜕

𝜕𝑦
𝑐(0, 𝑡) =

𝜕

𝜕𝑦
𝑐(𝐻, 𝑡) = 0 

Here I used H=150, y0=5, Δy=0.5, and Δt=0.02. 

The results show that the tumor density reaches a maximum value in the initial 

region, then it spreads in the positive y-direction, consuming the available nutrients as it 

moves along. When the ‘wave’ reaches the boundary, it appears to bounce back with a 

higher density. 

 

Stability Analysis 

I tried using larger values for Δt to speed up the simulations, but this caused the 

solutions to ‘blow up’. In order to investigate the stability of the finite difference scheme, 

consider 

𝑛𝑗
𝑘 = 𝛼𝑘𝑒𝑖𝛽𝑗 𝑎𝑛𝑑 𝑐𝑗

𝑘 = 𝜌𝑘𝑒𝑖𝛾𝑗 

𝑤ℎ𝑒𝑟𝑒 𝛽, 𝛾 ∈ ℝ 𝑎𝑛𝑑 𝛼(𝛽), 𝜌(𝛾) ∈ ℂ. 

 

Then the finite difference schemes 

𝑛𝑖
𝑘+1 − 𝑛𝑖

𝑘

∆𝑡
=

𝑛𝑖+1
𝑘 − 2𝑛𝑖

𝑘 + 𝑛𝑖−1
𝑘

(∆𝑦)2
− 𝑛𝑖

𝑘𝑐𝑖
𝑘 

𝑐𝑖
𝑘+1 − 𝑐𝑖

𝑘

∆𝑡
= 𝜎𝑛𝑖

𝑘𝑐𝑖
𝑘 (

𝑐𝑖+1
𝑘 − 2𝑐𝑖

𝑘 + 𝑐𝑖−1
𝑘

(∆𝑦)2
) + 𝜎𝑛𝑖

𝑘 (
𝑐𝑖+1

𝑘 − 𝑐𝑖−1
𝑘

2∆𝑦
)

2

 

+𝜎𝑐𝑖
𝑘 (

𝑛𝑖+1
𝑘 − 𝑛𝑖−1

𝑘

2∆𝑦
) (

𝑐𝑖+1
𝑘 − 𝑐𝑖−1

𝑘

2∆𝑦
) + 𝑛𝑖

𝑘𝑐𝑖
𝑘 



Can be written as 

(1) 𝛼𝑘+1𝑒𝑖𝛽𝑗 − 𝛼𝑘𝑒𝑖𝛽𝑗 =
∆𝑡

(∆𝑦)2
(𝛼𝑘𝑒𝑖𝛽(𝑗+1) − 2𝛼𝑘𝑒𝑖𝛽𝑗 + 𝛼𝑘𝑒𝑖𝛽(𝑗−1)) − ∆𝑡𝛼𝑘𝑒𝑖𝛽𝑗𝜌𝑘𝑒𝑖𝛾𝑗  

(2)  𝜌𝑘+1𝑒𝑖𝛾𝑗 − 𝜌𝑘𝑒𝑖𝛾𝑗

= 𝜎𝛼𝑘𝑒𝑖𝛽𝑗𝜌𝑘𝑒𝑖𝛾𝑗
∆𝑡

(∆𝑦)2
(𝜌𝑘𝑒𝑖𝛾(𝑗+1) − 2𝜌𝑘𝑒𝑖𝛾𝑗 + 𝜌𝑘𝑒𝑖𝛾(𝑗−1))

+ 𝜎𝛼𝑘𝑒𝑖𝛽𝑗
∆𝑡

4(∆𝑦)2
(𝜌𝑘𝑒𝑖𝛾(𝑗+1) − 𝜌𝑘𝑒𝑖𝛾(𝑗−1))

