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Chapter 1

Preface

These notes serve to form the foundational knowledge for MATH 500: Linear Vector
Spaces at the Colorado School of Mines. The information herein has been compiled,
thus far, over three different iterations of the class during the Fall 2014, Fall 2017,
and Fall 2018 semesters. The main goals of this course are to

• solidify students’ prior knowledge base concerning vector spaces, linear trans-
formations, matrix decompositions, and the relationships between them, while
unifying their disparate backgrounds in undergraduate mathematics, like Lin-
ear Algebra, Proofs, and Analysis

• increase the level of abstraction within previous linear algebra courses so that
results concerning finite-dimensional spaces and subspaces can be understood
in a generalized context regarding infinite-dimensional spaces and linear op-
erators defined on them, in addition to generalized notions of symmetry, or-
thogonality, and duality.

• introduce incoming M.S. and Ph.D. students in both the Statistics and Com-
putational and Applied Mathematics graduate programs to rigorous mathe-
matical proof, while remaining accessible to numerous students from other
programs at Mines, including Geophysics, Hydrology, Petroleum Engineering,
Electrical Engineering, Computer Science, and Physics, among others.

• focus on specific applications of the mathematical material and motivate cre-
ative interest in their extension or application to other fields

• prepare students for MATH 550: Computational Linear Algebra, a follow-up
course offered in the Spring semester and focused on the development, im-
plementation, and numerical analysis of algorithms used to (i) solve linear
systems of algebraic equations via direct and iterative methods, (ii) approxi-
mate eigenvalues, and (iii) compute the QR Factorization and Singular Value
Decomposition of a matrix, often for reduced rank approximations, data com-
pression, or for solving least squares problems.

The structure of the material is meant to first introduce abstract concepts, then
understand the implications of certain definitions and theorems to finite-dimensional
vectors space and matrices, and finally, focus on a useful application of these results.
For all of these reasons, we have grouped portions of the material into chapters that
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6 CHAPTER 1. PREFACE

separately focus on theoretical (i.e., theorem-proof based) results and applications
of the theory.

Of course, no single source of material will likely encapsulate all the knowledge
that we have gained to date regarding Linear Algebra, Vector Spaces, or any of their
numerous applications. For this reason we include a list of other materials, mostly
textbooks, lecture notes, and review problem sets, that may shed further light on
the subject. These include some of the references [1, 11, 16, 27, 31] listed in the
bibliography. Additionally, we would like to acknowledge the contributions of Jake
Chambers and Brett Powers for assisting with the typesetting of a portion of the
notes and thank Prof. Rebecca Swanson for helpful comments and feedback.

In the interest of course replication or enhancement, an outline for MATH 500
is presented below.
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Course Outline
1. Introduction and Notation

2. Review of Linear Algebra (≈ 1 week)

• Basic Definitions
• Solvability & Invertible Matrix Theorem
• New definitions & terminology - e.g., Hermitian

3. Application: Google’s PageRank algorithm (≈ 1 week)

4. Linear Vector Spaces (≈ 5 weeks)

• Definition & subspaces
• Span, linear independence, basis, dimension
• Properties and examples of finite and infinite dimensional vector spaces
• Analysis on vector spaces - metrics, norms, inner products & completeness
• Orthogonality, projections, Gram-Schmidt, and QR factorization
• Properties of Hilbert spaces - projection and decomposition

5. Application: Linear Regression and Ranking Systems (≈ 1 week)

6. Linear Operators (≈ 3 weeks)

• Kernel and Image of linear operators
• Rank-Nullity Theorem
• Adjoint operator
• Fundamental Theorem of Linear Algebra
• Duality
• Operator and matrix norms

7. Decompositions and Factorizations (≈ 4 weeks)

• Eigenspaces
• Operator and matrix diagonalization, Jordan form, and Schur form
• Unitary, Orthogonal, Hermitian, and Normal operators & matrices
• Spectral Theorem
• Singular Value Decomposition - definition, construction, properties

8. Application: Principal Components Analysis (≈ 1 week)

Other Possible Application Topics:

• Markov Chains

• Linear System Applications
(Circuits, heat & stress distribution, chemical equilibrium, coupled oscillators)

• Computer Graphics
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Chapter 2

Introduction & Review Exercises

2.1 Notation
Throughout, we will make a few standard assumptions regarding notation:

• We let p, q, r ∈ N be given to represent dimensions of vector spaces or matrices
when necessary.

• In general, we will not use vector or boldface notation (i.e., ~v or v) to distin-
guish vectors from scalars or matrices. Instead, the reader will need to infer
the type of object being discussed from context or a statement such as v ∈ Rp.

• Additionally, all vectors v ∈ Rp will be treated as column vectors so that vT
is a row vector.

• The notation rref(A) stands for the “Reduced Row Echelon Form of A”

Additionally, we will assume basic knowledge of Linear Algebra (such as the
material discussed in MATH 332: Linear Algebra, here at Mines), including fun-
damental matrix theory and notation, the Invertible Matrix Theorem, a familiarity
with rank(A), Col(A), Nul(A), and eigenvalues and eigenvectors (definition, com-
puting them, multiplicities, etc.). That being said, we will generally not rely upon
knowledge of the determinant. Though utilizing the determinant to perform routine
calculations by hand was useful in a Linear Algebra setting, it is unnecessary to de-
scribe the theory of vector spaces or linear transformations, and it is rarely used to
determine information about a matrix in a computational framework (in particular,
algorithms to compute the determinant of a matrix are not especially fast and do
not provide more information than other operations).

2.2 Essential Theorems from Linear Algebra
1. Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the aug-
mented matrix is not a pivot a column–that is if and only if an echelon form of
the augmented matrix has no row of the form

[
0 · · · 0 b

]
with b 6= 0. If

a linear system is consistent, then the solution set contains either (i) a unique

9



10 CHAPTER 2. INTRODUCTION & REVIEW EXERCISES

solution, when there are no free variables, or (ii) infinitely many solutions,
when there is at least one free variable.

2. Theorem 4 Chapter 1† (Row-Pivot Theorem)

Let A be a p× q matrix. Then the following statements are equivalent:

(a) For each b ∈ Rp, the equation Ax = b has a solution (i.e., is consistent).
(b) Each b ∈ Rp is a linear combination of the columns of A.
(c) The columns of A span Rp.
(d) A has a pivot position in every row.

3. Column-Pivot Theorem

Let A be a p× q matrix. Then the following statements are equivalent:

(a) For each b ∈ Rp, the equation Ax = b has at most one solution.
(b) The equation Ax = 0 has exactly one solution, namely x = 0.
(c) The columns of A are linearly independent.
(d) A has a pivot position in every column.

4. Theorem 5 Chapter 2 (Invertible implies unique solution)

If A is an invertible p × p matrix, then for each b ∈ Rp, the equation Ax = b
has the unique solution x = A−1b.

5. Theorem 6 Chapter 2 (Basic Inverse Properties)

(a) If A is invertible, then A−1 is invertible and (A−1)−1 = A.
(b) If A and B are p× p invertible matrices, then so is AB, and the inverse

of AB is the product of the inverses of A and B in reverse order. That
is (AB)−1 = B−1A−1.

(c) If A is invertible, then so is AT , and the inverse of AT is the transpose of
A−1. That is (AT )−1 = (A−1)T .

6. Theorem 1 Chapter 4 (Span is a Subspace)

If v1, . . . , vp are in a vector space V , then span(v1, . . . , vp) is a subspace of V .

7. Theorem 5 Chapter 4 (Spanning Set Theorem) Let S = {v1, . . . , vp} be a
set in V , and let H = span(v1, . . . , vp).

(a) If one of the vectors in S, say vk, is a linear combination of the remaining
vectors in S, then the set formed from S by removing vk still spans H.

(b) If H 6= {0}, then some subset of S is a basis for H.
†All Theorem and Chapter numberings refer to Linear Algebra and Its Applications by Lay, 4th

edition [11].
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8. Theorem 12 Chapter 4 (Basis Theorem) Let V be a p-dimensional vector
space with p ≥ 1. Any linearly independent set of exactly p elements in
V is automatically a basis. Any set of exactly p elements that spans V is
automatically a basis for V . If a vector space V has a basis of q vectors, then
every basis of V must contain exactly q vectors.

9. Theorem 14 Chapter 4 (Rank-Nullity Theorem) The dimensions of the
column space and the row space of a p× q matrix A are equal. The common
dimension, the rank of A, also equals the number of pivot positions in A and
satisfies the equation

rank(A) + dim(Nul(A)) = q.

10. Theorem 10 Chapter 6 (Orthonormal Columns and Projections)
If {u1, . . . , un} is an orthonormal basis for a subspace W ⊆ Rp, then

projWy = (y · u1)u1 + · · ·+ (y · un)un.

If U = [u1 · · ·un], then
projWy = UUTy

for all y ∈ Rp.

11. Invertible Matrix Theorem (IMT) Let A be a p × p matrix. Then the
following statements are equivalent:

(a) A is invertible (or nonsingular).
(b) A is row equivalent to Ip.
(c) A has p pivots.
(d) The equation Ax = 0 has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation x→ Ax is one-to-one.
(g) The equation Ax = b has at least one solution for every b in Rp.
(h) The columns of A span Rp.
(i) The linear transformation x→ Ax is onto.
(j) There is an p× p matrix C such that CA = Ip.
(k) There is an p× p matrix D such that AD = Ip.
(l) AT is invertible.

(m) The columns of A form a basis of Rp.
(n) Col(A) = Rp or dim(Col(A)) = p or rank(A) = p

(o) Nul(A) = {0} or dim(Nul(A)) = 0
(p) λ = 0 is not an eigenvalue of A.
(q) The determinant of A is nonzero.
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12. LU Factorization (Gaussian Elimination)
For any p × p matrix A, there is a p × p permutation matrix P , an upper
triangular p× p matrix U , and a lower triangular p× p matrix L with `kk = 1
for every k = 1, ..., p such that

PA = LU.

13. Spectral Theorem for real, symmetric matrices
For any real, p× p matrix A, A is symmetric if and only if A is orthogonally
diagonalizable.

Note that result #2 above concerns A ∈ Rp×q, while the IMT and LU Factorization
apply only to square matrices, i.e. A ∈ Rp×p.
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2.3 Review Exercises
Definition 2.1. Given A ∈ Cp×q, the Hermitian transpose of A, written AH (or
A† in some references) is defined by

AH = A
T = AT .

Definition 2.2. We say A ∈ Cp×p is Hermitian if

AH = A.

Note that a Hermitian matrix is a generalization of a symmetric matrix. How-
ever, this is different from a complex-valued symmetric matrix, as shown in the
following example.

Example 1. Let A1 =
[

1 1 + i
1 + i 1

]
and A2 =

[
1 1 + i

1− i 1

]
.

1. AH1 =
[

1 1− i
1− i 1

]
6= A1 but AT1 = A1 so A1 is not Hermitian, but is a

complex-valued symmetric matrix.

2. AH2 =
[

1 1 + i
1− i 1

]
= A2 but AT2 =

[
1 1− i

1 + i 1

]
6= A2.

So A2 is Hermitian, but not symmetric.

Theorem 2.1. For A ∈ Cp×q and B ∈ Cq×r, we have the identity

(AB)H = BHAH .

Proof. Recall that for any C ∈ Cp×q and D ∈ Cq×r

[CD]ik =
q∑
j=1

CijDjk

for i = 1, ..., p and k = 1, ...., r. Thus, for A and B given in the theorem

[
(AB)H

]
ik

=
[
AB

]
ki

=
q∑
j=1

AkjBji (2.1)

where the first equality is due to the definition of transpose. Furthermore, we have

[
BHAH

]
ik

=
q∑
j=1

[
B
T
]
ij

[
A
T
]
jk

=
q∑
j=1

BjiAkj

=
q∑
j=1

AkjBji. (2.2)

As (2.1) and (2.2) are equal for all i = 1, ..., p and k = 1, ...., r, the result follows.



14 CHAPTER 2. INTRODUCTION & REVIEW EXERCISES

Corollary 2.1. For A ∈ Rp×q and B ∈ Rq×r, we have the identity

(AB)T = BTAT .

Theorem 2.2. Let A ∈ Cp×p and B ∈ Cp×p be Hermitian matrices. Then AB is
Hermitian if and only if A and B commute (i.e. AB = BA).
Proof. The proof is left as a homework exercise (cf. Problem 2.3)

Before we state the next result, recall the following definition.
Definition 2.3. A matrix A ∈ Rp×p is nonsingular (invertible) if there exists
X ∈ Rp×p such that AX = XA = Ip. Otherwise, we say A is singular.
Theorem 2.3. Let A ∈ Rp×p be given. Then, AX = Ip for some X ∈ Rp×p implies
XA = Ip
Comment. This theorem can be made into an if and only if statement as well.
Proof. We let the matrices A ∈ Rp×p and X ∈ Rp×p satisfying AX = Ip be given.
Assume y ∈ Rp satisfies Xy = 0. Then, applying A yields

AXy = A0 = 0,

and because AX = Ip, we find

0 = AXy = Ipy = y.

So, y = 0 and we have shown that this is the only solution of Xy = 0. Hence, by
the Invertible Matrix Theorem, X is nonsingular, and there is Y ∈ Rp×p s.t. XY =
Y X = Ip. Finally,

Y = IpY = AXY = AIp = A.

Therefore, XA = XY = Ip.

Next, we’ll recall some facts about the rank of matrices and use these to prove
a few helpful results.
Lemma 2.4. For any A ∈ Rp×q and b ∈ Rp, we have

rank ([A|b]) ≥ rank(A).

Proof. Let the p × (q + 1) matrix [A′|b′] be rref ([A|b]) and recall that rank(A) is
equal to the number of linearly independent rows of A. Because rref is unique, it
follows that A′ = rref(A). Furthermore, we know

rank(A′) = the number of nonzero rows of A′

rank([A′|b′]) = the number of nonzero rows of [A′|b′].

Because A′ is a submatrix of [A′|b′], if the kth row of [A′|b′] is exactly zero then the
kth row of A′ must also be exactly zero, and this holds for any k = 1, ..., p. Hence, A′
cannot posses more nonzero rows than [A′|b′] . Therefore, rank([A′|b′]) ≥ rank(A′),
and since rref preserves rank it follows that

rank(A) = rank(A′) and rank([A|b]) = rank([A′|b′]).

Thus, we find

rank([A|b]) = rank([A′|b′]) ≥ rank(A′) = rank(A).
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Theorem 2.5 (Rank-Solvability). Let A ∈ Rp×q and b ∈ Rp be given. Then, exactly
one of the following must hold:
(i) rank([A|b]) > rank(A) and Ax = b has no solution.

(ii) rank([A|b]) = rank(A) = q and there exists a unique x ∈ Rq s.t. Ax = b.

(iii) rank([A|b]) = rank(A) < q and there are infinitely many solutions of Ax = b.

Proof. By Lemma 2.4, rank([A|b]) ≥ rank(A) and hence either rank([A|b]) > rank(A)
or rank([A|b]) = rank(A). In the latter case, either rank(A) = q or rank(A) < q since
A ∈ Rp×q can possess at most q linearly independent columns. In fact, because the
rank of a matrix cannot exceed the number of its rows or columns, it follows that

rank(A) ≤ min{p, q}.

Regardless, we have three distinct cases to discuss.

Case 1: Assume rank ([A|b]) > rank(A).

Letting A′ =rref(A) and [A′|b′] =rref([A|b]), we must have rank ([A′|b′]) > rank(A′)
because rref preserves rank. Therefore, the number of nonzero rows of [A′|b′] must
be strictly greater than the number of nonzero rows of A′. Thus, there exists k ∈
{1, ..., p} such that the kth row of A′ is exactly zero and the kth row of [A′|b′] is
nonzero. This means the first q entries of the kth row of [A′|b′] must all be zero and
the (q + 1)st entry must be nonzero, i.e. we have a row represented as

[0 · · · 0 | c ]

with c 6= 0. This implies that the system has no solution as the resulting equation
arising from this row is merely 0 = c with c 6= 0.

Case 2: Assume rank([A|b]) = rank(A) = q.

Then, we see that A has exactly q columns which form a linearly independent set.
Let ak represent the kth column of A for all k = 1, ..., q so that {a1, ..., aq} is linearly
independent. Then, as [A|b] consists of (q+1) column vectors and rank([A|b]) < q+1,
the set {a1, ..., aq, b} must be linearly dependent. So, there are y1, ..., yq+1 ∈ R not
all equal to zero such that

q∑
k=1

ykak + yq+1b = 0.

Now, if yq+1 = 0, then we find
q∑

k=1
ykak = 0, which due to the linear independence

of {a1, ..., aq} implies yk = 0 for every k = 1, ..., q. With this, it follows that
the set {a1, ..., aq, b} is linearly independent, contradicting our original assumption.
Therefore, we conclude yq+1 6= 0.

After some minor algebra, b can be expressed as a linear combination of vectors
from the set {a1, ..., aq} and letting xk = − yk

yq+1
for every k = 1, ..., q, we find

q∑
j=1

xjaj = b.
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Expressed another way, this is just Ax = b where x =


x1
...
xq

 .
Finally, the uniqueness of the solution x can be shown from a standard argument

as follows. Let another solution y ∈ Rq satisfy Ay = b. Then, define z = x− y, and
note that z satisfies

Az = A(x− y) = Ax− Ay = b− b = 0.
Or, stated another way,

q∑
j=1

zjaj = 0.

Because A possesses q linearly independent columns, this equality implies zj = 0
for all j = 1, ..., q. Thus, z = 0 and y = x thereby yielding the uniqueness of the
solution x ∈ Rq.

Case 3: Assume rank([A|b]) = rank(A) < q.

The existence of a solution (not uniqueness) follows from a similar argument as Case
2 since rank([A|b]) = rank(A) still holds. It remains to prove that the solution set
is infinite.

We first prove that there are at least two solutions. Let x ∈ Rq satisfy Ax = b.
Since rank(A) < q, we see that its columns, and thus the set {a1, ..., aq}, must be
linearly dependent. Hence, there exist y1, .., yq ∈ R not all equal to zero such that

q∑
j=1

yjaj = 0.

As before, this can be expressed as
Ay = 0

by constructing the vector y ∈ Rq from the scalar entries y1, ..., yq. In particular,
since the entries of y cannot all be zero, we see that y 6= 0. With this, we find

A(x+ y) = Ax+ Ay = b+ 0 = b.

So, x + y also satisfies the linear system, and since y 6= 0, the solution x + y is
distinct from x. Therefore, we have at least two solutions.

Now that we are guaranteed the existence of two distinct solutions, we can further
construct an infinite family of vectors that solve the linear system Ax = b. Let
x, y ∈ Rq satisfy Ax = b and Ay = b with x 6= y. Consider, x + kz where z =
x− y 6= 0, and k ∈ Z. Then, we find

A(x+ kz) = Ax+ kAz

= b+ kA(x− y)
= b+ k(Ax− Ay)
= b+ k(b− b)
= b− 0
= b.
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Thus, the set {x+ kz : k ∈ Z} is an infinite family of solutions.

Lemma 2.6. Let A ∈ Rp×q and B ∈ Rq×r be given. Then,

rank(AB) ≤ min{rank(A), rank(B)}.

We postpone the proof of this theorem until later, but the result will be needed
for the following result.

Theorem 2.7. Let A ∈ Rp×q be given. Then, ATA is nonsingular if and only if
rank(A) = q.

Proof. As this is similar to a homework problem, we will prove only the forward
direction of the theorem, and this will be done by contradiction. First, assume ATA
is nonsingular, but rank(A) < q. Then, by Lemma 2.6

rank(ATA) ≤ rank(AT ) = rank(A) < q.

However, ATA ∈ Rq×q is square, and thus by the IMT, rank(ATA) < q implies that
ATA is singular, contradicting our original assumption. Thus, rank(A) = q if ATA
is nonsingular.
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Exercises - Review of Linear Algebra
Problem 2.1. Recall that for A ∈ Rp×p, the trace of A is defined by

tr(A) =
p∑

k=1
Akk.

Prove that if A ∈ Rp×q and B ∈ Rq×p, then

tr(AB) = tr(BA).

Problem 2.2. A square matrix A is called skew-symmetric if AT = −A.

(a) Show that if A is any square matrix, then A + AT is symmetric and A − AT
is skew-symmetric.

(b) Let A be a square matrix satifying A = A1 + A2 where A1 is symmetric and
A2 is skew-symmetric. Find representations for both A1 and A2 in terms of A
and AT .

Problem 2.3. Let A ∈ Cp×p and B ∈ Cp×p be Hermitian matrices. Prove that AB
is Hermitian if and only if A and B commute (i.e. AB = BA).

Problem 2.4. Let A,B, and A+B be nonsingular matrices. Show that A−1 +B−1

is nonsingular, as well. Hint: Compute a formula for (A−1 +B−1)−1 first.

Problem 2.5. Let A ∈ Rp×q and B ∈ Rq×r be given. Prove

rank(AB) ≤ rank(A).

Hint: Show Col(AB) is a subspace of Col(A).

Problem 2.6. Assume A ∈ Cp×q satisfies rank(A) = q. Show that AHA is nonsin-
gular.

Problem 2.7. Let A ∈ Rp×q and b ∈ Rp be given. Assume that x0 ∈ Rq satisfies
Ax0 = b. Prove directly (i.e., without using the Invertible Matrix Theorem) that
y ∈ Rq satisfies Ay = b if and only if y = x0 + h for some h ∈ Rq satisfying Ah = 0.

Problem 2.8. Let A ∈ Rp×p and U, V ∈ Rp×q be given. Assume that A and the
matrix T = I + V TA−1U are both nonsingular. Show that A+ UV T is nonsingular
with

(A+ UV T )−1 = A−1 − A−1UT−1V TA−1.



Chapter 3

Application: PageRank Algorithm

3.1 Introduction
PageRank is an algorithm proposed by Sergei Brin and Larry Page, the co-founders
of Google, in the late 1990s. At its core, the PageRank algorithm serves as the
basis for their famous Google search engine. The search algorithms used by Google
are complex, and use several methods to return web pages based on search queries,
but PageRank is one crucial portion of the overall structure. The purpose of this
chapter is to describe the basic PageRank algorithm and its connection to Markov
chains, and thus, Linear Algebra. The example in Brin and Page’s paper [3] is the
following. Suppose that we have a set of webpages connected by links. Now assume
that each webpage has a descriptive title such as “Blaster the Burro”. Suppose that
a user is searching for the term “burro”. There are likely to be a few pages that
have this word in the title and the problem is to order these pages by relevance to
the searcher’s query. The purpose of PageRank, then, is to create a ranked list of
websites in descending order of their connectivity so that we can identify which ones
we expect to have the most web traffic, and hence which ones are most likely to be
the website the user wants when they enter their search phrase.

One naive method – and, in fact, one used by many search engines before Google
– was to simply count the number of occurrences of the word “burro” in each page
and then sort the list of pages in descending order. This frequency based approach
is easy to implement, but it does not reflect the network structure or connectivity
of the internet. Additionally, it’s easy for sites which rely on page hits for revenue
to take advantage of such a method.

The theoretical formulation of PageRank is quite different from the frequency
based approach. This algorithm assigns to each webpage w a number r(w), rep-
resenting a rank, such that r(w) ≥ 0. Rescaling the ranks of all pages by a fixed
positive constant does not affect their relative pageranks. So, these numbers are
normalized such that ∑w∈W r(w) = 1, where W denotes the set of all webpages.
Therefore, r(w) will be a probability distribution over all webpages.

In the next section, we will begin with the graph model of PageRank. We’ll
describe the notion of a directed graph and explain how PageRank can be stated in
terms of the graph. Finally, we will show that the graph gives rise to a Markov chain
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and that the PageRank is just the stationary distribution of the chain. Although
PageRank is the motivating example, the notion of random walks on graphs and
Markov chains have a wide variety of applications within mathematics, engineering,
and the applied sciences.

3.2 PageRank Algorithm

3.2.1 Directed Graph Model
Suppose that w is a webpage and that we are browsing the web, currently focused
on w. While viewing the page we may choose to click on a link and go to another
page. Let Fw denote the set of forward links, i.e., the set of pages on the web to
which w links. Also, let us denote by Bw the set of all backward links, i.e. pages
that link to w or pages from which we can reach w. Given that we are at w we can
randomly select one of the pages in Fw. Let Nw denote the number of pages in Fw
and note that if we assume a uniform distribution, the probability of moving to any
page v ∈ Fw is given by 1/Nw.

The mathematical abstraction into which this model fits is a random walk on
a directed graph. A directed graph G is a pair of sets (V,E). The elements of V
are called vertices. The set E ⊆ V × V is called the edge set. It often helps to
draw a picture of a graph to better understand V and E. For instance suppose
that V = {1, 2, 3, 4} and that E = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (3, 1)}. We can
visualize this graph with the following picture:

1

2

3

4

Note that the graph is directed, i.e., the edge (3, 4) is different from the edge (4, 3).

There are two ways to think of PageRank. We first explain the unrefined def-
inition due to Brin and Page. Let G = (V,E) be the webpage graph, where the
vertices V are the individual webpages and the edges E are the links. So, there is
an edge from the vertex u to the vertex v if and only if there is a hyperlink from
u to v. Let Bu be the set of pages that have links to u (back links), let Fu be the
pages to which u links (forward links), and let Nu be the size of Fu, so that Nu repre-
sents the number of pages to which u links. Notice that v ∈ Fu if and only if u ∈ Bv.

Initially, each page is assigned a PageRank r(u) by the following equation

r(u) =
∑
v∈Bu

r(v)
Nv

. (3.1)



3.2. PAGERANK ALGORITHM 21

Thus, the PageRank of a page u is the sum of the PageRanks of all webpages that
link to u divided by their respective number of forward links. A simple interpreta-
tion of (3.1) is that each page distributes its PageRank equally amongst all pages
to which it points. In order to make this a probability distribution we normalize so
that

∑
v∈V

r(v) = 1 and r(v) ≥ 0.

We are immediately faced with two problems. First, this definition is likely re-
cursive; namely it appears as though in order to compute the PageRank of a specific
page we need to know the PageRank of all sites to which it is backlinked. Of course,
given the complexity of the network structure inherent in the internet, one of these
pages (or one of its backlinked pages) could very well be a forward link of u. Hence,
we would need to know r(u) in order to compute r(u), since this quantity would
appear on both sides of the equation. The second issue concerns pages v that may
not possess forward links at all, which would cause Nv = 0.

Let us number the vertices from 1 to n and denote the PageRank of the kth page
by rk so that r is a vector with n entries. Let W be the n× n matrix whose entries
are defined by

wi,j =

1/Nj if i ∈ Fj
0 otherwise.

(3.2)

Then, for the ith page the equation in (3.1) can be rewritten as

ri =
∑
j∈Bi

rj
Nj

=
∑
i∈Fj

rj
Nj

=
n∑
j=1

wi,jrj.

If we let r be the (column) vector with entries r1, . . . , rn, then the above equation
(equating the left side and right side) can be written exactly as r = Wr. This means
that r is just an eigenvector of the matrix W corresponding to the eigenvalue λ = 1,
which isn’t too difficult to compute using MATLAB even for fairly large n. Thus,
computing the PageRank is actually an operation with which we are quite familiar
from Linear Algebra. Next, we consider a second interpretation of PageRank and
discuss the equation finally put forth by Brin and Page.

3.2.2 Random Surfer Model
Imagine a web surfer visiting the kth page on the web. At this point the surfer has
a choice of Nk pages to visit, and decides to choose one by chance. With probability
1/Nk he or she chooses one of the pages from Fk at random and moves to that page.
Now, the surfer arrives at page ` and is faced with a choice of N` pages. Again,
through chance, the surfer chooses a page from F` at random with probability 1/N`.
Therefore, at each page j he or she chooses one of the pages from Fj with a certain
probability pi,j given by

pi,j =


1
Nj

if i ∈ Fj
0 otherwise.

Thus, pi,j represents the probability of moving from site j to site i.
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Imagine now that the surfer continues this random movement over the web.
Over the long run (as t→∞) he or she will spend a certain fraction of time at each
page. This fraction is then the stationary distribution of the Markov Chain with a
transition matrix whose entries are pi,j. Since finding the stationary distribution is
usually the same problem as determining an eigenvector, we see that the solution
to the random surfer model is exactly the solution to equation (3.1).

3.2.3 Brin and Page’s Refinement of the Model
From either interpretation, there is still a problem with this model. If there is a
page to which other pages point but which has no links pointing out (forward links)
then the surfer will become “trapped”. Consider, for example, the set of vertices
and edges (V,E) in the previously-depicted directed graph. Vertex 4 possesses no
forward links, and the probability of moving from vertex 4 to any other vertex must
be 0. To avoid situations of this nature, Brin and Page introduce a damping factor,
which allows the surfer to jump to any randomly-selected page on the web. Instead
of (3.1), they ultimately defined the PageRank ri by the equation

ri = α
∑
j∈Bi

rj
Nj

+ (1− α)si (3.3)

where s = [s1, . . . , sn] is ANY probability vector, meaning si ≥ 0 and s1+· · ·+sn = 1.
Assuming that the probability of jumping to any other page is equally likely amongst
the n pages, we choose si = 1

n
for all i = 1, ..., n. The introduction of si now allows

a random surfer to jump from one webpage to any other with equal probability 1−α
n

.
Therefore, the transition probabilities now become

gi,j =


α
Nj

+ (1−α)
n

if i ∈ Fj
1−α
n

otherwise
(3.4)

The damping factor α has been chosen so that 0 < α < 1 and this ensures that the
numbers {gi,j : i = 1, . . . , n} form a probability distribution for every j = 1, ..., n.
Equation (3.3) can be written in terms of the previous matrix W as

r = αWr + (1− α)s = αWr + (1− α)Sr = [αW + (1− α)S]r

where S is the n × n matrix whose entries are all 1
n
. Note that, in practice, the

number of websites n is a lot larger than Nj, which is the number of websites linked
to by page j. So, the contribution from 1

n
is small relative to the pages in Fj.

In general, we can associate to any graph its adjacency matrix A = [ai,j], where

ai,j =

1 if i ∈ Fj
0 otherwise.

With this notation Nj = ∑n
i=1 ai,j for every j = 1, ..., n, and wi,j = 1

Nj
ai,j for all

i, j = 1, ..., n. Then, G = [gi,j] is defined as the matrix whose entries are given by
(3.4) or equivalently by G = αW + (1−α)S. Note that all the entries of the matrix
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G are non-negative and that the sum of the entries in each column of G is 1. The
values gi,j can, as in the random model, be interpreted as the probability of moving
from page j to page i. Finally, r can be determined exactly as the eigenvector of G
corresponding to the eigenvalue λ = 1.

3.3 Stochastic Matrices
A matrix P with non-negative entries such that for every j = 1, ..., n

n∑
i=1

pi,j = 1

is called stochastic. It is not difficult to prove, given 0 ≤ α ≤ 1, and stochastic
matrices P1, P2, that the convex combination of these matrices P = αP1 + (1−α)P2
is again stochastic.

This is the modification we made to the random model in (3.3) above. We have,
on the one hand, a model P1 in which the probabilities are assigned only to pages in
Fi. We then consider the random model in which we are equally likely to visit any
page from any other page and call this P2. The model finally chosen is to consider
the Google matrix G = αP1 + (1− α)P2 defined by (3.4).

Under suitable circumstances (e.g., if P is an irreducible stochastic matrix)
the equation Pπ = π is guaranteed to possess a solution π such that πi ≥ 0 for all
i = 1, ..., n and π1 + · · · + πn = 1. The proof of this fact requires a lot more effort
(see the Perron-Frobenius Theorem in [14]). However, for the special case of the
Google matrix G we can give an ad-hoc proof.

Theorem 3.1. Assume G ∈ Rn×n satisfies (3.4) for some α ∈ (0, 1) and W ∈ Rn×n

defined by (3.2). Then, there exists π ∈ Rn such that

1. Gπ = π

2. πi ≥ 0 for every i = 1, ..., n

3.
n∑
i=1

πi = 1.

Proof. We begin by pointing out that if P is a stochastic matrix, then P n is a
stochastic matrix for any n ≥ 1. The PageRank equation π = Gπ can be written as
a vector equation using (3.3), namely

π = (1− α)s+ αWπ (3.5)

where W is the stochastic matrix defined by (3.2). Now multiply this equation by
αW to get

αWπ = (1− α)αWs+ α2W 2π.

If we substitute for αWπ in (3.5) we get the equation

π = (1− α)s+ (1− α)αWs+ α2W 2π. (3.6)
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Now multiply (3.5) by α2W 2 to get the equation

α2W 2π = (1− α)α2W 2s+ α3W 3π.

Once again substitute this equation, but into (3.6), to get

π = (1− α)s+ (1− α)αWs+ (1− α)α2W 2s+ α3W 3π.

If we continue this process we arrive at

π = (1− α)
n∑
k=0

αkW ks+ αn+1W n+1π.

Since W k is stochastic for every k = 1, ..., n + 1, the largest possible entry in W k

is 1. Additionally, 0 < α < 1 so each entry in the sequence of vectors αn+1W n+1π
is dominated by a geometric sequence and therefore converges to 0. By taking the
limit as n→∞ above, we obtain the formula

π = (1− α)
∞∑
k=0

αkW ks.

Since α and W are known, this formula uniquely defines π ∈ Rn. Note also that the
non-negativity of the entries of W ks and the fact that 0 < α < 1 further imply that
the series converges (by the ratio test). The entries of W k and s are non-negative,
and so πi ≥ 0 for every i = 1, ..., n as well.

Let us denote the (i, j) entry of the matrix W k by w(k)
i,j . Then, write πi as

πi = (1− α)
∞∑
k=0

αk
n∑
j=1

w
(k)
i,j sj.

Next, we sum the entries of π. Since all the series in question are convergent and
have non-negative terms, they are absolutely convergent and we can interchange the
summations to arrive at

n∑
i=1

πi = (1− α)
n∑
i=1

∞∑
k=0

αk
n∑
j=1

w
(k)
i,j sj

= (1− α)
∞∑
k=0

αk

 n∑
j=1

sj

(
n∑
i=1

w
(k)
i,j

) .
Since the matrix W k is stochastic ∑n

j=1 w
(k)
i,j = 1. Because the vector s was chosen

to be a probability distribution we also get ∑n
j=1 sj = 1. Therefore, the above sum

reduces to
n∑
j=1

πj = (1− α)
∞∑
k=0

αk = (1− α) 1
1− α = 1.

For additional information regarding stochastic matrices, Perron-Frobenius the-
ory, or the PageRank Algorithm, see [2, 12, 14, 15].
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3.4 Summary of PageRank
Given a collection of n vertices (representing webpages) with n ∈ N and correspond-
ing directed edges (representing links between websites), we perform the following
steps to implement the final PageRank algorithm:

1. Enumerate the sites as
V = {1, 2, 3, ..., n}

and define the corresponding edge set

E = {(i, j) : 1 ≤ i, j ≤ n and i→ j}

2. For k = 1, ..., n define
Fk = {` : (k, `) ∈ E}

3. Define the adjacency matrix

Aij =

1 i ∈ Fj
0 else

and the degree of each vertex j = 1, ..., n,

Nj =
n∑
i=1

Aij.

4. From this let W ∈ Rn×n be defined by

Wij =


1
Nj

if i ∈ Fj
0 else

5. Choose a damping factor α ∈ (0, 1) and let S ∈ Rn×n be defined by

Sij = 1
n

for every i, j = 1, ..., n.

6. Finally, compute the unique eigenvector of the matrix

G = αW + (1− α)S

corresponding to the eigenvalue λ = 1, i.e. find r ∈ Rn s.t. Gr = r.

Then, rescale r such that

(a) ri ≥ 0 for all i = 1, ..., n

(b)
n∑
i=1

ri = 1.

The entries of r are exactly the respective PageRanks of the sites.
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Exercises - PageRank
For problems which require computational simulation, please print and submit
both your code and results (e.g., pictures).

Problem 3.1. Consider a graph with vertices

V = {1, 2, 3, 4, 5, 6}

and edges

E = {1→ 2, 1→ 3, 1→ 4, 2→ 1, 2→ 3, 3→ 4,
4→ 1, 4→ 3, 4→ 5, 4→ 6, 5→ 6, 6→ 5}.

(a) Draw the directed graph for this vertex set V and edge set E.

(b) Determine the adjacency matrix of the graph.

(c) The quantity Nj = ∑n
i=1 ai,j is called the degree of the vertex j. Compute the

degree of each vertex of the graph.

(d) From this, compute the matrix W whose entries are given by

wi,j =

1/Nj if i ∈ Fj
0 otherwise.

Then, use MATLAB to solve the equation Wπ = π where πi ≥ 0 and∑6
i=1 πi = 1. Next, compute W 2,W 3,W 10,W 30. What do you observe?

(e) Now let α = 0.85 and let G = αW + (1− α)S, where S is the matrix with all
of its entries equal to 1/6. Solve the equation Gπ = π, where πi ≥ 0 and∑6
i=1 πi = 1. Compute G2, G3, G10, G30. What do you observe?

(f) Delete the vertices 5 and 6, as well as, any related edges and compute the
resulting steady-state vector π for the associated Google matrix G.

Problem 3.2. Assume that P,Q ∈ Rp×p are stochastic matrices.

(a) Let 0 ≤ α ≤ 1 be given, and prove that R = αP + (1− α)Q is a stochastic
matrix.

(b) Prove that P n is a stochastic matrix for every n ∈ N.
Hint: Prove that the product of stochastic matrices is stochastic and then use
induction.



Chapter 4

Linear Vector Spaces

4.1 Introduction and Definitions
Throughout we will take the field of scalars

K = R or K = C,

though other fields (e.g., finite fields) can also be used to define a vector space.

Definition 4.1. Assume V is a nonempty set (i.e. V 6= ∅). Then, we say V is a
vector space over K if:

1. There is an addition operation on V , denoted by +, such that for all
u, v, w ∈ V

(a) u+ v ∈ V
(b) u+ v = v + u

(c) (u+ v) + w = u+ (v + w).

2. There is a zero element, denoted 0 ∈ V , that satisfies

u+ 0 = u

for every u ∈ V .

3. For every u ∈ V there is an additive inverse element, −u ∈ V , satisfying

u+ (−u) = 0.

4. There is scalar multiplication on K and V satisfying for all u, v ∈ V and
α, β ∈ K

(a) αu ∈ V
(b) α(βu) = (αβ)u
(c) α(u+ v) = αu+ αv

(d) (α + β)u = αu+ βu

(e) 1 · u = u.

27
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If K = R then V is a real vector space. If K = C then V is a complex vector
space. The elements of V are called vectors. However, these are not to be
confused with “traditional vectors” in Rn or Cn since the elements of a vector
space can be functions, matrices, sequences, or any number of other objects,
including the traditional vectors from Linear Algebra. Throughout, we will denote
general vector spaces by V and W .

Theorem 4.1. For any vector space V ,

1. 0 is unique in V

2. For any u ∈ V , the vector −u is unique in V .

Said another way, no vector space can possess two distinct additive identity
vectors, nor can any vector possess two distinct additive inverses.

Proof. Assume that in addition to 0 ∈ V , there is an element v ∈ V such that

u+ v = u (4.1)

for every u ∈ V . Then, we have

v = v + 0 = 0 + v = 0

where the first two equalities follow by the definition of a vector space, and the last
equality follows from choosing u = 0 in (4.1). Hence, any element of V satisfying
this property must be 0, which implies that the 0 element is unique.

Similarly, for any u ∈ V
u+ (−u) = 0;

hence, the uniqueness of −u follows from the uniqueness of u and 0.

