9. QR factorization

solving the normal equations
QR factorization
modified Gram-Schmidt algorithm

Cholesky factorization versus QR factorization
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Least-squares methods

minimize || Az — b||?
(A is m x n and left-invertible)

normal equations
At Az = Ab

e method 1: solve the normal equations using the Cholesky factorization

e method 2: use the QR factorization

method 2 has better numerical properties; method 1 is faster
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Method 1: Cholesky factorization

1. calculate C'= AT A (C is symmetric: in(n + 1)(2m — 1) & mn? flops)
2. Cholesky factorization C' = LL* ((1/3)n?> flops)

3. calculate d = ATb (2mn flops)

4. solve Lz = d by forward substitution (n? flops)

5. solve L2z = z by back substitution (n? flops)

cost for large m, n: mn? + (1/3)n? flops
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Example

3 —6 1 ]
A=1|4 -8 1|, b= 7
_() 1_ i 2_
25  —5H0 25
T _ Ty
1.AA—[_50 101]andA b_[—48]

2. Cholesky factorization: AT A = [ _1(5) (1) ] [ o —10 ]

3. solve[ 0 O][21]:[_ig]:solutionisz1:5,z2:2

5 —10 T 5 L.
4. solve[O 1][ 1]2[2]ZSO|UtIOnISCIZ1:5,CIZ2:2
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QR factorization

if Ais m X n and left-invertible then it can be factored as
A=0QR
e R isn X n and upper triangular with r; > 0

e () is m x n and orthogonal (Q1Q = 1)

can be computed in 2mn? flops (more later)
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Least-squares method 2: QR factorization

rewrite normal equations AY Az = A”'b using QR factorization A = QR:
At Az = ATb
R'Q"QRx = R'Q"b
R'Rx = R'Q'® (QT'Q=1)
Rr = Q'b (R nonsingular)

algorithm

1. QR factorization of A: A = QR (2mn? flops)
2. form d = QTb (2mn flops)

3. solve Rz = d by back substitution (n? flops)

cost for large m, n: 2mn? flops
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Example

3 —6
4 -8
0 1

1. QR factorization: A = QR with

2. calculate d = Q'b =

5 —10
3. solve [ 0 | ] [

QR factorization
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Computing the QR factorization

partition A = QR as

SR TS

e a1 and g1 are m-vectors; As and Q2 are m x (n — 1)
e ry1is ascalar, Riais 1 X (n— 1), Ros is upper triangular of order n — 1

e ¢; and () must satisfy

qi Q] = a1 dF Qs :[1 0]
Qy |1 7 Tor QTQs 0 1]

C[{Ql — 17 QgQZ — Ia Q{QZ =0

1.€.,
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recursive algorithm ( ‘modified Gram-Schmidt algorithm’)

[ a; Ao ] = [ @ Q2 ] [ 7“(1)1 gz ] = [ q1m11 Q112 + Q2 Rao ]

1. determine ¢; and rq1:
ri1 = |lag|, q1 = (1/r11)a;
2. Rys follows from ¢i Ay = g (1 R12 + Q2R22) = Ryo:
Rip = qi Ay
3. ()2 and Ryy follow from

Ag — q1R12 = Q2 Rao,

i.e., the QR factorization of an m x (n — 1)-matrix
cost: 2mn? flops (no proof)
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proof that the algorithm works if A is left-invertible

e step 1: a; # 0 because A has a zero nullspace
e step 3: Aoy — q1 12 1s left-invertible
Ay — qiRi2 = Ao — (1/r11)a1 Ra2

hence if (As — g1 R12)x = 0, then

][ ]

x
but this implies £ = 0 because A has a zero nullspace

e therefore the algorithm works for a left-invertible m x n-matrix if it
works for a left-invertible m x (n — 1)-matrix

e obviously it works for a matrix with one nonzero column; hence by
iInduction it works for all left-invertible matrices
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Example

9 0 26 |

12 0 -7
A= 0 4 4
0 -3 -3

we want to factor A as

11 Ti2 T13
a1 @2 g3 || 0 rag 7og
0 0 33

= | @irin @2+ @eree i1z + qaras 4 gras |

A:[al as ag}

with
Gg=1 @Ge=1  ¢Gqega=1
¢i¢2=0, q¢iqgz=0, gqgz=0

and r11 >0, 199 >0, r33 > 0
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e determine first column of @, first row of R

— a1 = q1Tr11 with quH =1

— inner product of ¢; with as and as:

r11 = |jai|| = 15,

T
qi a2 =

T
q1 a3 =

qlT(CI17“12 + qor22) = T12

1= (1/r11)a1 =

Q{(Q1T13 + qaros + q3T33) = T13

therefore, r19 = q1Ta2 =0, ri3 = q1Ta3 = 10

QR factorization

9 0 26
12 0 -7
0 4 4
0 -3 -3

3/5
4/5
0
0

q12
q22
q32
q42

q13
423
d33
q43

15 0
O 29
0 0
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e determine 2nd column of ), 2nd row or R

0 26| [ 3;5 ]
0 -7 4/5 . 22 T923
4 4| | 0 [0 10]=]e q3][ 07“33]
I -3 -3 ] I 0 ]
0 20 |
i.e.. the QR factorization of 2 _12 = | qaro2  qoras + qsrss |
— first column is gor2o Where ||g2|| = 1, hence
-y -
0
T92 = 9, g2 = 4/5
| —3/5
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— inner product of g2 with 2nd column gives 73

therefore, ro3 = 5

20

—15

QR factorization so far:

QR factorization

O O N O

W =~ O O

4
-3

— QQT(C]27“23 + q37r33) = To3

[ 3/5
4/5
0

0

0
0
4/5
~3/5

d13
q23
d33
q43
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e determine 3rd column of (), 3rd row of R

with |[¢s|| = 1, hence

QR factorization

3/5
4/5
0
0

3z — 25,

0
0
4/5

~3/5

qs3

q37r33

q3733
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In summary,

9 0 26 3/5 0 4/5 | -

1 1

a2 0 =7\ _ 145 0 =3/ g g (5)
10 4 4| 0 4/5 0 0 0 95
0 -3 -3 0 -=3/5 0 |G -
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Cholesky factorization versus QR factorization

example: minimize || Az — b||* with

1 -1 0
A=10 10 |, b= | 107°
0 0 1

solution

normal equations AT Ax = A''b:

1 —1 I . 0
—1 1410710 zo | | 10710

solution: 1 =1, x99 =1

let us compare both methods, rounding intermediate results to 8
significant decimal digits
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method 1 (Cholesky factorization)

AT A and A'b rounded to 8 digits:

1 -1 0
ATA:[_l 1]7 ATb:[10_10]

no solution (singular matrix)

method 2 (QR factorization): factor A = QR and solve Rz = Qb

Q: ) R:[é 18}5]7 QTb:[100—5]

rounding does not change any values

o O -
o = O

solution of Rz = Q'bisxz; =1, o =1

conclusion: numerical stability of QR factorization method is better
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Summary

cost for dense A

e method 1 (Cholesky factorization): mn? + (1/3)n> flops
e method 2 (QR factorization): 2mn? flops

e method 1 is always faster (twice as fast if m > n)

cost for large sparse A

e method 1: we can form A’ A fast, and use a sparse Cholesky
factorization (cost < mn? + (1/3)n?)

e method 2: exploiting sparsity in QR factorization is more difficult

numerical stability: method 2 is more accurate

in practice: method 2 is preferred; method 1 is often used when A is very
large and sparse
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