2

+ 𝜎𝜌𝑘𝑒𝑖𝛾𝑗
∆𝑡

4(∆𝑦)2
(𝛼𝑘𝑒𝑖𝛽(𝑗+1) − 𝛼𝑘𝑒𝑖𝛽(𝑗−1))(𝜌𝑘𝑒𝑖𝛾(𝑗+1) − 𝜌𝑘𝑒𝑖𝛾(𝑗−1))

+ ∆𝑡𝛼𝑘𝑒𝑖𝛽𝑗𝜌𝑘𝑒𝑖𝛾𝑗 

Dividing (1) by 𝛼𝑘𝑒𝑖𝛽𝑗 and (2) by 𝜌𝑘𝑒𝑖𝛾𝑗 gives 

(1) 𝛼 − 1 =
∆𝑡

(∆𝑦)2
(𝑒𝑖𝛽 − 2 + 𝑒−𝑖𝛽) − ∆𝑡𝜌𝑘𝑒𝑖𝛾𝑗 

(2) 𝜌 − 1 = 𝜎𝛼𝑘𝑒𝑖𝛽𝑗𝜌𝑘𝑒𝑖𝛾𝑗
∆𝑡

(∆𝑦)2
(𝑒𝑖𝛾 − 2 + 𝑒−𝑖𝛾) + 𝜎𝛼𝑘𝑒𝑖𝛽𝑗

∆𝑡

4(∆𝑦)2
𝜌𝑘𝑒𝑖𝛾𝑗(𝑒𝑖𝛾 − 𝑒−𝑖𝛾)

2

+ 𝜎𝜌𝑘𝑒𝑖𝛾𝑗
∆𝑡

4(∆𝑦)2
𝛼𝑘𝑒𝑖𝛽𝑗(𝑒𝑖𝛽 − 𝑒−𝑖𝛽)(𝑒𝑖𝛾 − 𝑒−𝑖𝛾) + ∆𝑡𝛼𝑘𝑒𝑖𝛽𝑗 

Using trig identities and letting 𝜇 =
∆𝑡

(∆𝑦)2 gives 

(1) 𝛼 − 1 = 2𝜇(𝑐𝑜𝑠𝛽 − 1) − ∆𝑡𝜌𝑘𝑒𝑖𝛾𝑗 

(2) 𝜌 − 1 = 2𝜎𝛼𝑘𝑒𝑖𝛽𝑗𝜌𝑘𝑒𝑖𝛾𝑗𝜇(𝑐𝑜𝑠𝛾 − 1) − 𝜎𝛼𝑘𝑒𝑖𝛽𝑗𝜌𝑘𝑒𝑖𝛾𝑗𝜇𝑠𝑖𝑛2𝛾

− 𝜎𝛼𝑘𝑒𝑖𝛽𝑗𝜌𝑘𝑒𝑖𝛾𝑗𝜇𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾 + ∆𝑡𝛼𝑘𝑒𝑖𝛽𝑗 

Or equivalently 

(1) 𝛼 = 2𝜇(𝑐𝑜𝑠𝛽 − 1) − ∆𝑡𝜌𝑘𝑒𝑖𝛾𝑗 + 1 

(2) 𝜌 = 𝜎𝛼𝑘𝑒𝑖𝛽𝑗𝜌𝑘𝑒𝑖𝛾𝑗𝜇(2𝑐𝑜𝑠𝛾 − 2 − 𝑠𝑖𝑛2𝛾 − 𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾) + ∆𝑡𝛼𝑘𝑒𝑖𝛽𝑗 + 1 

And finally 

(1) 𝛼 = 2𝜇(𝑐𝑜𝑠𝛽 − 1) − ∆𝑡𝜌𝑘(cos(𝛾𝑗) + 𝑖 sin(𝛾𝑗)) + 1 

(2) 𝜌 = 𝜎𝛼𝑘𝜌𝑘𝜇(cos(𝛽𝑗) + 𝑖 sin(𝛽𝑗))(cos(𝛾𝑗) + 𝑖 sin(𝛾𝑗))(2𝑐𝑜𝑠𝛾 − 2 − 𝑠𝑖𝑛2𝛾 − 𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾)

+ ∆𝑡𝛼𝑘(cos(𝛽𝑗) + 𝑖 sin(𝛽𝑗)) + 1 

This is as far as I got; due to the non-linearity of the system, I do not know how to find the 

conditions that ensure |𝛼| ≤ 1 𝑎𝑛𝑑 |𝜌| ≤ 1.   