Example 2 (Prominent Examples of Vector Spaces). There are a number of
familiar examples of linear vector spaces:

1. For n ∈ N, Rn is a vector space over R.

2. For n ∈ N, Cn is a vector space over R or C.
We will see later that certain properties (e.g., dimension) of this space are
dependent upon the scalars over which it is defined.

3. F (R) = {all functions f : R→ R} is a (infinite dimensional) vector space
defined over R.

4. C(R) = {all functions f : R→ R which are continuous} is a vector space.

5. C∞(R) = {all functions f : R→ R with continuous derivatives of any order}
is a vector space.

6. P(R) = {all polynomials f : R→ R} is a vector space.

7. For n ∈ N, Pn(R) = {all polynomials of degree ≤ n} is a vector space.
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8. For p, q ∈ N, the set of all p× q matrices, Rp×q, is a vector space.

Definition 4.2. Let V be a vector space and M ⊆ V . Assume that addition and
scalar multiplication on M are defined by these same operations on V . Then, M is
a subspace of V if

1. 0 ∈M

2. M is closed under addition, i.e. for every u, v ∈M, we have u+ v ∈M

3. M is closed under scalar multiplication, i.e. for all α ∈ K and v ∈M , we
have αv ∈M.

In this case, M is also a vector space with the same operations.

Example 3. For any vector space V , let M = {0} where 0 ∈ V is the additive
identity. Then, M is a subspace of V , called the trivial subspace.

Example 4. For every n ∈ N, Pn(R) is a subspace of P(R); P(R) is a subspace of
C∞(R); C∞(R) is a subspace of C(R); and C(R) is a subspace of F (R).

Example 5. Given a vector space V , let T : V → V satisfy the condition

T (αu+ βv) = αT (u) + βT (v). (4.2)

for all α, β ∈ K and u, v ∈ V . Then, V0 = {v ∈ V : T (v) = 0} is a subspace of V .
As a side note, any mapping satisfying (4.2) is called a linear mapping, and we’ll
study these in greater detail in subsequent chapters.

To show that V0 is a subspace, we merely demonstrate the subspace properties.

1. Show 0 ∈ V0:
Choose α = β = 0, then T (0) = 0. Thus, 0 ∈ V0.

2. Show V0 is closed under addition:
Let u, v ∈ V0. Then, T (u) = T (v) = 0. Thus,
T (u+ v) = T (u) + T (v) = 0 + 0 = 0 by choosing α = β = 1. Hence,
u+ v ∈ V0. Therefore V0 is closed under addition.

3. Show V0 is closed under scalar multiplication:
Let u ∈ V0, α ∈ R be given. Then, T (v) = 0. So, T (αu) = αT (u) = α · 0 = 0
by choosing β = 0 Hence, αu ∈ V0, and V0 is closed under scalar
multiplication.

Comment. This can be generalized to T : V → W where W is a vector space
differing from V .
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4.2 Fundamental Properties of Vector Spaces
Definition 4.3. Let V be a vector space and n ∈ N. For v1, ..., vn ∈ V the span of
these vectors (i.e., the set of all linear combinations (or LCs) of the vectors
v1, ..., vn) is denoted and defined as

span{v1, ..., vn} =


n∑
j=1

αjvj

∣∣∣∣∣ αj ∈ K for all j = 1, ..., n

 .
Theorem 4.2. Let V be a vector space and n ∈ N. Then, for any v1, ..., vn ∈ V ,

M = span{v1, ..., vn}

is a subspace of V .
Proof. Choosing αj = 0 for every j = 1, ..., n shows 0 ∈M . Next, we show that M
is closed under addition. Let u,w ∈M be given Then, there are αi, βi ∈ K for all
i = 1, ..., n such that

u =
n∑
i=1

αivi, w =
n∑
i=1

βivi.

Hence, we find

u+ w =
n∑
i=1

αivi +
n∑
i=1

βivi =
n∑
i=1

(αi + βi)vi =
n∑
i=1

γivi

where γi = αi + βi ∈ K for all i = 1, ..., n, and thus u+ w ∈ span{v1, ..., vn} = M .
Finally, to show that M is closed under scalar multiplication, we use the same type
of argument so that for any given u ∈M and k ∈ K, there is αi ∈ K for all
i = 1, ..., n such that

ku = k
n∑
i=1

αivi =
n∑
i=1

kαivi =
n∑
i=1

γivi

where γi = kαi ∈ K for all i = 1, ..., n, and thus ku ∈ span{v1, ..., vn} = M.

Definition 4.4. Let V be a vector space and M ⊆ V be a subspace of V . Take
n ∈ N and let S = {v1, ..., vn} ⊆M . Then, we say that S spans M (or is a
spanning set of M) if for every v ∈M there exists α1, ..., αn ∈ K such that

v =
n∑
j=1

αjvj.

Example 6. Let ek ∈ Rp for any k = 1, 2, ..., p be defined by

(ek)i = δik :=
{

1, if i = k
0, else.

Here, δik is referred to as the Kronecker delta. Written another way, we define the
vectors

e1 =



1
0
0
...
0

 , e2 =



0
1
0
...
0

 , . . . , ep =



0
...
0
0
1


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to be the unit vectors with 1 in the kth entry and 0 in all other entries. Then, for
any p ∈ N, B = {e1, ..., ep} is a spanning set for Rp.

Example 7. Let V = R2 and define

S1 =
{[

1
0

]
,

[
0
1

]}
S2 =

{[
1
0

]
,

[
0
1

]
,

[
0
0

]}
.

Of course, M = span(S1) = V is a subspace and both S1 and S2 span M.

Example 8. Let V = R3 and define

M =

v =

v1
v2
0

 : v1, v2 ∈ R

 .
Then, by definition M is a subspace of V . Can we find a spanning set of M?
Clearly, we can decompose any element v ∈M into

v =

v1
v2
0

 = v1

1
0
0

+ v2

0
1
0

 = v1e1 + v2e2

where v1, v2 ∈ R and e1, e2 ∈ R3 are defined above. Thus, S = {e1, e2} spans M .

Definition 4.5. Let V be a vector space. Take n ∈ N and let S = {v1, ..., vn} ⊆ V .

1. S is linearly independent (abbreviated LI) if
n∑
j=1

αjvj = 0 implies αj = 0 for all j = 1, ..., n.

2. S is linearly dependent (abbreviated LD) if S is not linearly independent;
that is, if there are αi ∈ K for i = 1, ..., n that are not ALL zero such that

n∑
j=1

αjvj = 0.

Comment. For S ⊆ Cp, we have good machinery for determining whether or not a
set of vectors is linearly independent. Outside of this setting, things become tricky.

Example 9. Let V = R3 and consider S = {v1, v2, v3} where

v1 =

1
0
0

 , v2 =

0
1
1

 , v3 =

1
1
1

 .
Is S linearly dependent or independent?
Obviously, we consider

n∑
j=1

αjvj = 0, which is equivalent to the linear system

1 0 1
0 1 1
0 1 1


α1
α2
α3

 =

0
0
0

 .
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We perform Gaussian elimination on the matrix to reduce it to rref and find1 0 1
0 1 1
0 1 1

 ∼
1 0 1

0 1 1
0 0 0


and because the resulting system possesses infinitely many solutions, we see that
not all of the α coefficients need be zero to satisfy the system of equations. Hence,
S is linearly dependent.

Of course, if we make a small change to v2 and instead consider the set
T = {v1, e2, v3}, then rref of the resulting matrix is instead1 0 1

0 1 1
0 0 1


and we find a unique solution, namely the zero solution. Hence, T is linearly
independent.

Theorem 4.3. Let V be a vector space, n ∈ N and S = {v1, ..., vn} ⊆ V .

1. If n = 1, then S = {v1} is linearly independent if and only if v1 6= 0

2. If n ≥ 2, then S is linearly dependent if and only if at least one of the vectors
is a linear combination of the remaining vectors in S, i.e. there is
k ∈ {1, ..., n} such that

vk =
n∑
j=1
j 6=k

αjvj

for some αj ∈ K, j = 1, ..., n.

3. If 0 ∈ S, then S is linearly dependent.

4. If S is linearly independent, then any nonempty subset of S is also linearly
independent.

5. If S is linearly dependent, m ∈ N with m > n, and vn+1, ..., vm ∈ V , then
{v1, ..., vm} is also linearly dependent.

The fourth conclusion displays that any subset of a linearly independent set must
also be linearly independent, while the fifth conclusion shows that any extension of
a linearly dependent set is also linearly dependent.

Proof. The first and third implications are straightforward. We prove the second
conclusion, and the final two conclusions will be assigned as homework exercises
(cf. Problem 4.5).

To prove the backward direction, first assume

vk =
n∑
j=1
j 6=k

αjvj
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for some k and αj ∈ K with j 6= k. Then, subtracting vk to the right side yields a
linear combination of the vj vectors that is equal to zero. Hence, if we define new
coefficients

βj =

αj, j 6= k

−1, j = k,

we see that
n∑
j=1

βjvj = 0. However, it is not the case that βj = 0 for all j = 1, ..., n.
Therefore, S is not linearly independent, and so must be linearly dependent.

Now, to prove the forward implication, assume S is linearly dependent. Then,
there exists αj ∈ K for all j = 1, ..., n such that

n∑
j=1

αjvj = 0 and not all of the αj’s
are zero. Since there is a nonzero αj, let’s denote its index by k, so that αk 6= 0.
Thus, we rewrite the sum as

n∑
j=1
j 6=k

αjvj + αkvk = 0.

or by subtracting the vk term and dividing by αk 6= 0, equivalently

vk = − 1
αk

n∑
j=1
j 6=k

αjvj

=
n∑
j=1
j 6=k

(
−αj
αk

)
vj

=
n∑
j=1
j 6=k

βjvj

where βj = −αj

αk
for all j = 1, ..., n with j 6= k. Therefore, at least one of v1, ..., vn

can be written as a linear combination of the remaining vectors in S.

Definition 4.6. A basis for a vector space V is a linearly independent subset of V
that also spans V ; that is, a set B = {v1, ..., vn} ⊆ V is a basis if and only if

1. For any u ∈ V , there are α1, ..., αn ∈ K such that u =
n∑
j=1

αjvj

2. If
n∑
j=1

αjvj = 0 for some α1, ..., αn ∈ K then αj = 0 for every j = 1, ..., n.

Example 10. Recall ek ∈ Rp for any k = 1, 2, ..., p defined by

(ek)i =
{

1, if i = k
0, else.

Then, for any p ∈ N, B = {e1, ..., ep} is a basis for Rp. In fact, B is generally
referred to as the standard basis for Rp



34 CHAPTER 4. LINEAR VECTOR SPACES

Example 11. Let A = [1, 1, 1] ∈ R1,3 and define V0 = {x ∈ R3 : Ax = 0} Can we
find a basis for V0?

First, consider x =

x1
x2
x3

 ∈ V0, then

Ax =
[
1 1 1

] x1
x2
x3

 = 0

is equivalent to
x1 + x2 + x3 = 0

and therefore
x1 = −x2 − x3.

This leads to the decomposition

x =

x1
x2
x3

 =

−x2 − x3
x2
x3

 = x2

−1
1
0

+ x3

−1
0
1

 .
Since x ∈ V0 was arbitrary we can write any element this way, for any constants
x2, x3 ∈ R, and thus

V0 =

s
−1

1
0

+ t

−1
0
1

 : s, t ∈ R


So, now we consider the set of vectors

S =


−1

1
0

 ,
−1

0
1


 .

We know that S spans V0, which means we need only show that S is linearly
independent. Let

v1 =

−1
1
0

 , v2 =

−1
0
1


and consider α1v1 + α2v2 = 0, or to write this another way−α1 − α2

α1
α2

 =

0
0
0

 .
Solving the system of equations, we find α1 = α2 = 0 and hence S is linearly
independent. Since S is both a spanning set for V0 and linearly independent, it
forms a basis for V0.

Theorem 4.4 (Spanning Set Theorem). Let V be a vector space and
S = {v1, ..., vp} be a spanning set for a subspace M ⊆ V . Then,
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1. If for some k = 1, .., p the element vk can be written as a linear combination
of the remaining vectors in S, then the set

S ′ = S \ {vk}

also spans M .

2. If M 6= {0} then there is T ⊆ S such that T is a basis for M .

Proof. To prove the first conclusion, we fix k such that vk is a linear combination of
the remaining elements of S. Then, there are α1, ..., αk−1, αk+1, ...αp ∈ K such that

vk =
p∑
j=1
j 6=k

αjvj.

Hence, letting u ∈M be given, we find β1, ..., βp ∈ K such that

u =
p∑
j=1

βjvj

since S spans M . Of course, substituting the previous representation for vk, we
can rewrite this as

u =
p∑
j=1
j 6=k

βjvj + βkvk

=
p∑
j=1
j 6=k

βjvj + βk

p∑
j=1
j 6=k

αjvj

=
p∑
j=1
j 6=k

γjvj.

where γj = βj + βkαj for every j = 1, .., p and j 6= k. Thus, u can be expressed as a
linear combination of elements from the set S ′ = S \ {vk}, and since u ∈M was
arbitrary, we see that S ′ spans M .

Next, we prove the second conclusion, in part, by using this first result. Notice
that if S is linearly independent, then it is already a basis for M and the result
follows as S ⊆M . Otherwise, S is a linearly dependent set, which provides two
possible cases by Theorem 4.3 - either S = {0} or S possesses at least two elements
and at least one of these elements can be written as a linear combination of the
remaining vectors in S. Certainly, the first possibility yields M = {0}, which is
false by assumption. Therefore, the second scenario must be true, and using the
first conclusion of this theorem, we may continue to remove elements of S until we
have constructed a linearly independent subset of S ′ ⊆ S that still spans M . As
such, S ′ must be a basis for M , and the proof is complete.

From Theorems 4.3 and 4.4, we see that bases can be constructed in two distinct
manners - from a top-down approach or bottom-up approach. In particular, we
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may build a basis for a vector space or subspace by beginning with a linearly
independent subset and adding new vectors that maintain the linear independence
of the resulting set until we finally arrive at a spanning set, which must then be a
basis. Alternatively, we may begin with a spanning set for the subspace - perhaps
even beginning with every element of the vector space - and then remove elements
of the spanning set while maintaining the spanning property of the resulting set
until we arrive at one that is also linearly independent, and hence a basis.

One reason why we care about bases is that, unlike a mere spanning set, a basis
can uniquely represent every element of the vector space or subspace that it spans.

Theorem 4.5. Let V be a vector space, n ∈ N, and B = {v1, ..., vn} be a basis for
V . Then, for any v ∈ V , there are unique α1, ..., αn ∈ K such that v =

n∑
j=1

αjvj.

Proof. The existence of α1, ..., αn ∈ K satisfying this property follows directly from
B being a basis, and thus spanning V . To prove uniqueness, let β1, ..., βn ∈ K also
satisfy v =

n∑
j=1

βjvj. Subtracting these two different representations of v, we find

n∑
j=1

αjvj −
n∑
j=1

βjvj = v − v = 0.

However, defining γj = αj − βj leads to
n∑
j=1

γjvj = 0, and since B = {v1, ..., vn} is
linearly independent, we must have γj = 0 for all j = 1, ..., n. With this, we have
αj = βj for every j = 1, ..., n, and thus the representation is unique.

Definition 4.7. The α1, ..., αn ∈ K guaranteed by Theorem 4.5 are called the
coordinates of v ∈ V with respect to the basis B. Of course, a basis for a
vector space V need not be unique and changing the basis will change these
coordinates.

Example 12. Recall the vector space of quadratic polynomials

P2 =
{
f : R→ R

∣∣∣∣∣ f(x) = a0 + a1x+ a2x
2 for some a0, a1, a2 ∈ R

}
.

Then, the set B2 = {1, x, x2} is a basis for P2 and the resulting coordinates of any

quadratic polynomial with respect to B2 are

a0
a1
a2

 ∈ R3. Notice that the ordering

of the basis matters to identify the associated coordinates. Analogously, the set

Bn = {1, ..., xn} is a basis for Pn with corresponding coordinates


a0
...
an

 ∈ Rn+1.

Example 13. Recall the vector space of real-valued 2× 2 matrices

R2×2 =
{[
a11 a12
a21 a22

] ∣∣∣∣∣ a11, a12, a21, a22 ∈ R
}
.
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Then, the set

B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

is a basis for R2×2 and the resulting coordinates of any matrix with respect to this

basis are


a11
a12
a21
a22

 ∈ R4.

These two examples illustrate that the spaces P2 and R3, and the spaces R2×2 and
R4, respectively, are quite alike since there is an explicit coordinate mapping
between them. In fact, such a coordinate mapping is a specific type of linear
transformation defined below.

Definition 4.8. Let V and W be vector spaces and T : V → W .

1. T is one-to-one if for any u, v ∈ V

T (u) = T (v) implies u = v.

2. T is onto if for any w ∈ W there is v ∈ V such that T (v) = w.

Definition 4.9. Let V and W be vector spaces. A mapping T : V → W is called
an isomorphism if T is linear, one-to-one, and onto. In this case, we say that V
and W are isomorphic.

Isomorphisms are important mappings as they preserve the fundamental algebraic
properties of vector spaces. Hence, the two vector spaces V and W in the
definition above behave in similar ways. Though we won’t study the topic in much
detail, (group) isomorphisms are fundamental objects within Abstract Algebra and
even arise naturally in some analytic frameworks. For instance, the Laplace
Transform, which many of us have used to solve linear differential equations, is an
isomorphism between certain vector spaces of functions.

Returning to Example 12, we see that P2 and R3 are isomorphic. More generally, if
a vector space has a basis B consisting of p elements, then we may naturally
associate it with Kp (often Rp) using the coordinate mapping generated by B.

Theorem 4.6. Let B = {v1, ..., vp} be a basis for a vector space V . Then, the
coordinate mapping T : V → Kp defined for any v ∈ V by T (v) = αv, where
αv1, ..., α

v
p are the coordinates of v with respect to B and

αv =


αv1
...
αvp

 ,
is an isomorphism.
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Proof. By Theorem 4.5, for every v ∈ V there are unique αv1, ..., αvp such that

v =
p∑
j=1

αvjvj.

Thus, to prove the theorem, we need to show that the function T : V → Kp defined
by this coordinate mapping

T (v) =


αv1
...
αvp

 =: αv,

is linear, one-to-one, and onto.

To show that T is linear, we merely let u,w ∈ V be given and find αu, αw ∈ Kp

such that
u =

p∑
j=1

αuj vj and w =
p∑
j=1

αwj vj.

This immediately implies

u+ w =
p∑
j=1

(αuj + αwj )vj

and thus
T (u+ w) = αu + αw = T (u) + T (w).

The scalar multiplication property follows analogously, and T is linear.

We note that the one-to-one and onto properties actually follow from the linearity
of T and the linear properties of the vector space V . Indeed, T (u) = T (v) implies
αu = αv, and since every coefficient of the linear combination is equal, we see that
u = v. Additionally, every α ∈ Kp must give rise to a vector v ∈ V as vj ∈ V for
every j = 1, .., p and V is closed under both addition and scalar multiplication.

We refer the interested reader to Lay [11], pp. 219-220 for additional details.

Theorem 4.7. Let V be a vector space and suppose that {v1, ..., vp} ⊆ V spans V
while {u1, ..., uq} ⊆ V is linearly independent. Then, q ≤ p.

Proof. First, if V = {0} then v1 = 0 and the result holds trivially. Next, assume
V 6= {0}, then assume q > p and work to derive a contradiction. Given the
spanning set {v1, ..., vp} we may use Theorem 4.4 to remove vectors from this set
until arriving at a basis for V consisting of m elements (with m ≤ p) and denoted
by B ⊆ {v1, ..., vp}. Then, using Theorem 4.5, we may uniquely represent every
element of the linearly independent set {u1, ..., uq} as a linear combination of
elements of B. For every k = 1, ..., q, the coefficients of this unique representation
are exactly the coordinates of uk with respect to the basis B. Hence, we now have
a set of coordinates denoted {w1, ..., wq} ⊆ Km that are generated using the
coordinate mapping T : V → Km, which satisfies T (uk) = wk for every k = 1, ..., q.
Constructing a matrix A ∈ Km×q using the vector wk as the kth column of A, we
note that rank(A) ≤ m and thus

rank ([A|0]) = rank(A) ≤ m ≤ p < q.
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Thus, by the Rank-Solvability Theorem (Theorem 2.5), the system Ax = 0 has
infinitely many solutions. From these, we choose a nonzero solution β ∈ Kq \ {0}.
Of course, this demonstrates that the set of coordinate vectors {w1, ..., wq} is
linearly dependent as Aβ = 0 is equivalent to ∑q

j=1 βjwj = 0 and we know β 6= 0.
Finally, using Theorem 4.6 and the inverse coordinate mapping T−1 : Km → V
generated by the basis B, this demonstrates that the set {u1, ..., uq} is linearly
dependent, thereby providing a contradiction. Hence, q ≤ p.

For further details, consult one of the references, such as Noble & Daniel [16]
(Theorem 5.28, p. 197) or Lay [11] (Theorem 9 in Section 4.5, p. 225).

Theorem 4.8. Let V be a vector space with a basis consisting of p vectors
{v1, ..., vp}. Then, every basis of V must possess exactly p vectors.

Proof. Let {u1, ..., uq} be any basis for V . By Theorem 4.7, since {v1, ..., vp} spans
V and {u1, ..., uq} ⊆ V is linearly independent, we find q ≤ p. By Theorem 4.7,
since {v1, ..., vp} is linearly independent and {u1, ..., uq} spans V we find p ≤ q.
Finally, p = q and since {u1, ..., uq} was an arbitrary basis, we see that every basis
must have exactly p elements.

Definition 4.10. The dimension of a vector space V denoted dim(V) is defined
to be the number of vectors in any basis. If V does not possess a basis with finitely
many elements, then we say dim(V) =∞.

The idea of dimension has a few useful implications, especially for subspaces.

Theorem 4.9. Let V be a vector space with dim(V) = p ∈ N and let M ⊆ V be a
subspace. Then, dim(M) ≤ p.

Proof. Let B = {v1, ..., vp} be a basis for V and B0 = {u1, ..., uq} be a basis for M
so that dim(M) = q. Since B0 ⊆ V is a basis for M , it must be a linearly
independent subset of V . Additionally, since B is a basis for V , it must also be a
spanning set. By Theorem 4.7, it follows that q ≤ p, and thus

dim(M) = q ≤ p = dim(V).

With this result, we may now easily prove Lemma 2.6, which was stated in the
Review Exercises section.

Lemma (Lemma 2.6). Let A ∈ Rp×q and B ∈ Rq×r be given. Then,

rank(AB) ≤ min{rank(A), rank(B)}.

Proof. By definition, we have

rank(AB) = dim(Col(AB)) = dim ({ABx : x ∈ Rr})
rank(A) = dim(Col(A)) = dim ({Ay : y ∈ Rq}) .

Notice first that Col(AB) ⊆ Col(A). Indeed, if z ∈ Col(AB), then there exists
x ∈ Rr such that z = ABx. Letting y = Bx ∈ Rq, we can merely write z = Ay and
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thus z ∈ Col(A). Next, since both Col(AB) and Col(A) are not merely subsets,
but in fact, subspaces of Rp, it follows that Col(AB) is a subspace of Col(A). By
Theorem 4.9, we find

dim(Col(AB)) ≤ dim(Col(A))

or stated another way
rank(AB) ≤ rank(A). (4.3)

It remains to show rank(AB) ≤ rank(B) in order to complete the proof, and we’ll
use a result from Linear Algebra, namely rank(CT ) = rank(C) for any C ∈ Rp×q,
along with (4.3) to do so. In particular, since (4.3) holds for any product of
matrices, we may apply it to BTAT to find

rank(BTAT ) ≤ rank(BT ).

This then yields

rank(AB) = rank((AB)T ) = rank(BTAT ) ≤ rank(BT ) = rank(B)

so that rank(AB) ≤ rank(B) and combining this upper bound with (4.3)
completes the proof.

Lemma 4.10. Let V be a vector space with two subspaces V0 ⊆ V1 ⊆ V satisfying
dim(V0) = dim(V1) <∞. Then, V0 = V1.

Proof. We assign this as a homework exercise (cf. Problem 4.7). Generally, the
idea is that if there is an element u in V1 that is not in V0, then we could add u to
the basis for V0 and create a linearly independent set within V1 containing more
elements than the basis for V1, which provides a contradiction.

As the next example demonstrates, the field over which a vector space is defined
can be crucial to its inherent properties, including its dimension.

Example 14. Consider V1 = Cp defined over K = C. Then, dim(Cp) = p because

S = {ek : k = 1, ..., p}

is a basis for V1. Next, consider V2 = Cp defined over K = R. Then, dim(Cp) = 2p
because

S = {ek, iek : k = 1, ..., p}

is a basis. Of course, the elements in the vector space are identical, but because
the field of scalars over which they are defined differ, V1 and V2 are, in fact,
different vector spaces, and in particular, have differing dimensions.
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4.3 Infinite Dimensional Spaces
All of the bases that we’ve mentioned previously have finitely many elements. If
we consider an infinite-dimensional vector space V , can we still identify a basis B?
What do the two properties (linear independence and spanning V) look like if
dim(V) =∞? It turns out that at least one of these properties must be
reformulated to account for the fact that B must contain infinitely many elements.

Definition 4.11. If dim(V) =∞ then we say B ⊆ V is a Hamel basis for V if

1. Every finite subset of B satisfies the linear independence property; namely,
for every n ∈ N and any v1, ..., vn ∈ B

n∑
j=1

αjvj = 0 implies αj = 0 for every j = 1, ..., n.

2. For every u ∈ V there are n ∈ N, α1, ..., αn ∈ K, and v1, ..., vn ∈ B such that

u =
n∑
j=1

αjvj.

Comment. Not every vector space is guaranteed to possess a Hamel basis (or
another type of basis that we’ll discuss later). In fact, the logical statement “Every
vector space has a Hamel basis” is equivalent to the Axiom of Choice [10].

Example 15. Denote the nonnegative integers by N0 = N ∪ {0} and recall the
vector space

P =
{
f : R→ R

∣∣∣∣∣ f(x) =
n∑
k=0

akx
k for some n ∈ N0 and ak ∈ R, k = 0, ..., n

}
.

For every x ∈ R and n ∈ N0, define the sequence of functions

fn(x) = xn

and the set
B = {fn(x) : n ∈ N0} .

Then, any finite subset B0 = {fk(x) : k ∈ I ⊆ N0 with |I| <∞} ⊆ B is linearly
independent. Additionally, given any g ∈ P, let m = deg(g) so that there are
α0, ..., αm ∈ R with

g(x) =
m∑
j=0

αjx
j =

m∑
j=0

αjfj(x).

Thus, B is a Hamel Basis for P.

Example 16. Similar to P, consider the set of real-valued sequences

Rω =
{
{an}∞n=1 : an ∈ R for every n ∈ N

}
.
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Notice that Rω is a vector space and dim(Rω) =∞, as no finite collection of
sequences will allow one to represent all real-valued sequences. Next, define for any
k ∈ N, the sequence

ek = (0, 0, 0, ..., 1, 0, 0, ...) ∈ Rω,

which contains a 1 in the kth entry and zeros in all others. Represented another
way, ek is the sequence defined for every j ∈ N by

(ek)j =

1, j = k

0, j 6= k.

Let S = {ek : k ∈ N}, and notice that for every n ∈ N and collection of vectors
{v1, ..., vn} ⊆ S, if

n∑
j=1

αjvj = 0 where 0 represents the zero sequence, then
α1 = · · · = αn = 0 due to term-by-term equivalence of sequences. Hence, any finite
subset {v1, ..., vn} is linearly independent. However, given {ak}∞k=1 ∈ Rω there is
not necessarily n ∈ N and {v1, ..., vn} ⊆ S such that

{ak}∞k=1 =
n∑
j=1

αjvj

For instance, the sequence {bk}∞k=1 defined by bk = 1 for all k ∈ N cannot be
represented as a finite linear combination of elements from S. Therefore, S is NOT
a Hamel basis. In fact, Rω has no countable Hamel basis, and unfortunately, bases
are not particularly useful if they are uncountable.

Comment. To summarize, we see that even with the natural coordinate mapping
between Pn and Rn+1 displayed by Example 12, the limiting spaces as n→∞,
namely P and Rω, have different properties; namely, P has a countable Hamel basis
while Rω does not. This occurs because elements of P must possess a coordinate
representation ending with a terminating sequence of 0’s, while elements of Rω do
not. Said another way, the coordinate mapping for any element of P would
generate a sequence with only finitely many non-zero entries, and many elements
of Rω possess infinitely many non-zero entries, e.g. {bk}∞k=1 described above.

For those vector spaces without a countable Hamel basis, this notion of a basis
may not be very useful, and we can attempt to generalize it by using a norm
structure on the vector space.

Definition 4.12. We say B = {vn : n ∈ N} ⊆ V is a Schauder basis for V if for
every u ∈ V there exists a unique {αn}∞n=1 ⊆ K such that

u =
∞∑
n=1

αnvn. (4.4)

Here, the equality of the infinite sum (4.4) is defined as

lim
N→∞

∥∥∥∥∥u−
N∑
n=1

αnvn

∥∥∥∥∥ = 0 (4.5)

where ‖ · ‖ is a norm (or a measure of length) defined on V , which we will discuss
in greater detail in the next section.
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Comment. Because the definition of a Schauder basis involves an infinite sum
rather than a finite sum, the ordering of the elements of the basis B are crucial to
this definition, as a reordering of the elements of B may alter the corresponding
limit of the sum in (4.4) or even cause it to diverge.
Example 17 (Fourier series). The well-known Fourier series, which you may have
encountered in a first class on Partial Differential Equations (MATH 455, here at
Mines), serve as a good example of a Schauder basis. For any a, b ∈ R with a < b,
define the vector space

L2(a, b) =

f : (a, b)→ R
∣∣∣∣∣

b∫
a

f(x)2dx <∞

 .
Then, define the collection of functions

F = {1}
⋃
{cos(nx) : n ∈ N}

⋃
{sin(nx) : n ∈ N},

which satisfies F ⊆ L2(0, 2π).
Certainly, there are functions in L2(0, 2π) that cannot be represented as a finite
linear combination of elements of F . For instance f(x) = x2 cannot be written in
this manner. Thus, F is not a Hamel basis for L2(0, 2π). However, define the
following norm (again, precisely defined later) - for every f ∈ L2(0, 2π), let

‖f‖2 =

√√√√√ 2π∫
0

f(x)2dx.

Then, F , referred to as the Fourier basis, is a Schauder basis for L2(0, 2π) in the
sense that for every f ∈ L2(0, 2π) there are unique a0 and an, bn ∈ R for every
n ∈ N such that

lim
N→∞

∥∥∥∥∥f(x)−
(
a0 +

N∑
n=1

[an cos(nx) + bn sin(nx)]
)∥∥∥∥∥

2
= 0

as the Fourier series of a given function f ∈ L2(0, 2π) converges to f in this sense.
Additionally, the coefficients a0, an, bn are uniquely determined by the given
function f and can be easily represented due to the orthogonality of the elements
of F , a notion we will also revisit in future sections.
We will provide additional and important examples of Schauder bases for L2 once
the notion of a norm has been well defined. In general, many sequence spaces, such
as Rω, and function spaces, such as L2(a, b), represent standard examples of
infinite-dimensional vector spaces, while traditional vectors, polynomials, and
matrices - spaces like Rp, Cp, Pn, Rp×q, and Cp×q - are all standard examples of
finite-dimensional vector spaces.

4.4 Normed spaces
From the previous section, we see that the notion of a Hamel basis may not be
useful for categorizing certain vector spaces, such as L2(0, 2π). Hence, the
introduction of a Schauder basis may be necessary when possible, and this should
lead us to study normed vector spaces.
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Definition 4.13. Let V be a vector space. Then, a norm on V is a function that
assigns to each v ∈ V a nonnegative real number denoted by ‖v‖. This function
must satisfy the following properties:

1. ‖0‖ = 0, and if v 6= 0 then ‖v‖ > 0.

2. For every α ∈ K, v ∈ V , we have

‖αv‖ = |α|‖v‖.

3. For every u, v ∈ V , we have

‖u+ v‖ ≤ ‖u‖+ ‖v‖. (Triangle Inequality)

We will refer to vector spaces with a norm as normed spaces.

Example 18. Here are some common norms and normed vector spaces that you
may have previously encountered:

1. V = Rn

For any v ∈ Rn, define the Euclidean norm by

‖v‖2 =
√√√√ n∑
j=1
|vj|2.

Similarly, for any p ∈ [1,∞), we can define the p-norm by

‖v‖p =
 n∑
j=1
|vj|p

 1
p

.

Finally, we can also define this norm when p =∞, so that

‖v‖∞ = max
1≤j≤n

|vj|.

2. V = Cn

For any v ∈ Cn, define the complex Euclidean norm by

‖v‖2 =
√√√√ n∑
j=1
|vj|2

where |vj| represents the modulus of the entry vj ∈ C.
As before, for any p ∈ [1,∞), we can define the p-norm by

‖v‖p =
 n∑
j=1
|vj|

 1
p

,

and when p =∞, we define the norm

‖v‖∞ = max
1≤j≤n

|vj|.
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3. V = L2(a, b)
For any f ∈ L2(a, b), define the 2-norm by

‖f‖2 =
√∫ b

a
f(x)2 dx.

4. For any p ∈ [1,∞), we can define the space of functions

V = Lp(a, b) =

f : (a, b)→ R
∣∣∣∣∣

b∫
a

f(x)pdx <∞

 ,
and the corresponding norm, called the p-norm, for any f ∈ Lp(a, b) by

‖f‖p =
(∫ b

a
f(x)p dx

) 1
p

.

5. When p =∞, we define

V = L∞(a, b) =
{
f : (a, b)→ R

∣∣∣∣∣‖f‖∞ <∞
}
,

where the norm here is
‖f‖∞ = ess sup

x∈[a,b]
|f(x)|.

Though we will use identical notation to describe the norms of vectors and
functions (e.g., ‖ · ‖2), we will differentiate them in the future merely by
understanding what objects we are dealing with. Additionally, the subscript on a
norm will generally be omitted whenever it can be inferred from context.

Clearly, a variety of different norms on Rn and Cn can be imposed. It should be
noted that the norm is part of the vector space definition, so that using a different
norm on the same set of vectors technically means the vector space is different. Of
course, each of these gives rise to a different notion of length, and thus, a
completely different geometry on the vector space.

Example 19. Fix v =
[
3
4

]
and let’s compute some differing norms of this element

of R2. In particular, we see that

‖v‖2 =
√

32 + 42 = 5
‖v‖1 = 3 + 4 = 7
‖v‖∞ = max{3, 4} = 4.

Geometrically, ‖v‖2 represents the radius of the circle on which the vector v
terminates, while ‖v‖∞ represents the projection of v onto its coordinate of
greatest magnitude. Additionally, ‖v‖1 is the sum of the total distances traveled in
all directions starting from the origin (i.e., 3 in the x direction and 4 in the y
direction). For this reason and its graphical similarity to a path through city
streets, the ‖ · ‖1 norm is often referred to as the “taxicab norm”.
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‖v‖2 = 1

‖v‖1 = 1

‖v‖∞ = 1

Figure 4.1: Representation of the unit ball (i.e. ‖v‖ ≤ 1 with v ∈ R2) for the L2

norm (left), L1 norm (center), and L∞ norm (right).

Essentially, ‖v‖1 treats all coordinate directions equally in determining the length
of v, and as p increases, the contribution of the maximal entry of v to its length
‖v‖p also increases, until we arrive at the limiting case ‖v‖∞ which only considers
the maximal entry of the vector v in order to define it’s length (see Figure 4.1).

For normed vector spaces, the notion of an isomorphism extends in an analogous
manner. In particular, two normed spaces are isomorphic if they are isomorphic as
vector spaces and the norm is preserved by this mapping.
Definition 4.14. Let V and W be normed vector spaces. A mapping T : V → W
is called an isomorphism if T is linear, one-to-one, onto, and

‖T (v)‖W = ‖v‖V
for all v ∈ V , where ‖ · ‖V is the norm on V and ‖ · ‖W is the corresponding norm
on W . In this case, we say that V and W are isomorphic normed spaces.

4.5 Banach spaces
Since we have now defined a notion of length on a vector space, we can discuss
convergence of sequences and series in the space. This is possible because the
length of the difference between a sequence (or series) and its limit is just a
sequence of real numbers that tends to zero, and we know quite a bit about
sequences (and series) of real numbers from Calculus.
Definition 4.15. A sequence {xn}∞n=1 (or just xn) in a normed space V
converges if there is x ∈ V such that

lim
n→∞

‖xn − x‖ = 0.

In this case, x is called the limit of xn and we merely write

x = lim
n→∞

xn

or xn → x. If xn is not convergent, it is said to be divergent.
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Of course, since every series can be understood merely in terms of a sequence
(namely, the partial sums of the series as in (4.5)), then this definition extends to
them as well. The definition above is exactly the notion of convergence used to
define a Schauder basis in Definition 4.12.

It should be noted that to show the convergence of a given sequence according to
this definition, one must first know its limit, and that can be quite problematic.
Instead, we might try to show that the terms of the sequence ultimately get
pushed closer and closer together as n→∞, and for sequences in Rn or Cn it’s
enough to show this property to prove convergence (see Appendix: Theorem 9.4).
Unfortunately, this is not true in all normed spaces, and further analysis is needed.
First, we precisely define the property that the terms of a sequence become closer
together as n grows large.

Definition 4.16. A sequence {xn}∞n=1 in a normed space V is Cauchy1 if for
every ε > 0 there is N ∈ N such that

‖xm − xn‖ < ε

for every m,n > N .

Thus, to summarize the above discussion, every Cauchy sequence of real (complex)
vectors converges to a real (complex) vector. However, as we see in the following
examples, there are Cauchy sequences in other normed spaces that do not converge
to limits in the vector space.

Example 20. Consider the normed space Q of rational numbers with norm

‖x‖ = |x|

for every x ∈ Q. Next, let xn be the sequence of rational numbers defined by

x1 = 3, x2 = 3.1, x3 = 3.14, x4 = 3.141, x5 = 3.1415, ...

so that the nth term of the sequence is the n digit truncated approximation of π.
Then, xn is Cauchy (indeed, N ≥ | log10(ε)|+ 1 in the proof), but we know
xn → π 6∈ Q, and thus xn does not converge to a limit in Q.

Example 21. Consider the normed space P of all polynomials with norm

‖p‖ = max
x∈[0,1]

|p(x)|

for every p ∈ P. Next, consider the sequence of polynomials

pn(x) =
n∑
k=0

(
x

2

)k
.

Then, pn is Cauchy in this norm, as for any m < n and x ∈ [0, 1], we find

‖pn(x)− pm(x)‖ = max
x∈[0,1]

∣∣∣∣∣∣
n∑

k=m+1

xk

2k

∣∣∣∣∣∣ ≤
n∑

k=m+1

(1
2

)k
≤ 1

2m → 0

1named after French mathematician Augustin-Louis Cauchy, who is generally considered to be
one of history’s most important and influential mathematicians
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as m,n→∞. However, because this is a geometric series, we know

lim
n→∞

pn(x) = 1
1− x

2
=: p∞(x)

for any x ∈ [0, 1], and this limit is not a polynomial (i.e., p∞ 6∈ P).

Since not every Cauchy sequence converges in an arbitrary normed space, we need
to differentiate amongst those spaces with this property and those without.

Definition 4.17. The normed space V is complete if every Cauchy sequence in V
converges (i.e., possesses a limit which is an element of V). If V does not have this
property, it is incomplete.

