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1. Friedman & Littman, p.14, Problem 1.8.1
To show that the equation possesses at most two positive solutions, we first establish three
facts, as mentioned in the problem. First, define the function

f(x) = µx3 + c∗ exp(Γ/x)

and recall that all the constants are positive. Then, notice that

lim
x→0+

f(x) = c∗ lim
x→0+

exp(Γ/x) =∞

and
lim
x→∞

f(x) = µ lim
x→∞

x3 =∞.

Next, compute

f ′′(x) = 6µx+ c∗ exp(Γ/x)
Γ2

x4
+ 3c∗ exp(Γ/x)

Γ

x3

and notice that f ′′(x) > 0 for x > 0. Thus, f(x) is convex and f ′(x) is increasing for
x > 0. Additionally, because of the limits established above, the function f(x) must change
from decreasing (near x = 0) to increasing (as x → ∞) at some point x∗ > 0. Therefore,
f ′(x∗) = 0, f ′′(x∗) > 0, and f attains a minimum at x∗. Additionally, f ′(x) < 0 for x < x∗

and f ′(x) > 0 for x > x∗ because f ′(x) is an increasing function.
Now, we consider the only three possible cases for values of x∗. First, if f(x∗) > c1, then

f(x) > c1 for all x > 0 and the equation f(x) = c1 has no solution. Next, if f(x∗) = c1, then
the equation has exactly one solution since the minimum can only be attained once. Finally,
if f(x∗) < c1, then by the continuity of f(x) and the Intermediate Value Theorem there
are values z1 ∈ (0, x∗) and z2 ∈ (x∗,∞) such that f(z1) = f(z2) = c1. However, because
f ′(x) > 0 for x > x∗ and f ′(x) < 0 for x < x∗, we see that f(x) > c1 for x > z2 and f(x) < c1
for x < z1. Hence, in each case, there are at most two solutions.

2. Friedman & Littman, p.15, Problem 1.8.3
(Proof of Theorem 1.8.3) To establish the first theorem, we let x∞ = limt→∞ x(t) and assume
x∞ > ξ2. Then, because x(0) > ξ2 and x(t) is decreasing whenever x(t) > ξ2, we see that x(t)
is decreasing for all t > 0. Let z = 1

2
(x∞ + ξ2) so that for all t > 0, G(x(t)) (where G is de-

fined at the bottom of p. 6) satisfies G(x(t)) ≤ G(z) < 0 for all t > 0. Since x′(t) = G(x(t)),



we see that x′(t) is bounded above by a negative constant that is independent of t. Namely,
x′(t) ≤ G(z) for every t > 0. Integrating both sides on [0, t], we find

x(t) ≤ x(0) +G(z)t

and since G(z) < 0, we see that the right side of the inequality tends to −∞ as we let t tend
to ∞. Since the left side is less, it must also tend to −∞ and this contradicts our original
assumption that x∞ > ξ2. Therefore, we conclude that x∞ ≤ ξ2.

For the next part, assume that x∞ < ξ2. Then, since x′(t) > 0 on this interval we again
let z = 1

2
(x∞ + ξ2) and notice that because x(t) is tending to a number less than ξ2 there

exists t∗ > 0 such that G(x(t)) ≥ G(z) > 0 for t ≥ t∗. Similar to the previous part, we can
use the differential equation and integrate to find

x(t) ≥ x(t∗) +G(z)t.

Since the right side tends to ∞ as t grows large, the left side must as well, and this contra-
dicts our assumption that x∞ < ξ2. Therefore, we have shown that x∞ ≥ ξ2 and combining
with the first part, we conclude x∞ = ξ2.

(Proof of Theorem 1.8.4) To establish the second theorem, we notice that since x(0) < ξ1,
the function G(x(t)) < 0 as long as x(t) remains in the interval [0, ξ1]. Since x′(t) = G(x(t)),
this implies that x′(t) < 0 and x(t) is decreasing. Moreover, because G′(x) > 0, we see that
x′(t) = G(x(t)) ≤ G(x(0)) < 0 and integrating over [0, t] as before yields

x(t) ≤ x(0) +G(x(0))t.

We then define t∗ = −x(0)/G(x(0)) and notice that letting let t = t∗ forces x(t∗) ≤ 0.
Finally, by the Intermediate Value Theorem since x(0) > 0 and x(t∗) ≤ 0, there is a time
t0 ∈ (0, t∗] such that x(t0) = 0.

(Proof of Theorem 1.8.5) The last theorem is proved exactly as the first with the exception
that x′(t) has a different sign in each of the respective contradiction proofs.