 



Two-Dimensional Simulation 

Next I wrote the 2-D system in derivative form 

𝝏𝒏

𝝏𝒕
=

𝝏𝟐𝒏

𝝏𝒙𝟐
+

𝝏𝟐𝒏

𝝏𝒚𝟐
− 𝒏𝒄 

𝝏𝒄

𝝏𝒕
= 𝝈𝒏𝒄

𝝏𝟐𝒄

𝝏𝒙𝟐
+ 𝝈 (𝒏

𝝏𝒄

𝝏𝒙
+ 𝒄

𝝏𝒏

𝝏𝒙
)

𝝏𝒄

𝝏𝒙
 

+𝝈𝒏𝒄
𝝏𝟐𝒄

𝝏𝒚𝟐
+ 𝝈 (𝒏

𝝏𝒄

𝝏𝒚
+ 𝒄

𝝏𝒏

𝝏𝒚
)

𝝏𝒄

𝝏𝒚
+ 𝒏𝒄 

 

And devised a finite difference method similar to that for the 1-D system: 

𝐿𝑒𝑡 𝑥𝑖 = 𝑖∆𝑥,   𝑓𝑜𝑟 𝑖 = 0, … , 𝐼, 

𝑦𝑗 = 𝑗∆𝑦,   𝑓𝑜𝑟 𝑗 = 0, … , 𝐽, 

𝑎𝑛𝑑 𝑡𝑘 = 𝑘∆𝑡,   𝑓𝑜𝑟 𝑡 = 0, … , 𝐾 

𝑤ℎ𝑒𝑟𝑒 ∆𝑥 =
𝐿

𝐼
, ∆𝑦 =

𝐻

𝐽
,     𝑎𝑛𝑑 ∆𝑡 =

𝑇

𝐾
 

 

𝑛𝑖,𝑗
𝑘+1 − 𝑛𝑖,𝑗

𝑘

∆𝑡
=

𝑛𝑖+1,𝑗
𝑘 − 2𝑛𝑖,𝑗

𝑘 + 𝑛𝑖−1,𝑗
𝑘

(∆𝑥)2
+

𝑛𝑖,𝑗+1
𝑘 − 2𝑛𝑖,𝑗

𝑘 + 𝑛𝑖,𝑗−1
𝑘

(∆𝑦)2
− 𝑛𝑖,𝑗

𝑘 𝑐𝑖,𝑗
𝑘  

𝑐𝑖,𝑗
𝑘+1 − 𝑐𝑖,𝑗

𝑘

∆𝑡
= 𝜎𝑛𝑖,𝑗

𝑘 𝑐𝑖,𝑗
𝑘 (

𝑐𝑖+1,𝑗
𝑘 − 2𝑐𝑖,𝑗

𝑘 + 𝑐𝑖−1,𝑗
𝑘

(∆𝑥)2
)

+ 𝜎 (𝑛𝑖,𝑗
𝑘

𝑐𝑖+1,𝑗
𝑘 − 𝑐𝑖−1,𝑗

𝑘

2∆𝑥
+ 𝑐𝑖,𝑗

𝑘
𝑛𝑖+1,𝑗

𝑘 − 𝑛𝑖−1,𝑗
𝑘

2∆𝑥
) (

𝑐𝑖+1,𝑗
𝑘 − 𝑐𝑖−1,𝑗

𝑘

2∆𝑥
)