The completeness property allows normed spaces (and as we’ll see in future
sections, inner product spaces) to behave more like finite-dimensional vector
spaces. Without this property, one can construct sequences whose limits do not
belong to the vector space, which is impossible in the finite-dimensional case (see
Theorem 4.12 in the next section). Thus, much of our intuition, which stems from
finite-dimensional spaces, can be lost within incomplete normed spaces, and for
this reason we will not focus on them.

Definition 4.18. A complete, normed vector space V is called a Banach space2.

With this definition, we see from the previous examples that Q with the absolute
value norm and P with the maximum norm are both incomplete normed spaces
and thus, not Banach spaces.

Example 22. Many of the normed spaces mentioned in Example 18 are Banach
spaces.

1. V = Rn with the norm ‖v‖p is a Banach space for any p ∈ [1,∞).

2. V = Cn with the complex norm ‖v‖p is a Banach space for any p ∈ [1,∞).

3. For any p ∈ [1,∞), the space of real sequences

`p(R) =
{
x = {xn}∞n=1 ⊂ R

∣∣∣∣∣
∞∑
n=1
|xn|p <∞

}

with the norm

‖x‖ =
( ∞∑
n=1
|xn|p

) 1
p

is a Banach space.

4. For any p ∈ [1,∞), the space of functions V = Lp(a, b) with the p-norm is a
Banach space.

2named after Polish mathematician Stefan Banach, who was generally considered to be one of
the world’s most important and influential mathematicians during the early 20th-century
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5. The space of continuous functions C[a, b] with the norm

‖f‖∞ = max
x∈[a,b]

|f(x)|

is a Banach space

Though this last example is a Banach space, it’s important to keep in mind that a
different norm placed upon the same space may alter this property, as shown in
the following example.

Example 23. Consider C[a, b] endowed with the norm

‖f‖2 =
(∫ b

a
|f(x)|2 dx

) 1
2

instead of ‖ · ‖∞. With this norm, the space is not complete and, thus, not a
Banach space. Indeed, it suffices to consider C[0, 1] and define the sequence

fn(x) = xn

for n ∈ N and x ∈ [0, 1]. Then, we find

‖fn − fm‖2
2 =

∫ 1

0
|xn − xm|2 dx =

∫ 1

0

(
x2n − 2xm+n + x2m

)
dx

= 1
2n+ 1 −

2
m+ n+ 1 + 1

2m+ 1

= 2(n−m)2

(2m+ 1)(2n+ 1)(m+ n)

≤ n2 +m2 − 2mn
2mn(m+ n)

≤ 1
2m + 1

2n −
1

m+ n
→ 0

for m,n sufficiently large. However, this sequence of continuous functions does not
converge to a continuous function. Instead, taking n→∞, we see that

fn(x)→ f(x) :=

0, x ∈ [0, 1)
1, x = 1

and f(x) 6∈ C[0, 1].

Because this normed space is not complete, a natural question to ask is - can we
create a Banach space out of it? The answer is, in fact, yes. In essence, we merely
need to add all limits of Cauchy sequences (in the ‖ · ‖2 norm) to C[a, b] and this
will create a new, and larger, normed vector space that will be complete, and
therefore a Banach space. In this case, adding the limits of all such sequences
produces exactly the Banach space L2[a, b]. Similarly, performing the same
procedure when using the ‖ · ‖p norm will yield Lp[a, b] for any p ∈ [1,∞).

Since L2(a, b) arises naturally as the completion of the continuous functions in the
‖ · ‖2 norm, and we discussed the Fourier basis for this space in the previous
section, it makes sense to revisit this notion and describe some other bases.
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Example 24 (Complex Fourier basis). Similar to the Fourier series example, if we
consider the functions in L2(0, 1) and allow them to be complex-valued, then the
collection of functions

G =
{
e2πinx : n ∈ Z

}
called the complex Fourier basis, forms a Schauder basis for the complex-valued
functions in L2(0, 1). These functions are often used to concisely approximate a
continuous or square-integrable function in a variety of applications. Using Euler’s
formula, namely

eiθ = cos(θ) + i sin(θ),

with θ = 2πnx we can also see the connection between the basis functions of G and
those of F in Example 17.

Example 25 (Haar basis). Let

h(t) =


1, 0 < t ≤ 1

2
−1, 1

2 < t ≤ 1
0, else

and for every j, k ∈ Z define

hjk(x) = 2j/2h
(
2jx− k

)
,

which is just the function h rescaled by 2j/2 and shifted by 2−jk. Then, the
collection of functions

H =
{
hjk(x) : j, k ∈ Z

}
,

called the Haar basis is a Schauder basis for L2(0, 1). Notice that, unlike the
Fourier basis, the Haar basis has compact support (i.e., each of the basis
functions is zero outside of a closed and bounded set). Even so, any continuous
function can be represented as the uniform limit of a linear combination of such
basis functions, which is not a property enjoyed by Fourier Series. These, and
many other properties, make the Haar basis particularly useful in wavelet analysis
and image compression.

Comment. As we will see later, these collections of functions (F ,G, and H) each
form an orthonormal basis for L2(0, 1) and can be extended to L2(a, b) by scaling
and translation.

Comment. For those with an understanding of stochastic processes, any of these
Schauder bases for L2 can be used to represent a (zero-mean) square-integrable
stochastic process, as well. This result is referred to as the Karhunen-Loéve
theorem, or sometimes the KL expansion of a random process.

Finally, we conclude this section by briefly discussing the inherent relationships
between norms and related ideas concerning distance and angle.

Comment. A few, more general, comments are needed prior to ending this
section:
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Norm
(Length)

‖v‖V =
√
〈v, v〉V

Inner Product
(Angle)
〈u, v〉V

Metric
(Distance)

d(u, v) = ‖u− v‖V

induces induces

not necessarily from not necessarily from

Figure 4.2: A notion of angle between vectors, called an inner product, naturally
induces a notion of length of vectors, called a norm, which in turn naturally induces
a notion of distance between vectors, called a metric. However, norms need not
arise from inner products (e.g., ‖v‖p) and metrics need not arise from norms (e.g.,
Wasserstein metric).

1. Any vector space V endowed with a norm ‖ · ‖V naturally induces a notion of
distance, called a metric defined by

d(u, v) = ‖u− v‖V .

Metric spaces (i.e., vector spaces endowed with a metric) need not arise from
a norm. Famous examples of such metrics include the Wasserstein metric
[29] and any metric that is translation invariant [10]. In general, metric
spaces are crucial to the mathematical study of Differential Geometry and its
fundamental applications to General Relativity.

2. Some norms are themselves naturally induced by a notion of angle on a
vector space, called an inner product, which we will introduce in the next
section. As with metrics, not every norm arises from an inner product. In
particular, on Rn the norm ‖ · ‖2 is induced by an inner product, but ‖ · ‖p is
not for p 6= 2.

3. Not every vector space has the property that a norm can be defined on it
(e.g., non-metrizable spaces). This topic directs us toward a discussion
concerning Topology, which is outside the scope of the course, but it should
be mentioned that once open sets (i.e., a topology) are defined on a vector
space, they need not arise from a norm (e.g., Frechet spaces).

4.6 Finite-dimensional normed spaces
In this section, we will discuss two particularly interesting and useful facts about
finite-dimensional vector spaces, namely that they are all necessarily Banach
spaces and that every norm placed on such a space is equivalent. First, we need a
technical lemma.

Lemma 4.11. [10] Let V be a normed space with {v1, ..., vn} a LI subset. Then,
there is C > 0 such that for every α1, ..., αn

|α1|+ · · ·+ |αn| ≤ C‖α1v1 + ...αnvn‖.

Proof. Because the set {v1, ..., vn} is LI, it suffices to prove this result for any
α1, ..., αn with ∑n

k=1 |αk| = 1. Indeed, if this sum is given to be zero, then the
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linear independence of the vectors guarantees that the above inequality holds.
While if this sum is not zero, then we can normalize the scalars by it, resulting in
the condition ∑n

k=1 |αk| = 1. Hence, it suffices to take the left side of the inequality
above to be 1.

Now, we proceed by contradiction. Suppose that the theorem is false, so that for
any C > 0 there is β1, ..., βn with ∑n

k=1 |βk| = 1 such that

1
C
≥ ‖β1v1 + ...βnvn‖.

Since C > 0 is arbitrary, we can essentially make the right side as small as desired.
Thus, there is a sequence {um}∞m=1 in V with

um = α
(m)
1 v1 + · · ·+ α(m)

n vn

and ∑n
k=1 |α

(m)
k | = 1 such that ‖um‖ → 0 as m→∞. Because ∑n

k=1 |α
(m)
k | = 1, we

find |α(m)
k | ≤ 1, which means that for every fixed k = 1, ..., n the infinite sequence

{α(m)
k }∞m=1 is bounded. Hence, by the Bolzano-Weierstrauss Theorem (Appendix:

Theorem 9.1), {α(m)
1 }∞m=1 has a convergent subsequence (say γ(m)

1 ). Let α1 denote
the limit of this subsequence and define {u1,m}∞m=1 to be the subsequence of
{um}∞m=1 that corresponds to γ(m)

1 . By the same argument, {u1,m}∞m=1 has a
subsequence {u2,m}∞m=1 for which {α(m)

2 }∞m=1 converges. Thus, we let α2 denote the
limit of this subsequence (say γ(m)

2 ), and continue in this fashion n times to obtain
a subsequence {un,m}∞m=1 with terms

un,m = γ
(m)
1 v1 + · · ·+ γ(m)

n vn

for some scalars γ(m)
k for k = 1, ..., n satisfying ∑n

k=1 |γ
(m)
k | = 1 and lim

m→∞
γ

(m)
k = αk

for every k = 1, ..., n. Thus, we take the limit of un,m as m→∞ to find

lim
m→∞

un,m = lim
m→∞

(
γ

(m)
1 v1 + · · ·+ γ(m)

n vn
)

=
n∑
k=1

αkvk =: u.

Notice that the condition ∑n
k=1 |αk| = 1 is preserved by the limit, which means

that not all of these scalars can be zero. Hence, by the LI property of {v1, ..., vn},
we see that u 6= 0. However, we also see that ‖um,n‖ → ‖u‖ as m→∞. Because
‖un‖ → 0 as n→∞ by assumption and um,n is merely a subsequence of un, we
find ‖u‖ = 0, which implies u = 0. Hence, we arrive at a contradiction, and the
proof is complete.

With this, we may prove the completeness result.

Theorem 4.12. Let V be a normed space with dim(V) <∞. Then, V is
complete, and thus a Banach space.

Proof. Let {um}∞m=1 be a Cauchy sequence in V , define n = dim(V), and choose a
basis of V denoted by B = {v1, ..., vn}. Then, by Theorem 4.5 each term of the
sequence um has a unique representation with respect to B so that

um = α
(m)
1 v1 + · · ·+ α(m)

n vn
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for some α(m)
k ∈ K with k = 1, ..., n. Then, since um is Cauchy, for every ε > 0

there is N > 0 such that
‖um − u`‖ < ε

for `,m > N . By Lemma 4.11, there is C > 0 such that

|α(m)
1 − α(`)

1 |+ · · ·+ |α(m)
n − α(`)

n | ≤ C
∥∥∥(α(m)

1 − α(`)
1

)
v1 + · · ·+

(
α(m)
n − α(`)

n

)
vn
∥∥∥ .

Thus, we find for `,m > N

n∑
k=1
|α(m)
k − α(`)

k | ≤ C

∥∥∥∥∥
n∑
k=1

(
α

(m)
k − α(`)

k

)
vk

∥∥∥∥∥
= C

∥∥∥∥∥
n∑
k=1

α
(m)
k vk −

n∑
k=1

α
(`)
k vk

∥∥∥∥∥
= C‖um − u`‖
< Cε.

Since each term of this sum is nonnegative, we can conclude

|α(m)
k − α(`)

k | ≤ Cε

for every `,m > N . Of course, this implies for every fixed k = 1, ..., n the sequence
{α(m)

k }∞m=1 is a Cauchy sequence of scalars, and thus convergent. Denote the
corresponding limits of these sequences by αk for k = 1, ..., n and define

u = α1v1 + · · ·+ αnvn.

Of course, u ∈ V by the closure properties of V , and by the Triangle Inequality we
have

‖um − u‖ =
∥∥∥∥∥
n∑
k=1

(
α

(m)
k − αk

)
vk

∥∥∥∥∥ ≤
n∑
k=1
|α(m)
k − αk| · ‖vk‖ ≤M

n∑
k=1
|α(m)
k − αk|

where M = max
k=1,..,n

‖vk‖. Because α(m)
k → αk as m→∞ for every k = 1, ..., n, we

see that ‖um − u‖ → 0 as m→∞. Therefore, um is convergent with limit u ∈ V ,
and since um was an arbitrary Cauchy sequence, the completeness of V follows.

Prior to establishing the second important property, we will need one more
preliminary result. Recall that for any u, v ∈ Rn, we use the notation uTv = u · v
to denote the dot product of the vectors u and v.

Theorem 4.13 (Cauchy-Schwarz Inequality for ‖ · ‖2). For any u, v ∈ Rn, we have

|uTv| ≤ ‖u‖2‖v‖2.

Though this crucial result requires only an understanding of the dot product of
two vectors, we will postpone its proof and instead prove it in a more general
setting involving any inner product (which is a term that will be precisely defined
later). Let’s first demonstrate how Cauchy-Schwarz might be useful.
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Example 26. We wish to verify that ‖ · ‖2 is, in fact, a norm on Rn. First, we see
that 0 ∈ Rn satisfies

‖0‖2 =
√√√√ n∑
j=1

02 = 0.

Additionally, if v ∈ Rn is nonzero, then there exists m ∈ N with 1 ≤ m ≤ n such
that vm 6= 0. Thus,

‖v‖2 =
√√√√ n∑
j=1
|vj|2 ≥

√
|vm|2 = |vm| > 0.

Next, we let α ∈ R and v ∈ Rn be given, and note that

‖αv‖2 =
√√√√ n∑
j=1
|αvj|2 = |α|

√√√√ n∑
j=1
|vj|2 = |α|‖v‖2.

Finally, we must show the Triangle Inequality, namely

‖u+ v‖2 ≤ ‖u‖2 + ‖v‖2

for every u, v ∈ Rn. Here, the Cauchy-Schwarz inequality will make life easy.
Indeed, we use this theorem to find

‖u+ v‖2
2 = (u+ v) · (u+ v)

= u · u+ v · u+ u · v + v · v
= ‖u‖2

2 + 2(u · v) + ‖v‖2
2

≤ ‖u‖2
2 + 2|uTv|+ ‖v‖2

2

≤ ‖u‖2
2 + 2‖u‖2‖v‖2 + ‖v‖2

2

= (‖u‖2 + ‖v‖2)2 .

Finally, taking the square root of both sides yields the Triangle Inequality, and
combining these results proves that ‖ · ‖2 is a norm.

Now, we turn to the equivalence of norms on finite-dimensional spaces.

Definition 4.19. We say that two norms ‖ · ‖A and ‖ · ‖B defined on the same
vector space V are equivalent if there are C1, C2 > 0 such that

C1‖v‖A ≤ ‖v‖B ≤ C2‖v‖A

for any v ∈ V .

Comment. It is identical to define equivalence of two norms by the following:
there exists C > 1 such that

1
C
‖v‖A ≤ ‖v‖B ≤ C‖v‖A

for any v ∈ V .
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The idea here is not that the values of different norms are equal (as evidenced by
Example 19), but instead that each norm can be controlled, i.e. bounded both
above and below, by the other.

Theorem 4.14. If V is a normed vector space with dim(V) <∞, then all norms
on V are equivalent.

Proof. Since dim(V) <∞, define n ∈ N to be the dimension of V . Let
B = {v1, ..., vn} be a basis for V so by Lemma 4.5, for any u ∈ V there are unique
α1, ..., αn ∈ K such that

u =
n∑
k=1

αkvk.

Next, define a function φ : V → R by

φ(u) =
√√√√ n∑
k=1
|αk|2

so that φ represents the 2-norm of u with respect to the coordinate mapping
generated by the basis B. Of course, we can prove that φ is a norm. Since B is a
basis for V , the set {v1, ..., vn} is linearly independent and thus

u =
n∑
k=1

αkvk = 0 iff αk = 0 for all k = 1, ..., n iff φ(u) = 0.

Additionally, the scalar multiplication property and Triangle Inequality follow as
they did for the 2-norm in Example 26. Hence, φ is a norm.

Now, let ‖ · ‖ be an arbitrary norm on V . By the Triangle Inequality, we have for
any u ∈ V

‖u‖ =
∥∥∥∥∥
n∑
k=1

αkvk

∥∥∥∥∥ ≤
n∑
k=1
|αk| · ‖vk‖. (4.6)

Considering the vectors of nonnegative real numbers

α =


|α1|
|α2|
...
|αn|

 and v =


‖v1‖
‖v2‖
...
‖vn‖


we have by Cauchy-Schwarz,

|αTv| ≤ ‖α‖2‖v‖2

or written another way

n∑
k=1
|αk|‖vk‖ ≤

√√√√ n∑
k=1
|αk|2

√√√√ n∑
k=1
‖vk‖2.

Putting this inequality together with (4.6), we find for any u ∈ V

‖u‖ ≤

√√√√ n∑
k=1
|αk|2

√√√√ n∑
k=1
‖vk‖2 = C2φ(u) (4.7)
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where

C2 =
√√√√ n∑
k=1
‖vk‖2

is independent of the choice of u, and is thus constant.

Now, define the set

S =

(β1, ..., βn) ∈ Kn :
√√√√ n∑
k=1
|βk|2 = 1


and the function f : S → R by

f(β) = f(β1, ..., βn) =
∥∥∥∥∥
n∑
k=1

βkvk

∥∥∥∥∥ .
Since S is a compact (i.e., closed and bounded - see Appendix: Theorem 9.2) set
and f is a continuous function, it follows from the Extreme Value Theorem (see
Appendix: Theorem 9.3 or [21]) that f must attain a minimum on S. Thus, there
are γ1, ..., γn ∈ K such that

f(γ1, ..., γn) = min
β1,...,βn∈S

f(β1, ..., βn) = C1

with √√√√ n∑
k=1
|γk|2 = 1.

Then, for any u ∈ V we have

‖u‖ =
∥∥∥∥∥
n∑
k=1

αkvk

∥∥∥∥∥

=

√√√√ n∑
k=1
|αk|2√√√√ n∑

k=1
|αk|2

·
∥∥∥∥∥
n∑
k=1

αkvk

∥∥∥∥∥

=
√√√√ n∑
k=1
|αk|2 ·

∥∥∥∥∥∥∥∥∥∥∥∥
n∑
k=1

αk√√√√ n∑
k=1
|αk|2

vk

∥∥∥∥∥∥∥∥∥∥∥∥
≥

√√√√ n∑
k=1
|αk|2

∥∥∥∥∥
n∑
k=1

γkvk

∥∥∥∥∥
= C1

√√√√ n∑
k=1
|αk|2

= C1φ(u).
Finally, combining this with the previously-established inequality (4.7), we have

C1φ(u) ≤ ‖u‖ ≤ C2φ(u)
for every u ∈ V , and thus the norms are equivalent. Since ‖ · ‖ was arbitrary, we
see that all norms defined on V are equivalent, and the proof is complete.
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4.7 Inner product spaces & Hilbert spaces
Now that we better understand the norm structure on a vector space, we can
generalize this idea to an inner product, which defines the notion of angles between
vectors.

Definition 4.20. Let V be a vector space. An inner product (dot product or
scalar product) on V is a function that assigns to each pair u, v ∈ V a scalar in K,
denoted by 〈u, v〉, satisfying the following properties

1. 〈0, 0〉 = 0 and if v 6= 0 then 〈v, v〉 > 0

2. Conjugate Symmetry:
For every u, v ∈ V ,

〈u, v〉 = 〈v, u〉
and if K = R, then

〈u, v〉 = 〈v, u〉.

3. Conjugate Linearity in the first argument:
For every α, β ∈ K and u, v, w ∈ V ,

〈αu+ βv, w〉 = α〈u,w〉+ β〈v, w〉

and if K = R, then

〈αu+ βv, w〉 = α〈u,w〉+ β〈v, w〉.

A vector space endowed with such an inner product is referred to as an inner
product space.

Comment. As previously mentioned, every inner product induces a norm on V .
In particular, this induced norm is defined by

‖v‖V =
√
〈v, v〉

for every v ∈ V . The first two norm properties can be verified directly from the
properties of the inner product, while the third requires a general version of the
Cauchy-Schwarz inequality that we will state and prove shortly.

Comment. Notice that for K = C, the conjugation within the linearity property
only occurs in the first entry of the inner product, so that

〈w, αu+ βv〉 = α〈w, u〉+ β〈w, v〉.

Indeed, using the properties of the inner product, we see

〈w, αu+ βv〉 = 〈αu+ βv, w〉

= α〈u,w〉+ β〈v, w〉
= α〈u,w〉+ β〈v, w〉
= α〈w, u〉+ β〈w, v〉.

Of course, this equality holds in the case K = R as well.
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Comment. In this same case (i.e. K = C), an equivalent definition of inner
product can be generated by replacing the conjugate linearity condition with
standard linearity, namely, for every α, β ∈ K and u, v, w ∈ V ,

〈αu+ βv, w〉 = α〈u,w〉+ β〈v, w〉.

If this is done, it follows from the previous comment that the inner product is then
conjugate linear in the second (rather than the first) argument. Of course, this is
merely a matter of convention and while some sources use the latter formulation,
we will stick to Definition 4.20 so as to utilize the familiar Hermitian transpose
notation as in the second example below.

Example 27. Here are some prominent examples of inner products on vector
spaces, a few of which we’ve already touched on.

1. V = Rp

For any u, v ∈ Rp, the dot product is an inner product, which is often called
the standard inner product on Rp, defined by

〈u, v〉 =
p∑
j=1

ujvj = u · v = uTv.

The norm induced by this inner product is the Euclidean norm, which is
defined for any u ∈ Rp by

‖u‖2 =
√
〈u, u〉 =

√√√√ p∑
j=1
|uj|2.

2. V = Cp

For any u, v ∈ Cp, the conjugate dot product is an inner product, which is
often called the standard inner product on Cp, defined by

〈u, v〉 =
p∑
j=1

ujvj = uHv.

The norm induced by this inner product is defined for any u ∈ Cp by

‖u‖2 =
√
〈u, u〉 =

√√√√ p∑
j=1
|uj|2.

3. V = L2(a, b)
For any f, g ∈ L2(a, b), we can define an inner product by

〈f, g〉 =
∫ b

a
f(x)g(x) dx.

The norm induced by this inner product is defined for any f ∈ L2(a, b) by

‖f‖2 =
√
〈f, f〉 =

√∫ b

a
|f(x)|2 dx.
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4. V = Rp×q

For any A,B ∈ Rp×q, we may define an inner product, called the Frobenius
inner product, by

〈A,B〉 = tr
(
ATB

)
.

The norm induced by this inner product is called the Frobenius norm and
is defined for any A ∈ Rp×q by

‖A‖F =
√
〈A,A〉 =

√
tr (ATA) =

√√√√ q∑
j=1
‖aj‖2

2 =
√√√√ p∑
i=1

q∑
j=1
|aij|2

where aj represents the jth column of A and aij is the (i, j)th entry of A.

5. The space of real sequences

`2(R) =
{
x = {xn}∞n=1 ⊂ R

∣∣∣∣∣
∞∑
n=1
|xn|2 <∞

}

with the inner product

〈x, y〉 =
∞∑
n=1

xnyn

is an inner product space.

6. None of the other normed spaces mentioned in Example 18 are inner product
spaces.

For the remainder of the section, we will tacitly assume that V is a vector space
with a given inner product denoted by 〈·, ·〉 and ‖ · ‖ is the associated norm
induced by this inner product.

For inner product spaces, the notion of an isomorphism extends in an analogous
manner, as well. In particular, two inner product spaces are isomorphic if they are
isomorphic as vector spaces and the inner product is preserved by this mapping.

Definition 4.21. Let V and W be inner product spaces. A mapping T : V → W
is called an isomorphism if T is linear, one-to-one, onto, and

〈T (u), T (v)〉W = 〈u, v〉V

for all u, v ∈ V where 〈·, ·〉V is the inner product on V and 〈·, ·〉W is the
corresponding inner product on W . In this case, we say that V and W are
isomorphic inner product spaces.

Next, we prove some basic properties of inner product spaces.

Lemma 4.15. For any v ∈ V ,

〈0, v〉 = 〈v, 0〉 = 0.
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Proof. Let v ∈ V be given. Then, by the properties of the inner product we have

〈0, v〉 = 〈0 · v, v〉 = 0〈v, v〉 = 0.

Finally, the conjugate symmetry of the inner product further implies

〈v, 0〉 = 〈0, v〉 = 0 = 0.

Theorem 4.16 (Cauchy-Schwarz Inequality). For every u, v ∈ V

|〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉

or stated another way,
|〈u, v〉| ≤ ‖u‖ · ‖v‖.

Proof of Cauchy-Schwarz. Let u, v ∈ V be given. If v = 0, then both sides of the
inequality are necessarily zero by Lemma 4.15, and therefore the result holds.
Now, if v 6= 0 we define

w = u− 〈v, u〉
〈v, v〉

v.

Intuitively, w represents the projection of u onto the hyperplane orthogonal to v.
Then, we see that

〈v, w〉 = 〈v, u〉 − 〈v, u〉
〈v, v〉

〈v, v〉 = 0.

Additionally, from the definition of w we can write

u = w + 〈v, u〉
〈v, v〉

v.

Using the fact that 〈v, w〉 = 0 (which implies 〈w, v〉 = 0) and 〈w,w〉 ≥ 0 we have

〈u, u〉 =
〈
w + 〈v, u〉

〈v, v〉
v, w + 〈v, u〉

〈v, v〉
v

〉

= 〈w,w〉+ 〈v, u〉
〈v, v〉

〈w, v〉+ 〈v, u〉
〈v, v〉

〈v, w〉+ |〈v, u〉|
2

|〈v, v〉|2
〈v, v〉

= 〈w,w〉+ |〈v, u〉|
2

|〈v, v〉|2
〈v, v〉

= 〈w,w〉+ |〈v, u〉|
2

〈v, v〉

≥ |〈v, u〉|
2

〈v, v〉

= |〈u, v〉|
2

〈v, v〉
.

Finally, multiplying both sides by 〈v, v〉 yields the desired inequality.

Another useful property in these spaces is the continuity of the inner product as
shown in the following theorem.
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Theorem 4.17. For every un, vn ∈ V with un → u and vn → v in V , we have

〈un, vn〉 → 〈u, v〉.

Proof. Using the triangle inequality and Cauchy-Schwarz, we find

|〈un, vn〉 − 〈u, v〉| = |〈un, vn〉 − 〈un, v〉+ 〈un, v〉 − 〈u, v〉|
≤ |〈un, vn − v〉|+ |〈un − u, v〉|
≤ ‖un‖ · ‖vn − v‖+ ‖un − u‖ · ‖v‖

Now, taking n→∞, we find ‖vn − v‖ → 0 and ‖un − u‖ → 0 by assumption.
Hence, the above inequality shows

|〈un, vn〉 − 〈u, v〉| → 0

as n→∞, and thus
〈un, vn〉 → 〈u, v〉.

Now that we’ve covered the basic properties of inner product spaces, we can
further discuss their completeness properties. First, we can immediately deduce
that, similar to normed spaces, inner product spaces may fail to be complete.

Comment. The vector space C[a, b] endowed with the inner product

〈f, g〉 =
∫ b

a
f(x)g(x) dx

induces the norm ‖ · ‖2 and, by Example 23, must be incomplete.

Hence, we may discuss the notion of completeness in this context, as well.

Definition 4.22. A complete, inner product space V is called a Hilbert space3.

Comment. Because inner product spaces are automatically normed, we see that
all Hilbert spaces must be Banach spaces. Additionally, all of the inner product
spaces mentioned in Example 27 are Hilbert spaces, as well. Finally, by Theorem
4.12, every finite dimensional inner product space is necessarily complete, and thus
a Hilbert space.

To close this section, we will prove one final result that highlights the need for the
completeness property and will prove very useful in subsequent sections. First, we
require a definition.

Definition 4.23. A subset M of a normed space V is closed if for every sequence
{vn}∞n=1 ⊂M with vn → v for some v ∈ V , we have v ∈M . Said another way, M is
closed if it contains the limits of all of its convergent sequences.

Theorem 4.18. Let V be a Hilbert space and M ⊆ V be a closed subspace. Then,
M is complete.

3named after German mathematician David Hilbert, who is generally considered to be one of
the most important and influential mathematicians of all time



62 CHAPTER 4. LINEAR VECTOR SPACES

Proof. To prove that M is complete, we let vn ∈M for n ∈ N be a Cauchy
sequence. Then, because M ⊆ V , we see that vn ∈ V for every n ∈ N. Since V is
complete, this Cauchy sequence of elements from V must converge to a limit
v ∈ V . Finally, because M is closed, it must contain all of its limit points, or said
another way, the limit of every convergent sequence in M must also be in M .
Hence, v ∈M , and since vn was an arbitrary Cauchy sequence that has been
shown to converge to a limit in M , the subspace M is complete.

4.8 Orthogonality and its Consequences
Next, we use the inner product to precisely define the notion of orthogonal
elements of a vector space. Throughout, we assume V is a Hilbert space.
Definition 4.24. Let I be an index set that could be, for instance I = {1, ..., n}
for some n ∈ N or I = N. We say

1. The elements u, v ∈ V are orthogonal (denoted u ⊥ v) if

〈u, v〉 = 0.

2. The set S = {vj}j∈I ⊆ V is orthogonal if 〈vj, vk〉 = 0 for every j, k ∈ I with
j 6= k.

3. The set S = {vk}k∈I ⊆ V is orthonormal if S is orthogonal and ‖vj‖ = 1 for
every j ∈ I.

Example 28. Here are a few examples of orthogonality in Hilbert spaces.
1. Let

u =

 3
0
−1

 and v =

−1
5
−3

 .
Then, these vectors satisfy

〈u, v〉 = uTv = −3 + 3 = 0,

and thus are orthogonal with respect to the standard inner product on R3.
As neither is a unit vector, the set S = {u, v} is orthogonal but not
orthonormal.

2. Let
A =

[
1 −2
1 4

]
and B =

[
1 −2
−1 −1

]
and note that

ATB =
[

1 1
−2 4

] [
1 −2
−1 −1

]
=
[

0 −3
−6 0

]
.

Therefore, tr(ATB) = 0, and we see that A and B are orthogonal with
respect to the Frobenius inner product on R2×2. In particular, we note that
each of the columns of A are orthogonal to their respective counterparts in
B. Said another way, if we denote A = [a1 a2] and B = [b1 b2], then

a1 · b1 = a2 · b2 = 0.
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3. Let m,n ∈ N be given and define

f(x) = sin(nx) and g(x) = cos(mx).

Then, f, g ∈ L2(0, 2π) are orthogonal with respect to the standard inner
product on this space; that is∫ 2π

0
f(x)g(x) dx = 0,

and this remains true for any choice of m,n ∈ N.

As we have seen with traditional vectors, orthogonal subsets of a vector space that
do not contain the zero vector are necessarily linearly independent.

Theorem 4.19. Let n ∈ N be given and assume S = {v1, ..., vn} ⊆ V is orthogonal
with 0 6∈ S. Then, S is linearly independent.

Proof. The proof is assigned as a homework problem (cf. Problem 4.13).

Definition 4.25. Due to the differences between finite- and infinite-dimensional
spaces, we require two definitions for bases.

1. If dim(V) = n ∈ N, then the set B = {v1, ..., vn} is an orthonormal basis
for V if B is orthonormal and spans V .

2. If dim(V) =∞ (and V is separable4), then the set B = {vn : n ∈ N} is an
orthonormal basis for V if B is orthonormal and a Schauder basis for V .

Example 29. We’ve seen a few examples of orthonormal bases.

1. For n ∈ N, the set B = {e1, ..., en} is an orthonormal basis for Rn.

2. Of course, there are other orthonormal bases for these spaces. For example,

B =
{[ 1√

2
1√
2

]
,

[ 1√
2

− 1√
2

]}

is an orthonormal basis for R2.

3. The set of functions

B =
{

1√
2π

}
∪
{

1√
π

sin(nx) : n ∈ N
}
∪
{

1√
π

cos(mx) : m ∈ N
}

is an orthonormal basis for L2(0, 2π).

Why are orthogonal and orthonormal bases so important?
For starters, they make a number of computations in vector spaces considerably
easier than using bases without this property. In particular, orthogonal bases allow
us to find the coordinates of any vector in the space without much work. Indeed, if

4We will not discuss separability here, but this condition is technically required for the existence
of a countable Schauder basis.
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we let B = {v1, ..., vn} be an orthogonal basis for a Hilbert space V , then by
Lemma 4.5 for any v ∈ V there are unique α1, ..., αn ∈ K such that v = ∑n

j=1 αjvj.
Therefore, for any k = 1, ..., n, we find

〈vk, v〉 =
〈
vk,

n∑
j=1

αjvj

〉
=

n∑
j=1

αj〈vk, vj〉.

Since the basis is orthogonal, we see that 〈vk, vj〉 = 0 for j 6= k, and the
relationship above reduces to

〈vk, v〉 = αk〈vk, vk〉.

Finally, since vk 6= 0, we can divide both sides to find

αk = 〈vk, v〉
〈vk, vk〉

,

and this provides an explicit expression for the coordinates of any element v ∈ V
with respect to a given orthogonal basis. Furthermore, if B is orthonormal, then
〈vk, vk〉 = 1 and this yields

αk = 〈vk, v〉.
Thus, the coordinates of a given vector are merely the inner products of the vector
with the orthonormal basis elements. In the infinite-dimensional case, Theorem
4.17 allows us to exchange limits inside and outside of the inner product, and thus
we have proved the following result.

Theorem 4.20. Let {vj}j∈I be an orthonormal basis for V .

1. If I = {1, ..., n}, then every v ∈ V can be represented as

v =
n∑
j=1
〈vj, v〉vj.

2. If I = N, then every v ∈ V can be represented as

v =
∞∑
j=1
〈vj, v〉vj.

Since they can be so useful, we would like to know how to construct such bases.
Fortunately, a specific algorithm, known as the Gram-Schmidt process, has
been developed to obtain an orthonormal (or just orthogonal) basis from any
spanning set of an inner product space. Given a spanning set consisting of n
elements, the algorithm requires n steps to construct an orthonormal basis. In
general, the idea is that we may sequentially redefine elements of a spanning set in
order to remove any previously-occurring directions from each vector so that the
newly resulting elements are orthogonal. For instance, consider that we are given a
basis for R2 defined by B = {v1, v2} where

v1 =
[
1
0

]
, v2 =

[
3
1

]
.
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Then, we can define a new basis by first keeping v1 as the initial element, and then
removing any portion of v2 that points in the v1 direction. In this case, because v1
merely represents the first entry of a given vector, we see that a scaling factor of
3v1 is included within v2. Thus, we let u1 = v1 and then define

u2 = v2 − 3u1 = v2 − 3v1 =
[
0
1

]
.

Finally, the resulting set

{u1, u2} =
{[

1
0

]
,

[
0
1

]}
is an orthogonal basis for R2. Generally, normalization is then required to further
construct an orthonormal basis.

Theorem 4.21 (Gram-Schmidt Process). Let n ∈ N be given and S = {v1, ..., vn}
be a spanning set for a subspace M ⊆ V . Then, there is k ∈ N with k ≤ n and
w1, ..., wk ∈ V such that Bw = {w1, ..., wk} is an orthonormal basis for M .

Gram-Schmidt Algorithm. For simplicity, we will first reduce S to a basis for M ,
because if it is only a spanning set, then we may delete any vectors that are linear
combinations of others in S (just as in Theorem 4.4) to arrive at a basis Bv

consisting of k ≤ n elements. In particular, those vectors which can be expressed as
a linear combination of others in S will result in 0 vectors under the Gram-Schmidt
process, and we merely omit these from the newly-constructed orthogonal basis.

Given Bv, we begin by defining u1 = v1. Then, for every i, j = 1, ..., k with i < j
we let

αij = 〈ui, vj〉
〈ui, ui〉

.

Here, the u vectors will be defined sequentially by the algorithm and within the
definition of a particular uj, we may utilize the previous coefficients αij for i < j.
Next, we let

u2 = v2 − α12u1,

u3 = v3 − α13u1 − α23u2,

and continue this process for every j ≤ k by letting

uj = vj −
j−1∑
i=1

αijui.

Then, the set Bu = {u1, ..., uk} is orthogonal by construction and must span M
(which can be shown directly using induction), which means it is an orthogonal
basis for M . Finally, we normalize each element so that

wj = uj
‖uj‖

for every j = 1, ..., k to obtain an orthonormal basis Bw = {w1, ..., wk}.

The next example should demonstrate that any spanning set for a subspace M can
be transformed into an orthogonal basis for M via Gram-Schmidt.
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Example 30. Let V = R3 and define M = span{v1, v2, v3} where

v1 =

1
1
1

 , v2 =

2
2
2

 , v3 =

3
0
0

 .
Note that these vectors do not form a basis for M as they are linearly dependent;
in particular, v2 = 2v1. We construct an orthogonal basis for M as follows. First,
let u1 = v1. Then, compute

α12 = 〈u1, v2〉
〈u1, u1〉

= 6
3 = 2

and let

u2 = v2 − α12u1 =

2
2
2

− 2

1
1
1

 = 0.

Since u2 = 0, we discard it and remove it from the orthogonal basis that we’re
constructing. Next, compute

α13 = 〈u1, v3〉
〈u1, u1〉

= 3
3 = 1

and let

u3 = v3 − α13u1 =

3
0
0

− 1

1
1
1

 =

 2
−1
−1

 .
Thus,

Bu = {u1, u3} =


1

1
1

 ,
 2
−1
−1




is an orthogonal basis for M . To construct an orthonormal basis, we merely divide
each vector by its respective length. In particular, normalizing u1 and u3, we let

w1 = u1

‖u1‖2
= 1√

3

1
1
1


and

w3 = u3

‖u3‖2
= 1√

6

 2
−1
−1

 .
Then, {w1, w3} is an orthonormal basis for M .

Though our examples generally come from Rn, it should be noted that the
Gram-Schmidt process is not restricted to finite-dimensional Hilbert spaces, and is
often used to construct orthonormal bases for finite-dimensional subspaces of
infinite-dimensional vector spaces. For instance, if one wishes to computationally
represent a function f ∈ L2(a, b), they may use a specific set of functions to
approximate f , but because orthonormal functions are easier to work with, they
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may construct an orthonormal basis for the approximating subspace using
Gram-Schmidt and then merely express the coordinates of f relative to this basis.
Computationally-speaking, if one fixes an orthonormal basis, then it is much easier
to store the coordinates of f (which is just an n-dimensional vector where n is the
number of basis elements) relative to this basis rather than attempting to store f
using a partitioned discretization of the interval [a, b].

That being said, for finite-dimensional vector spaces, the Gram-Schmidt process is
inherently related to a specific matrix factorization, called the QR Factorization
of a given matrix A ∈ Rp×q.

Theorem 4.22 (QR Factorization). For any A ∈ Rp×q \ {0}, there are k ∈ N with
k ≤ q, a matrix Q ∈ Rp×k with orthonormal columns, and an upper triangular
matrix R ∈ Rk×q with rank(R) = k such that A = QR.