3. Friedman & Littman, p.17, Problem 1.10.2
For Problems 3− 5, the code and pictures are included below. The corresponding values of
ξ1 and ξ2 are provided in the text.

% Ostwald Ripening - Problem 1.10.2

clc;clear;

format long g;

% Parameter Initialization

G = 4e-3;

mu = 1e-3;

cs = 7.52e-7;
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Figure 1: Graph for Problem 3

c0 = 1.05*cs;

k = 5e7;

% Initial condition

x0 = 0.05;

% c1

c1 = c0 + mu*x0^3;

% Find the Roots

g = @(x) mu*x.^3 + cs*exp(G./x) - c1;

% Plot function

y = 0.02:0.001:0.06;

plot(y,g(y))

format long e

xi1 = fzero(g, 0.025)

xi2 = fzero(g, 0.045)

% Right side of ODE

f = @(t,x) k*(c1 - mu*x^3 - cs*exp(G/x));

% Time span

tSpan = [0 0.5];

% Differential Equation

[tOut xOut] = ode15s(f, tSpan, x0);
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Figure 2: Graph for Problem 4

figure;

plot(tOut, xOut)

hold on

plot([0,tOut(end)], [xi1,xi1], ’--g’)

plot([0,tOut(end)], [xi2,xi2], ’--r’)

legend(’L(t)’, ’z_1’, ’z_2’)

4. Friedman & Littman, p.17, Problem 1.10.3

% Ostwald Ripening - Problem 1.10.3

clc;clear;

format long g;

% Parameter Initialization

G = 4e-3;

mu = 1e-3;

cs = 7.52e-7;

c0 = 1.05*cs;

k = 5e7;

% Initial condition

x0 = 0.0975;

% c1

c1 = c0 + mu*x0^3;

% Find the Roots
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Figure 3: Graph for Problem 5

g = @(x) mu*x.^3 + cs*exp(G./x) - c1;

% Plot function

y = 0.003:0.001:0.1;

plot(y,g(y))

format long e

xi1 = fzero(g, 0.005)

xi2 = fzero(g, 0.1)

% Right side of ODE

f = @(t,x) k*(c1 - mu*x^3 - cs*exp(G/x));

% Time span

tSpan = [0 0.1];

% Differential Equation

[tOut xOut] = ode15s(f, tSpan, x0);

figure;

plot(tOut, xOut)

hold on

plot([0,tOut(end)], [xi2,xi2], ’--r’)

legend(’L(t)’, ’z_1’)

5. Friedman & Littman, pp.17-18, Problem 1.10.4

% Ostwald Ripening - Problem 1.10.4



clc;clear;

format long g;

% Parameter Initialization

G = 4e-3;

cs = 7.52e-7;

c0 = 1.05*cs;

k = 5e7;

mu = 5e2/k;

% Initial condition

x0 = 0.08;

% c1

c1 = c0 + mu*x0^3;

% Find the Roots

g = @(x) mu*x.^3 + cs*exp(G./x) - c1;

% Plot function

%y = 0:0.001:0.11;

y = 0.06:0.001:0.12;

plot(y,g(y))

format long e

xi1 = fzero(g, 7e-2)

xi2 = fzero(g, 2e-1)

% Right side of ODE

f = @(t,x) k*(c1 - mu*x^3 - cs*exp(G/x));

% Time span

tSpan = [0 0.16];

% Differential Equation

[tOut xOut] = ode15s(f, tSpan, x0);

figure;

plot(tOut, xOut)

hold on

plot([0,tOut(end)], [xi1,xi1], ’--g’)

axis([0, 0.16, -0.1, 0.1])

legend(’L(t)’, ’z_1’)

6. Friedman & Littman, p.24, Problem 1.13.1



For this problem use N = 2 and investigate each of the three different cases in 1.10.2, 1.10.3,
and 1.10.4. For the initial lengths use x1(0) = 1

2
x∗, x2(0) = x∗, and for the µ-values use

µ1 = µ2 = µ, where x∗ and µ are given in each problem.

7. Friedman & Littman, p.24, Problem 1.13.2
For this problem use N = 2 and investigate each of the three different cases in 1.10.2, 1.10.3,
and 1.10.4. Since there are two crystals, use the initial lengths and µ-values from Problem
6. Don’t perform any simulations - you can calculate these limits analytically given the nec-
essary constants and the results of the previous problems. Note that when the first crystal
dissolves at time τ1, the problem reduces to the single-crystal case and the “initial length”
in this situation can be determined by the remaining crystal length at time τ1.

Problems 6 and 7 are also grouped together. The code and output values are included below.