+ 𝜎𝑛𝑖,𝑗
𝑘 𝑐𝑖,𝑗

𝑘 (
𝑐𝑖,𝑗+1

𝑘 − 2𝑐𝑖,𝑗
𝑘 + 𝑐𝑖,𝑗−1

𝑘

(∆𝑦)2
)

+ 𝜎 (𝑛𝑖,𝑗
𝑘

𝑐𝑖,𝑗+1
𝑘 − 𝑐𝑖,𝑗−1

𝑘

2∆𝑦
+ 𝑐𝑖,𝑗

𝑘
𝑛𝑖,𝑗+1

𝑘 − 𝑛𝑖,𝑗−1
𝑘

2∆𝑦
) (

𝑐𝑖,𝑗+1
𝑘 − 𝑐𝑖,𝑗−1

𝑘

2∆𝑦
) + 𝑛𝑖,𝑗

𝑘 𝑐𝑖,𝑗
𝑘  

𝑖 = 1, … , 𝐼 − 1, 𝑗 = 1, … , 𝐽 − 1,     𝑎𝑛𝑑 𝑘 = 0, … , 𝐾 − 1 

 

Where  𝑛𝑖,𝑗
𝑘 ≈ 𝑛(𝑥𝑖 , 𝑦𝑗, 𝑡𝑘) 𝑎𝑛𝑑 𝑐𝑖,𝑗

𝑘 ≈ 𝑐(𝑥𝑖 , 𝑦𝑗, 𝑡𝑘). 

 



Using the initial and boundary conditions stated at the beginning of this paper, I set 

𝑛𝑖,𝑗
0 = 𝑛0, 𝑓𝑜𝑟 𝑖 = 0, … , 𝐼  𝑎𝑛𝑑 𝑗 = 0, … , 𝐽 

𝑎𝑛𝑑  𝑐𝑖,𝑗
0 = {

𝑐0,   𝑓𝑜𝑟 0 ≤ 𝑗 ≤
𝑦0

∆𝑡

0,   𝑓𝑜𝑟 
𝑦0

∆𝑡
< 𝑗 ≤ 𝐽

, 𝑓𝑜𝑟 𝑖 = 0, … , 𝐼 

And let 

 𝑛0,𝑗
𝑘 = 𝑛1,𝑗

𝑘 , 𝑛𝐼,𝑗
𝑘 = 𝑛𝐼−1,𝑗

𝑘 , 𝑐0,𝑗
𝑘 = 𝑐1,𝑗

𝑘 , 𝑐𝐼,𝑗
𝑘 = 𝑐𝐼−1,𝑗

𝑘 , 

𝑛𝑖,𝐽
𝑘 = 𝑛𝑜, 𝑛𝑖,0

𝑘 = 𝑛𝑖,1
𝑘 , 𝑐𝑖,0

𝑘 = 𝑐𝑖,1
𝑘 , 𝑐𝑖,𝐽

𝑘 = 𝑐𝑖,𝐽−1
𝑘 . 

 

For the 2-D simulation I used L=300, y0=5, H=150, Δx=Δy=0.5, and Δt=0.012 (I 

had to use a smaller Δt than before to get stability). 

The results are surface plots of nutrient concentration over the x-y plane and tumor 

density over the x-y plane which behave similarly to the 1-D simulations. I was not able to 

go further than T=1200 due to the long computational times required! 

 

Conclusion 

Since the model I used is non-dimensionalized and the actual parameter values are 

unknown, I was not able to determine how big my tumor would have grown if left 

untreated. While my simulations show the general dynamics of tumor growth, more 

research and data is needed to make this model more useful.  

I would also like to perform more simulations using varying parameter values and 

initial/boundary conditions, but the time required for the simulations is restrictive. I would 

like to devise an implicit finite difference method or a finite element method which would 

allow the use of a larger time step to overcome this difficulty, but at the present time I do 

not have the skills required to do this for a non-linear system of partial differential 

equations. Another future goal is to simulate this model in three dimensions, which Tohya 

et al (1998) were not able to accomplish. 
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