Proof. Let A ∈ Rp×q \ {0} be given and denote its q column vectors in Rp by
v1, ..., vq. Then, define M = span{v1, ..., vq}, and use the Gram-Schmidt process to
construct an orthogonal basis for M with any associated zero vectors removed,
resulting in a set of k ≤ q vectors denoted by {u1, ..., uk}. Next, normalize these
vectors to form an orthonormal basis for M , denoted by B = {w1, ..., wk} and
create the matrix Q ∈ Rp×k with columns w1, ..., wk. By construction, the columns
of Q are orthonormal. Finally, use the coefficients of the Gram-Schmidt process to
construct R ∈ Rk×q with the associated p− k rows removed from R whose indices
correspond to the zero column vectors removed from Q. In particular, since αij is
only defined for i < j, the matrix R is first defined by

Rij =


‖ui‖2αij, if i < j

‖ui‖2, if i = j

0, if i > j

for i = 1, ..., p, j = 1, ..., q. Then, p− k rows are removed from R, which
correspond to any zero columns encountered during the process of building Q, to
define the entries Rij for i = 1, ..., k, j = 1, ..., q. Finally, it follows from this
construction that R is upper triangular with rank(R) = k.

In practice, the decomposition takes the form

A =

v1

∣∣∣∣∣ · · ·
∣∣∣∣∣vq
 =

w1

∣∣∣∣∣ · · ·
∣∣∣∣∣wk


︸ ︷︷ ︸

Q


‖u1‖2 ‖u1‖2α12 · · · ‖u1‖2α1q

0 ‖u2‖2
. . . ...

... ‖uk−1‖2α(q−1)q
0 0 · · · ‖uk‖2


︸ ︷︷ ︸

R

.

Note that, due to the normalization of the columns of Q, the ‖ui‖2 terms for
i = 1, ..., k are always along the diagonal of R, but neither Q nor R need be square
matrices.

Comment. The factorization of A in the theorem is more specifically referred to
as the normalized QR Factorization of A, and is not necessarily unique.
Further, we mention that this factorization holds for complex-valued matrices, as
well, with the resulting factors Q and R also possibly complex-valued.
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Example 31. Continuing our previous example for Gram-Schmidt and extending
it to the QR Factorization, we consider the matrix

A =

1 2 3
1 2 0
1 2 0

 .
Then, we can invert the relationship between the v and u vectors from the
Gram-Schmidt process. Namely, solving for the v vectors in terms of the u vectors,
we find

u1 = v1 v1 = u1,

u2 = v2 − α12u1 =⇒ v2 = u2 + α12u1,

u3 = v3 − α13u1 − α23u2 v3 = u3 + α13u1 + α23u2.

Using this, we can decompose A as

A =

 v1

∣∣∣∣∣ v2

∣∣∣∣∣ v3



=

 u1

∣∣∣∣∣ α12u1 + u2

∣∣∣∣∣ α13u1 + α23u2 + u3



=

 u1

∣∣∣∣∣ u2

∣∣∣∣∣ u3


1 α12 α13

0 1 α23
0 0 1


However, since u2 = 0, we remove the second column of the matrix on the left and
the second row of the matrix on the right, resulting in

A =

 u1

∣∣∣∣∣ u3


[
1 α12 α13
0 0 1

]

=

 u1
‖u1‖2

∣∣∣∣∣ u3
‖u3‖2


[
‖u1‖2 α12‖u1‖2 α13‖u1‖2

0 0 ‖u3‖2

]

=

 w1

∣∣∣∣∣ w3


[
‖u1‖2 α12‖u1‖2 α13‖u1‖2

0 0 ‖u3‖2

]

=


1√
3

2√
6

1√
3 −

1√
6

1√
3 −

1√
6


︸ ︷︷ ︸

Q

[√
3 2
√

3
√

3
0 0

√
6

]
︸ ︷︷ ︸

R

.
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With the Gram-Schmidt process and QR Factorization well-understood, we can
discuss the formulation and solution of finite-dimensional least squares problems,
which can be solved efficiently using this factorization. This will occur once linear
operators are introduced in the next chapter.

4.9 Properties of Hilbert Spaces
Within this section, we use the notion of orthogonality to discuss two interesting
geometric properties - the orthogonal projection of a vector onto a subspace and
the orthogonal complement of a set. Additionally, we will introduce the direct sum
of two sets and show that any Hilbert space can be decomposed into the direct
sum of a closed subspace and its orthogonal complement.

Definition 4.26. Let V be a Hilbert space with M ⊆ V . Then the orthogonal
complement of M is defined by

M⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈M}.

Example 32. Consider the plane

P = {x ∈ R3 : x1 + x2 + x3 = 0}.

Then, P⊥ is the set of all vectors that are orthogonal to this plane, which as you
might be aware, form a line. In particular, these points lie along the normal vector
of the plane, namely

P⊥ = {x ∈ R3 : x = α

1
1
1

 , for some α ∈ R}.

Notice that P⊥ must contain 0, and thus translated lines that are parallel to the
normal vector are not contained within the orthogonal complement.

Further, we note that within the definition of orthogonal complement M need only
be a subset and not itself a subspace. Regardless, the next result shows that M⊥ is
always a subspace, even if M is not.

Theorem 4.23. For any M ⊆ V , the orthogonal complement M⊥ is a subspace of
V .

Proof. Certainly, 0 ∈M⊥ because by Lemma 4.15

〈0, w〉 = 0

for every w ∈M . Additionally, if u1, u2 ∈M⊥ then

〈u1, w〉 = 〈u2, w〉 = 0

for every w ∈M . Therefore, we have for every w ∈M

〈u1 + u2, w〉 = 〈u1, w〉+ 〈u2, w〉 = 0,

which implies u1 + u2 ∈M⊥. The closure of M⊥ under scalar multiplication is
similarly justified, and the proof is complete.
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Example 33. For any vector space V with an inner product, the orthogonal
complement of the entire space V is just

V⊥ = {0}.

Therefore, the only vector that is orthogonal to every vector in V is the zero
vector. Hence, if a specific element u ∈ V satisfies

〈u, v〉 = 0

for every v ∈ V , then it follows that u = 0.

Next, we will prove a crucial orthogonality result that will be needed in the proof
of the Fundamental Theorem of Linear Algebra (Section 5.3).

Theorem 4.24 (Projection Theorem). Let V be a Hilbert space and M ⊆ V be a
closed subspace. Then, for any v ∈ V there exists a unique v∗ ∈M such that

δ := ‖v − v∗‖ = inf
u∈M
‖v − u‖.

Moreover, the difference is orthogonal to M , meaning v − v∗ ∈M⊥.

Said another way, for any element v of the Hilbert space, there is a minimal
distance from v to any element of the subspace M . In this way, we define δ to be
the distance between the vector v and the subspace M .

Proof. We first prove the existence of v∗ ∈M . Let v ∈ V be given and define

δ := inf
u∈M
‖v − u‖.

We must be a bit careful here because δ = 0 or δ =∞ are both technically
possible. By definition of the infimum [10], there is a sequence un ∈M such that

δn = ‖v − un‖

satisfies δn → δ as n→∞. The plan is to show that un is Cauchy, which will
imply its convergence to a limit in M that we will define to be v∗. Let wn = v − un
for every n ∈ N so that ‖wn‖ = δn and

‖wn + wm‖ = ‖un + um − 2v‖ = 2
∥∥∥∥1

2 (un + um)− v
∥∥∥∥ ≥ 2δ

because 1
2(un + um) ∈M . Furthermore, we find

‖un − um‖2 = ‖wn − wm‖2

= 〈wn − wm, wn − wm〉
= ‖wn‖2 + ‖wm‖2 − 〈wn, wm〉 − 〈wm, wn〉
= 2‖wn‖2 + 2‖wm‖2 − ‖wn‖2 − ‖wm‖2 − 〈wn, wm〉 − 〈wm, wn〉
= 2

(
‖wn‖2 + ‖wm‖2

)
− ‖wn + wm‖2

≤ 2
(
δ2
n + δ2

m

)
− (2δ)2

= 2
(
δ2
n − δ2

)
+ 2

(
δ2
m − δ2

)
.
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Letting m,n→∞, we see that ‖un − um‖2 → 0 because δn → δ and δm → δ.
Therefore, un is a Cauchy sequence in M . Because M is a closed subspace of V ,
Theorem 4.18 implies that it is also complete, and hence un converges to a limit,
denoted by v∗ ∈M . Because v∗ ∈M , we see that ‖v − v∗‖ ≥ δ and

‖v − v∗‖ ≤ ‖v − un‖+ ‖un − v∗‖ = δn + ‖un − v∗‖ → δ

as n→∞. Thus, ‖v − v∗‖ ≤ δ, and we conclude that ‖v − v∗‖ = δ, so that the
infimum is attained at v∗.

Now, to prove uniqueness we first assume that v∗1 ∈M and v∗2 ∈M satisfy
‖v − v∗1‖ = δ and ‖v − v∗2‖ = δ.

Adding and subtracting as in the above calculation, we find
‖v∗1 − v∗2‖2 = ‖(v∗1 − v)− (v∗2 − v)‖2

= 2‖v∗1 − v‖2 + 2‖v∗2 − v‖2 − ‖(v∗1 − v) + (v∗2 − v)‖2

= 2δ2 + 2δ2 − 4
∥∥∥∥1

2(v∗1 + v∗2)− v
∥∥∥∥2
.

Because M is a subspace, we see that 1
2(v∗1 + v∗2) ∈M and thus∥∥∥∥1

2(v∗1 + v∗2)− v
∥∥∥∥ ≥ δ.

Using this in the above series of equalities, we find
‖v∗1 − v∗2‖2 ≤ 0,

and since this quantity must be nonnegative, we have ‖v∗1 − v∗2‖2 = 0. Hence,
v∗1 = v∗2 and uniqueness is established.

Finally, we prove v − v∗ ∈M⊥. Let w = v − v∗ so that ‖w‖ = δ. Assume that
w 6∈M⊥, then there exists z ∈M such that

〈w, z〉 = α 6= 0.
Furthermore, z 6= 0 as this would imply 〈w, z〉 = 0. Then, for any β ∈ K, we find

‖w − βz‖2 = 〈w − βz, w − βz〉
= ‖w‖2 − β〈w, z〉 − β̄〈w, z〉+ |β|2‖z‖2

= ‖w‖2 − βα− β̄ᾱ + |β|2‖z‖2

= ‖w‖2 − β̄ᾱ− β
(
α− β̄‖z‖2

)
.

Now, choosing β̄ = α
‖z‖2 so as to eliminate the final term on the right side, we find

‖w − βz‖2 = ‖w‖2 − |α|
2

‖z‖2 < ‖w‖
2 = δ2,

which implies
‖w − βz‖ < δ.

However, since w − βz = v − (v∗ + βz) and v∗ + βz ∈M , we see that
‖w − βz‖ ≥ inf

u∈M
‖v − u‖ = δ.

This contradicts our original assumption w 6∈M⊥, thereby implying w ∈M⊥ and
completing the proof.
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Comment. In view of this theorem, it is customary to refer to v∗ ∈M as the
orthogonal projection of the vector v onto the subspace M , as it is the unique
element of M with v − v∗ ∈M⊥. Of course, this is an idea that we’ve likely seen
for vectors in Rn in a Linear Algebra course, though v∗ is typically written as
projMv in that context.

Next, we define the direct sum of subspaces of a vector space.

Definition 4.27. Let A,B ⊆ V be subspaces of a vector space V . Then, we say A
and B form a direct sum for V , written A⊕B = V , if

1. A ∩B = {0}

2. the set
A+B = {a+ b : a ∈ A, b ∈ B}

satisfies A+B = V .

Example 34. Here are two examples of direct sums - notice that each arises from
a previously mentioned orthogonal complement.

1. Let A = V and B = {0}. Then,

A+B = V and A ∩B = {0}.

Thus, A⊕B = V .

2. Let A be the plane

A = {x ∈ R3 : x1 + x2 + x3 = 0}

and B be the line

B = {x ∈ R3 : x = α

1
1
1

 for some α ∈ R}.

Then, A ∩B = {0} because any vector x ∈ B must satisfy

x1 + x2 + x3 = 3α

for some α ∈ R and thus can only belong to A if α = 0. Additionally,
computing the parametric representation of A (i.e., the solution space of the
equation of the plane), we find x ∈ A implies

x = s

 1
0
−1

+ t

 1
−1
0


for some s, t ∈ R. Since these two vectors, when combined with any nonzero
element of B, form a basis for R3, we can decompose any element into a
linear combination of these vectors. Thus, if x ∈ R3, then x = a+ b where
a ∈ A and b ∈ B. So A⊕B = R3.
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Now, we can connect the notions of orthogonal complement and direct sum to
show that any Hilbert space can be decomposed into a direct sum of any closed
subspace and its orthogonal complement.

Theorem 4.25 (Decomposition Theorem). Let V be a Hilbert space and M ⊆ V
be a closed subspace. Then, we may decompose V as

V = M
⊕

M⊥.

Proof. By Theorem 4.24, for any v ∈ V , there is a unique v∗ ∈M (with minimal
distance to v) such that

w = v − v∗ ∈M⊥.

Hence, any v ∈ V can be written exactly as

v = v∗︸︷︷︸
∈M

+ v − v∗︸ ︷︷ ︸
∈M⊥

,

which shows
V = M +M⊥.

Finally, 0 ∈M , as it’s a subspace, and 0 ∈M⊥, which means 0 ∈M ∩M⊥.
Contrastingly, if u ∈M and u ∈M⊥, then u ⊥ u, which means

‖u‖2 = 〈u, u〉 = 0,

and u = 0. This means that only 0 can be in both subspaces. Combining these
statements yields

M ∩M⊥ = {0},
and thus

V = M
⊕

M⊥.

Theorem 4.26. Let V be an inner product space, and M ⊆ V be a subspace.
Then, we have

1. M ⊆M⊥⊥

2. If V is a Hilbert space and M is closed, then M = M⊥⊥.
Proof. To prove the first portion, let v ∈M be given. Then, for any w ∈M⊥ we
have 〈v, w〉 = 0. So v is orthogonal to every element of M⊥, which means
v ∈ (M⊥)⊥ = M⊥⊥. Thus, M ⊆M⊥⊥.

To prove the second consequence, we merely need to show M⊥⊥ ⊆M . Let
v ∈M⊥⊥ ⊆ V be given. Then, by Theorem 4.25, there is v∗ ∈M and w ∈M⊥

such that
v = v∗ + w.

Now, the first conclusion of the theorem (M ⊆M⊥⊥) further implies v∗ ∈M⊥⊥,
and since M⊥⊥ is a subspace of V , we find w = v − v∗ ∈M⊥⊥. However, w ∈M⊥,
as well, so that

‖w‖2 = 〈w,w〉 = 0.
Of course, this implies w = 0 and v = v∗ ∈M . Finally, because v ∈M⊥⊥ was
arbitrary, we find M⊥⊥ ⊆M .
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Comment. There exist infinite-dimensional inner product spaces V in which
subspaces M ⊆ V satisfy

M⊥⊥ 6= M.

In general, the closure of the subspace results from the double orthogonal
complement, i.e.

M⊥⊥ = M,

but if M is closed as in Theorem 4.26, then M = M .

The need for the closure occurs for the following reason. Consider a sequence
vn ∈M for all n ∈ N satisfying vn → v where v ∈ V but v 6∈M . Indeed, this can
occur exactly when M is not closed. Then, for any w ∈M⊥, we have

〈vn, w〉 = 0

for all n ∈ N. Taking the limit as n→∞ of both sides and using the continuity of
the inner product then gives

0 = lim
n→∞
〈vn, w〉 = 〈 lim

n→∞
vn, w〉 = 〈v, w〉.

Thus, v ⊥ w for any w ∈M⊥, which means v ∈M⊥⊥, but v 6∈M . With this, we
see that limit points of sequences in M may be in M⊥⊥ when M is not closed.

With the fundamental notions of vector spaces, and in particular Hilbert spaces,
well understood. We will turn out attention to the study of linear operators
defined on such spaces in the next chapter.
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Exercises - Vector Spaces
Problem 4.1. Let V be a given set and f : R→ V be a one-to-one and onto
function. For every u, v ∈ V and α ∈ R, define the sum and scalar product
operations on V by

u⊕ v = f
(
f−1(u) + f−1(v)

)
and α� v = f

(
αf−1(v)

)
.

Prove that V (defined over R) is a vector space.

Problem 4.2. Let V = R+ and for every u, v ∈ V and α ∈ R, define the sum and
scalar product operations on V by

u⊕ v = uv and α� v = vα.

Prove that V is a vector space.

Problem 4.3. Let Cp(R) be the vector space of complex-valued p-tuples defined
over the field of real numbers, and Cp(C) be the vector space of complex-valued
p-tuples defined over the field of complex numbers. Further, let

Tn =
{

n∑
k=1

ak sin(kπx) : ak ∈ R for every k = 1, ..., n
}

be the vector space of sinusoidal trigonometric polynomials of degree at most n and

C(0, 1) = {f : (0, 1)→ R such that f is continuous}

be the vector space of continuous functions on (0, 1), both of which are defined
over R. For each of the following pairs of sets A and B, determine whether or not
A is a subspace of B and justify your answer by providing either a proof or a
counterexample.

(a) A = Rp and B = Cp(R).

(b) A = Rp and B = Cp(C)

(c) A = Tn for a given n ∈ N and B = C(0, 1).

(d) A =
⋃
n∈N

Tn and B = C(0, 1). (Extra Credit)

Problem 4.4. Let V and W be vector spaces, let M ⊂ V be a subspace, and
assume the transformation T : V → W satisfies

T (αu+ βv) = αT (u) + βT (v) (4.8)

for all α, β ∈ K and u, v ∈ V . Finally, define the set

T (M) := {T (u) : u ∈M}.
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(a) Show that T (M) is a subspace of W .

(b) Let n ∈ N be given and assume that the subset S = {v1, ..., vn} spans M .
Show that T (S) = {T (v1), ..., T (vn)} spans T (M).

Problem 4.5. Let V be a vector space with v1, ..., vn ∈ V for some n ∈ N and
denote S = {v1, .., vn}.

(a) Prove that if S is linearly dependent and vn+1, ..., vm ∈ V for some m ∈ N
with m > n, then the set S ⋃{vn+1, ..., vm} is also linearly dependent.

(b) Prove that if S is linearly independent then any non-empty subset of S is
also linearly independent.
Hint: Proof by contradiction may be useful.

Problem 4.6. Let u ∈ Rp \ {0} and v ∈ Rq \ {0} be given and define
A = uvT ∈ Rp×q. Show that {u} is a basis for

Col(A) = {Ax : x ∈ Rq}

and determine the rank of A.

Problem 4.7. Let V be a vector space, with nested subspaces V0 ⊆ V1 ⊆ V
satisfying dim(V0) = dim(V1) <∞. Prove that V0 = V1.
Hint: Proof by contradiction may be useful.

Problem 4.8. Define the vector space `∞(R) to be the set of all bounded infinite
sequences of real numbers {an}∞n=1. Prove that dim(`∞(R)) =∞.
Hint: Proof by contradiction may be useful.

Problem 4.9. Prove (via inequalities) that the norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞
defined on Rp are equivalent.

Problem 4.10. A subset A of a vector space V is convex if for any u, v ∈ A, the
line segment

H = {αu+ (1− α)v : 0 ≤ α ≤ 1}

is a subset of A.
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(a) Show that for any normed space V , the closed unit ball

B(0, 1) = {v ∈ V : ‖v‖ ≤ 1}

is convex.

(b) Show that the function φ : R2 → R defined by

φ(v) =
(√
|v1|+

√
|v2|

)2

is not a norm on R2.

(c) Sketch the curve φ(v) = 1.

Problem 4.11. Let p, q ∈ N be given.

(a) Let A be a real, symmetric p× p matrix satisfying xTAx > 0 for every
x ∈ Rp \ {0}. Prove that the function

〈x, y〉A := xTAy

defined for any x, y ∈ Rp is an inner product on Rp.

(b) Prove that the function
‖A‖F :=

√
tr(ATA)

defined for any A ∈ Rp×q is a norm on Rp×q.
Hint: Use a formula for ‖A‖F in terms of the columns or entries of A.

Problem 4.12. Let {vn}∞n=1 be a sequence of vectors in a Hilbert space V with

‖vn‖ → ‖v‖ and 〈vn, v〉 → ‖v‖2.

Show that vn converges to v in V .

Problem 4.13. Let n ∈ N be given and assume S = {v1, ..., vn} ⊆ V is orthogonal
with 0 6∈ S. Show that S is linearly independent.

Problem 4.14. Let V be a Hilbert space over K. Show that if
S = {v1, ..., vq} ⊂ V with q ∈ N is orthonormal, then for every v ∈ V we have

q∑
k=1
|αk|2 ≤ ‖v‖2 where αk = 〈vk, v〉.

Hint: Consider w =
q∑

k=1
αkvk and 〈v, w〉.
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Problem 4.15. Consider the Hilbert space V = L2(−1, 1) defined over R and
endowed with the inner product

〈f, g〉2 :=
∫ 1

−1
f(x)g(x) dx

for every f, g ∈ V . Let S = {1, x, x2} ⊂ V .

(a) Show that S is not an orthogonal set with respect to this inner product.

(b) Construct an orthonormal basis for span(S).
Remark: You are constructing the first three terms of a basis known as the
orthonormal Legendre Polynomials, which is generated by using
S = {xn : n ∈ N0} and continuing this process. The resulting polynomials
form an orthonormal basis for L2(−1, 1).

Problem 4.16. Let V be a Hilbert space. Prove that if u, v ∈ V with u ⊥ v then

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

This is known as the Pythagorean Theorem.

Problem 4.17. Let A be a real p× q matrix satisfying A = QR, where Q is a real
p× k matrix with orthonormal columns and R is a real k × q matrix with
rank(R) = k.

(a) Show that R has a right inverse; that is, show that there exists a real q × k
matrix X such that RX = Ik.

(b) Show that the columns of Q form an orthonormal basis for Col(A).



Chapter 5

Linear Operators on Vector Spaces

As before, we assume throughout that all vector spaces are either real or complex,
i.e. defined over K = R or K = C. Now that we have introduced a variety of
subcategories of vector spaces, we will generally assume that V and W are Hilbert
spaces. However, when a weaker assumption (e.g., a Banach space or general
vector space without a norm) can be utilized, we will state this explicitly.

5.1 Introduction and Definitions
We begin by defining a linear operator (or mapping) on a vector space.

Definition 5.1. Let V and W be vector spaces. A linear operator T : V → W is
a function that assigns to each v ∈ V a unique T (v) ∈ W such that

1. For every u, v ∈ V , we have

T (u+ v) = T (u) + T (v)

2. For every α ∈ K, v ∈ V , we have

T (αv) = αT (v).

Comment. To show that a given operator T is linear, it suffices to prove

T (αu+ βv) = αT (u) + βT (v)

for every α, β ∈ K and u, v ∈ V .

Theorem 5.1. Assume T : V → W is linear. Then, T (0) = 0.

Proof. We merely use the aforementioned properties of linearity to compute for
any v ∈ V

T (0) = T (0 · v) = 0 · T (v) = 0,

which completes the proof. Additionally, we note that the last term in this string
of equalities (on the right) represents the zero vector in W , while the zero within
the argument of the first term (on the left) represents the zero vector in V , and
these need not be the same object.

79
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Though linearity of an operator may seem like a fairly restrictive assumption with
which to begin, standard methods for the study of nonlinear operators have been
both elusive and the subject of much ongoing mathematical research. Additionally,
we will often use another property of the operators we study, namely boundedness.

Definition 5.2. Let V and W be Banach spaces. A linear operator T : V → W is
bounded if there is C > 0 such that for all v ∈ V

‖T (v)‖W ≤ C‖v‖V .

If T is not bounded, then we say it is unbounded.

Comment. Though it is left as an exercise (cf. Problem 5.7), one remarkable
result concerning bounded linear operators is that they are equivalent to
continuous linear operators. In particular, this means that if vn → v in V , then
T (vn)→ T (v) in W for any bounded linear operator T : V → W . This property is
crucial on infinite-dimensional Banach spaces since the continuity of T guarantees
that the linearity property can be extended to infinite sums, for instance

T

( ∞∑
k=1

αkvk

)
= T

(
lim
N→∞

N∑
k=1

αkvk

)
= lim

N→∞
T

(
N∑
k=1

αkvk

)
=
∞∑
k=1

αkT (vk)

and we will certainly use this property in the future.

Before continuing, we need some intuition and examples of these objects.

Example 35. There are many prominent examples of linear operators, including
matrices, integrals, and derivatives.

1. Let A ∈ Rp×q be given. Then, T : Rq → Rp defined by

T (v) = Av

for every v ∈ Rq is a bounded, linear operator.

2. Let a, b ∈ R with a < b be given and define L : C[a, b]→ R by

L[f ] =
∫ b

a
f(x) dx.

Then, L is a bounded, linear operator.

3. Let a, b ∈ R with a < b be given and define D : C∞(a, b)→ C∞(a, b) by

D[f ] = f ′(x)

Then, D is an unbounded, linear operator. Indeed, the sequence of functions
fn(x) = sin(nx) ∈ C∞(a, b) satisfies |fn(x)| ≤ 1 for every n ∈ N, x ∈ (a, b),
but their derivatives D[fn] = f ′n(x) = n cos(nx) are unbounded in C∞(a, b).

Definition 5.3. Let T : V → W be linear. Then, we define the range (or image)
of T , denoted R(T ), and the kernel of T , denoted Ker(T ), by

R(T ) = {T (v) : v ∈ V}
Ker(T ) = {v ∈ V : T (v) = 0} .
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Of course, in the case that T (v) = Av for some A ∈ Rp×q, we see that R(T ) ⊆ Rp

and R(T ) = Col(A), while Ker(T ) ⊆ Rq and Ker(T ) = Nul(A). So, these should be
familiar sets, and just like Col(A) and Nul(A) they should also be subspaces.

Theorem 5.2. Let T : V → W be linear. Then, R(T ) is a subspace of W and
Ker(T ) is a subspace of V .

Proof. To show that either set is a subspace, we must show that it is a subset that
contains the zero vector and is closed under both addition and scalar
multiplication. To this end, we note that Theorem 5.1 implies T (0) = 0. Hence,
0 ∈ Ker(T ) ⊆ V and 0 ∈ R(T ) ⊆ W since 0 ∈ V . Next, we let w, z ∈ R(T ) be
given. Then, there are u, v ∈ V such that

T (u) = w and T (v) = z.

Hence, letting x = u+ v , we find by linearity of T

w + z = T (u) + T (v) = T (u+ v) = T (x) ∈ R(T ).

Thus, w + z ∈ R(T ) and R(T ) is closed under addition. Similar computations can
be performed to show the closure under scalar multiplication, and analogously
these properties can be shown for Ker(T ).

With basic terminology and minor results out of the way, we turn our attention to
a much more substantial theorem involving these subspaces.

Theorem 5.3 (Generalized Rank-Nullity). Let V and W be vector spaces and
T : V → W be linear with dim(V) = q ∈ N. Then,

1. We have
dim(Ker(T )) ≤ q and dim(R(T )) ≤ q.

2. If there is B1 = {v1, ..., vk} ⊆ V such that the set {T (v1), ..., T (vk)} ⊆ W is a
basis for R(T ) and B2 = {u1, ..., un} ⊆ V is a basis for Ker(T ), then

B = B1 ∪B2 = {v1, ..., vk, u1, ..., un}

is a basis for V .

3. We have
dim(V) = dim(Ker(T )) + dim(R(T )).

Proof. To prove the first conclusion, we begin by noting that Ker(T ) is a subspace
of V by Theorem 5.2. Then, by Theorem 4.9, the dimension of any subspace must
be no greater than the dimension of the space itself, and we see that

dim(Ker(T )) ≤ dim(V) = q.

Next, let w ∈ R(T ) be given so that there is some v ∈ V with T (v) = w. Since
dim(V) = q, V has a basis of q elements, say BV = {v1, ..., vq} ⊆ V . Certainly, we
can express v in terms of this basis; so there are αj ∈ K for j = 1, ..., q with
v = ∑q

j=1 αjvj. Therefore, we find

w = T (v) = T

 q∑
j=1

αjvj

 =
q∑
j=1

αjT (vj).
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Thus, w can be expressed as a linear combination of the image of basis elements.
Since w ∈ R(T ) was arbitrary, we see that the set {T (v1), ..., T (vq)} spans R(T ).
By Lemma 4.7, it follows that any linearly independent subset of R(T ) must
contain at most q vectors. Therefore, any basis of R(T ) must contain at most q
vectors, and by definition dim(R(T )) ≤ q.

The second conclusion of the theorem will be a homework problem (cf. Problem
5.1). We provide a brief sketch for one component of the result:

We wish to show that B spans V . Let v ∈ V be given. Define w = T (v) so that
w ∈ R(T ). Since {T (v1), . . . , T (vk)} is a basis for R(T ), there are α1, . . . , αk ∈ K
such that

w =
k∑
j=1

αjT (vj).

Said another way, this is equivalent to

T (v) =
k∑
j=1

αjT (vj).

Therefore, using the linear properties of T , we find

T

v − k∑
j=1

αjvj

 = T (v)− T
 k∑
j=1

αjvj

 = T (v)−
k∑
j=1

αjT (vj) = 0.

Thus,

v −
k∑
j=1

αjvj ∈ Ker(T ).

Since B2 = {u1, . . . , un} is a basis for Ker(T ), there are β1, . . . , βn ∈ K such that

v −
k∑
j=1

αjvj =
n∑
`=1

β`u`.

Finally, consolidating the sums on the right side of the equation yields

v =
k∑
j=1

αjvj +
n∑
`=1

β`u`,

which is just a linear combination of elements from B. Since v ∈ V was arbitrary,
B spans V . It remains to show that B is linearly independent.

Nicely, the last conclusion follows straightforwardly from the second. Indeed, if B1
is a basis for R(T ), then dim(R(T )) = k, while dim(Ker(T )) = n if B2 is a basis for
Ker(T ). Finally, because B is a basis for V , we have

dim(V) = n+ k = dim(Ker(T )) + dim(R(T )),

and the proof is complete.

Comment. There are a number of remarks that accompany this result.

1. Notice that W does not need to be finite dimensional.
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2. dim({0}) = 0 and {0} is the only zero-dimensional subspace of V .

3. If dim(R(T )) = 0, then R(T ) = {0} and Theorem 5.3 implies
dim(Ker(T )) = dim(V). Thus, it follows that Ker(T ) = V .

4. If dim(Ker(T )) = 0, then Ker(T ) = {0} and Theorem 5.3 implies
dim(R(T )) = dim(V). Note, however, that R(T ) is not a subset of V , so
R(T ) 6= V necessarily. Additionally, this does not imply R(T ) =W because
W could be much larger; in fact it’s possible that dim(W) =∞.

5. If V is infinite-dimensional, then the generalized Rank-Nullity Theorem still
holds, but with generalized cardinal arithmetic.

Example 36. Of course, in the case that W is finite-dimensional, this theorem is
well-known from Linear Algebra. In particular, if A ∈ Rp×q and T : Rq → Rp is
defined by T (v) = Av for every v ∈ Rq, then T is linear and we have

Ker(T ) = {v ∈ Rq : T (v) = 0} = {v ∈ Rq : Av = 0} = Nul(A)
R(T ) = {T (v) : v ∈ Rq} = {Av : v ∈ Rq} = Col(A).

Additionally, rank(A) = dim(Col(A)) and therefore, Theorem 5.3 implies

q = dim(Rq) = rank(A) + dim(Nul(A)),

which is the result that gives the Rank-Nullity theorem its name.

Next, we focus on how R(T ) and Ker(T ) influence our ability to solve the linear
equation T (v) = w and, more generally, the notion of invertibility of linear
trasnformations.

Definition 5.4. Assume T : V → W is linear and let w ∈ W be given. We say the
equation T (v) = w is solvable if there is u ∈ V such that T (u) = w. In this case,
u is called the solution of the equation T (v) = w.

Theorem 5.4. Let T : V → W be linear. Then,

1. Given w ∈ W , the equation T (v) = w is solvable if and only if w ∈ R(T ).

2. The equation T (v) = w is solvable for every w ∈ W if and only if R(T ) =W
(i.e., T is onto - recall Definition 4.8).

Proof. The proof is fairly straightforward and left as an exercise.

Theorem 5.5. Let w ∈ W be given and assume T : V → W is linear and
T (v) = w is solvable with solution u ∈ V . Then, u is the unique solution of
T (v) = w if and only if Ker(T ) = {0}.

Proof. We first assume u ∈ V is the unique solution of T (v) = w, and note that
0 ∈ Ker(T ) so that we need only show that Ker(T ) ⊆ {0}. Let z ∈ Ker(T ) be
given, which ensures T (z) = 0. Then, we find

T (u+ z) = T (u) + T (z) = w + 0 = w.
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Therefore, u+ z is a solution of T (v) = w. However, since u was assumed to be the
unique solution of this equation, we must have u+ z = u. Subtracting u implies
z = 0. Since z ∈ Ker(T ) was arbitrary, we have shown that Ker(T ) ⊆ {0}, and
thus Ker(T ) = {0}.

Next, assume Ker(T ) = {0}, and let z ∈ V be another solution of T (v) = w. Then,
we find

T (u− z) = T (u)− T (z) = w − w = 0.
Thus, u− z ∈ Ker(T ), and since 0 is the only element of this subspace, this means
u− z = 0 or u = z. Since z was an arbitrary solution of the equation, we see that
u must be the unique solution.

Combining the two previous theorems provides the following simplified result.

Theorem 5.6. Let T : V → W be linear. Then,

1. Given w ∈ W , the equation T (v) = w has a unique solution if and only if
w ∈ R(T ) and Ker(T ) = {0}.

2. The equation T (v) = w has a unique solution for every w ∈ W if and only if
R(T ) =W (i.e, T is onto) and Ker(T ) = {0}.

This last portion of Theorem 5.6 is crucial to define the inverse of a linear operator.

Definition 5.5. Assume T : V → W is linear, onto, and Ker(T ) = {0}. Under
these assumptions, we say T is invertible and define its inverse operator
T−1 :W → V by assigning to every w ∈ W , the unique v ∈ V such that T (v) = w
to denote the vector T−1(w). Said another way,

T (v) = w ⇐⇒ v = T−1(w).

Example 37. Consider A ∈ Rp×q and define T : Rq → Rp by T (v) = Av.

1. If we impose the condition that T is onto, then R(T ) = Col(A) = Rp. Thus,
rank(A) = p, and the q columns of A span Rp. Since Rp possesses a basis
(and thus, a linearly independent set) with p elements, it follows from
Lemma 4.7 that p ≤ q.

2. If we impose the condition Ker(T ) = {0}, then Av = 0 has only the solution
v = 0, which means that the q columns of A are linearly independent
elements of Rp. Of course, Rp has a basis (and thus, a spanning set)
containing p vectors. Hence, it follows from Lemma 4.7 that q ≤ p.

Thus, these two conditions imply p = q. Furthermore, we found that the columns
of A are linearly independent. Hence, the Invertible Matrix Theorem implies that
A is invertible, and these are exactly the conditions necessary and sufficient to
arrive at an invertible matrix.

Theorem 5.7. Assume T : V → W is linear and invertible. Then,

1. The operator T−1 :W → V is linear.
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2. For every v ∈ V and w ∈ W , we have

T−1(T (v)) = v and T (T−1(w)) = w.

Proof. To prove the first conclusion, we let w, z ∈ W be given and define
v = T−1(w) and u = T−1(z). Then, T (v) = w and T (u) = z. So,

w + z = T (v) + T (u) = T (v + u).

Since v + u ∈ V , by definition of the inverse we have

T−1(w + z) = v + u = T−1(w) + T−1(z).

Showing the scalar multiplication property is similar.

To prove the second assertion, we let v ∈ V be given and set w = T (v). By
definition, we may write v = T−1(w). With this, we find

T−1(T (v)) = T−1(w) = v

for any v ∈ V , and a similar argument for T (T−1(w)) holds.

5.2 The Adjoint Operator
Our main goal in subsequent sections is to state and prove the Fundamental
Theorem of Linear Algebra, which describes the fundamental relationships
between four special subspaces induced by every linear operator. Prior to this,
however, we need to define the adjoint of a linear operator - an essential object
that functionally generalizes the transpose of a matrix.

Definition 5.6. Let V and W be Hilbert spaces with inner products 〈·, ·〉V and
〈·, ·〉W , and let T : V → W be linear. Then, (if it exists) the adjoint of T , denoted
T ∗ :W → V , is a linear operator satisfying

〈T (v), w〉W = 〈v, T ∗(w)〉V

for every v ∈ V and w ∈ W .

Comment. The adjoint operator is extremely useful in studying partial
differential equations or performing sensitivity analysis of established scientific
models. Here are a few other comments:

1. If T is bounded, then T ∗ is guaranteed to exist and is also bounded, though
this may not hold for unbounded operators on Hilbert spaces. This fact
follows from the Riesz Representation Theorem [10], which (though an
amazing result) is outside the scope of the course.

2. If V and W are finite dimensional then every linear operator is bounded (cf.
Problem 5.6); hence, T ∗ is guaranteed to exist, while this may not always
hold in the infinite-dimensional framework.

3. Additionally, if the adjoint T ∗ is known to exist, then T ∗ also has an adjoint
and it is T , meaning T ∗∗ = T .
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Next, we show that the adjoint, whenever it exists, must be unique.

Theorem 5.8. Assume T : V → W and S :W → V are linear and satisfy

〈T (v), w〉W = 〈v, S(w)〉V

for every v ∈ V and w ∈ W . Then, S is the unique linear operator satisfying this
relationship and S = T ∗.

Proof. Of course, if S satisfies this property, we define T ∗ = S. To show
uniqueness, we let R :W → V be linear and satisfy the adjoint property. Then, we
have for every v ∈ V and w ∈ W ,

〈T (v), w〉W = 〈v, S(w)〉V = 〈v,R(w)〉V .

Using the last equality, we subtract to find

〈v, S(w)−R(w)〉V = 0

for every v ∈ V and w ∈ W . Hence, for any w ∈ W we choose

v = S(w)−R(w) ∈ V

so that the previous equality is just

0 = 〈v, v〉V = ‖v‖2
V ,

which implies v = 0. Thus, S(w)−R(w) = 0, and R(w) = S(w) for every w ∈ W ,
which completes the uniqueness proof.

To gain some intuition about this abstract operator, we consider a few examples,
both from finite- and infinite-dimensional spaces.

Example 38. Let A ∈ Rp×q and define T : Rq → Rp by T (v) = Av for every
v ∈ Rq. Then, because Rp is endowed with the inner product

〈x, y〉Rp = xTy,

and using Corollary 2.1, we have for every x ∈ Rq and y ∈ Rp

〈T (x), y〉Rp = 〈Ax, y〉Rp

= (Ax)Ty
= xTATy

= 〈x,ATy〉Rq

= 〈x, T ∗(y)〉Rq

Hence, the adjoint of T is T ∗ : Rp → Rq defined for every v ∈ Rp by

T ∗(v) = ATv.

Example 39. If we change Rp to Cp and Rq to Cq, then the associated adjoint of
T is T ∗ : Cp → Cq defined by

T ∗(v) = AHv,

for every v ∈ Cp.
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Example 40. Recall the vector space

C∞[0, 1] =
∞⋂
n=1

Cn[0, 1]

to be the set of all functions f that possesses arbitrarily-many continuous
derivatives, and define the subspace

C∞0 [0, 1] = {f ∈ C∞[0, 1] : f (n)(0) = f (n)(1) = 0 for all n ∈ N0}

where f (n) represents the nth derivative of the function f . Next, define an inner
product on C∞0 [0, 1] by

〈f, g〉 =
∫ 1

0
f(x)g(x)dx

for every f, g,∈ C∞0 [0, 1]. You can (and should) verify that this is, in fact, an inner
product. Finally, define the linear operator T : C∞0 [0, 1]→ C∞0 [0, 1] by

T [f ] = d2f

dx2 .