MATLAB Code - 1.10.2 Values

% Ostwald Ripening

clc;clear;

format long g;

% Parameter Initialization - from 1.10.2

G = 4e-3;

mu = [1e-3, 1e-3];

cs = 7.52e-7;

c0 = 1.05*cs;

k = 5e7;

% Initial condition

x0 = [0.025; 0.05];

% constants of concentration

c1 = c0 + mu*x0.^3;

% Right side of ODE

f = @(t,x) [k*(c1 - mu*x.^3 - cs*exp(G/x(1)));

k*(c1 - mu*x.^3 - cs*exp(G/x(2)))];

% Time span

tSpan = [0 5e-3];

% Differential Equation

[tOut xOut] = ode15s(f, tSpan, x0);

plot(tOut, xOut)

format long e



ind = find(xOut(:,1) > 0);

tau1 = tOut(ind(end))

L1 = xOut(ind(end),2)

%Steady states

newc1 = c0 + mu(2)*L1^3;

g = @(x) mu(2)*x.^3 + cs*exp(G./x) - newc1;

xi1 = fzero(g, 0.025)

xi2 = fzero(g, 0.045)

if L1 > xi1

c_infty1 = c1 - mu(2)*L1^3;

else

c_infty1 = c1;

end

c_infty1

Output

tau1 = 2.374607042668533e-03

L1 = 4.873212256868187e-02

xi1 = 2.333276679247936e-02

xi2 = 4.313542908246693e-02

c_infty1 = 8.144949918874417e-07

MATLAB Code - 1.10.3 Values

clc;clear;

format long g;

% Parameter Initialization - from 1.10.3

G = 4e-3;

mu = [1e-3, 1e-3];

cs = 7.52e-7;

c0 = 1.05*cs;

k = 5e7;

% Initial condition

x0 = [0.0975/2; 0.0975];



% constants of concentration

c1 = c0 + mu*x0.^3;

% Right side of ODE

f = @(t,x) [k*(c1 - mu*x.^3 - cs*exp(G/x(1)));

k*(c1 - mu*x.^3 - cs*exp(G/x(2)))];

% Time span

tSpan = [0 1];

% Differential Equation

[tOut xOut] = ode15s(f, tSpan, x0); %ode15s

plot(tOut, xOut)

format long e

ind = find(xOut(:,1) > 0);

tau2 = tOut(ind(end))

L2 = xOut(ind(end),2)

%Steady states

newc1 = c0 + mu(2)*L2^3;

g = @(x) mu(2)*x.^3 + cs*exp(G./x) - newc1;

xi1 = fzero(g, 0.005)

xi2 = fzero(g, 1)

if L2 > xi1

c_infty2 = c1 - mu(2)*L2^3;

else

c_infty2 = c1;

end

c_infty2

Output

tau2 = 1.233902480658632e-02

L2 = 1.015165180519177e-01

xi1 = 4.482072658595226e-03

xi2 = 1.017569390893384e-01

c_infty2 = 7.861278194877671e-07



MATLAB Code - 1.10.4 Values

clc;clear;

format long g;

% Parameter Initialization- from 1.10.4

G = 4e-3;

mu = [1e-3, 1e-3];

cs = 7.52e-7;

c0 = 1.05*cs;

k = 5e2/mu(1);

% Initial condition

x0 = [0.04; 0.08];

% constants of concentration

c1 = c0 + mu*x0.^3;

% Right side of ODE

f = @(t,x) [k*(c1 - mu*x.^3 - cs*exp(G/x(1)));

k*(c1 - mu*x.^3 - cs*exp(G/x(2)))];

% Time span

tSpan = [0 2];

% Differential Equation

[tOut xOut] = ode15s(f, tSpan, x0); %ode15s

plot(tOut, xOut)

format long e

ind = find(xOut(:,1) > 0);

tau3 = tOut(ind(end))

L3 = xOut(ind(end),2)

%Steady states

newc1 = c0 + mu(2)*L3^3;

g = @(x) mu(2)*x.^3 + cs*exp(G./x) - newc1;

y = 0.005:0.001:0.12;

plot(y,g(y))

xi1 = fzero(g, 2e-2)

xi2 = fzero(g, 8e-2)

if L3 > xi1



c_infty3 = c1 - mu(2)*L3^3;

else

c_infty3 = c1;

end

c_infty3

Output

tau3 = 7.950464354836737e-01

L3 = 8.292122718125193e-02

xi1 = 6.755606435295322e-03

xi2 = 8.294281080431155e-02

c_infty3 = 7.954394532497777e-07


