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Physical Background

KdV:

∂t φ(x , t) + µ∂3x φ(x , t) + εφ ∂x φ(x , t) = 0,

x ∈ [a, b], t ≥ 0

KdV is commonly used in Hydrodynamics to model
shallow water waves.

Similar to Advection Equation
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Other Uses of KdV

Electrical Transmission in Lines

Blood Pressure

Gravity Waves in Geophysics
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Collocation Method

In one dimension, a collocation method approximates a solution
to an ordinary differential equation, F (φ) = 0, with a function
in a finite dimensional function space.

Given our function space, let our basis functions be
{v1, . . . , vN}
We approximate the solution to our differential equation
with a linear combination of these basis functions:

φ ≈ Φ =
N∑
i=1

αivi (x).
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Collocation Method Cont.

Suppose we are approximating the solution on the interval
[a, b] with a uniform partition {x1, . . . , xm}. We construct Φ
such that:

F (Φ(xj+1/2)) = 0 ∀ j ∈ {1, . . . ,M − 1}

where

xj+1/2 =
xj+1 + xj

2

We now have a system of M − 1 equations.
Using boundary conditions, more equations can be constructed.
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Collocation Method Cont.

To implement 1-D collocation method for a PDE, we
approximate the solution φ with

φ ≈ Φ =
N∑
i=1

αi (t)vi (x).

Following the same process as before, we come up with a
system of differential equations, with unknown αi , which may
be solved by a Finite Difference Method.
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Problem Statement

KdV:

∂t φ(x , t) + µ∂3x φ(x , t) + εφ ∂x φ(x , t) = 0,

x ∈ [a, b], t ≥ 0

With boundary conditions:

φ(a, t) = 0

φ(b, t) = 0

∂x φ(b, t) = 0

And an initial condition:

φ(x , 0) = φ0(x)



One-
Dimensional
Collocation
Method for

the
Korteweg-de
Vries Equation

Kerrek
Stinson

Physical
Background

Collocation
Method

Implementing
the Method

Simulations

Convergence

Conclusion

Function Space

We choose a partition of the interval [a, b]:
P = {x1, . . . , xN}.
Let S3 be our function space. S3 is the set of all cubic
splines on P such that f ∈ S3, then f ∈ C 2[a, b].

For a given P, S3 has a basis consisting of N + 2 elements:
B = {v1, . . . , vN+2}

Thus

Φ =
N+2∑
i=1

αi (t)vi (x)
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System of ODEs

∂t Φ(t, xj+1/2) + µ∂3x Φ(t, xj+1/2) + εΦ ∂x Φ(t, xj+1/2) = 0,

∀ j ∈ {1, . . . ,N − 1}

represents our system of differential equations.
With boundary conditions:

Φ(a, t) = 0

Φ(b, t) = 0

∂x Φ(b, t) = 0

we have N-1 differential equations and 3 algebraic relations for
the boundary conditions.
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Inital Condition for System of ODEs

Let us choose the inital condition for our approximation to
satisfy

Φ(xj+1/2, 0) = φ0(xj+1/2), ∀ j ∈ {1, . . . ,N − 1}

Using these equations and the boundary conditions, our initial
condition is found solving a linear system.

Let t ∈ [0,T ], and choose a uniform partition of [0,T ]:
{t0, . . . , tm}, ∆t = 1/m.
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Backward Euler

We employ Backward Euler, with a slight modification:

Φ(ti+1, xj+1/2)− Φ(ti , xj+1/2)

∆t
+ . . .

µ ∂3x Φ(ti+1, xj+1/2) + . . .

εΦ(ti , xj+1/2) ∂x Φ(ti+1, xj+1/2) = 0,

where we have assumed Φ(ti , xj+1/2) ≈ Φ(ti+1, xj+1/2).



One-
Dimensional
Collocation
Method for

the
Korteweg-de
Vries Equation

Kerrek
Stinson

Physical
Background

Collocation
Method

Implementing
the Method

Simulations

Convergence

Conclusion

Implementation in Summary

Using Collocation, we reduced KdV to a system of
nonlinear ODEs.

With the aid of Backward Euler and a reasonable
assumption, we reduced finding the solution at each time
step to a linear system.

All that is left is to model.
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Maxwellian Initial Condition

Initial Condition:

φ(x , 0) = e−x2

Spatial Interval and Parameters:

x ∈ [−15, 15]

∆t = .01

∆x = .01

ε = 1

µ = .05



One-
Dimensional
Collocation
Method for

the
Korteweg-de
Vries Equation

Kerrek
Stinson

Physical
Background

Collocation
Method

Implementing
the Method

Simulations

Convergence

Conclusion

Maxwellian Initial Condition Cont.
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Maxwellian Initial Condition
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Soliton Initial Condition

Initial Condition:

φ(x , 0) = 3c1sech
2(a1x − 6) + 3c2sech

2(a2x − 8)

c1 = .3

c2 = .1

ai =
√

(εci/µ)/2

Spatial Interval and Parameters:

x ∈ [−1, 3]

∆t = .005

∆x = .01

ε = 1

µ = 0.0005
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Soliton Initial Condition Cont.
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Soliton Initial Condition Cont.
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Numerical Finding on Convergence

The method exhibits O(∆x2 + ∆t) convergence.

This rate was found with respect to the Soliton Initial
Condition, where we know the analytic solution.
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In Conclusion

The 1-D Collocation method provides a clear way to solve the
KdV equation.

Reduces nonlinear PDE to system of linear equations at
each time step.
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