Notice that the second derivative of an infinitely-differentiable function is again
infinitely-differentiable and satisfies the same boundary conditions, thereby
implying T [f ] ∈ C∞0 [0, 1] for every f ∈ C∞0 [0, 1].

Then, what is T ∗? Computing the inner product of T [f ] with g for any
f, g ∈ C∞0 [0, 1], we find by integration by parts

〈T [f ], g〉 =
∫ 1

0
f ′′(x)g(x)dx

= −
∫ 1

0
f ′(x)g′(x)dx+

���
���

��:0
f ′(x)g(x)|1x=0

=
∫ 1

0
f(x)g′′(x)dx

= 〈f, T [g]〉.

Therefore, we see that T ∗[g] = T [g]. Thus, T ∗ = T , in which case, we say that T is
self-adjoint.

Next, we will use the adjoint operator to obtain one of the more interesting results
concerning the geometry of Hilbert spaces.

5.3 The Fundamental Theorem of Linear
Algebra

Now, we’re able to state and prove the Fundamental Theorem. For additional
information and geometric insight into this result, the world-renowned applied
mathematician Gilbert Strang has written a very nice review [23].

Theorem 5.9 (Fundamental Theorem of Linear Algebra). Let V and W be
Hilbert spaces. Let T : V → W be a bounded linear operator, and denote its
adjoint by T ∗ :W → V . Then, we have
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1. Ker(T ) = R(T ∗)⊥

2. Ker(T ∗) = R(T )⊥

and if we further assume R(T ) is closed, then

3. R(T ) = Ker(T ∗)⊥

4. R(T ∗) = Ker(T )⊥.

Proof. First, notice that the existence of T ∗ is guaranteed by the boundedness of
T . Now, we establish the first conclusion, and note that the remaining conclusions
will follow from this. Recalling the definition of the kernel, range, adjoint, and
orthogonal complement, we write

Ker(T ) = {v ∈ V : T (v) = 0}
R(T ∗) = {T ∗(w) : w ∈ W}

so that

R(T ∗)⊥ = {v ∈ V : 〈v, T ∗(w)〉V = 0 for all w ∈ W}
= {v ∈ V : 〈T (v), w〉W = 0 for all w ∈ W}.

We will show separately that Ker(T ) ⊆ R(T ∗)⊥ and R(T ∗)⊥ ⊆ Ker(T ) in order to
establish the equality of these two sets.

First, let v ∈ Ker(T ) be given so that T (v) = 0. Then, for any w ∈ W

〈v, T ∗(w)〉V = 〈T (v), w〉W = 〈0, w〉W = 0.

Thus, v ∈ R(T ∗)⊥, and we have Ker(T ) ⊆ R(T ∗)⊥.

Next, let v ∈ R(T ∗)⊥ be given. Then, for any w ∈ W , we find

〈T (v), w〉W = 〈v, T ∗(w)〉V = 0.

Since this holds for every w ∈ W , choose w = T (v) ∈ W . Hence, we find

‖T (v)‖2
W = 〈T (v), T (v)〉W = 0

and so T (v) = 0. Thus, v ∈ Ker(T ), and we have shown R(T ∗)⊥ ⊆ Ker(T ), which
establishes the first conclusion.

To prove the second conclusion, we merely apply the first result to T ∗ instead of T ,
so that

Ker(T ∗) = R(T ∗∗)⊥ = R(T )⊥.

Now, the third conclusion follows by taking the orthogonal complement of the
second result. In particular, because R(T ) is a closed subspace of V , we find by
Theorem 4.26

Ker(T ∗)⊥ = R(T )⊥⊥ = R(T ).

The final conclusion follows by applying the third result to T ∗ rather than T .
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Comment. Though we assume R(T ) is closed to obtain the last two conclusions,
this is not necessary to arrive at a similar statement. If we remove this
assumption, then they merely become

1. R(T ) = Ker(T ∗)⊥

2. R(T ∗) = Ker(T )⊥

Comment. Notice that from the Decomposition Theorem (Theorem 4.25), the
fundamental theorem now provides an immediate decomposition of V and W in
terms of the kernel and range of a given operator T and its adjoint T ∗, namely

V = R(T ∗)
⊕

R(T ∗)⊥ = Ker(T )
⊕

R(T ∗)

and
W = R(T )

⊕
R(T )⊥ = R(T )

⊕
Ker(T ∗).

These four subspaces of V and W are often referred to as the Four Fundamental
subspaces induced by T .

We will now discuss two other direct consequences of the fundamental theorem -
the Fredholm Alternative and the solution of Least Squares problems.

Theorem 5.10 (Fredholm Alternative). Let V and W be Hilbert spaces and
T : V → W be a bounded linear operator with R(T ) closed. Given w ∈ W , exactly
one of the following must hold:

1. T (v) = w has a solution v ∈ V

2. T ∗(u) = 0 has a non-trivial solution u ∈ W satisfying 〈u,w〉 6= 0.

Proof. Notice that the third conclusion of Theorem 5.9, namely

R(T ) = Ker(T ∗)⊥

implies that w ∈ R(T ) if and only if w ∈ Ker(T ∗)⊥. Of course, in part (a) of the
Fredholm Alternative w ∈ R(T ), and thus w ⊥ Ker(T ∗). Now, if w 6∈ R(T ), then
there exists an element u ∈ Ker(T ∗) such that w 6⊥ u (and hence u 6= 0), which is
exactly the statement of part (b). Thus, the Fredholm Alternative for finite
dimensional vector spaces is merely a consequence of this theorem put into action,
as any w ∈ W must satisfy either w ∈ R(T ) or w 6∈ Ker(T ∗)⊥.

Example 41. Though we won’t discuss it in detail, for any Ω ⊂ R3 there is an
important subspace of L2(Ω) that we will denote by H for which the linear
operator T : H → L2(Ω) defined by

T [u] = ∆u :=
n∑
i=1

∂xixi
u

is bounded and R(T ) is closed. Additionally, recall that by integration by parts T
is self-adjoint so that T ∗[u] = T [u] = ∆u. Therefore, for any f ∈ L2(Ω) we may
apply Theorem 5.10 to find that one and only one of the following can be true:



90 CHAPTER 5. LINEAR OPERATORS ON VECTOR SPACES

1. ∆u = f has a solution u ∈ H

2. ∆u = 0 has non-trivial solution u ∈ H satisfying 〈u, f〉 6= 0

As you might imagine, this is a useful theorem that is often used for obtaining
information about solutions of Laplace’s or Poisson’s equation.

Theorem 5.11 (Fredholm Alternative for Adjoint). Let V and W be Hilbert
spaces and T : V → W be a bounded linear operator. Given w ∈ W , exactly one of
the following must hold:

1. T ∗(w) = 0

2. There is a non-trivial z ∈ W satisfying 〈w, z〉 6= 0 such that T (v) = z has a
solution v ∈ V .

Proof. Notice that the second conclusion of Theorem 5.9, namely

Ker(T ∗) = R(T )⊥

implies that w ∈ Ker(T ∗) if and only if w ∈ R(T )⊥. Of course, in part (a) of the
Fredholm Alternative w ∈ Ker(T ∗), and thus w ⊥ R(T ). Now, if w 6∈ Ker(T ∗),
then there exists an element z ∈ R(T ) such that z 6⊥ w, which is exactly the
statement of part (b).

Often, we wish to solve a linear system of (algebraic, integral, differential, or
partial differential) equations, but find that the system is inconsistent, and thus
possesses no solution. Hence, a natural question is - can we generalize the notion
of solution to find at least one vector that satisfies a condition similar to solving
the linear system. This condition will be exactly that of a least squares solution.
As we will see later in the discussion, the QR Factorization can also be used to
simplify such problems on finite-dimensional spaces, which arise naturally within a
variety of disciplines, including but not limited to, statistics, image processing, and
computational solutions of partial differential equations.

Definition 5.7. Let V and W be Hilbert spaces with T : V → W a bounded
linear operator, and let w ∈ W be given. A vector u ∈ V is called a least squares
solution of T (v) = w if u satisfies

‖T (u)− w‖W ≤ ‖T (v)− w‖W

for every v ∈ V .

If T (v) = w is consistent (i.e., possesses a solution), then finding all least squares
solutions is equivalent to finding all solutions of T (v) = w.

If T (v) = w is inconsistent (i.e., has no solution), then ‖T (u)− w‖W > 0.

From this definition, a least squares solution u minimizes the distance between
T (v) and w among all possible vectors v ∈ V . Thus, if we can’t find v ∈ V such
that T (v) = w, which of course makes T (v)− w = 0, then we can do the next best
thing, which is minimize the value of this difference.
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b

AuAx

Col(A)

Figure 5.1: A representation of the projection of b onto Col(A), denoted by Au.
Notice that b − Au ⊥ Col(A) and the distance ‖Au − b‖2 is minimal amongst all
other vectors in Col(A), e.g. ‖Ax− b‖2.

Comment. For most problems of this type, we consider the finite-dimensional
case Ax = b, in which V = Rq and W = Rp are both endowed with the standard
inner product and T (x) = Ax for some given A ∈ Rp×q and b ∈ Rp. In this case,
the geometry is a bit easier to visualize (see Figure 5.1) using the projection onto
R(T ) = Col(A). Due to the structure of the 2-norm on Rp, the least squares
definition is equivalent to

‖Au− b‖2
2 ≤

p∑
i=1

 q∑
j=1

aijxj

− bi
2

in this case, which demonstrates that such a solution minimizes a sum of squares,
and hence motivates the name “least squares” solution.

Of course, finding a minimizer of a problem like this appears to be much more
difficult than merely solving a linear system of equations. Fortunately, we can
show that it is actually just as easy.

Theorem 5.12 (Normal Equations). Let w ∈ W be given and assume R(T ) is
closed. Then, there exists a least squares solution u ∈ V . Additionally, any u ∈ V
is a least squares solution of T (v) = w if and only if

(T ∗T )(u) = T ∗(w). (5.1)

Proof. Let w ∈ W be given. Then, by the Projection Theorem (Theorem 4.24)
with M = R(T ) there is a unique w∗ ∈ R(T ) such that

‖w∗ − w‖W = inf
z∈R(T )

‖z − w‖W (5.2)

and w∗ − w ∈ R(T )⊥. Because w∗ ∈ R(T ), there exists a (not necessarily unique!)
u ∈ V such that T (u) = w∗, and this u must be a least squares solution. Indeed,
since z ∈ R(T ) implies T (v) = z for some v ∈ V and using (5.2), we find

‖T (u)− w‖W = inf
z∈R(T )

‖z − w‖W = inf
v∈V
‖T (v)− w‖W ≤ ‖T (v)− w‖W
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for all v ∈ V .

Now, by the Fundamental Theorem (Theorem 5.9), we know R(T )⊥ = Ker(T )∗.
Thus, w − w∗ ∈ Ker(T ∗). Therefore, we have w − T (u) ∈ Ker(T ∗) which means

T ∗(w − T (u)) = 0

and by linearity of T ∗, this becomes T ∗(T (u)) = T ∗(w) which is exactly (5.1).
Therefore, if u ∈ V is a least squares solution, it must satisfy (5.1).

To prove the reverse direction, if u ∈ V satisfies (5.1), then notice that
T (u)− w ∈ R(T )⊥ from above. Then, given any v ∈ V we decompose the
difference between T (v) and w into two components, x and y, defined by

T (v)− w = T (v − u)︸ ︷︷ ︸
=:x

+T (u)− w︸ ︷︷ ︸
=:y

.

Notice that
〈x, y〉 = 〈T (v − u), T (u)− w〉 = 0

because T (u)− w ∈ R(T )⊥ and T (v − u) ∈ R(T ). With this, we find by the
Pythagorean Theorem (cf. Problem 4.16)

‖T (v)− w‖2
W = 〈T (v)− w, T (v)− w〉W

= 〈x+ y, x+ y〉W
= ‖x‖2

W + ‖y‖2
W

≥ ‖y‖2
W

= ‖T (u)− w‖2
W .

Since v was arbitrary, this inequality holds for all v ∈ V , and thus u is a least
squares solution of T (v) = w.

Comment. Because the adjoint operator is exactly the generalization of the
transpose, the condition (5.1) in the finite dimensional case is exactly

ATAu = AT b,

which you may have seen in a Linear Algebra course.

Comment. We can define a generalized notion of least squares solution in Banach
spaces or using other norms (e.g., ‖Ax− b‖1 or ‖Ax− b‖∞ in the
finite-dimensional case), but a result analogous to Theorem 5.12 may not exist,
and this makes the associated minimization problem much more difficult to solve.

Comment. A well-known class of computational methods for solving PDEs,
known as Least Squares Finite Element Methods (LSFEMs), is based exactly on
the formulation of a least squares problem in a Hilbert space. In this case, V is
often a particular subspace of L2(a, b) and the PDEs are solved by minimizing the
norm of a certain operator associated to the given PDE.



5.3. THE FUNDAMENTAL THEOREM OF LINEAR ALGEBRA 93

In the case that infinitely many solutions of this problem arise, we can also
determine the structure of the associated degrees of freedom without much work.
In particular, as the next result displays, additional solutions are constructed by
moving through Ker(T ).
Theorem 5.13. If u ∈ V is a least squares solution of T (v) = w and z ∈ Ker(T ),
then u+ αz is a least squares solution of T (v) = w for any α ∈ K.
Proof. Let α ∈ K be given. Since z ∈ Ker(T ), we see that T (z) = 0. Thus, we
compute

T (u+ αz) = T (u) + αT (z) = T (u).
Therefore, we find

T ∗(T (u+ αz)) = T ∗(T (u)) = T ∗(w)
and u+ αz satisfies the normal equations. Therefore, by Theorem 5.12, u+ αz is a
least squares solution of T (u) = w.

As new least squares solutions are generated by Ker(T ), we can clearly deduce the
following result.
Corollary 5.1. Let T : V → W be a bounded linear operator and w ∈ W be
given. Then,

1. If Ker(T ) = {0}, then T (v) = w has exactly one least squares solution, while

2. If Ker(T ) 6= {0}, then T (v) = w has infinitely many least squares solutions.

Turning to the finite-dimensional problem and in view of this corollary, the
corresponding condition Nul(A) = {0} can be challenging to directly verify. Still
we can find specific (and easy to check) conditions on the matrix A that indicate
how many least squares solutions will exist.
Theorem 5.14. Let A ∈ Rp×q and b ∈ Rp be given and consider solving the least
squares problem Ax = b. Then,

1. If rank(A) = q then Ax = b has exactly one least squares solution, while

2. If rank(A) < q then Ax = b has infinitely many least squares solutions.
Proof. This result follows immediately from Corollary 5.1 and the Rank-Nullity
Theorem, but we include a direct proof for completeness.

From Theorem 2.7, rank(A) = q if and only if ATA is nonsingular, and by the
IMT, this is true if and only if ATAx = AT b has a unique solution. Analogously,
we may apply this same argument in the opposite direction, so that Theorem 2.7,
tell us that rank(A) < q if and only if ATA is singular, and by the IMT, this is
true if and only if ATAx = AT b has infinitely many solutions.

Though we have simplified the minimization problem to one with which we have
greater familiarity, namely the solution of a linear system, it should be noted that
this simplification is not without its own difficulties. For instance, if A is a large
matrix, then computing and storing ATA may be expensive, and computing the
solution of the normal equations even more so. Fortunately, we can simplify this
problem even further using the QR Factorization that we previously derived in
Theorem 4.22.
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Theorem 5.15. A vector u ∈ Rq is a least squares solution of Ax = b if and only if

Ru = QT b

where Q and R comprise a QR Factorization of A; namely, they satisfy A = QR
and the properties stated in Theorem 4.22.

Proof. Evoking Theorem 5.12, we merely need to transform the normal equations
to prove the theorem. By Theorem 4.22, we can write A = QR where Q ∈ Rp×k

has orthonormal columns and R ∈ Rk×q satisfies rank(R) = k. Because Q has
orthonormal columns, we see that

qTi qj =

1, if i = j

0, if i 6= j

for all i, j = 1, ..., k and thus QTQ = I. Then, we find

ATAu = AT b⇐⇒ (QR)T (QR)u = (QR)T b
⇐⇒ RTQTQRu = RTQT b

⇐⇒ RTRu = RTQT b

Now, by Problem 4.17, since R has full row rank (that is, R ∈ Rk×q with
rank(R) = k), there is X ∈ Rq×k such that RX = I. Taking the transpose of this
equation yields XTRT = IT = I. Hence, we multiply the above vector equation by
XT on the left and use this property to find

Ru = QT b.

Of course, it’s important to verify that this linear system does indeed possess a
solution. Certainly, we let c = QT b and attempt to determine whether or not
Ru = c possesses a solution. Of course, rank([R|c]) ≤ k because this augmented
matrix possesses only k rows (as R ∈ Rk×q). Additionally, due to the augmented
structure of the matrix we see that rank([R|c]) ≥ rank(R) = k. Combining these
inequalities, we find

rank(R) = rank([R|c]) = k,

and by the Rank-Solvability Theorem (Theorem 2.5), the system is consistent.
Finally, if k = q, we know that the solution is, in fact, unique, while if k < q there
will be infinitely many least squares solutions.

Example 42. Define the 3× 3 matrix A and vector b by

A =

1 2 3
1 2 0
1 2 0

 , b =

1
0
1

 ,
and find all least squares solutions of Ax = b using Theorem 5.15.

From Example 31, we can decompose A into

A =


1√
3

2√
6

1√
3 −

1√
6

1√
3 −

1√
6


︸ ︷︷ ︸

Q

[√
3 2
√

3
√

3
0 0

√
6

]
︸ ︷︷ ︸

R

.
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Next, we compute

c = QT b =
[ 1√

3
1√
3

1√
3

2√
6 −

1√
6 −

1√
6

] 1
0
1

 =
[ 2√

3
1√
6

]

and solve Ru = c or [√
3 2
√

3
√

3
0 0

√
6

]
u =

[ 2√
3

1√
6

]
,

which, after some algebra yields 
u1 + 2u2 = 1

2
u3 = 1

6
or, the parametrized family of solutions

u = s

−2
1
0

+


1
2
0
1
6


are all least squares solutions for any s ∈ R. Obviously, we find infinitely many
solutions because q = 3 while k = 2 so that k < q. Furthermore, we see that these
solutions are constructed by moving through Nul(A) as

A

−2
1
0

 =

0
0
0

 ,
and thus −2

1
0

 ∈ Nul(A).

In the next chapter, we will explore some specific applications of least squares
problems. In particular, we will discuss the use of Linear Regression for
constructing linear statistical models for prediction and ranking systems that are
generally used for sports and other competitions.

5.4 Norms of Linear Operators
In this section, we let V and W be Banach spaces (not necessarily possessing an
inner product).

Definition 5.8. Assume T : V → W is linear and bounded. Then, the norm of T
is defined by

‖T‖ = sup
v∈V\{0}

‖T (v)‖W
‖v‖V

In some contexts, it is possible to define other norms of T , and thus this particular
norm is often referred to as the operator norm of T .
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Comment. A few remarks concerning the norm of a linear operator:

1. If dim(V) <∞ and dim(W) <∞, the operator norm is defined analogously,
but with the supremum replaced by the maximum.

2. This definition is equivalent to defining

‖T‖ = sup
‖v‖V=1

‖T (v)‖W .

Indeed, for any v ∈ V \ {0} if we let u = v
‖v‖V

, then

‖T (u)‖W =
∥∥∥∥∥T

(
v

‖v‖V

)∥∥∥∥∥
W

=
∥∥∥∥∥ 1
‖v‖V

T (v)
∥∥∥∥∥
W

= ‖T (v)‖W
‖v‖V

.

Thus, maximizing the right side over all such v is equivalent to maximizing the left
side over all such u, which must be a unit vector.

Example 43. Recall that `2(R) is a Hilbert space with norm

‖x‖2
2 =

∞∑
k=1

x2
k

and consider the left shift operator L : `2 → `2 defined by

L(x) = (x2, x3, ...)

for every x = (x1, x2, x3, ...) ∈ `2. Then, notice that for any x ∈ `2

‖L(x)‖2
2 =

∞∑
k=2

x2
k ≤

∞∑
k=1

x2
k = ‖x‖2

2

so that
‖L(x)‖2

‖x‖2
≤ 1.

Since this holds for all x ∈ `2, we find ‖L‖ ≤ 1. Additionally, if we consider e3 ∈ `2

defined by
e3 = (0, 0, 1, 0, 0, ...)

then ‖e3‖2 = 1, ‖L(e3)‖2 = 1, and thus

‖L(e3)‖2

‖e3‖2
= 1.

Therefore, the supremum satisfies

‖T‖ = sup
‖v‖2=1

‖T (v)‖2 ≥ 1,

and combining this with the previous inequality, we conclude ‖T‖ = 1.

Next, we show that the operator norm is, in fact, a norm defined on the space of
linear operators from V to W .
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Theorem 5.16. Assume T, T1, T2 : V → W are linear and bounded. Then,

(a) ‖0‖ = 0, and if T 6= 0 then ‖T‖ > 0.

(b) For all α ∈ K, we have ‖αT‖ = |α|‖T‖

(c) The operator norm satisfies the triangle inequality, namely

‖T1 + T2‖ ≤ ‖T1‖+ ‖T2‖.

Thus, ‖T‖ is a norm.

(d) For every v ∈ V , we have

‖T (v)‖W ≤ ‖T‖‖v‖V .

Proof. The first two conclusions are straightforward, so we focus on proving only
the last two conclusions. To prove part (c), we first write

‖T1 + T2‖ = sup
v∈V\{0}

‖T1(v) + T2(v)‖W
‖v‖V

Thus, using the triangle inequality for the norm ‖ · ‖W we find

‖T1 + T2‖ ≤ sup
v∈V\{0}

(
‖T1(v)‖W
‖v‖V

+ ‖T2(v)‖W
‖v‖V

)

≤ sup
v∈V\{0}

‖T1(v)‖W
‖v‖V

+ sup
v∈V\{0}

‖T2(v)‖W
‖v‖V

= ‖T1‖+ ‖T2‖.

To prove the final conclusion, we let u ∈ V with u 6= 0 be given and write

‖T (u)‖W
‖u‖V

≤ sup
v∈V\{0}

‖T (v)‖W
‖v‖V

= ‖T‖.

Multiplying by ‖u‖V then provides the result for any u ∈ V .

When considering dim(V) <∞ and dim(W) <∞, we can return to our
prototypical example of a linear operator, namely T : Rq → Rp defined by
T (v) = Av for some A ∈ Rp×q. Of course, since matrices are just special varieties
of linear operators, this definition remains valid for them as well.

Definition 5.9. Assume A ∈ Rp×q, then the operator norm of A is defined by

‖A‖ = max
x∈Rq\{0}

‖Ax‖Rp

‖x‖Rq

.

A minor notational difficulty arises here, in that there are infinitely many norms
on Rn for fixed n ∈ N; for instance, we saw earlier that

‖x‖p =
 n∑
j=1
|xj|p

1/p
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is a norm on Rn for any choice of p ∈ N, as is the maximum norm ‖ · ‖∞. For this
reason, when dealing with matrix norms we will use subscripts to denote the
specific p-norm and not the the vector space or its dimension - for example,

‖A‖2 = max
x∈Rq\{0}

‖Ax‖2

‖x‖2

and

‖A‖∞ = max
x∈Rq\{0}

‖Ax‖∞
‖x‖∞

.

Of course, the situation could even be more troublesome than we’ve described, as
the norm on the codomain Rp does not need to be the same as the norm on the
domain Rq, but we will not encounter this situation in the future.

For two specific matrix norms, ‖A‖1 and ‖A‖∞, we can actually construct a
formula for these quantities only in terms of entries of the given matrix A.

Theorem 5.17. Let A ∈ Rp×q be given with entries aij. Then, we have

1. ‖A‖∞ = max
1≤i≤p

q∑
j=1
|aij|

2. ‖A‖1 = max
1≤j≤q

p∑
i=1
|aij|

Proof. We will prove only the first conclusion, as the second portion is left as a
homework exercise (cf. Problem 5.5). Define the number

α = max
1≤i≤p

q∑
j=1
|aij|.

In order to prove ‖A‖∞ = α, the strategy will be to show both ‖A‖∞ ≤ α and
‖A‖∞ ≥ α. This will be done by first establishing the inequality

‖Ax‖∞ ≤ α‖x‖∞

for every x ∈ Rq \ {0}, which yields ‖A‖∞ ≤ α, and then later proving

‖Ax‖∞ ≥ α‖x‖∞

for some choice of x ∈ Rq \ {0}, which will guarantee ‖A‖∞ ≥ α.

We focus on establishing the upper bound on ‖A‖∞ first. In particular, we let
x ∈ Rq \ {0} be given and write

‖Ax‖∞ = max
1≤i≤p

∣∣∣∣∣∣
q∑
j=1

aijxj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
q∑
j=1

akjxj

∣∣∣∣∣∣
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for some k = 1, . . . , p because the maximum over a finite set must be attained.
Using the Triangle Inequality, this becomes

‖Ax‖∞ ≤
q∑
j=1
|akj||xj|

≤
q∑
j=1
|akj|

(
max
1≤j≤q

|xj|
)

=
( q∑
j=1
|akj|

)
‖x‖∞

≤
(

max
1≤i≤p

q∑
j=1
|aij|

)
‖x‖∞

= α‖x‖∞,

and thus dividing by ‖x‖∞ 6= 0 we have

‖Ax‖∞
‖x‖∞

≤ α

for every x ∈ Rq \ {0}. Since α is a uniform (i.e., independent of the choice of x)
upper bound, we can take the maximum of both sides over all x ∈ Rq \ {0} and find

‖A‖∞ = max
x∈Rq\{0}

‖Ax‖∞
‖x‖∞

≤ α.

Next, we show the lower bound on ‖A‖∞. As before, because the maximum is

taken over a finite set, we know that α = max
1≤i≤p

q∑
j=1
|aij| must attain this maximum

value at some k = 1, . . . , p so that we can write

α =
q∑
j=1
|akj|.

Given this value of k, we define y ∈ Rq \ {0} by y =


y1
...
yq

 where each entry satisfies

yj =


|akj|
akj

, if akj 6= 0

1, else.

From this definition, we see that

akjyj =

|akj|, if akj 6= 0
0, else.

which can be expressed merely as akjyj = |akj|. Additionally, it follows from the
definition of y that |yj| = 1 for all j = 1, ..., q and thus ‖y‖∞ = 1. Now, notice that

‖Ax‖∞ = max
1≤i≤p

∣∣∣∣∣∣
q∑
j=1

aijxj

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
q∑
j=1

aijxj

∣∣∣∣∣∣
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for any 1 ≤ i ≤ p and x ∈ Rq \ {0}. Therefore, we have

‖Ay‖∞ ≥

∣∣∣∣∣∣
q∑
j=1

akjyj

∣∣∣∣∣∣ =
∣∣∣∣∣
q∑
j=1
|akj|

∣∣∣∣∣ =
q∑
j=1
|akj| = α = α‖y‖∞.

Hence, ‖Ay‖∞ ≥ α‖y‖∞ for some y ∈ Rq \ {0}. As before, we can divide by
‖y‖∞ 6= 0 and note that

‖A‖∞ = max
x∈Rq\{0}

‖Ax‖∞
‖x‖∞

≥ ‖Ay‖∞
‖y‖∞

≥ α.

With the lower bound on ‖A‖∞, we now have ‖A‖∞ = α and the proof is
complete.

Example 44. Consider the 2× 2 matrix A =
[
1 2
3 4

]
. Using Theorem 5.17, we can

easily compute these norms of A, so that

‖A‖∞ = max
1≤i≤p

q∑
j=1
|aij| = max

1≤i≤p
(|a11|+ |a12|︸ ︷︷ ︸

i=1

, |a21|+ |a22|︸ ︷︷ ︸
i=2

) = max{3, 7} = 7

and

‖A‖1 = max
1≤j≤q

p∑
i=1
|aij| = max

1≤j≤q
(|a11|+ |a21|︸ ︷︷ ︸

j=1

, |a12|+ |a22|︸ ︷︷ ︸
j=2

= max{4, 6} = 6.

In the next chapter we will investigate some applications of least squares problems
to linear regression and ranking systems. After that, we discuss properties of
special types of linear operators on Hilbert spaces, including their eigenvalues and
eigenvectors. This will have specific implications regarding how these operators
might be represented or decomposed in terms of their associated eigenvectors.
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Exercises - Linear Operators
Problem 5.1. Let V and W be vector spaces with dim(V) <∞, and let
T : V → W be a linear operator. Assume that {w1, ..., wk} is a basis for R(T ) and
let B1 = {v1, .., vk} where T (vj) = wj for all j = 1, ..., k. Prove that if
B2 = {u1, ..., un} is a basis for Ker(T ), then B := B1 ∪B2 is basis for V .

Problem 5.2. Let p, q ∈ N and A ∈ Cp×q be given. Prove that

rank(AHA) = rank(A).

Hint: First show that Ker(AHA) =Ker(A).

Problem 5.3. Let V , W , and Z be vector spaces over the same field K with linear
operators S :W → Z and T : V → W . Define the composition ST : V → Z for
every v ∈ V by

(ST )(v) = S(T (v)).

(a) Show that ST is linear.

(b) Assume that S and T are onto and Ker(S) =Ker(T ) = {0} so that both S
and T have an inverse. Show that ST has an inverse and for every z ∈ Z

(ST )−1(z) = (T−1S−1)(z).

Problem 5.4. Let V and W be inner product spaces over the same field K. For
any M ⊂ V , we define

M⊥ = {v ∈ V : v ⊥ w for every w ∈M}.

Assume that T : V → W is a bounded linear operator.

(a) Show directly that R(T ∗) ⊂ Ker(T )⊥ and then use this to show that
R(T ) ⊂ Ker(T ∗)⊥.

(b) Let p, q ∈ N and A ∈ Rp×q be given. Formulate the statements from (a) in
terms of the operator T : Rq → Rp defined by T (x) = Ax.

Problem 5.5. Let p, q ∈ N and recall for A ∈ Rp×q, the norm ‖A‖1 is defined by

‖A‖1 = max
x∈Rq\{0}

‖Ax‖1

‖x‖1
.

Show that ‖A‖1 = max
1≤j≤q

p∑
i=1
|aij|.
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Problem 5.6. Let V and W be Banach spaces with dim(V) <∞ and assume
T : V → W is a linear operator. Prove that T is bounded.
Hint: Lemma 4.11 might be useful.

Problem 5.7. Let V and W be normed spaces and assume T : V → W is a linear
operator. We say that T is continuous on V if for every v0 ∈ V and ε > 0, there
exists δ > 0 such that

‖v − v0‖V < δ implies ‖T (v)− T (v0)‖W < ε.

Prove that T is continuous if and only if T is bounded.

Problem 5.8. Let V ,W ,Z be Hilbert spaces and assume T1 : V → W and
T2 :W → Z are bounded linear operators. Define S : V → Z by their composition
S = T2T1, namely

S(v) = T2(T1(v))

for all v ∈ V .

(a) Show that S is bounded and satisfies

‖S‖ ≤ ‖T1‖ · ‖T2‖.

(b) Show that S has an adjoint S∗ and

S∗ = T ∗1 T
∗
2 .

Problem 5.9. Let V be a Hilbert space and assume that T : V → V is a bounded
linear operator. Show that

‖T ∗‖ = ‖T‖.

Problem 5.10. Construct a normalized QR Factorization of A and use it to solve
the least squares problem Ax = b, where

A =

 1 2
2 1
1 −1

 , b =

 2
3
0

 .



Chapter 6

Application: Linear Regression &
Ranking

In this chapter, we will explore a few different applications of the least squares
problems described in the last section. These include linear regression, i.e. fitting a
linear statistical model to given data, and ranking algorithms.

6.1 Linear Regression
In general, solving least squares problems for linear statistical models allow us to

1. Spot qualitative trends in data

2. Construct models of the form

y = x · β + ε

where y, ε ∈ R and x, β ∈ Rp, which represents a simple linear regression

3. Construct models of the form

y = Xβ + ε,

where y, ε ∈ Rp, X ∈ Rp×q, and β ∈ Rq, which represents a multiple linear
regression

4. Predict future outcomes from data, as output from the linear model.

Example 45. Consider the growth of the total population of the United States
between 1950 and 2000. The following table provides data accumulated from each
decade:

t (year) y (population) s

1950 150.697 0
1960 179.323 0.2
1970 203.212 0.4
1980 226.505 0.6
1990 249.633 0.8
2000 281.422 1

103
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Here, the variable t represents the year, y the associated population (in millions),
and we let

s = 1
50 (t− 1950)

to rescale time so that 0 ≤ s ≤ 1. We assume a cubic interpolation model of the
form

y = β0 + β1s+ β2s
2 + β3s

3 =


β0
β1
β2
β3


︸ ︷︷ ︸
β

·


1
s
s2

s3


︸ ︷︷ ︸
x

which is a linear model in β expanded about the standard basis for P3. The
data generates points in a linear system as the input and output values for s and y
from the table give rise to the six equations:

β0 + β1 · 0 + β2 · 02 + β3 · 03 = 150.697
β0 + β1 · 0.2 + β2 · (0.2)2 + β3 · (0.2)3 = 179.323

... ... ...

... ... ...
β0 + β1 · 1 + β2 · (1)2 + β3 · (1)3 = 281.422

Of course, this yields six equations for four variables, and that does not bode well
for a unique solution. Indeed, it turns out that these points do not lie on a unique
cubic curve. Hence, we reformulate this as a least squares problem and solve that
instead; in particular, we cannot find β ∈ R4 satisfying

Aβ = y

or 

1 0 0 0
1 0.2 0.22 0.23

1 0.4 0.42 0.43

1 0.6 0.62 0.63

1 0.8 0.82 0.83

1 1 12 13


︸ ︷︷ ︸

A


β0
β1
β2
β3


︸ ︷︷ ︸
β

=



150.697
179.323
203.212
226.505
249.633
281.422


︸ ︷︷ ︸

y

.

So, we instead compute the QR factorization of A in MATLAB to find

Q =



−0.4082 −0.5976 0.5455 −0.3727 −0.1733 −0.0983
−0.4082 −0.3586 −0.1091 0.5217 0.4954 0.4186
−0.4082 −0.1195 −0.4364 0.2981 −0.2492 −0.6911
−0.4082 0.1195 −0.4364 −0.2981 −0.4925 0.5451
−0.4082 0.3586 −0.1091 −0.5217 0.6171 −0.1995
−0.4082 0.5976 0.5455 0.3727 −0.1976 0.0253


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Figure 6.1: Plot of regression curve from U.S. Population example.

and

R =



−2.4495 −1.2247 −0.8981 −0.7348
0 0.8367 0.8367 0.7965
0 0 0.2444 0.3666
0 0 0 0.0644
0 0 0 0
0 0 0 0


then solve

Rβ = QTy,

which is also performed using MATLAB. The result is

β =


150.577
164.433
−112.845

79.031


which yields the model

y(s) = 150.577 + 164.433s− 112.845s2 + 79.031s3

and the curve in Figure 6.1 shows the increasing trend in the population. As a side
note, we mention that A has a special structure that arises in polynomial
interpolation problems, and is called a Vandermonde matrix. Additionally, we
can compute an estimate for the population in the year 2010 using

y(1.2) = 321.978.
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The true population value was 309.3 million, which means the relative error in our
approximation was

321.978− 309.3
309.3 ≈ 4.1%

and this is appears to have been a pretty good estimate with a mere six data
points.

6.2 Ranking Systems
Given a number of items with particular value scores, we might wish to rank them.
Examples of this type of situation include college rankings (e.g., U.S. News &
World Report), movie suggestions (Netflix similarity scores), and sports rankings
(e.g., BCS, FBS, Top 25, or chess). We will focus on the last of these for some
examples of ranking systems that may incorporate least squares problems.

Let’s consider ranking a collection of teams (say, football teams) who have played
a certain number of games. In particular, we consider a few common ranking
methods:

1. Winning Percentage

For each team k = 1, ..., N , we compute their associated winning percentage by
dividing their wins by the total number of games:

Wk = wk
gk

where wk represents the number of wins by team k and gk represents the number
of games played by team k.

This has a number of advantages, in that it’s quite easy to compute and provides a
numerical ordering (with ties, possibly) of the teams, but there are also
disadvantages. For instance, Wk does not account for differences in schedule, and
within a sport like college football this can be a large factor with so many teams
and so few games. Additionally, this metric doesn’t necessarily account for the
number of games that have been played. In this way, an undefeated 20− 0 team
and a 1− 0 team have identical winning percentages, though certainly the former
team has displayed a greater ability to win games.

2. Predefined Point Structure

For each team k = 1, ..., N , we compute their number of points using a prescribed
value associated to wins, losses, and perhaps other outcomes. Both the National
Hockey League and English Premier League (soccer) utilize such a system, and
we’ll use the latter as an example of how the point total of a team is computed.
Namely, each team receives three points for a victory, zero points for a loss, and
one point for a draw:

Pk = 3wk + tk

where wk and tk represent the number of wins and draws by team k, respectively.

As an advantage over winning percentage, leagues which allow game outcomes
other than wins and losses (e.g., ties or “overtime losses” in the NHL) can
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associate a non-zero value to such an outcome. Of course, this ranking structure
may incentivize draws, which has been one large critique over the years, and may
disproportionately weight narrow victories relative to decisive ones, as the value
associated to a win is the same regardless of the difference in score.

3. Overall Point Differential

For each team k = 1, ..., N , we compute their associated point differential by
subtracting the overall number of points/goals surrendered (sometimes referred to
as “points/goals against”) during all games from the overall number of
points/goals scored (sometimes referred to as “points/goals for”) during all games:

Dk =
 gk∑
j=1

GFj

−
 gk∑
j=1

GAj



where gk represents the number of games played by team k, while GFj and GAj
represent the number of goals for, respectively against, within game j.

Point differential is useful in that it provides a better understanding of a team’s
“strength of victory”, so that narrow victories and defeats are not awarded or
penalized as severely as routs. Contrastingly, ranking teams by point differential
may incentivize “running up the score”, in which a team that is soundly winning a
game may display a lack of sportsmanship by embarrassing their opponents in an
effort to increase the point differential. This was certainly an issue that arose in
college football rankings when this metric was used an essential ingredient in the
ranking formula. In addition, this metric is biased against teams who have played
less games than others, as they would have had fewer opportunities to amass a
large point differential.

4. Approximate Point Differential (Massey index)

Since the idea of ranking teams by point differential has a number of advantages, it
may be possible to alter the original method to remove some of its shortcomings,
and this is exactly the exercise undertaken by a mathematician named Ken Massey.
In particular, we would like to construct a ranking method that is transitive in
point differential, meaning that if Team A beats Team B by 10 points, and Team B
beats Team C by 5 points, then we should expect that Team A would beat Team
C by 15 points. Not only would this ranking then provide an idea of who should
win when two teams play, but it would also predict the margin of victory (which is
a particularly crucial number for many people who take an interest in college and
professional sports - wink wink). Of course, if Team A and C do play and the
result is not exactly as predicted by the ranking model, then the (linear) system of
equations we would use to determine their rankings would be inconsistent. This is
exactly where a least squares formulation of the problem will be useful, and the
resulting rankings will impose an “approximately transitive” relationship.

Let’s consider our previous example involving Teams A, B, and C, and include the
new result that Team A defeats Team C by 3 points. Then, in order to impose a
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ranking with a transitive relationship, we would impose the system of equations

mA −mB = 10
mB −mC = 5
mA −mC = 3

on the ranking vector m, where mA, mB, and mC all represent the ranking of the
respective teams A, B, and C. In matrix form, this is just1 −1 0

0 1 −1
1 0 −1


︸ ︷︷ ︸

A

mA

mB

mC


︸ ︷︷ ︸

m

=

10
5
3


︸ ︷︷ ︸
b

with A ∈ Rg×N , m ∈ RN , and b ∈ Rg, where g and N represent the number of
games played and teams, respectively. In our example, N = g = 3 so that A is
square, but this is not generally the case.

Notice that rank(A) = 2 since the sum of the three columns produces the zero
vector. Due to this, Theorem 5.14 implies that there are infinitely many least
squares solutions, and this presents a bit of a problem since we would like to select
just one to use for the ranking. More specifically, the normal equations are, of
course, ATAm = AT b where

ATA =

 2 −1 −1
−1 2 −1
−1 −1 2

 and AT b =

13
−5
−8

 .
In order to select a specific least squares solution, we will alter the last equation in
the normal equations so that the resulting linear system is not singular, and thus
possesses a unique solution that will define the respective ranking of each team.
Note that we will alter the matrix ATA and the vector AT b and NOT the matrix
A or vector b because m will be determined as a solution of ATAm = AT b and will
NOT satisfy the original linear system Am = b. The constraint that we choose for
this alteration is a normalization of the rankings which enforces that they all must
sum to zero, namely

mA +mB +mC = 0.

Hence, the altered least squares matrix and vector become

ATA =

 2 −1 −1
−1 2 −1
1 1 1

 and b =

13
−5
0

 .
Due to the structure of the matrix A - namely that each row contains exactly a
single 1 entry, a single −1 entry and only zero entries elsewhere - imposing this
constraint on ATA is guaranteed to increase the rank of ATA. Additionally,
removing the last row only removes redundant information about the system. So,
we haven’t lost any information in doing this, and we now have a normalized (in
the sense that the sum of all rankings is zero), unique solution to the approximate



6.2. RANKING SYSTEMS 109

RMAC Team Abbreviation Record Win % Massey
CSU Pueblo P 5 - 0 1.000 ?

Colorado Mesa CMU 5 - 1 0.833 ?
Chadron State C 3 - 2 0.600 ?

Mines CSM 3 - 2 0.600 ?
Dixie State D 3 - 2 0.600 ?

Adams State A 3 - 3 0.500 ?
Black Hills B 3 - 3 0.500 ?
SD Mines S 2 - 3 0.400 ?
Fort Lewis F 2 - 4 0.333 ?

New Mexico Highlands NM 1 - 4 0.200 ?
Western State W 0 - 6 0.000 ?

Table 6.1: The eleven RMAC teams and their relative standings based on W-L
record, winning percentage, and Massey rating from in-conference games.

ranking problem. In this case, we find the solution vector

m =

13/3
−5/3
−8/3

 .

These results imply that if Teams A and B played, we would expect Team A to
win by 6 points since

mA −mB = 13
3 −

−5
3 = 6.

Similarly, we would expect Team A to defeat Team C by mA −mC = 7 points, and
Team B to defeat Team C by mB −mC = 1 point. Finally, we note that QR
factorization cannot be used to solve the system because we have altered ATA
directly and not via the matrix A.

Of course, this ranking method can be generalized to many more than three teams
and can allow for teams to play multiple times (in which case, the total point
differential in all games played by these teams is used) or for some teams to not
play others at all. In general, we need not have the same number of games as
teams; in fact, given N teams, a total of g =

(
N
2

)
= N(N−1)

2 games are possible
should each team play every other team exactly once, and as previously
mentioned, the A ∈ Rg×N matrix is usually not square.

Example 46. As a final example, we might consider all eleven teams in the Rocky
Mountain Athletic Conference (RMAC) and the outcomes of the games these
teams have played within the conference (i.e., only against one another). For the
sake of convenience, let’s consider the 2017− 2018 season and the following table
of the first 30 game results of that season:
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Game Winner Loser Point Diff. Game Winner Loser Point Diff.
1 P CSM 31 16 B S 1
2 CMU W 26 17 CSM W 38
3 NM D 1 18 P NM 43
4 C F 6 19 C A 47
5 B A 6 20 CMU F 26
6 CMU C 14 21 B NM 10
7 CSM NM 701 22 CSM F 34
8 F B 4 23 P CMU 6
9 A W 37 24 D W 3
10 S D 21 25 A S 8
11 A F 7 26 S NM 38
12 C W 42 27 F W 1
13 CMU CSM 2 28 CMU B 12
14 D B 22 29 D C 14
15 P S 20 30 P A 46

Table 6.2: Results from the first 30 conference games among the 11 RMAC teams.

Inputting these results into Matlab, we can create a simple program to compute
the Massey rating of each team, as outlined above:

1Mines beat New Mexico Highlands by a score of 70− 0 on September 9, 2017!
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1 % Massey Example:
2 % Team abbreviation, alphabetically ordered
3 % A, B, C, CMU, CSM, D, F, NM, P, S, W
4 % 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
5 clear;clc;
6

7 numg=30;
8 numt=11;
9 gamenum = 1:30;

10

11 win = [9, 4, 8, 3, 2, 4, 5, 7, 1, 10, 1, 3, 4, 6, 9, 2, 5, 9, 3,...
12 4, 2, 5, 9, 6, 1, 10, 7, 4, 6, 9];
13

14 loss =[5, 11, 6, 7, 1, 3, 8, 2, 11, 6, 7, 11, 5, 2, 10, 10, 11, ...
8, 1,...

15 7, 8, 7, 4, 11, 10, 8, 11, 2, 3, 1];
16

17 diff = [31, 26, 1, 6, 6, 14, 70, 4, 37, 21, 7, 42, 2, 22, 20, 1, ...
38,...

18 43, 47, 26, 10, 34, 6, 3, 8, 38, 1, 12, 14, 46]';
19

20

21 Aw = sparse(gamenum, win, 1,numg,numt);
22 nnz(Aw);
23 full(Aw);
24

25 Al = sparse(gamenum, loss,-1,numg,numt);
26 nnz(Al);
27 full(Al);
28

29 sum(full(Aw))
30 sum(full(Al))
31

32

33 A = full(Al) + full(Aw)
34 sum(A')
35 %%
36

37 % Compute projection onto Col(A)
38 M = A'*A;
39 rank(M)
40 size(M)
41 c= A'*diff;
42

43 if rank(M) < size(M, 1)
44 %Augment M to build Massey matrix
45 M(end, :) = ones(1, numt);
46 c(end) = 0;
47 end
48

49 r = M\c;
50

51 [finalrank, index] = sort(r, 'descend')
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Rank Team W-L%
1 CSU Pueblo (P) 1.000
2 CO Mesa (CMU) 0.833
3 Chadron (C) 0.600
4 Mines (CSM) 0.600
5 Dixie (D) 0.600
6 Adams (A) 0.500
7 Black Hills (B) 0.500
8 SD Mines (S) 0.400
9 Fort Lewis (F) 0.333
10 NM Highlands (NM) 0.200
11 Western (W) 0.000

Table 6.3: RMAC teams ranked by
winning percentage.

Rank Team Massey
1 CSU Pueblo (P) 30.56
2 Mines (CSM) 19.88
3 CO Mesa (CMU) 15.37
4 Chadron (C) 7.61
5 SD Mines (S) 3.12
6 Dixie (D) -5.14
7 Adams (A) -7.59
8 Black Hills (B) -8.26
9 Fort Lewis (F) -10.37
10 Western (W) -21.21
11 NM Highlands (NM) -23.97

Table 6.4: RMAC teams ranked by
Massey index.

Using this code, we run the approximate least squares algorithm to include the
augmentation of the ATA matrix and implement Massey’s idea. The results
provide a reordering of the previous standings, which were based solely on win
percentage. Instead, the Massey index provides an expected margin of victory for
each team under the assumption that they play an average team, i.e. a team with
a Massey rating of zero.

We can use this information to actually predict scores of future games by merely
subtracting the respective Massey indices of the teams involved in an upcoming
game. For instance, the previous game results and the Massey ratings tell us that
should the Colorado School of Mines (CSM) and South Dakota School of Mines
(S) play, we would expect the CSM team to win (as they have a greater Massey
rating) and their expected margin of victory would be 19.88− 3.12 = 16.76 points.
Of course, some teams possess negative Massey ratings - they must since we’ve
imposed that the sum of all the ratings is zero - and thus when a top team plays a
lower-ranked team, the expected margin of victory can be increasingly wide. For
instance, if CSU Pueblo played NM Highlands, we would expect the former team
to win by 30.56− (−23.97) = 54.53 points.

Finally, we note that the Massey rating (Table 6.4) changes a large amount of the
traditional ranking structure in Table 6.3. As an example, notice that Western
State is winless, but has a greater Massey index than a one-win NM Highlands
team. This is due to the emphasis the Massey algorithm places on point
differential and some lopsided defeats that Highlands suffered at the beginning of
the season, including a 70− 0 loss to CSM.

For more information on (deterministic) ranking algorithms, see [8, 13].
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Exercises - Linear Regression & Ranking
For problems which require computational simulation, please print and submit
both your code and results (e.g., pictures).

Problem 6.1. Consider the following Olympic Gold Medal Winning times (in
seconds) for the Men’s 100 Meter Dash:

Year Time Year Time
1960 10.32 1988 9.92
1964 10.06 1992 9.96
1968 9.95 1996 9.84
1972 10.14 2000 9.87
1976 10.06 2004 9.85
1980 10.25 2008 9.69
1984 9.99 2012 9.63

(a) Use Least Squares fitting to compute the line T = α0 + α1x and the parabola
T = β0 + β1x+ β2x

2 which best fit the data, where T represents the 100
Meter time, y is the true Olympic year, and x represents the scaled Olympic
year given by

x = y − 1960
52 .

Include your Matlab code and output for the models.

(b) Graph the data and your first Least Squares curve from part (a) on the same
axes, and then do this again with your second Least Squares curve from part
(a)

(c) Using each of your resulting models, predict the gold medal time for the 2020
Olympics.

Problem 6.2. Consider the following match results for five different football
teams, denoted by Teams 1 through 5:

Winner Loser Difference Winner Loser Difference
1 2 7 3 4 4
3 5 1 2 4 10
1 5 20 3 2 12
2 5 7 3 1 3
4 1 24 5 4 1

(a) Determine the win-loss records of each team and their corresponding winning
percentage, and then rank them by winning percentage.

(b) Compute the Massey indices of these teams and their associated rankings.
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(c) Change the result in the second portion of the last row from 5− 4− 1 to
5− 4− 20, and recompute the indices and rankings. Does this elevate Team
5 in the standings? How large must the strength of victory (a positive
integer) be for Team 5 in this last game in order to boost them to the top of
the rankings?



Chapter 7

Operator Decompositions and
Factorizations

We will discuss a number of different categorizations of linear operators related to
their eigenvalue/eigenvector properties, and focus on their implications to
analogous matrices with these same properties. In a first course in Linear Algebra,
you may be introduced to the notion of an eigenvalue using the determinant of a
given matrix. Here, we would like to remove the emphasis on the determinant
since this operation is not as useful for general linear operators on
(infinite-dimensional) vector spaces. Additionally, for computationally-oriented
problems it is very rare to compute the determinant of a matrix (much like it is
rare in practice to actually invert a matrix), and the algorithm we typically employ
by hand to find a determinant is extraordinarily inefficient for a computer. For all
of these reasons, we will not utilize determinants going forward. Finally, we will
generally assume throughout that the vector space V is a Hilbert space with inner
product 〈·, ·〉, though many of the ideas of Spectral Theory (concerning eigenvalues
and eigenvectors) can be formulated without an inner product, and we will
stipulate weaker assumptions on V when possible.

7.1 Introduction
We begin by defining some familiar concepts in the generalized framework of a
vector space, including eigenvalues and eigenvectors of linear operators.

Definition 7.1. For any vector space V , define the identity operator I : V → V
by I(v) = v for all v ∈ V .

Definition 7.2. Let T : V → V be bounded and linear. Then,

1. A scalar λ ∈ C is an eigenvalue of T if there is v ∈ V with v 6= 0 such that

T (v) = λv. (7.1)

Associated to this eigenvalue λ, we call any v ∈ V \ {0} satisfying (7.1) an
eigenvector. Note that λ ∈ C, not necessarily λ ∈ K.

2. The (point) spectrum of T is the set of all eigenvalues, namely

σ(T ) =
{
λ ∈ C : T (v) = λv for some v ∈ V \ {0}

}
.

115
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3. For every λ ∈ σ(T ), we define the linear operator Rλ : V → V by

Rλ(v) = (T − λI)v,

referred to as the (inverse) resolvent operator, and the subspace

Eλ = Ker(Rλ) ⊆ V

called the eigenspace (or collection of all eigenvectors) of T associated to λ.

4. The spectral radius of T is defined by

ρ(T ) = sup {|λ| : λ ∈ σ(T )} .

Comment. For dim(V) <∞, it is equivalent to state that λ ∈ C is an eigenvalue
of T if and only if Rλ is not one-to-one.

Example 47. We have to be a bit careful with eigenvalues. For instance,
eigenvalues do not always exist in K for a given T . Consider V = R2 and

T (v) =
[

0 1
−1 0

]
v.

Then, (7.1) implies that any eigenvalue λ satisfies

λ2 + 1 = 0.

Thus, λ = ±i but these values are not in K = R. Of course, this can be remedied
by choosing V = C2 and considering the same mapping T with domain C2. In fact,
this is implied by the next theorem.

Theorem 7.1. Let V be a Hilbert space and T : V → V be bounded and linear.
Then, there exists λ ∈ σ(T ) such that |λ| = ρ(T ).

The proof of this result uses tools of Complex Analysis beyond the scope of this
class, but see [9] for more details.

Before discussing special classes of linear operators, we will need one more general
result concerning eigenvalues and eigenvectors, which you may have seen in a first
course in Linear Algebra.

Lemma 7.2. Let T : V → V be linear and k ∈ N. If λ1, . . . , λk are distinct
eigenvalues of T and v1, . . . , vk are any associated eigenvectors, then the set
S = {v1, . . . , vk} is linearly independent.

Proof. The proof is assigned as a homework problem (cf. Problem 7.3).
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7.2 Diagonalizable Operators and Similar
Matrices

Definition 7.3. Let T : V → V be linear. We say T is diagonalizable if there
exists a basis for V , say {vi}i∈I , such that vi is an eigenvector of T for every i ∈ I.

Diagonalizable operators are interesting and important because their operation
inherently captures the entire vector space on which they’re defined, namely
through their associated eigenvectors. As a special case V = Cp and T (v) = Av for
some A ∈ Cp×p has the same definition as above, but these linear operators can be
characterized by a specific matrix factorization.

Theorem 7.3. Let p ∈ N and A ∈ Cp×p be given and define T : Cp → Cp by
T (v) = Av for every v ∈ Cp. Then, T (or A) is diagonalizable if and only if there is
a nonsingular matrix P ∈ Cp×p and a diagonal matrix Λ ∈ Cp×p such that

A = PΛP−1.

Proof. The proof is left as a homework exercise (cf. Problem 7.4), but the idea of
the proof is as follows. Because P is nonsingular, we can multiply by P on the
right of the factorization A = PΛP−1 so that it is equivalent to writing AP = PΛ.
From this representation, we could write each column of AP as Avj where each vj
is the jth column of P . Since Λ is diagonal, each column of PΛ can then be
written as λjvj where λj is the jth diagonal entry of Λ. With the similarity of the
resulting equality to (7.1), we would expect eigenvalues and eigenvectors to be
involved in constructing the matrices P and Λ.

Comment. The most crucial idea taken from this theorem is that within any
matrix diagonalization (i.e. A = PΛP−1), the diagonal matrix Λ contains
the eigenvalues of A and the matrix P contains the eigenvectors of A.
We will study many such diagonalizations and all involve special properties of
eigenvalues and eigenvectors of A.

Corollary 7.1. If A ∈ Cp×p possesses p distinct eigenvalues, then A is
diagonalizable (or equivalently, T (v) = Av is diagonalizable).

Proof. Because A has p distinct eigenvalues λ1, . . . , λp, the set of corresponding
eigenvectors S = {v1, . . . , vp} is linearly independent by Lemma 7.2, where

T (vk) = λkvk, i.e. Avk = λkvk

for k = 1, ..., p. Since S contains p linearly independent vectors in Cp, they must
also form a basis for Cp. As S consists only of eigenvectors of A, the matrix A is
diagonalizable by definition.

Example 48. We provide an example of both a diagonalizable and
non-diagonalizable matrix, which are nearly identical save for one entry. Define the
matrices

A1 =

2 −1 1
0 2 1
0 0 3

 , A2 =

2 0 1
0 2 1
0 0 3

 .
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Because A1 and A2 are upper triangular matrices, their eigenvalues are exactly
their diagonal entries, namely λ1 = 2 (with algebraic multiplicity 2) and λ2 = 3.
Computing the eigenvectors for A1, we find

λ1 = 2→ Nul(A1 − 2I) = Nul


0 −1 1

0 0 1
0 0 1


 =

α
1

0
0

 : α ∈ R


λ2 = 3→ Nul(A1 − 3I) = Nul


−1 −1 1

0 −1 1
0 0 0


 =

β
0

1
1

 : β ∈ R


Thus, no set of eigenvectors of A1 form a basis for R3, and A1 is not diagonalizable!

Similarly, computing the eigenvectors for A2, we find

λ1 = 2→ Nul(A2 − 2I) = Nul


0 0 1

0 0 1
0 0 1


 =

α
1

0
0

+ β

0
1
0

 : α, β ∈ R


λ1 = 3→ Nul(A2 − 3I) = Nul


−1 0 1

0 −1 1
0 0 0


 =

γ
1

1
1

 : γ ∈ R


Because the set of vectors

B =


1

0
0

 ,
0

1
0

 ,
1

1
1




forms a basis for R3, it follows that A2 is diagonalizable. In particular, letting

P =

1 0 1
0 1 1
0 0 1

 and Λ =

2 0 0
0 2 0
0 0 3


we find

A2 = PΛP−1.

Definition 7.4. Given A,B ∈ Cp×p, we say A and B are similar (often denoted
by A ∼ B) if there is a nonsingular P ∈ Cp×p such that

A = PBP−1

or equivalently, B = P−1AP .

With this definition, a result immediately arises by merging the notion of matrix
similarity with the equivalence theorem regarding diagonalizability.

Corollary 7.2. A matrix A ∈ Cp×p is diagonalizable if and only if A is similar to
a diagonal matrix.
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7.3 Jordan Form
With these results in place, we see that not all square matrices are similar to a
diagonal matrix, which is unfortunate because given an arbitrary square matrix A,
it would often be much easier to work with an associated diagonal matrix Λ to
perform some computations, and then merely transform, via the nonsingular
matrix P , back to A. Since some matrices are not similar to a diagonal matrix, it’s
useful to know for matrices without this property, what is the simplest matrix to
which they are similar? The short answer is that there is a simpler form for every
matrix, called the Jordan form of A, but as we will see, it is not quite as friendly
as a diagonal matrix. Before we can define the Jordan form of a matrix, however,
we will first need some other basic terms.

Definition 7.5. A matrix A ∈ Rp×p is called block diagonal if it is of the form

A =


A1 0 · · · 0
0 A2 · · · 0
... ... . . . 0
0 0 · · · Ak


where Aj is a square matrix for every j = 1, . . . , k with the diagonal of Aj lying on
the diagonal of A, and 0 represents an appropriately sized matrix of zeros. It is
important to note that no Aj need be a diagonal matrix in this representation.
Definition 7.6. A Jordan block with value λ is a square, upper-triangular
matrix whose diagonal entries are λ, whose super diagonal entries (i.e. the entries
immediately above the diagonal) are all 1, and whose remaining entries are 0.
Example 49. The following are general forms (for λ ∈ R) of Jordan blocks of size
1× 1, 2× 2, and 3× 3, respectively:

J1(λ) =
[
λ
]
, J2(λ) =

[
λ 1
0 λ

]
, J3(λ) =

λ 1 0
0 λ 1
0 0 λ

 .
Definition 7.7. A Jordan form matrix is a block diagonal matrix in which all
of the (non-zero) blocks are Jordan blocks.
Example 50. Consider the 6× 6 matrix A defined by

A =



2 1 0 0 0 0
0 2 0 0 0 0
0 0 −3 1 0 0
0 0 0 −3 1 0
0 0 0 0 −3 0
0 0 0 0 0 −1


.

Then, partitioning submatrices accordingly, we can express this as

A =



2 1 0 0 0 0
0 2 0 0 0 0
0 0 −3 1 0 0
0 0 0 −3 1 0
0 0 0 0 −3 0
0 0 0 0 0 −1


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which is of the form

A =



λ1 1 0 0 0 0
0 λ1 0 0 0 0
0 0 λ2 1 0 0
0 0 0 λ2 1 0
0 0 0 0 λ2 0
0 0 0 0 0 λ3


=

 J2(λ1) 0 0
0 J3(λ2) 0
0 0 J1(λ3)



where λ1 = 2, λ2 = 3, λ3 = −1, and Jk(λ) is the Jordan block of size k × k, as in
the previous example. Therefore, with this representation in terms of the Jordan
blocks of A, we see that it is a Jordan form matrix.

Now that we know what a Jordan form matrix looks like, we can state the main
result, namely that every square matrix can be put into this special form via a
similarity transformation.

Theorem 7.4. Let A ∈ Cp×p be given. Then, there is a Jordan form matrix
J ∈ Cp×p such that A and J are similar.

Though we will not prove this result, it’s worthwhile to at least discuss the main
idea. Recall that diagonalizable matrices are decomposed into their respective
eigenvalues and eigenvectors, where the eigenvectors form a linearly independent
set. However, what happens if the eigenvectors (corresponding to the same
eigenvalue) do not form a linearly independent set? In other words, what if the
geometric multiplicity is strictly less than the algebraic multiplicity of a particular
eigenvalue? Clearly the structure of the Λ matrix in an attempted diagonalization
would be altered, and this is exactly what leads to the Jordan form, rather than
the diagonal form. This is perhaps best illustrated by the following example.

Example 51. Consider the following matrices:

A =
[
4 0
0 4

]
and B =

[
3 1
−1 5

]
.

Clearly A is already diagonal, and thus its diagonalization consists of Λ = A and
any 2× 2 matrix P with linearly independent columns since

PΛP−1 = P4IP−1 = 4PP−1 = 4I = A.

This occurs regardless of the invertible matrix P chosen to represent the
eigenvectors. Additionally, notice that A has only one eigenvalue λ = 4, which has
algebraic multiplicity two and geometric multiplicity two.

Unfortunately, B appears to be quite different. However, computing its
eigenvalues, we find λ = 4 is also the only eigenvalue of B, as was the case for A.
Thus, if we attempt to diagonalize B, we find Λ = 4I is the appropriate matrix for
the eigenvalues. This attempt falls apart in computing the eigenvectors of B, as we
find

E4 =
{
α

[
1
1

]
: α ∈ R

}
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is the eigenspace corresponding to λ = 4. In particular, dim(E4) = 1 and therefore
we cannot create a basis for R2 merely from eigenvectors of B. However, if we alter
Λ = 4I slightly by using a Jordan block, namely

Λ̃ = J2(4) =
[
4 1
0 4

]
,

then solving the matrix equation P Λ̃ = BP or[
p11 p12
p21 p22

] [
4 1
0 4

]
=
[

3 1
−1 5

] [
p11 p12
p21 p22

]

provides the solution
p11 = p21, p11 + p12 = p22.

Hence, any matrix of the form

P = s

[
1 0
1 1

]
+ t

[
0 1
0 1

]

for s, t ∈ R will satisfy the diagonalization relationship. Finally, we can simplify
this by choosing s = 1 and t = 0 so that

P =
[
1 0
1 1

]
and P−1 =

[
1 0
−1 1

]

which yields P Λ̃P−1 = B.

Comment. Though the Jordan form of a square matrix is not as common or easy
to use as a diagonal matrix, they do arise within a variety of mathematical fields,
including

1. Ordinary Differential Equations - in computing the general solution of linear
systems

2. Complex Analysis - in proving invariant subspace decompositions of Cn

3. Algebra - in proving the Cayley-Hamilton Theorem (i.e., p(A) = 0)

However, it should be noted that the Jordan form is not used computationally due
to numerical instabilities. Instead, a slightly different decomposition called the
Schur Form is used, and we will discuss this in the next section.

7.4 Unitary operators and the Schur Form
Definition 7.8. Let V and W be Hilbert spaces with T : V → W bounded and
linear. Then, we say T is unitary if

T ∗T = IV and TT ∗ = IW ,

i.e. T ∗(T (v)) = v for every v ∈ V and T (T ∗(w)) = w for every w ∈ W .
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Comment. For U ∈ Cp×p this definition is equivalent to

UHU = UUH = Ip

and these are called unitary matrices. Equivalently, U ∈ Cp×p is unitary if and
only if U is nonsingular and U−1 = UH .

For Q ∈ Rp×p this definition is equivalent to

QTQ = QQT = Ip

and these are called orthogonal matrices. Equivalently, Q ∈ Rp×p is orthogonal
if and only if Q is nonsingular and Q−1 = QT .

Example 52. Here are a few examples of familiar unitary operators:

1. The matrix A =
[

1/
√

2 1/
√

2
−1/
√

2 1/
√

2

]
is an orthogonal matrix.

2. The matrix A = 1
2

[
1 + i 1− i
1− i 1 + i

]
is a unitary matrix.

3. Let F : L2(R)→ L2(R) be the Fourier transform, defined by

F [u](ξ) = 1√
2π

∫
e−ixξu(x)dx.

Then, F is a unitary operator, i.e. F ∗[F [u]](x) = u(x) for every u ∈ L2(R).
In Harmonic Analysis this implies the Plancherel Theorem, which states

‖u‖L2(R) = ‖F [u]‖L2(R).

As you may have seen previously, the Fourier Transform is also a powerful
tool used to solve a variety of linear PDEs.

Next, we investigate some properties of unitary operators. In particular, they
preserve angles and norms of their arguments.

Theorem 7.5. Let T : V → W be unitary. Then,

1. For every u, v ∈ V , we have

〈T (u), T (v)〉W = 〈u, v〉V .

2. For every v ∈ V , we have
‖T (v)‖W = ‖v‖V .

3. For every u, v ∈ V , we have

‖T (u)− T (v)‖W = ‖u− v‖V .
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Proof. We prove the results sequentially and use each previous conclusion to
establish the next one.

To prove the first result, we merely use the definition of the adjoint and the
unitary property of T to find

〈T (u), T (v)〉W = 〈u, T ∗(T (v))〉V = 〈u, v〉V

for any u, v ∈ V .

With this, the second property follows by using the first result so that

‖T (v)‖2
W = 〈T (v), T (v)〉W = 〈v, v〉V = ‖v‖2

V

for every v ∈ V . Taking the square root of both sides then yields the conclusion.
Finally, to prove the last conclusion we use the linearity of T and the second
result, to find

‖T (u)− T (v)‖W = ‖T (u− v)‖W = ‖u− v‖V
for every u, v ∈ V , and the proof is complete.

Comment. We note a few implications of this theorem for matrices.

1. The first property in this theorem states that T is a conformal map, i.e. an
angle-preserving transformation, while second property states that T is an
isometry, i.e. a distance-preserving transformation.

2. Note that each of the conclusions of Theorem 7.5 holds for linear operators
T (x) = Ux where U ∈ Cp×p or T (x) = Qx where Q ∈ Rp×p. More
specifically, the norm within these conclusions is the two-norm induced by
the inner product; for instance, the second conclusion becomes

‖Ux‖2 = ‖x‖2

for every x ∈ Cp.

3. For U ∈ Cp×p or Q ∈ Rp×p, the second result of the theorem further implies

‖U‖2 = ‖Q‖2 = 1

because, for instance

‖U‖2 = max
x∈Cp\{0}

‖Ux‖2

‖x‖2
= max

x∈Cp\{0}
1 = 1.

Theorem 7.6. Let U ∈ Cp×p and Q ∈ Rp×p be given. Then,

1. U is unitary if and only if the columns of U are orthonormal with respect to
the standard inner product on Cp, namely 〈x, y〉Cp = xHy.

2. Q is orthogonal if and only if the columns of Q are orthonormal with respect
to the standard inner product on Rp, namely 〈x, y〉Rp = xTy.
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Proof. These results are very similar, and the proof of the second is included as a
homework exercise (cf. Problem 7.5). The main idea is to use the fact that the
entries of QTQ are merely inner products of columns of Q. Hence, the
orthonormality of these columns is equivalent to these entries being 1 along the
diagonal and 0 elsewhere.

Theorem 7.7. Let P,R ∈ Cp×p be given. Then,

1. The product PR is unitary if P and R are unitary.

2. P is unitary if and only if PH is unitary.

3. If P and R are real-valued, then the product PR is orthogonal if P and R
are orthogonal.

4. If P is real-valued, then P is orthogonal if and only if P T is orthogonal.

Proof. The proof of the first and third results are similar and the former is a
homework exercise (cf. Problem 7.7). The second and fourth results are also very
similar, so we merely prove the former.
Notice that P unitary is equivalent to PHP = PPH = I. Additionally, PH unitary
means exactly that

(PH)HPH = I and PH(PH)H = I,

or simplifying these expressions

PPH = I and PHP = I,

which are merely the above equivalence properties for P unitary.

Definition 7.9. Let A,B ∈ Cp×p be given. We say A and B are unitarily
similar if there exists a unitary U ∈ Cp×p such that

A = UBUH .

Similarly, we say A,B ∈ Rp×p are orthogonally similar if there is an orthogonal
Q ∈ Rp×p such that

A = QBQT .

Comment. Because unitary and orthogonal matrices are necessarily invertible,
this is just a special case of similar matrices A ∼ B. Hence, all properties of
similar matrices hold for these as well.

Furthermore, notice that if A = UBUH where U−1 = UH , then multiplying on the
left and right side of the similarity equation yields B = U−1A(UH)−1 = UHAU .
This is just the statement that B is unitarily similar to A with similarity matrix
UH , rather than A is unitarily similar to B with similarity matrix U , which we can
now see, are equivalent statements.

Defining these special notions of similarity allows us to introduce the Schur form of
a matrix, which we briefly hinted at earlier in our discussion of the Jordan form.
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Theorem 7.8. Let A ∈ Cp×p be given. Then, the following statements hold.

1. There is a unitary matrix U ∈ Cp×p and an upper triangular T ∈ Cp×p such
that

A = UTUH .

2. If A ∈ Rp×p has real eigenvalues, then there is an orthogonal Q ∈ Rp×p that
provides the analogous decomposition

A = QTQT .

Thus, every square matrix A is unitarily similar (or orthogonally similar, if A
is real-valued with real eigenvalues) to an upper triangular matrix. The
matrix T is referred to as the Schur decomposition or Schur form of A.

Comment. We remark that the diagonal entries of T will merely be the
eigenvalues of A repeated according to their algebraic multiplicity. Additionally, U
can be chosen so that these eigenvalues appear in any order desired. Hence, the
Schur form is not explicitly unique.

Instead of presenting a more abstract proof of this theorem, we will introduce an
iterative algorithm that will construct the Schur form of a given matrix. Though
this is done by way of a specific example, the algorithm will generalize for use with
any square matrix.

Example 53. Define A ∈ Rp×p by

A =

 0.2 0.6 0
1.6 −0.2 0
−1.6 1.2 3

 .
We compute the Schur form using the following iterative algorithm.

1. Find an eigenvalue and corresponding unit eigenvector of A:

For this particular matrix A, we find

λ1 = 3 and v1 =

0
0
1

 .

2. Construct a unitary/orthogonal matrix from v1:

Since A is real-valued, we actually construct an orthogonal matrix, and as we
have a choice, we choose a simple one. We let q1 = v1 and define the
orthogonal matrix Q1 by

Q1 =

0 1 0
0 0 1
1 0 0

 .
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3. Compute the current approximation to the unitary decomposition:

A′ = QT
1AQ1 =

q
T
1
qT2
qT3

 [ Aq1 | Aq2 | Aq3
]
.

Because Aq1 = λ1q1 in our example, we can simplify this representation to

A′ =

q
T
1
qT2
qT3

 [ 3q1 | Aq2 | Aq3
]

=

3 α β
0
0 B


where

α = qT1 Aq2 = 1.2
β = qT1 Aq3 = −1.6

and
B =

[
qT2 Aq2 qT2 Aq3
qT3 Aq2 qT3 Aq3

]
=
[
−0.2 1.6
0.6 0.2

]
.

4. Continue this iterative process on the remaining submatrix:

With one full iteration of the algorithm complete, we began with A ∈ R3×3,
computed the first row and column in the associated Schur decomposition,
and are now left with B ∈ R2×2. Hence, we repeat the procedure on the
remaining submatrix B.

Computing an eigenvalue and unit eigenvector, we find

λ2 = 1 with v2 =
[
0.8
0.6

]
.

Additionally, the remaining eigenvalue of B arises naturally, and it is
λ3 = −1.

Next, we construct an orthogonal matrix from v2. In particular, we let
w1 = v2 and define the orthogonal matrix W by

W =
[
0.8 −0.6
0.6 0.8

]
.

With this, we compute the unitary decomposition for B using the eigenpair
relationship Bv2 = λ2v2 so that Bw1 = λ2w1 = w1. Hence, we find

B′ = W TBW =
[
wT1
wT2

] [
Bw1 | Bw2

]
=
[
wT1
wT2

] [
w1 | Bw2

]
=
[
1 γ
0 λ3

]
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where
γ = wT1 Bw2 = 1 and λ3 = −1.

Here, the condition b′2,2 = λ3 = −1 occurs because the eigenvalues of B must
lie on the diagonal of the constructed Schur matrix - notice, for instance,
that a′1,1 = λ1 and b′1,1 = λ2.

5. Assemble all submatrix Schur decompositions:

So, we have an upper triangular matrix that is ALMOST the final product.
We merely need to place the submatrix decomposition into a larger form,
multiply the orthogonal decompositions, and use the fact that the product of
orthogonal matrices remains orthogonal. In particular, let

Q2 =

1 0 0
0
0 W


and define

T = QT
2Q

T
1AQ1Q2.

Since Q1 and Q2 are orthogonal, it follows that Q = Q1Q2 must also be
orthogonal by Theorem 7.7. Hence, T becomes

T = QTAQ

which can be inverted to arrive at

A = QTQT .

Thus, A is unitarily similar to T , and we merely need to compute T . Doing
this, we finally compute

T = QT
2 Q

T
1AQ1︸ ︷︷ ︸
A′

Q2

= QT
2A
′Q2

=

1 0 0
0
0 W T


λ1 α β

0
0 B


1 0 0

0
0 W



=

1 0 0
0
0 W T


λ1 [α β]W

0
0 BW



=


λ1 [α β]W
0
0 W TBW︸ ︷︷ ︸

=B′


=

λ1 [α β]W
0 λ2 γ
0 0 λ3

 .
Since [

α β
]
W =

[
1.2 −1.6

] [0.8 −0.6
0.6 0.8

]
=
[
0 −2

]
,
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we find

T =

3 0 −2
0 1 1
0 0 −1

 ,
which is indeed upper triangular, and thus A = QTQT where Q = Q1Q2.

With these results in hand, a typical question that might arise is - Why do we care
about unitarily similar matrices or the Schur form? Yes, these matrices have
desirable properties, but how are they generally used to combat specific problems?
We demonstrate one answer to this question in the following example.

Example 54. Consider being given A ∈ Rp×p and being asked to compute A1000.
Certainly, we can calculate powers of matrices, and even better, we can use
computational means to arrive at the answer rather than doing anything by hand.
Unfortunately, such a computation still requires a large amount of flops
(floating-point operations - just additions, subtractions, multiplications, and
divisions of numbers) to process. So, this may be a fairly expensive computation,
even when p is not very large.

It turns out that if we can compute the Schur form of A, then this computation
can be drastically reduced. Notice, for instance, that if A = QTQT , then

A2 = QT QTQ︸ ︷︷ ︸
=I

TQT = QTTQT = QT 2QT .

Continuing this, we see that

A1000 = QT 1000QT .

Therefore, computing powers of A can be reduced to computing powers of T .
What’s the difference between these two operations? Because T is upper
triangular, it contains around half as many nonzero entries as A and hence, far
fewer flops are needed to compute T 2 or T 1000 than A2 or A1000. Once T 1000 is
computed, what remains is two matrix multiplications by Q and QT , which are
quite inexpensive by comparison.

Finally, if A is unitarily similar to a diagonal matrix (i.e. unitarily diagonalizable -
see the Spectral Theorem), then T is diagonal. In this case, computing powers of
T is equivalent to computing the powers of the diagonal elements of T , and
computing powers of a given matrix using this method is extremely quick and
inexpensive.

7.5 Normal and Hermitian Operators
Definition 7.10. Let V be a Hilbert space with T : V → V bounded and linear.

1. We say that T is normal if T and T ∗ commute; that is,

TT ∗ = T ∗T.

Said another way, T is normal if for every v ∈ V , we have

T (T ∗(v)) = T ∗(T (v)).
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2. We say that T is Hermitian (or self-adjoint) if

T = T ∗.

Said another way, T is Hermitian if for every v ∈ V , we have

T (v) = T ∗(v).

For A ∈ Cp×p, these definitions become

1. A is normal if
AAH = AHA.

2. A is Hermitian if
AH = A.

For A ∈ Rp×p, these definitions become

1. A is normal if
AAT = ATA.

2. A is symmetric if
AT = A.

Comment. From these definitions, we can see that normal operators generalize
many of the other classes of linear operators that we’ve discussed. In particular,
using the definition it shouldn’t be too difficult to notice that

1. Every Hermitian operator (T ∗ = T ) is normal (TT ∗ = T ∗T ).

2. Every unitary operator (T ∗T = TT ∗ = I) is normal (TT ∗ = T ∗T ).

3. Every real, symmetric matrix (AT = A) is Hermitian (AH = A), and thus
normal.

Example 55. Of course, not every normal matrix is Hermitian, as such a result
would render the distinction between the two categories meaningless. Indeed, if we
define the real 2× 2 matrix

A =
[
0 −2
2 0

]
so that

AT =
[

0 2
−2 0

]
and thus

ATA = AAT = 4I,

then we see that A is normal. In fact, A is neither an orthogonal (or unitary)
matrix as ATA 6= I, nor a symmetric (or Hermitian) matrix because AT 6= A.
Instead, A is skew-symmetric, i.e. AT = −A. More generally, every real,
skew-symmetric matrix is normal because AAT = −A2 = ATA, but not Hermitian.
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Now that we have a few examples and some intuition, we will return to the general
framework of normal operators (not necessarily matrices) and prove some
important theorems leading up to the Spectral Theorem.

Lemma 7.9. Assume T : V → V is Hermitian. Then, we have 〈T (v), v〉 = 0 for
every v ∈ V if and only if T = 0.

Proof. We prove the forward direction and note that the proof of the reverse
statement is similar. Assume 〈T (v), v〉 = 0 for every v ∈ V where T is Hermitian.
Then, using the fact that T is linear and Hermitian, we have for any choice of
u,w ∈ V

0 = 〈T (u+ w), u+ w〉
= 〈T (u) + T (w), u+ w〉

= ����
��:0

〈T (u), u〉 + 〈T (w), u〉+ 〈T (u), w〉+����
��:0

〈T (w), w〉
= 〈T (w), u〉+ 〈u, T ∗(w)︸ ︷︷ ︸

T (w)

〉

= 〈T (w), u〉+ 〈u, T (w)〉
= 〈T (w), u〉+ 〈T (w), u〉
= 2Re(〈T (w), u〉).

Since this is true for any u,w ∈ V , we may choose u = T (w) so that the result is

Re(〈T (w), T (w)〉) = 0

Of course, since 〈T (w), T (w)〉 is real-valued, this just becomes

‖T (w)‖2 = 0

for every w ∈ V . Hence, T (w) = 0 for all w ∈ V and so T = 0.

Using Lemma 7.9, we can now prove a characterization of normal operators that
demonstrates that they are the only linear maps with the same norm as their
adjoint for every element of their domain.

Theorem 7.10. Let T : V → V be a bounded linear operator. Then, T is normal
if and only if

‖T (v)‖ = ‖T ∗(v)‖ for all v ∈ V .

Proof. To prove both directions simultaneously, we will establish a string of
equivalences. In particular, for every v ∈ V we have

‖T (v)‖ = ‖T ∗(v)‖ ⇐⇒ ‖T (v)‖2 = ‖T ∗(v)‖2

⇐⇒ 〈T (v), T (v)〉 = 〈T ∗(v), T ∗(v)〉
⇐⇒ 〈T ∗(T (v)), v〉 = 〈T (T ∗(v)), v〉
⇐⇒ 〈T ∗(T (v))− T (T ∗(v)), v〉 = 0.
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Now, define S : V → V by S(v) = T ∗(T (v))− T (T ∗(v)) for every v ∈ V . Then, the
final equality above is simply

〈S(v), v〉 = 0

for every v ∈ V . Furthermore, a short computation shows

S∗ = (T ∗T − TT ∗)∗ = T ∗T − TT ∗ = S

so that S is Hermitian. Therefore, by Lemma 7.9 we find that 〈S(v), v〉 = 0 for all
v ∈ V is further equivalent to S = 0. Of course, S = 0 is identical to T ∗T = TT ∗,
which is the definition of T being a normal operator. Thus, T is normal if and only
if ‖T (v)‖ = ‖T ∗(v)‖, and the proof is complete.

Theorem 7.11. Let T : V → V be a normal operator. Then, we have

1. If T (v) = λv for some λ ∈ C and v ∈ V , then T ∗(v) = λ̄v. Said another way,
T and T ∗ have complex conjugate eigenvalues corresponding to the same
eigenvectors.

2. If λ1, λ2 ∈ C are distinct eigenvalues of T with corresponding eigenvectors
v1, v2, then v1 ⊥ v2. (Note the orthogonality of eigenvectors in comparison to
mere linear independence as in Lemma 7.2.)

Proof. To prove the first result, we assume T (v) = λv so that ‖T (v)− λv‖2 = 0.
Then, using Theorem 7.10 the normality of T implies ‖T ∗(v)‖ = ‖T (v)‖. Using
this and the adjoint property, we find

‖T (v)− λv‖2 = 〈T (v)− λv, T (v)− λv〉
= ‖T (v)‖2 − λ̄〈v, T (v)〉 − λ〈T (v), v〉+ λ2〈v, v〉
= ‖T ∗(v)‖2 − λ̄〈T ∗(v), v〉 − λ〈v, T ∗(v)〉+ λ2〈v, v〉
= ‖T ∗(v)‖2 − 〈T ∗(v), λ̄v〉 − 〈λ̄v, T ∗(v)〉+ λ2〈v, v〉
= 〈T ∗(v)− λ̄v, T ∗(v)− λ̄v〉
= ‖T ∗(v)− λ̄v‖2.

As this quantity is zero, we find T ∗(v) = λ̄v and the proof of the first result is
complete.

Now, to prove the second result we assume there are λ1, λ2 ∈ C and v1, v2 ∈ V such
that

T (v1) = λ1v1 and T (v2) = λ2v2.

Then, the first result implies T ∗(v1) = λ̄1v1. Therefore, we use the adjoint property
to arrive at

λ2〈v1, v2〉 = 〈v1, λ2v2〉 = 〈v1, T (v2)〉 = 〈T ∗(v1), v2〉 = 〈λ̄1v1, v2〉 = λ1〈v1, v2〉.

Subtracting, this becomes
(λ2 − λ1)〈v1, v2〉 = 0.

Finally, if λ1 6= λ2, then 〈v1, v2〉 = 0 follows immediately.
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Because they are identical to their own adjoints, Hermitian operators also possess
special eigenvalue properties, which will be useful later on.

Theorem 7.12. Let T : V → V be Hermitian. Then, all eigenvalues of T are real.

Proof. Assume T (v) = λv for some λ ∈ C and v ∈ V \ {0}. Then, we find

〈T (v), v〉 = 〈λv, v〉 = λ̄〈v, v〉 = λ̄‖v‖2.

Similarly, because T is Hermitian, and thus T ∗ = T , we also find

〈v, T ∗(v)〉 = 〈v, T (v)〉 = 〈v, λv〉 = λ〈v, v〉 = λ‖v‖2.

However, these two expressions must be equal since combining these equalities
with the adjoint property guarantees

λ̄‖v‖2 = 〈T (v), v〉 = 〈v, T ∗(v)〉 = λ‖v‖2.

Since v 6= 0, we divide this by the norm of v to find λ̄ = λ, which implies that λ is
real. Since λ is an arbitrary eigenvalue, all eigenvalues must be real.

7.6 Cholesky decomposition
In addition to possessing real eigenvalues, certain types of Hermitian matrices also
give rise to a special matrix factorization that arises frequently within applications,
such as the study of covariance (or correlation) matrices in statistics. Before
stating the theorem representing this result, a new definition is needed.

Definition 7.11. We say a Hermitian operator T : V → V is positive definite if

〈v, T (v)〉 > 0

for every v ∈ V \ {0}. Analogously, a Hermitian matrix A ∈ Cp×p is positive
definite if

xHAx > 0
for every x ∈ Cp \ {0}, while a symmetric matrix B ∈ Rp×p is positive definite if

xTBx > 0

for every x ∈ Rp \ {0}, respectively.

Though this property is difficult to check since it must be verified for all such
vectors, it is equivalent to another condition that is easier to determine. The proof
of this equivalence utilizes the celebrated Rayleigh quotient, namely

RT (v) = 〈v, T (v)〉
〈v, v〉

or RA(x) = xHAx

‖x‖2
2
.

Theorem 7.13. A Hermitian matrix A ∈ Cp×p is positive definite if and only if all
eigenvalues of A are positive.
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Proof. We begin by letting λ ∈ C and x ∈ Cp \ {0} be any eigenpair of A so that

Ax = λx.

Multiplying by xH on the left yields

xHAx = xHλx = λ‖x‖2
2,

which, upon dividing by ‖x‖2
2, becomes

λ = xHAx

‖x‖2
2
.

Therefore, we see that λ > 0 if and only if xHAx > 0. Thus, if A is positive
definite then xHAx > 0 for every eigenvector, and every eigenvalue is positive.

Additionally, because A is Hermitian, the Spectral decomposition (Theorem 7.19),
which we will justify in the next section, implies that A is unitarily diagonalizable.
Hence, there is an orthonormal basis of Cp consisting only of eigenvectors of A.
Thus, every x ∈ Cp can be written as a linear combination of eigenvectors of A,
and there is an orthonormal set {v1, ..., vp} ⊆ Cp such that for any x ∈ Cp, we have
unique αj ∈ C for every j = 1, ..., p such that

x =
p∑
j=1

αjvj.

Defining the Kronecker delta function

δij =

0 i 6= j

1 i = j
,

the orthonormal nature of {v1, ..., vp} can be expressed as

vHi vj = δij

for every i, j = 1, ..., p. Using the above basis expansion in terms of eigenvectors,
we find

xHAx =
 p∑
j=1

αjvj

H A( p∑
k=1

αkvk

)

=
p∑
j=1

p∑
k=1

ᾱjαkv
H
j Avk

=
p∑
j=1

p∑
k=1

ᾱjαkλkv
H
j vk

=
p∑
j=1

p∑
k=1

ᾱjαkλkδjk

=
p∑
j=1
|αj|2λj.

If x 6= 0, then α` > 0 for some ` = 1, ..., p. Therefore, if every eigenvalue is positive,
we find that xHAx > 0 for every x 6= 0.
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Another property of positive definite matrices is that they admit a specific matrix
decomposition similar to the LU decomposition from Linear Algebra, but requiring
knowledge of a single triangular matrix only.

Theorem 7.14 (Cholesky). Assume A ∈ Cp×p is (Hermitian) positive definite.
Then, there is a unique lower triangular matrix L ∈ Cp×p such that

A = LLH .

This representation is referred to as the Cholesky decomposition.

Instead of proving this theorem, we will prove its real counterpart, namely:

Corollary 7.3. Assume A ∈ Rp×p is (symmetric) positive definite. Then, there is
a unique lower triangular matrix L ∈ Rp×p such that

A = LLT .

This representation is also referred to as the Cholesky decomposition.

Proof. First, we assume that A is positive definite. In view of Theorem 7.13, A has
only positive eigenvalues, and hence is invertible. By a generalization of the LU
Factorization (known as the LDU Factorization) [5], there are unique diagonal
D ∈ Rp×p, upper triangular U ∈ Rp×p, and lower triangular K ∈ Rp×p with
Kjj = Ujj = 1 for every j = 1, ..., p such that

A = KDU.

Computing AT we find
AT = UTDTKT = UTDKT

and using the symmetry of A, this implies

UTDKT = AT = A = KDU.

Since UT is lower triangular and KT is upper triangular, we have actually found
two LDU decompositions, but since such a decomposition is unique, the matrices
in each must be equal. Hence, we find U = KT and therefore

A = KDKT .

Notice further that D must have positive diagonal entries. Indeed, since A is
positive definite, xTAx > 0 for all x 6= 0. Thus, xTKDKTx > 0 or

(KTx)TD(KTx) > 0

for all x 6= 0. Since K is lower triangular with non-zero diagonal entries, it is
invertible and a simple change of variables y = KTx shows that

yTDy > 0
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for all y 6= 0. Hence, D is also positive definite and has only positive eigenvalues.
Since D is diagonal, these are exactly the diagonal entries, which must then be
positive.

With this, we merely construct B = D1/2, which is the diagonal matrix defined by
bii =

√
dii, so that B2 = D. Thus, we have the representation

A = KB2KT

where K is lower triangular and B is diagonal. Finally, define L = KB so that L is
lower triangular and LT = (KB)T = BKT . Then, we have

A = (KB)(BKT ) = LLT .

Comment. These theorems can actually be made into equivalences (i.e., iff
statements), though we have only proved one direction.

7.7 Spectral Theorem
Though Theorem 7.10 provided an equivalent condition to the normality property
of a linear operator, it is certainly not the only characterization, especially for
normal matrices. In fact, one of the most celebrated theorems in Linear Algebra
(namely, the Spectral Theorem for real, symmetric matrices - see Theorem 13 in
the review section) has a generalization that states a well-known equivalence of
normal operators of a certain type defined on a Hilbert space, which we will
present shortly. First, though, we must define some specific terminology.

Definition 7.12. Let V and W be Banach spaces and T : V → W be a linear
operator. We say T is compact if for every bounded sequence {vn}∞n=1 ⊂ V , the
sequence {T (vn)}∞n=1 ⊂ W has a convergent subsequence.

The compactness property of a linear operator defined on a Banach space
essentially indicates that it behaves like a matrix. In fact, if the spaces V and W
in the definition above are finite-dimensional, then any T : V → W is necessarily
compact. Because of this, many results from Linear Algebra can often be extended
to compact operators using similar arguments. In particular, as the next result
shows, every such operator must be bounded. Contrastingly, the study of
non-compact linear operators on infinite-dimensional spaces often necessitates very
different approaches and can give rise to non-intuitive results.

Example 56. We will demonstrate the basic notion of a compact operator using a
few examples.

1. Consider the identity operator I : `2(R)→ `2(R). Then, I is not compact. To
show this, we consider the bounded sequence en ∈ `2 for every n ∈ N where

en = (0, 0, 0, ..., 1, ...., 0, 0, ...)
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is the sequence with a 1 in the nth term and zeros in all other terms. Thus,
{en}∞n=1 = {e1, e2, ...} is a bounded sequence of elements of `2, each of which
is itself a square-summable sequence of real numbers. However, we note that

‖I(en)− I(em)‖ = ‖en − em‖ =
√

2

for n 6= m. Thus, no subsequence of I(en) can be Cauchy, and hence, no
subsequence can converge. Therefore, we have created a bounded sequence
{en}∞n=1 such that the sequence {I(en)}∞n=1 does not have a convergent
subsequence in `2, which implies that I is not compact.

2. Fix a value of N ∈ N and consider the associated linear operator
TN : `2(R)→ `2(R) defined by

TN(x) = (x1, ..., xN , 0, 0, ...).

Then, TN is compact. Indeed, given any bounded sequence of elements
x(n) ∈ `2 for n ∈ N, we see that TN(x(n)) ∈ RN is actually a sequence of real
vectors for every n ∈ N. Additionally, TN(x(n)) satisfies

∣∣∣TN(x(n))
∣∣∣2 = |x(n)

1 |2 + · · ·+ |x(n)
N |2 =

N∑
k=1
|x(n)
k |2 ≤

∞∑
k=1
|x(n)
k |2 = ‖x(n)‖2

`2 ,

which is bounded. Therefore, TN(x(n)) is a bounded sequence of vectors in
RN . By the Bolzano-Weierstrauss Theorem (Appendix: Theorem 9.1), every
bounded sequence of real vectors has a convergent subsequence. Hence,
TN(x(n)) has a convergent subsequence. This, then implies that T is compact.

3. Let K ∈ C([0, 1]× [0, 1]) and T : L2([0, 1])→ L2([0, 1]) be defined by

T (f) =
∫ 1

0
K(x, y)f(y)dy.

Then, the integral operator T is compact. We will not prove this, but the
importance of such a result will be readily apparent to anyone with a
familiarity with differential or integral equations.

Next, we show that all compact operators are necessarily bounded.

Lemma 7.15. Let V be a Hilbert space and T : V → V be compact. Then, T is
bounded. Consequently, T ∗ exists.

Proof. We prove the contrapositive. Assume T is not bounded, so that ‖T‖ =∞.
Then, there is a sequence vn ∈ V with ‖vn‖ ≤ 1 for every n ∈ N and ‖T (vn)‖ → ∞
as n→∞. Then, the sequence {T (vn)}∞n=1 cannot possess a convergent
subsequence as each term grows without bound. Hence, this implies that T is not
compact, and proves the first conclusion. The second conclusion merely follows by
the boundedness of T .
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Definition 7.13. Let V and W be vector spaces and T : V → W be a linear
operator. For any subspace V0 ⊆ V , we define the restriction of T to the domain
V0 by the linear operator T0 : V0 →W satisfying

T0(v) = T (v)

for every v ∈ V0. Instead of writing this operator as T0, the restriction of T to the
domain V0 is sometimes written as T |V0 to explicitly represent the domain.

It should be noted that the restriction T0 of an operator T generally maintains
each of the properties of the original operator. In particular, the norm of a
restriction operator is always bounded above by the norm of the original operator
so that ‖T0‖ ≤ ‖T‖. Also, if T is compact, then so is T0. Finally, if T : V → V is
normal (unitary, Hermitian) and the associated adjoint operator is defined on a
subspace V0 with T (v), T ∗(v) ∈ V0 for every v ∈ V0, then T0 : V0 → V0 is also
normal (unitary, Hermitian). The proofs of these assertions are left as exercises
(though they can be justified without much effort), and they will be particularly
useful properties in proving the Spectral Theorem.

Before stating the main result, we need one additional lemma concerning the
spectral radius of normal operators.

Lemma 7.16. Let V be a Hilbert space and T : V → V be a normal, bounded
linear operator. Then,

ρ(T ) = ‖T‖.

In particular, there exists an eigenvalue of T , denoted λ, such that

|λ| = ‖T‖.

Proof. This proof requires an explicit formula for the spectral radius, which we
state here and direct the reader to [9] for more information. In particular, for a
bounded linear operator T , we can write

ρ(T ) = lim
n→∞

‖T n‖1/n. (7.2)

Thus, we will now focus on deriving a formula for T n and using (7.2).

Let S : V → V be defined by S = T ∗T and note that (due to Problem 5.8)

S∗ = (T ∗T )∗ = T ∗T = S

so that S is Hermitian. With this property, we use Cauchy-Schwarz and Theorem
5.16(d) to compute for any v ∈ V

‖S(v)‖2 = 〈S(v), S(v)〉 = 〈S∗(S(v)), v〉 = 〈S2(v), v〉 ≤ ‖S2(v)‖ · ‖v‖ ≤ ‖S2‖ · ‖v‖2.

Assuming v 6= 0, dividing by ‖v‖2, and taking the supremum over all such v ∈ V ,
we find ‖S‖2 ≤ ‖S2‖. Additionally, for any v ∈ V we use Theorem 5.16(d) to find

‖S2(v)‖ = ‖S(S(v))‖ ≤ ‖S‖ · ‖S(v)‖ ≤ ‖S‖2‖v‖,
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which then implies ‖S2‖ ≤ ‖S‖2. Putting these together, we conclude

‖S2‖ = ‖S‖2.

By induction, we can continue this to find ‖S2m‖ = ‖S‖2m or∥∥∥(T ∗T )2m
∥∥∥ = ‖T ∗T‖2m (7.3)

for any m ∈ N.

Next, we show ‖S‖ = ‖T‖2. Indeed, using Problem 5.9 we find

‖S‖ = ‖T ∗T‖ ≤ ‖T ∗‖ · ‖T‖ = ‖T‖2.

On the other hand, we have for any v ∈ V

‖T (v)‖2 = 〈T (v), T (v)〉 = 〈T ∗(T (v)), v〉 ≤ ‖T ∗T‖ · ‖v‖2 = ‖S‖ · ‖v‖2,

which implies ‖T‖ ≤
√
‖S‖ or ‖T‖2 ≤ ‖S‖. Hence, we have ‖S‖ = ‖T‖2 or

‖T ∗T‖ = ‖T‖2. (7.4)

Finally, we use the normality of T to find(
T 2m

)∗
T 2m = (T · · ·T )∗(T · · ·T ) = (T ∗ · · ·T ∗)(T · · ·T ) = (T ∗T · · ·T ∗T ) = (T ∗T )2m

Therefore, using this equality along with (7.3), (7.4), and Problem 7.11, we have
∥∥∥T 2m

∥∥∥2
=
∥∥∥(T 2m

)∗
T 2m

∥∥∥ =
∥∥∥(T ∗T )2m

∥∥∥ = ‖T ∗T‖2m

= ‖T‖2m+1
.

Thus,
∥∥∥T 2m

∥∥∥ = ‖T‖2m , and we can now compute the spectral radius by taking the
limit along n = 2m as m→∞. This yields

ρ(T ) = lim
m→∞

∥∥∥T 2m
∥∥∥1/2m

= lim
m→∞

‖T‖2m/2m = ‖T‖.

Finally, Theorem 7.1 guarantees that there exists an eigenvalue λ ∈ C satisfying
|λ| = ρ(T ). Thus, |λ| = ‖T‖ and the proof is complete.

With this result established, we can now prove the Spectral Theorem.

Theorem 7.17 (Spectral Theorem). Let V be a Hilbert space and T : V → V be a
linear operator. Then, T is compact and normal if and only if there exists an
orthonormal sequence of eigenvectors en ∈ V with corresponding eigenvalues
λn ∈ C such that

T (v) =
∞∑
n=1

λn〈en, v〉en (7.5)

for every v ∈ V . Furthermore, if λn has infinitely many terms, then λn → 0 as
n→∞.
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Proof. We first prove the forward implication. Notice that if T = 0, then clearly
λ = 0 is the only eigenvalue so that any v ∈ V \ {0} serves as a corresponding
eigenvector, and (7.5) holds. Thus, suppose T 6= 0. Then, by Lemma 7.16 there
exists an eigenvalue λ1 ∈ C such that |λ1| = ‖T‖ > 0 with corresponding
eigenvector e1 ∈ V \ {0} satisfying ‖e1‖ = 1. Now, define

V1 = span{e1}⊥.

If v ∈ V1, then 〈v, e1〉 = 0 and by Theorem 7.11

〈T (v), e1〉 = 〈v, T ∗(e1)〉 = 〈v, λ̄1e1〉 = λ̄1〈v, e1〉 = 0

and
〈e1, T

∗(v)〉 = 〈T (e1), v〉 = 〈λ1e1, v〉 = λ̄1〈e1, v〉 = 0.
Thus, T (v), T ∗(v) ∈ V1. Let T1 = T |V1 , which is also a normal, compact operator
with ‖T1‖ ≤ ‖T‖ = |λ1|. Using T1 and Lemma 7.16, we may repeat this procedure
to construct λ2 = ‖T1‖, e2 with ‖e2‖ = 1, V2 = span{e1, e2}⊥, and T2, then
continue to obtain a sequence of eigenvalues λn ∈ C, unit eigenvectors en ∈ V ,
subspaces Vn ⊆ V , and restricted normal, compact operators Tn : Vn → Vn with
‖Tn‖ ≤ ‖Tn−1‖ = |λn| for n ∈ N. For any v ∈ V and N ∈ N, we define the
remainder of an N -term approximation of v by

uN = v −
N∑
n=1
〈en, v〉en

so that uN ∈ VN and rearranging

v =
N∑
n=1
〈en, v〉en + uN . (7.6)

If TN = 0 for some N ∈ N, then the operator sequence terminates and (7.5) holds
because TN(uN) = 0 in the final calculation below. Otherwise, we obtain a
sequence of eigenvalues {λn}∞n=1 and claim that λn → 0 as n→∞. Indeed, if
λn 6→ 0 as n→∞, then there exists ε > 0 and M ∈ N such that |λn| > ε for
n > M . Then, it follows by orthonormality of the eigenvectors and the
Pythagorean Theorem (cf. Problem 4.16) that for n,m > M and n 6= m

‖T (en)− T (em)‖2 = ‖λnen − λmem‖2 = |λn|2 + |λm|2 > ε2.

This then shows that T (en) has no convergent subsequence, and since en is a
bounded sequence in V , it further contradicts the assumption that T is compact.
Hence, we find λn → 0 as n→∞.

Now, because each term in (7.6) is orthogonal, their inner products vanish and
thus by the Pythagorean Theorem (cf. Problem 4.16)

‖v‖2 =
N∑
n=1
|〈en, v〉|2 + ‖uN‖2.

This implies ‖uN‖ ≤ ‖v‖, and thus

‖T (uN)‖ = ‖TN(uN)‖ ≤ ‖TN‖‖uN‖ ≤ |λN |‖v‖ → 0
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as N →∞, which means T (uN)→ 0 in V as N →∞. Using (7.6) and the
linearity of T , we find

T (v) = T

(
N∑
n=1
〈en, v〉en + uN

)
=

N∑
n=1
〈en, v〉T (en) + T (uN)

for any v ∈ V and N ∈ N. Since T (uN) tends to zero, we take the limit as N →∞
in the right side and conclude

T (v) =
∞∑
n=1
〈en, v〉T (en) =

∞∑
n=1

λn〈en, v〉en.

To establish the reverse implication, we will only prove that T defined by (7.5) is
normal. The compactness of this operator can be shown independently. We
consider v, w ∈ V and use Theorem 4.17 to write

〈T (v), w〉 =
〈 ∞∑
n=1

λn〈en, v〉en, w
〉

=
∞∑
n=1

λ̄n〈en, v〉〈en, w〉

=
∞∑
n=1

λ̄n〈v, en〉〈en, w〉

=
〈
v,
∞∑
n=1

λ̄n〈en, w〉en
〉
.

Thus, we find the adjoint of T is

T ∗(w) =
∞∑
n=1

λ̄n〈en, w〉en.

Finally, we compute the composition of T ∗ and T and use the orthogonality of ek
and en for k 6= n to find for any v ∈ V

T ∗(T (v)) =
∞∑
n=1

λ̄n〈en, T (v)〉en

=
∞∑
n=1

λ̄n

〈
en,

∞∑
k=1

λk〈ek, v〉ek
〉
en

=
∞∑
n=1

∞∑
k=1

λ̄nλk〈ek, v〉 〈en, ek〉 en

=
∞∑
n=1

λ̄nλn〈en, v〉en

=
∞∑
n=1
|λn|2〈en, v〉en

and the same computation holds for T (T ∗(v)) = T ∗(T (v)) which yields the
normality of T .
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Theorem 7.18. Let V be a Hilbert space with an orthonormal basis and
T : V → V be a linear operator. Then, T compact and normal if and only if there
exists an orthonormal basis for V consisting only of eigenvectors dn of T such that

T (v) =
∞∑
n=1

λn〈dn, v〉dn

for every v ∈ V , where λn ∈ C are eigenvalues of T including zeros.

Proof. We will assume that we’re dealing with an infinite dimensional Hilbert
space with the proof of the finite dimensional case following analogously merely by
replacing infinite sets and series with finite ones. Let {en}∞n=1 ⊂ V be the
orthonormal sequence of eigenvectors guaranteed by Theorem 7.17. We first note
that en ∈ Ker(T ) if and only if λn = 0. Certainly, if en ∈ Ker(T ), then
λnen = T (en) = 0 and since en 6= 0, it follows that λn = 0. Additionally, λn = 0
implies en ∈ Ker(T ) because T (en) = λnen = 0.

Next, we show that an element v ∈ V is orthogonal to every en 6∈ Ker(T ) if and
only if v ∈ Ker(T ). Indeed, if 〈en, v〉 = 0 for every en 6∈ Ker(T ), then by (7.5) we
see that T (v) = 0 because the remaining terms in the sum correspond to zero
eigenvalues. Alternatively, if T (v) = 0 then by the orthogonality of en and the
Pythagorean Theorem (cf. 4.16)

0 = ‖T (v)‖2 =
∞∑
n=1
|λn|2 · |〈en, v〉|2.

The nonnegativity of the terms in this sum implies that each must be exactly zero.
As we saw above, λn = 0 implies en ∈ Ker(T ) because T (en) = λnen = 0. Hence,
for all en 6∈ Ker(T ), we find 〈en, v〉 = 0.

Now, since V has an orthonormal basis, we can construct an orthonormal basis for
the subspace Ker(T ) ⊆ V . Call this basis G = {gn : n ∈ N}. Then, because
T (gn) = 0, we see that gn is an eigenvector of T with corresponding eigenvalue
λn = 0. Additionally, by the orthogonality property shown above, it follows that
gn ⊥ em for all n,m ∈ N. We then define

D = E ∪G

where E = {en : n ∈ N} and label the elements of D as dn for n ∈ N. Notice that
each dn is an eigenvector of T and for any v ∈ V , we have

T (v) =
∞∑
n=1

λn〈en, v〉en =
∞∑
n=1

λn〈dn, v〉dn.

Finally, because D is an orthonormal set, we merely need to show that it is a
Schauder basis for V to complete the proof. Of course, the linear independence
property follows from the orthogonality of the set, so we focus on the spanning
property. Let v ∈ V be given. Then, we compute

T (v) =
∞∑
n=1

λn〈en, v〉en =
∞∑
n=1
〈en, v〉T (en)
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so that by linearity and continuity (i.e. boundedness) of T , we find

T

(
v −

∞∑
n=1
〈en, v〉en

)
= 0.

Therefore, v −∑∞n=1〈en, v〉en ∈ Ker(T ) and can be expressed as the linear
combination of elements of G. This means that there are αn ∈ C such that

v =
∞∑
n=1

[〈en, v〉en + αngn]

which is merely a linear combination of elements of D. Thus, D is a Schauder
basis for V and the proof is complete.

Comment. As an application of this theorem, consider solving the following
problem. Let V be a Hilbert space with an orthonormal basis. Given a compact,
normal operator T : V → V and w ∈ V , we wish to find u ∈ V such that T (u) = w.
This problem is ubiquitous throughout the mathematical sciences, as it represents
solving

1. Ax = b for a symmetric matrix in Linear Algebra,

2. u′′ = f in the study of ODEs,

3. ∆u = f in the study of PDEs, and

4.
∫ 1

0 K(x, y)u(y) dy = f(x) for a symmetric kernel K in the study of integral
equations.

However, each of these problems can be solved in this general context of T (u) = w
using the same unified framework. In particular, since T is compact and normal,
we know from the Spectral Theorem (more specifically, Theorem 7.18) that

T (u) =
∞∑
n=1

λn〈dn, u〉dn

where we can determine the orthonormal eigenpairs (λn, dn) from the given
operator. Now, since {dn}∞n=1 is an orthonormal basis for V we can decompose w as

w =
∞∑
n=1
〈dn, w〉dn.

Here, the coefficients 〈dn, w〉 are merely the coordinates of w with respect to this
basis. Thus, the problem T (u) = w merely becomes

∞∑
n=1

λn〈dn, u〉dn =
∞∑
n=1
〈dn, w〉dn.

In general, solving an equation involving two infinite sums is problematic, but
because the dn vectors are orthonormal it’s significantly simpler. In particular,
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taking the inner product of both sides of the equation with dk, for a fixed k and
using the orthonormality property, the equation becomes

∞∑
n=1

λn〈dn, u〉〈dk, dn〉 =
∞∑
n=1
〈dn, w〉〈dk, dn〉

and thus
∞∑
n=1

λn〈dn, u〉δkn =
∞∑
n=1
〈dn, w〉δkn.

Due to the Kronecker delta, each term of the sum vanishes except for the kth
term, and we find

λk〈dk, u〉 = 〈dk, w〉.

Therefore, if λk 6= 0, we conclude

〈dk, u〉 = 〈dk, w〉
λk

.

Finally, we can decompose u using the same dn basis, and with this representation
for the coordinates we ultimately have an exact expression for the solution

u =
∞∑
n=1
〈dn, u〉dn =

∞∑
n=1

〈dn, w〉
λn

dn,

which is written in terms of λn, dn and w, each of which we know.

This idea is, in fact, the basis for a variety of remarkable numerical methods for
solving PDEs, called (unsurprisingly) Spectral methods. The extremely useful
characteristic of these numerical methods is that, unlike Finite Difference or Finite
Element methods, they can display exponential (rather than polynomial)
convergence properties for certain classes of problems.

Next, we specialize the Spectral Theorem for complex matrices.

Theorem 7.19 (Spectral Theorem for Cp×p). Let A ∈ Cp×p be given. Then, A is
normal if and only if A is unitarily diagonalizable, meaning there are unitary
U ∈ Cp×p and diagonal D ∈ Cp×p such that A = UDUH .

Proof. Because Cp is a Hilbert space with inner product

〈x, y〉 = xHy =
p∑

n=1
x̄kyk

and orthonormal basis
B = {ek : k = 1, ..., p},

and T : Cp → Cp defined by
T (x) = Ax

for all x ∈ Cp (where A is the given matrix) is a compact normal operator, this
result follows as an immediate corollary of the Spectral Theorem (more specifically,
Theorem 7.18).
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To better explain the connection between Theorems 7.18 and 7.19, we first need to
define a bit of notation. Given u, v ∈ Cp, define the outer product of these
vectors by the p× p matrix

u⊗ v = uvH .

Alternatively, we can define this matrix entrywise by

(u⊗ v)ij = uiv̄j

or in the standard visual representation of matrix multiplication as

u⊗ v =


u1
...
up

 [v̄1 ... v̄p
]

=


u1v̄1 ... u1v̄p
... . . . ...

upv̄1 ... upv̄p

 .
Then, we can use this notation to rewrite the spectral decomposition of any
normal A ∈ Cp×p.

Indeed, if A ∈ Cp×p satisfies A = UDUH . Since we know that these matrices arise
from eigenvalues and eigenvectors of A, we let

U = [v1, ..., vp] and D = diag(λ1, ..., λp)

where Avj = λjvj for all j = 1, ..., p. Then, we compute

DUH =


λ1 0 ...

0 . . . 0
0 ... λp



vH1
...
vHp

 =


λ1v

H
1

...
λpv

H
p

 .

Hence, we can write the Spectral Decomposition as

A = UDUH =
[
v1 ... vp

] 
λ1v

H
1

...
λpv

H
p

 .
Entrywise, this is exactly

Aij =
p∑

k=1
Uik

(
DUH

)
kj

=
p∑

k=1
(vk)i (λkv̄k)j

=
p∑

k=1
λk (vk)i (v̄k)j

=
p∑

k=1
λk (vk ⊗ vk)ij

=
( p∑
k=1

λkvk ⊗ vk
)
ij

.
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Hence, we find

A =
p∑

k=1
λkvk ⊗ vk = λ1v1 ⊗ v1 + λ2v2 ⊗ v2 + ...+ λpvp ⊗ vp (7.7)

Therefore, A can be written as the sum of rank-one (outer-product) matrices, each
of which is weighted by the magnitude of an eigenvalue of A.

Alternatively, because the action of the outer product on a vector can be written
in terms of the inner product, namely

(u⊗ v)x = uvHx = (vHx)u = 〈v, x〉u,

we can use the notation of Theorems 7.17 and 7.18 to find

Ax =
p∑

k=1
λk〈vk, x〉vk

for every x ∈ Cp. Hence, this result is exactly a special case of Theorem 7.18.
Regardless, for those more comfortable with matrix algebra we provide an
alternate proof below.

Proof of Theorem 7.19. (⇒) Assume A is normal. Then, AHA = AAH . By
Theorem 7.8 A has a Schur decomposition so that there are unitary U ∈ Cp×p and
upper triangular T ∈ Cp×p such that

A = UTUH .

Then, taking the Hermitian we find

AH = (UTUH)H = UTHUH

so the normality condition is just

UTHUHUTUH = UTUHUTHUH

and because UHU = I, this becomes

UTHTUH = UTTHUH .

Since U and UH are nonsingular, we can left/right multiply by their inverses to
arrive at

THT = TTH .

However, T is upper triangular, which means we can write it as

T =


t11 t12 ... t1p

0 t22 ...
...

... ...
. . . ...

0 ... 0 tpp


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and TH is given by

TH =


t11 0 ... 0
t12 t22 ...

...
... . . .

. . . 0
t1p . . . . . . tpp

 .
Multiplying these matrices then yields

THT =


|t11|2 t11t12 ... t11t1p

t12t11 |t12|2 + |t22|2 ...
...

... ... . . . ...
t1pt11 . . . . . .

∑p
i=1 |tip|2


and

TTH =



∑p
j=1 |t1j|2 . . . . . . t1ptpp

... ∑p
j=2 |t2j|2 . . .

...
... . . .

. . . ...
tppt1p . . . . . . |tpp|2

 .

Since TTH = THT , we can equate the diagonal entries of these two matrices.
Consider the first diagonal entry, which yields the equation

p∑
j=1
|t1j|2 = |t11|2.

Upon subtracting the first term in the sum, i.e. |t11|2 from both sides of the
equation, we find

p∑
j=2
|t1j|2 = 0

and since each term is nonnegative, this implies t1j = 0 for every j ≥ 2. Next, we
consider the second diagonal entry, which yields the equation

p∑
j=2
|t2j|2 = |t12|2 + |t22|2.

Of course, we have concluded that |t12|2 = 0, which removes this term, and again
subtracting the first term in the sum from both sides, we find

p∑
j=3
|t2j|2 = 0,

which, similar to before, implies t2j = 0 for every j ≥ 3. We successively continue
this process for each diagonal entry and find, for instance,

|tp−1,p−1|2 + |tp−1,p|2 =
p−1∑
i=1
|ti,p−1|2

which, because ti,p−1 = 0 for all i ≤ p− 2, implies |tp−1,p|2 = 0, and thus tp−1,p = 0.
Finally, the last diagonal entry is

|tpp|2 =
p∑
i=1
|tip|2
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which merely becomes |tpp|2 = |tpp|2 upon utilizing the previously-determined
information that tip = 0 for i < p. Thus, from these equations we conclude that
tij = 0 for all i, j = 1, ..., p with i < j. Hence, T is lower triangular, and since T
must also be upper triangular, we conclude that T is actually diagonal. Thus,
A = UDUH where U is unitary and D = T is diagonal, which means A is unitarily
diagonalizable.

(⇐) Assume A = UDUH for some unitary U ∈ Cp×p and diagonal D ∈ Cp×p.
Then, taking the Hermitian of this representation yields

AH = (UDUH)H = UDHUH .

Computing the product of these matrices and using the fact that UHU = I, we find

AHA = UDHUHUDUH = UDHDUH

and
AAH = UDUHUDHUH = UDDHUH .

However, as diagonal matrices always commute, we see that DHD = DDH .
Therefore, the above representations are equal and we find

AHA = UDHDUH

= UDDHUH

= AAH

which is exactly the condition that A is normal.

Comment. As previously mentioned, Theorems 7.17 and 7.19 are generalizations
of Theorem 13 from the Linear Algebra review, which states that A ∈ Rp×p is
symmetric if and only if A is orthogonally diagonalizable. However, it’s important
to note that there are real, normal matrices that are NOT symmetric (e.g.,
orthogonal matrices). Therefore, it is not the case that a normal matrix B ∈ Rp×p

is automatically orthogonally diagonalizable. Theorem 7.19 guarantees that B is
unitarily diagonalizable, but it could certainly possess complex eigenvalues and
eigenvectors, which leads to the matrices U and D in the statement of the Spectral
Theorem failing to be real. Said another way, B could be a real, normal matrix
whose unitary diagonalization is actually complex-valued, and therefore not an
orthogonal diagonalization. The following example should suitably demonstrate
this idea.

Example 57. Consider A ∈ R2×2 defined by

A =
[
1 −1
1 1

]
.

It should be clear that A is real-valued, but not symmetric. Let’s check if A is
normal - computing

AHA = ATA =
[

1 1
−1 1

] [
1 −1
1 1

]
=
[
2 0
0 2

]
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and
AAH = AAT =

[
1 −1
1 1

] [
1 1
−1 1

]
=
[
2 0
0 2

]
we see that

AHA = AAH ,

and A is normal. Because of this, the matrix T in the Schur decomposition of A is
diagonal (as seen in the proof of Theorem 7.19), and the diagonal entries of T are
merely the eigenvalues of A, as described in Theorem 7.8. Of course, computing
the eigenvalues of A, we find

λ1,2 = 1± i
and this implies that

T =
[
1 + i 0

0 1− i

]
or T =

[
1− i 0

0 1 + i

]
.

Thus, the unitary diagonalization of A guaranteed by the Spectral Theorem is, in
fact, complex and not real. This further implies that A is not orthogonally
diagonalizable. Of course, we already knew this because A is not symmetric, in
view of the theorem from Linear Algebra we previously mentioned (Corollary 7.4
below).
Comment. Such an important theorem deserves a few additional comments:

1. Just as in the previous diagonalizations we have encountered, the diagonal
entries of D are exactly the eigenvalues of A.

2. Additionally, U can be chosen so that the eigenvalues of A appear on the
diagonal of D in any desired order.

3. As a side note, notice that within the (⇒) direction of the proof, we’ve
actually shown that if T ∈ Cp×p is upper triangular and normal, then T must
be diagonal. The same is true if T is lower triangular and normal.

Corollary 7.4. Let A ∈ Rp×p be given. Then, the following statements are
equivalent

1. A is normal and possesses only real eigenvalues

2. A is symmetric

3. A is orthogonally diagonalizable

We do not include a proof, but note that it is similar to the proof of Theorem 7.19
with Hermitian operations replaced by transposes. Curious readers will find a
proof in [11], though we include an example for completeness.

Example 58. Consider A ∈ R3×3 defined by

A =

 0 2 −1
2 3 −2
−1 −2 0

 .
Notice that A is symmetric, so by Corollary 7.4, it should be orthogonally
diagonalizable. To show this, we use the following algorithm:
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1. Compute the eigenvalues and associated eigenspaces of A.

From the standard techniques of Linear Algebra (i.e., finding λ ∈ R such
that det(A− λI) = 0 and then computing v ∈ R3 \ {0} such that Av = λv for
each λ), we find only two eigenvalues

λ1 = −1 and λ2 = 5

with the associated eigenspaces

E1 =

α
1

0
1

+ β

−2
1
0

 : α, β ∈ R

 and E2 =

γ
−1
−2
1

 : γ ∈ R

 .
2. Use Gram-Schmidt (if necessary) to compute an orthonormal basis for R3

from the eigenspaces.

Utilizing Gram-Schmidt in our example yields the orthonormal basis

B =




1√
2

0
1√
2

 ,

− 1√

3
1√
3

1√
3

 ,

− 1√

6
− 2√

6
1√
6


 .

3. From the eigenvalues, form the diagonal matrix D = diag(λ1, λ2, λ3) with
repetition.

In our example, this is merely

D =

−1 0 0
0 −1 0
0 0 5

 .
4. Form the orthogonal matrix P with columns {v1, ..., vp} from the

orthonormal basis, where the columns of P are grouped according to the
eigenspace from which they arose.

Since the eigenvalue λ1 = −1 appears in the first two diagonal entries of D,
we use the orthonormal vectors arising from E1 within the first two columns
of P . Therefore,

P =


1√
2 −

1√
3 −

1√
6

0 1√
3 − 2√

6
1√
2

1√
3

1√
6


and we finally have A = PDP T .

The outer-product representation (7.7) of a normal or symmetric matrix is
especially important if A has a spectral gap (i..e., a large difference in magnitude
between consecutive eigenvalues when ordered), as it may allow us to truncate this
sum and store a strong approximation of A using a significantly smaller amount of
data. This is a topic that will be explored in greater detail within the next chapter.
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7.8 Singular Value Decomposition
Finally, we come to one of the more important theorems and constructions in all of
the mathematical sciences, the Singular Value Decomposition. This fundamental
matrix decomposition is widely used throughout engineering and the sciences to
solve numerous applied problems. Applications of the SVD include image
compression (and more generally data compression), least-squares solutions of
linear systems, low-rank matrix approximations, curve fitting and linear regression,
pattern recognition, filtering, signal processing, shape optimization, and sensitivity
analysis, amongst others. Such processes are utilized within a variety fields, for
instance to find patterns in statistical data, predict weather using atmospheric
models, compare the structure of molecules, compute the spatiotemporal
trajectories of epidemics, and even search for gravitational waves. Though some of
the aforementioned operations can be performed using other means, the SVD is
often the tool of choice for these applications because numerical methods have
been developed to accurately and efficiently approximate the SVD to a high degree
of precision. It’s mathematical importance also cannot be overstated as it provides
a decomposition of any matrix in terms of associated orthonormal vectors, and this
topic is further explored in the celebrated expository article [7].

Theorem 7.20 (Singular Value Decomposition). Let V be a Hilbert space with an
orthonormal basis and T : V → V be a compact linear operator. Then, there exist
orthonormal sequences {un}∞n=1 and {vn}∞n=1 of V such that

T (v) =
∞∑
n=1

σn〈vn, v〉un

for every v ∈ V , where σn ∈ R is a sequence of positive numbers. Furthermore, if
σn has infinitely many terms, then σn → 0 as n→∞.

Though we do not include a proof here, this can be found in [9]. We will instead
prove the finite-dimensional version of this result, which contains nearly all of the
same ideas and techniques.

Comment. Notice that T is not assumed to be normal in Theorem 7.20. So, in
the finite-dimensional case, this decomposition can be performed on any matrix
A ∈ Cp×q or A ∈ Rp×q.

Theorem 7.21 (Singular Value Decomposition for Cp×q). Let A ∈ Cp×q be given.
Then, there are unitary matrices U ∈ Cp×p and V ∈ Cq×q and a matrix Σ ∈ Rp×q

of the form

Σ =



σ1 0 ... 0
0 σ2 0 ...

... 0 . . . ...
0 ... 0 σq
0 ... ... 0


with

σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = ... = σq = 0
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for some 0 ≤ k ≤ q such that
A = UΣV H .

In this case, the real numbers σ1, ..., σk > 0 are called the singular values of A.

If, instead, A ∈ Rp×q, then U ∈ Rp×p and V ∈ Rq×q are orthogonal rather than
unitary, and the exact same decomposition holds with V H = V T so that

A = UΣV T .

Comment. Though we write only k ≤ q in the theorem, from the matrix
representation of Σ above, one can see that, in fact, k ≤ min{p, q}.

Proof. Just as the finite-dimensional Spectral Theorem (Theorem 7.19) was just a
corollary of Theorem 7.18, this result is merely a corollary of Theorem 7.20 under
the exact same circumstances. We apply this theorem to the Hilbert space V = Cp

with inner product

〈x, y〉 = xHy =
p∑

n=1
x̄kyk

and orthonormal basis
B = {ek : k = 1, ..., p},

and T : Cp → Cp defined by
T (x) = Ax

for all x ∈ Cp (where A is the given matrix) is a compact normal operator, this
result follows as an immediate corollary of Theorem 7.20.

As before, for those more comfortable with matrix algebra, we provide a direct
proof of the result for A ∈ Rp×q, which uses nearly every tool we’ve discussed in
previous chapters. Just a brief warning - this will be a lengthy proof.

We will prove the result for p ≥ q. If instead, p ≤ q, then we merely apply the
forthcoming proof to AT instead. If A = 0, then Σ = 0 with U and V arbitrary
orthogonal matrices, and the result follows with k = 0. Otherwise, we can conclude
that ATA has at least one nonzero eigenvalue.

Now, since A ∈ Rp×q, we find ATA ∈ Rq×q and because
(
ATA

)T
= ATA this

matrix is symmetric. By the Spectral Theorem for symmetric matrices (i.e.,
Corollary 7.4), there exists an orthogonal V ∈ Rq×q and a diagonal D ∈ Rq×q such
that

ATA = V DV T .

Let λ1, ..., λq be the diagonal entries of D and v1, ..., vq be the columns of V . Recall
from the spectral decomposition of Corollary 7.4 that the λj merely represent
eigenvalues of ATA while the vj ∈ Rq are their corresponding eigenvectors so that

ATAvj = λjvj (7.8)

for all j = 1, ..., q. Additionally, because V is an orthogonal matrix, the set
{v1, ..., vq} is orthonormal.
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Next, we notice that λ1, ..., λq ≥ 0. Indeed, beginning with the equation
ATAv = λv and multiplying on the left by vT , we find

vTATAv = vTλv

and therefore
(Av)TAv = λvTv.

Finally, this is equivalent to
‖Av‖2

2 = λ‖v‖2
2,

and upon dividing by ‖v‖2
2 6= 0, we have an expression for λ, namely

λ = ‖Av‖
2
2

‖v‖2
2
≥ 0.

Since (λ, v) is an arbitrary eigenpair, we see that all eigenvalues are nonnegative,
i.e., λ1, ..., λq ≥ 0. Thus, we order these scalars and define k to be the number of
nonzero eigenvalues of ATA so that

λ1 ≥ λ2 ≥ ... ≥ λk > λk+1 = ... = λq = 0.

With this, we define σj =
√
λj for j = 1, ..., q and note

σ1 ≥ σ2 ≥ ... ≥ σk > σk+1 = ... = σq = 0.

Further define the vectors uj ∈ Rp by

uj = 1
σj
Avj

for all j = 1, ..., k, and note that k ≤ q.

We will show that the set {u1, ..., uk} is, in fact, orthonormal. Indeed, recalling the
Kronecker delta function

δij =

1 i = j

0 i 6= j

and using (7.8) to compute the standard inner product yields

uTi uj = 1
σi

(Avi)T
1
σj

(Avj)

= 1
σiσj

vTi A
TAvj

= 1
σiσj

vTi λjvj

= λj
σiσj

vTi vj

= λj√
λi
√
λj
δij

= δij
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for any i, j = 1, ..., k. Hence, uTi uj = 0 if i 6= j, while uTi uj = 1 if i = j. Thus,
{u1, ..., uk} is orthonormal.

Of course, we’ve only defined σj and uj for j = 1, ..., k. Since p ≥ q, it follows that
k ≤ q ≤ p. So, we may need to construct additional vectors (i.e., uj for
j = k + 1, ..., p) to represent columns of U ∈ Rp×p. Therefore, we will find p− k
additional orthonormal vectors, i.e. uk+1, ..., up that satisfy the condition uTi uj = 0
for all i, j = 1, ..., p with i 6= j. To this end, define B ∈ Rk×p by

B =


uT1
...
uTk

 .
Notice that, by construction, any vector in Nul(B) is necessarily orthogonal to
each of the vectors u1, ..., uk. By the Rank-Nullity Theorem (Theorem 5.3), we find

rank(B) + dim(Nul(B)) = p.

Additionally, rank(B) = rank(BT ) = k because the columns of BT consist of k
orthogonal (and hence linearly independent) vectors. Thus, we conclude

dim(Nul(B)) = p− rank(B) = p− k.

So, there exists a basis of p− k vectors for Nul(B). Using the Gram-Schmidt
process and normalization, we construct an orthonormal basis for Nul(B) from
these p− k vectors and define {uk+1, ..., up} to be these newly-created vectors in
the orthonormal basis.

Finally, define U ∈ Rp×p by
U =

[
u1 . . . up

]
and Σ ∈ Rp×q by

Σ =



σ1 0 ... 0
0 σ2 0 ...

... 0 . . . ...
0 ... 0 σq
0 ... ... 0

 .

Because V ∈ Rq×q has already been defined, we merely need to verify the
relationship A = UΣV T . Previously, we saw that Avj = σjuj for all j = 1, ..., k by
definition. For j = k + 1, ..., q, we know that σj = 0 and λj = 0; hence, we find

‖Avj‖2
2 = (Avj)T (Avj)

= vTj A
TAvj

= vTj λjvj

= λj‖vj‖2
2.

Because λj = 0, this implies Avj = 0, and so Avj = σjuj for j = k + 1, ..., q as well.
Therefore, Avj = σjuj for j = 1, ..., q, and this is exactly

(AV )jth column = (UΣ)jth column
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for all j = 1, ..., q, and thus
AV = UΣ.

Since V is orthogonal (and thus V T = V −1) multiplying by V T on the right yields

A = UΣV T

and the proof is complete.

Comment. Though our proof assumes p ≥ q and uses ATA to construct the SVD,
we could just as easily have assumed p ≤ q and replaced A with AT everywhere.
Of course, doing this means we would have used the matrix

(AT )T (AT ) = AAT

to construct the SVD. This is not merely a symptom of the proof. When
computing the SVD by hand for small examples, it is easiest to use ATA when
p ≥ q (i.e., when A is a “tall” matrix) and AAT when p ≤ q (i.e., when A is a
“wide” matrix). Notice that in each case ATA ∈ Rq×q and AAT ∈ Rp×p. So, when
p ≥ q, we’d rather compute the smaller matrix ATA ∈ Rq×q, while when p ≤ q,
we’d again prefer to compute the smaller matrix, but this time it’s AAT ∈ Rp×p.

Comment. Similar to the orthogonal diagonalization of symmetric matrices, the
SVD can be expressed as a sum of outer products, namely

A =
k∑
j=1

σjuj ⊗ vj

or equivalently
A = σ1u1v

T
1 + σ2u2v

T
2 + ...+ σkukv

T
k

where k is the number of nonzero singular values. Of course, we could also define
k = rank(A), as well. This form of the SVD will be useful for constructing
truncated approximations of A and implementing Principal Component Analysis
in the next chapter.

Example 59. Define A ∈ R3×2 by

A =

1 1
2 2
2 2


We wish to compute the SVD of A. Since p ≥ q, we begin by computing

ATA =
[
1 2 2
1 2 2

] 1 1
2 2
2 2

 =
[
9 9
9 9

]
.
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The eigenvalues of this matrix are λ1 = 18 and λ2 = 0 with corresponding
eigenvectors

x1 =
[
1
1

]
and x2 =

[
−1
1

]
.

These vectors are orthogonal, and we normalize them so that

v1 = 1√
2

[
1
1

]
and v2 = 1√

2

[
−1
1

]

form the columns of the orthogonal matrix

V = 1√
2

[
1 −1
1 1

]
.

From the eigenvalues, we see that k = 1 (i.e., there is just one nonzero eigenvalue
of ATA) and define σ1 =

√
18 and σ2 = 0, then form the corresponding matrix

Σ =


√

18 0
0 0
0 0

 .
Next, we define the first column of the U matrix by

u1 = 1√
18
Av1 = 1√

18
· 1√

2

1 1
2 2
2 2

 [11
]

= 1
6

2
4
4

 = 1
3

1
2
2

 .
Since U ∈ R3×3, we still need to construct u2 and u3. Let

B = uT1 = 1
3
[
1 2 2

]
so that

Nul(B) =
{
x ∈ R3 : 1

3x1 + 2
3x2 + 2

3x3 = 0
}
.

Hence, for any x ∈ Nul(B), the components of x satisfy

x1 = −2x2 − 2x3.

Of course, we can use a parametric representation so that x ∈ Nul(B) implies

x =

−2x2 − 2x3
x2
x3

 =

−2
1
0

x2 +

−2
0
1

x3.

Thus, the two vectors

y1 =

−2
1
0

 and y2 =

−2
0
1


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form a basis for Nul(B) and are both orthogonal to u1. Unfortunately, they’re not
orthogonal to each other, and we must use Gram-Schmidt to construct an
orthogonal basis for this subspace. So, let a = y1 and compute

b = y2 −
yT1 y2

‖y1‖2
2
y1

=

−2
0
1

− 4
5

−2
1
0



= 1
5

−2
−4
5


Finally, we define

u2 = a

‖a‖2
= 1√

5

−2
1
0

 and u3 = b

‖b‖2
= 1

3
√

5

−2
−4
5


and therefore

U =


1
3 −

2√
5 −

2
3
√

5
2
3

1√
5 − 4

3
√

5
2
3 0 5

3
√

5

 .
With this, we have constructed the decomposition A = UΣV T where these
matrices are defined above.

7.9 Properties and Applications of SVD
With the fundamentals of the SVD established in the previous section, we now
turn our attention to proving some of its more interesting and useful properties for
matrices. These include theoretical properties, computational properties, and
specific characteristics that can be used in a variety of applications. In particular,
we will study the following:

1. Orthonormal bases for the four fundamental subspaces of A

2. Computing rank using the SVD

3. Computing matrix norms using the SVD

4. Least squares solutions using the SVD

5. The Moore-Penrose Pseudoinverse

First, we note that - by its very construction - the Singular Value Decomposition
of a matrix A ∈ Rp×q inherently provides orthonormal bases for the four
fundamental subspaces generated by the matrix, namely Nul(A),Col(AT ) ⊆ Rp

and Nul(AT ),Col(A) ⊆ Rq.
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Theorem 7.22. Let A ∈ Rp×q be given with SVD A = UΣV T and k denoting the
number of nonzero singular values of A. Then, we have

1. U1 := {u1, ..., uk} is an orthonormal basis for Col(A)

2. U2 := {uk+1, ..., up} is an orthonormal basis for Nul(AT )

3. V1 := {v1, ..., vk} is an orthonormal basis for Col(AT )

4. V2 := {vk+1, ..., vq} is an orthonormal basis for Nul(A).

Proof. Recalling the proof of Theorem 7.21, we merely notice that uj ∈ Rp are
orthonormal vectors satisfying

uj = 1
σj
Avj = Awj

where wj = 1
σj
vj for all j = 1, ..., k. Hence, uj ∈ Col(A) for every j = 1, ..., k. By

definition, we see that U1 represents an orthonormal set of k vectors in Col(A), and
because k = rank(A) = dim(Col(A)), it follows that these k vectors must form a
basis for Col(A). Similarly, uk+1, ..., up are defined to be an orthonormal basis for
Nul(B) where B is the matrix whose rows consist of u1, ..., uk. Thus, each of
uk+1, ..., up are orthogonal to these k vectors, which means they are in Col(A)⊥. Of
course, we know from the Fundamental Theorem of Linear Algebra that
Col(A)⊥ = Nul(AT ), and using the Rank-Nullity Theorem, we see that
dim(Nul(AT )) = p− k. As U2 is a set of p− k orthonormal vectors in Nul(AT ), it
must be a basis for this subspace.

Turning to V1 and V2, we note that by (7.8) we have

ATAvj = λjvj

for every j = 1, ..., q. In particular, for j = 1, ..., k we know that λj = σ2
j 6= 0 so we

can express vj as
vj = 1

λj
ATAvj = ATwj

where wj = 1
λj
Avj. This shows that vj ∈ Col(AT ) for every j = 1, .., k.

Additionally, we know

dim(Col(AT )) = rank(AT ) = rank(A) = k,

and because V1 consists of k orthonormal vectors in Col(AT ), this set must form a
basis for the subspace. Finally, for j = k + 1, ..., q we see that λj = σ2

j = 0 so vj
satisfies

ATAvj = 0.
Hence, vj ∈ Nul(ATA) for every j = k + 1, ..., q. As demonstrated by a previous
homework problem, Nul(ATA) = Nul(A), and therefore vj ∈ Nul(A) for every
j = k + 1, ..., q. Again invoking the Rank-Nullity theorem, we find

dim(Nul(A)) = q − rank(A) = q − k.

As V2 consists of q − k orthonormal vectors in Nul(A), they must form a basis for
this subspace, and this completes the proof.
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Next, we consider the task of computing the rank of a given matrix.

Theorem 7.23. Let A ∈ Rp×q be given with SVD A = UΣV T and k denoting the
number of nonzero singular values of A. Then,

rank(A) = rank(Σ) = k.

Proof. Recall that by Theorem 2.6, we have the result

rank(BC) ≤ min{rank(B), rank(C)}

for any B ∈ Rp×q and C ∈ Rq×r. Therefore, we find

rank(A) = rank(UΣV T ) ≤ rank(ΣV T ) ≤ rank(Σ) = k

where the last equality follows from the form of Σ. Of course, since U and V are
orthogonal we can invert the SVD relationship to solve for Σ to find

Σ = UTAV

and thus
rank(Σ) = rank(UTAV ) ≤ rank(AV ) ≤ rank(A).

Combining these two inequalities yields

rank(A) = rank(Σ) = k

and the result follows.

Comment. In computing the SVD, we automatically determine the rank of the
given matrix A. Hence, assuming that algorithms exist to quickly and efficiently
compute the SVD (and they do), this number can be well-approximated with ease.
In fact, the Matlab command rank(A) computes the rank of A as the number of
singular values of A that are larger than a specified (or default), small tolerance.

Next, we consider the problem of computing norms of a matrix.

Theorem 7.24. Let A ∈ Rp×q be given with SVD A = UΣV T and

σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = ... = σq = 0

denoting the ordered singular values of A. Then,

‖A‖2 = ‖Σ‖2 = σ1.

Proof. Recall the definition of this norm, namely

‖A‖2 = max
x∈Rq\{0}

‖Ax‖2

‖x‖2
= max

x∈Rq\{0}

‖UΣV Tx‖2

‖x‖2
.

Now, by Theorem 7.5 (more specifically, the comment after the theorem), we know
that left multiplication of a vector by an orthogonal matrix will preserve the norm
of the original vector. Therefore, we have

‖UΣV Tx‖2 = ‖ΣV Tx‖2
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and the computation of ‖A‖2 is simplified.

Next, for any x ∈ Rq \ {0}, we let y = V Tx and note that because V T is
nonsingular, x = 0 if and only if y = 0. Theorem 7.7 guarantees that V T is
orthogonal because V orthogonal, and thus

‖x‖2 = ‖V y‖2 = ‖y‖2

where we have again used Theorem 7.5 to establish the last equality. Therefore, we
find

‖A‖2 = max
x∈Rq\{0}

‖ΣV Tx‖2

‖x‖2
= max

y∈Rq\{0}

‖Σy‖2

‖y‖2
= ‖Σ‖2.

Thus, the first portion of the theorem has been shown, and we focus on proving
‖Σ‖2 = σ1 by showing that this quantity is both greater than and less than σ1.

We will first show that ‖Σ‖2 ≤ σ1. Notice that for any y ∈ Rq, we have

‖Σy‖2
2 = (Σy)T (Σy) =

[
σ1y1 . . . σkyk 0 . . . 0

]


σ1y1
...

σkyk
0
...
0


=

k∑
j=1

σ2
j y

2
j .

Hence, because the singular values are ordered this further implies
k∑
j=1

σ2
j y

2
j ≤ σ2

1

k∑
j=1

y2
j ≤ σ2

1‖y‖2
2

so that combining these inequalities produces

‖Σy‖2
2 ≤ σ2

1‖y‖2
2.

Upon dividing by ‖y‖2
2 and taking the square root, this becomes

‖Σy‖2

‖y‖2
≤ σ1

for any y ∈ Rq. Finally, taking the maximum over all such vectors y 6= 0 yields

‖Σ‖2 ≤ σ1. (7.9)

For the opposite inequality, we need only find one vector that works. So, let
z = e1 ∈ Rq. Then, ‖z‖2 = 1 and thus we find

‖Σz‖2
2 = σ2

1z
2
1 = σ2

1 = σ2
1‖z‖2

2.

As before, this becomes
‖Σz‖2

‖z‖2
= σ1

and therefore
‖Σ‖2 = max

x∈Rq\{0}

‖Σx‖2

‖x‖2
≥ ‖Σz‖2

‖z‖2
= σ1.

Pairing this inequality with (7.9) yields ‖Σ‖2 = σ1 and completes the proof.
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In addition to the SVD allowing us to compute the 2-norm, a similar result holds
for the Frobenius norm. First, however, we’ll need a lemma prior to establishing
this result, namely that the Frobenius norm is invariant (i.e. unchanged) by
rotation matrices.

Lemma 7.25. Let A ∈ Rp×q be given and assume U ∈ Rp×p and V ∈ Rq×q are
orthogonal matrices. Then, we have

‖UA‖F = ‖A‖F and ‖AV ‖F = ‖A‖F .

Proof. First, recall the vector definition of ‖ · ‖F , namely

‖B‖F =
√√√√ q∑
j=1
‖bj‖2

2

for any B ∈ Rp×q, where b1, ..., bq are the columns of B. Denote the columns of A
by a1, ..., aq. Using the second conclusion of Theorem 7.5 applied to T (v) = Uv, we
can write

‖UA‖F =
∥∥∥[Ua1 . . . Uaq

]∥∥∥
F

=
√√√√ q∑
j=1
‖Uaj‖2

2

=
√√√√ q∑
j=1
‖aj‖2

2

= ‖A‖F .

To prove the second conclusion, we first note that ‖BT‖F = ‖B‖F for any
B ∈ Rp×q, which follows from the entrywise definition of the Frobenius norm,
namely

‖B‖F =
√√√√ p∑
i=1

q∑
j=1
|bij|2 =

√√√√ q∑
j=1

p∑
i=1
|bji|2 = ‖BT‖F .

With this, the result follows by expressing AV as (V TAT )T , noting that V T is
orthogonal, and using the first conclusion of the theorem so that

‖AV ‖F = ‖(V TAT )T‖F = ‖V TAT‖F = ‖AT‖F = ‖A‖F .

Theorem 7.26. Let A ∈ Rp×q be given with SVD A = UΣV T and

σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = ... = σq = 0

denoting the ordered singular values of A. Then,

‖A‖F = ‖Σ‖F =

√√√√√ k∑
j=1

σ2
j .
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Proof. From Lemma 7.25, we can easily write

‖A‖F = ‖UΣV T‖F = ‖ΣV T‖F = ‖Σ‖F

because U and V T are orthogonal. Furthermore, writing the definition of the
Frobenius norm yields

‖Σ‖F =
√√√√ p∑
i=1

q∑
j=1
|σij|2 =

√√√√ k∑
`=1

σ2
`

since σ1, ..., σk are the only nonzero entries of Σ, where σij represents the (i, j)th
entry of Σ and σ` represents the `th singular value of Σ.

Comment. Similar to the rank of a matrix, the SVD allows us to compute the
2-norm and Frobenius norm of a given matrix very quickly. In fact, we merely
need to compute the first (greatest) singular value in order to calculate the former.
The Matlab commands norm(A) and norm(A, ’fro’) compute ‖A‖2 as the
greatest singular value of A and ‖A‖F as the root of the sum of the squares of all
singular values of A, respectively.

Another nice property of the SVD is that it allows us to compute least squares
solutions very easily. In fact, we can write down an explicit formula for such a
solution merely in terms of the components of the SVD.

Theorem 7.27. Given A ∈ Rp×q with singular value decomposition A = UΣV T

and b ∈ Rp, the least squares solution of Ax = b possessing minimal ‖ · ‖2 norm is
exactly the vector

xmin =
k∑
j=1

cj
σj
vj

where c = UT b, vj is the jth column of V , σj is the jth singular value of A, and k
is the number of nonzero singular values of A.

Proof. To prove the result, we’ll establish that

‖Axmin − b‖2 ≤ ‖Ax− b‖2

for every x ∈ Rq. So, given A = UΣV T , b ∈ Rp, and any x ∈ Rq, we first define the
vectors

y = V Tx ∈ Rq and c = UT b ∈ Rp.

Then, using the SVD, the fact that U is orthogonal, and Theorem 7.5, we compute

‖Ax− b‖2 = ‖UΣV Tx− UUT b‖2

= ‖U
(
ΣV Tx− UT b

)
‖2

= ‖ΣV Tx− UT b‖2

= ‖Σy − c‖2.

Since y = V Tx and V is nonsingular, we see that y = 0 if and only if x = 0.
Furthermore, because both y and c are merely rotations of the vectors x and b, we
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conclude that x ∈ Rq minimizes ‖Ax− b‖2 if and only if y ∈ Rq minimizes
‖Σy − c‖2.

Taking a deeper look at the latter norm, we can rewrite this quantity and use the
structure of Σ to find

(Σy)i = σiyi

for every i = 1, ..., k so that

‖Σy − c‖2 =

√√√√ p∑
i=1

(σiyi − ci)2 =

√√√√ k∑
i=1

(σiyi − ci)2 +
p∑

i=k+1
c2
i

since σk+1 = · · · = σp = 0. Since c = UT b is fixed, we have no control over the ci
terms. Thus, minimizing the quantity on the right side is equivalent to the
condition

yi = ci
σi

(7.10)

for every i = 1, ..., k. Of course, (7.10) is independent of yk+1, .., yq ∈ R so there
may be infinitely many such vectors y ∈ Rq satisfying this condition if k 6= q.
Inverting the relationship between x and y, we find x = V y so that

x =
q∑
j=1

yjvj

where vj is the jth column of V , and thus (7.10) is equivalent to

x =
k∑
j=1

cj
σj
vj +

q∑
j=k+1

yjvj. (7.11)

Therefore, any least squares solution is of this form. Of course, choosing
yk+1 = · · · = yq = 0 yields exactly the definition of xmin. Hence, xmin is a least
squares solution of Ax = b.

It remains to show that xmin actually minimizes ‖ · ‖2 among all such least squares
solutions. Indeed, computing the norm for any least squares solution we find

‖x‖2 = ‖V y‖2 = ‖y‖2 =
√√√√ q∑
j=1

y2
j =

√√√√√ k∑
j=1

∣∣∣∣∣ cjσj
∣∣∣∣∣
2

+
q∑

j=k+1
y2
j .

Since the last terms are all nonnegative and yk+1, .., yq ∈ R are arbitrary in
choosing a least squares solution, we can minimize this quantity by choosing them
all to be zero. Of course, this choice of y yields exactly x = xmin, which
demonstrates that xmin is the minimal (in ‖ · ‖2) least squares solution.

Example 60. Define A ∈ R3×2 and b ∈ R3 by

A =

1 1
2 2
2 2

 and b =

 15
15
−30

 .
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We wish to compute all least squares solutions of Ax = b using Theorem 7.27.
Fortunately, we have already computed the SVD of A in Example 59 as
A = UΣV T where

U =


1
3 −

2√
5 −

2
3
√

5
2
3

1√
5 − 4

3
√

5
2
3 0 5

3
√

5

 , Σ =


√

18 0
0 0
0 0

 , and V = 1√
2

[
1 −1
1 1

]
.

Thus, we merely compute solutions from (7.11), and since k = 1 this is merely

x = c1

σ1
v1 + y2v2

where y2 is any real number. In this case, we have σ1 =
√

18 and

c1 = uT1 b = 1
3
[
1 2 2

]  15
15
−30

 = −5

so that

x = −5√
18
· 1√

2

[
1
1

]
+ y2√

2

[
1
−1

]

= −5
6

[
1
1

]
+ t

[
1
−1

]

where we have replaced 1√
2y2 with the arbitrary parameter t ∈ R. Of course, the

solution which minimizes the 2-norm is

xmin = −5
6

[
1
1

]
.

As previously discussed in the Least Squares section, the additional least squares
solutions are created by moving through the subspace

Nul(A) =
{
t

[
1
−1

]
: t ∈ R

}

as can be seen from the solution representation above.

As we’ve likely all noticed at one point or another, many Linear Algebra students
desperately want to invert non-square matrices. Of course, this cannot be done in
a conventional sense, but that doesn’t stop them from trying. It turns out that
they’re not too far off, as there is a generalized way to “invert” non-square
matrices, and this is referred to as the Moore-Penrose pseudoinverse (MPP).

Definition 7.14. Given A ∈ Rp×q \ {0}, the Moore-Penrose pseudoinverse or
MPP is defined to be the unique A+ ∈ Rq×p satisfying

A+ = arg min
B∈Rq×p

‖AB − Ip‖F

where ‖ · ‖F is the Frobenius norm.
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Of course, it can be difficult to solve minimization problems like this, and while
alternative (yet equivalent) definitions do exist, perhaps one of the easiest methods
for computing A+ is in terms of the SVD of A.

Theorem 7.28. Let A ∈ Rp×q be given with SVD A = UΣV T where Σ ∈ Rp×q is
defined by

Σ =



σ1 0 ... ... 0
0 σ2 0 ... 0
... 0 . . . ... 0
0 ... 0 σk 0
0 ... ... ... 0


and k is the number of nonzero singular values of A. Then, the Moore-Penrose
pseudoinverse of A is

A+ = V Σ+UT

where Σ+ ∈ Rq×p is defined by

Σ+ =



1
σ1

0 . . . . . . 0
0 1

σ2
. . . . . . 0

... 0 . . . . . . 0
0 . . . 0 1

σk
0

0 . . . . . . . . . 0

 .

Proof. With the above definition, we merely need to prove that

‖AA+ − Ip‖F ≤ ‖AY − Ip‖F

for any Y ∈ Rq×p. The first step is to use the SVD of A, the construction of A+,
and the identity UUT = Ip to rewrite the statement of minimization. Further, we
use Lemma 7.25 with these ingredients to find

‖AA+ − Ip‖F = ‖UΣV TV Σ+UT − UUT‖F
= ‖UΣΣ+UT − UUT‖F
= ‖U

(
ΣΣ+ − Ip

)
UT‖F

= ‖
(
ΣΣ+ − Ip

)
UT‖F

= ‖ΣΣ+ − Ip‖F .

Next, we note that ΣΣ+ ∈ Rp×p is just

ΣΣ+ =



σ1 0 ... ... 0
0 σ2 0 ... 0
... 0 . . . ... 0
0 ... 0 σk 0
0 ... ... ... 0





1
σ1

0 . . . . . . 0
0 1

σ2
. . . . . . 0

... 0 . . . . . . 0
0 . . . 0 1

σk
0

0 . . . . . . . . . 0

 =



1 0 . . . . . . 0
0 . . . . . . . . . 0
... 0 1 . . . 0
... . . . . . . 0 0
0 0 0 0 0


which is exactly Ip with the last p− k diagonal entries set to zero. Hence,
subtracting the identity from this results in a matrix with p− k entries possessing
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the value −1 along the diagonal and only entries of zeros elsewhere. The Frobenius
norm of this matrix, which is exactly the square root of the sum of the squares of
all entries, must then be

√
p− k. Therefore, we conclude

‖AA+ − Ip‖F =
√
p− k.

Next, we show that
√
p− k is actually a lower bound for ‖AY − Ip‖F . Let

Y ∈ Rq×p be given and define B ∈ Rq×p by B = V TY U . Using similar tools as
before, we compute

‖AY − Ip‖F = ‖UΣV TY − UUT‖F
= ‖U

(
ΣV TY U − Ip

)
UT‖F

= ‖
(
ΣV TY U − Ip

)
UT‖F

= ‖ΣV TY U − Ip‖F
= ‖ΣB − Ip‖F .

Then, because rows k + 1 through p of Σ are all rows of zeros, the product
ΣB ∈ Rp×p must also have rows k + 1 through p as rows of zeros. Therefore, these
same rows in the matrix ΣB − Ip must have the value −1 along their diagonal
entries. Hence, denoting the entries of ΣB − Ip by qij, we find

‖ΣB − Ip‖F =
√√√√ p∑
i=1

p∑
j=1
|qij|2 =

√√√√√ k∑
i=1

p∑
j=1
|qij|2 + (p− k) ≥

√
p− k.

Combining this inequality with the previous one, we have

‖AA+ − Ip‖F =
√
p− k ≤ ‖AY − Ip‖F

for any Y ∈ Rq×p, and the proof is complete.

Hence, the SVD provides an easy solution to finding the MPP. As you might
further guess, the pseudoinverse solution of the inconsistent linear system Ax = b
is also intimately related to least-squares solutions of this problem.

In addition to each of these properties involving the SVD, there is another item of
interest, referred to as Principle Components Analysis (PCA), that will be
discussed in greater detail within the final chapter. More specifically, we will
explore one particular application of PCA to the field of image compression.



166 CHAPTER 7. OPERATOR DECOMPOSITIONS AND FACTORIZATIONS

Exercises - Operator Decompositions and
Factorizations
Problem 7.1. Recall that for A ∈ Cp×p, the spectrum of A is

σ(A) :=
{
λ ∈ C : Ax = λx for some x ∈ Cp \ {0}

}
.

(a) Show that σ(AT ) = σ(A) for any A ∈ Cp×p.
Hint: det(CT ) = det(C) for any C ∈ Cp×p.

(b) Assume B ∈ Cp×p is nonsingular. Show that if λ ∈ σ(B) then λ−1 ∈ σ(B−1).

Problem 7.2. Let A ∈ Rq×q be given with eigenvalue λ ∈ C. Show that

|λ| ≤ ‖A‖p

for every p ∈ [1,∞].

Problem 7.3. Prove Lemma 7.2. In particular, let T : V → V be linear and
k ∈ N. Show that if λ1, . . . , λk are distinct eigenvalues of T and v1, . . . , vk are any
associated eigenvectors, then the set S = {v1, . . . , vk} is linearly independent.

Problem 7.4. Recall that A ∈ Cp×p is diagonalizable if a basis for Cp can be
formed from a collection of the eigenvectors of A. Prove that A ∈ Cp×p is
diagonalizable if and only if there exists a nonsingular P ∈ Cp×p and diagonal
Λ ∈ Cp×p such that

A = PΛP−1.

Problem 7.5. Let P ∈ Rp×p be given. Prove that P is orthogonal if and only if
its columns are orthonormal with respect to the standard inner product (and
associated norm) on Rp.

Problem 7.6. Assume A ∈ Cp×p is a unitary matrix, and let 〈x, y〉 and ‖x‖2 for
x, y ∈ Cp represent the standard inner product and norm on Cp, respectively.
Additionally, let ‖A‖2 represent the associated operator (matrix) norm for any
A ∈ Cp×p. Prove the following results without invoking analogous theorems
presented in class about unitary operators:

(a) For all x, y ∈ Cp

〈Ax,Ay〉 = 〈x, y〉
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(b) For all x ∈ Cp

‖Ax‖2 = ‖x‖2

(c) ‖A‖2 = 1

(d) If λ ∈ C is any eigenvalue of A, then |λ| = 1.

Problem 7.7. (a) Prove that if A,B ∈ Cp×p are unitary, then AB is unitary.

(b) Find z1, z2 ∈ C such that U is unitary where

U =
[ 1√

7(1 + 2i) z1
1√
7(1− i) z2

]
.

Problem 7.8. Use the method presented in class to find a Schur form of the
matrix

A =

 2 2 −6
2 −1 −3
−2 −1 1

 .
To make the calculations easier, first verify that λ = −2 and x = [1,−2, 0]T are an
eigenvalue/eigenvector pair for A by using the definition. For the sake of your
sanity, I will mention that you should eventually find T of the form

T =

 −2 0 0
0 −2 γ
0 0 δ

 .

Problem 7.9. Define A ∈ C2×2 by

A =
[

2 −2i
2i 2

]
.

Show that A is normal and construct a unitary diagonalization of A; that is, find a
diagonal matrix D and unitary matrix P such that A = PDPH .

Problem 7.10. Let V be a complex Hilbert space.

(a) Show that any normal operator T : V → V satisfies Ker(T ) =Ker(T ∗).
Hint: Use a lemma from class concerning ‖T (v)‖.

(b) Let T : V → V be normal. Show that if v is an eigenvector of T with
corresponding eigenvalue λ, then v is an eigenvector of T ∗ with
corresponding eigenvalue λ̄.
Hint: Use the result of part (a).
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(c) Let λ1 6= λ2 be eigenvalues of the normal operator T : V → V with
corresponding eigenvectors v1, v2 ∈ V , respectively. Show that v1 and v2 are
orthogonal.
Hint: Use the result of part (b) to show (λ1 − λ2)〈v1, v2〉 = 0.

Problem 7.11. Let V be a Hilbert space and T : V → V be a normal, bounded
linear operator. Show that for every m ∈ N

‖T 2m‖2 = ‖(T 2m)∗T 2m‖.

Problem 7.12. Let V be a Hilbert space and T : V → V be a bounded linear
operator defined by

T (v) =
∞∑
n=1

λn〈en, v〉en

for every v ∈ V , where en ∈ H is an orthonormal sequence of eigenvectors of T
with corresponding eigenvalues λn ∈ C. Show that

T (T ∗(v)) =
∞∑
n=1
|λn|2〈en, v〉en

for every v ∈ V . You may assume the formula for T ∗ is known from the proof of
Theorem 7.17.

Problem 7.13. Let u ∈ Rp and v ∈ Rq be unit vectors. Show that A ∈ Rp×q

defined by A = u⊗ v = uvT satisfies

‖A‖2 = 1.

Problem 7.14. Construct the matrices U,Σ, V in the singular value
decomposition A = UΣV T of

A =

 4 −2
2 −1
0 0

 .

Problem 7.15. Let A ∈ R2×100 be defined byA1k = k, for k = 1, ..., 100
A2k = 2k, for k = 1, ..., 100.
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(a) How many real scalars are needed to store A?

(b) Compute an SVD of A. It may be helpful to use the outer product notation
for this decomposition.

(c) How many real scalars are needed to store the SVD of A?

Problem 7.16. Let λ ∈ C and v ∈ Cp \ {0} be any eigenpair of the normal matrix
B ∈ Cp×p. Prove that |λ| is a singular value of B.

Problem 7.17. Let A ∈ Rp×p be given and λ ∈ C be any eigenvalue of A. Use a
Singular Value Decomposition to prove

|λ| ≤ σ1

where σ1 is the first singular value of A.

Problem 7.18. Let A ∈ Cp×q be given and use an SVD to prove that

‖A‖2 = ‖AH‖2.

Problem 7.19. Let A ∈ Rp×q be given. Show that

‖A‖F ≤
√

rank(A)‖A‖2.

Problem 7.20. Let A ∈ Rp×p be given with singular value decomposition
A = UΣV T . Show that QA = UV T is orthogonal and that

‖QA − A‖F ≤ ‖Q− A‖F

for every orthogonal Q ∈ Rp×p. In this way, QA is the best orthogonal
approximation to A in the Frobenius norm.

Problem 7.21. Let A ∈ Cp×q with rank(A) = q.

(a) Show that AHA is nonsingular and that A+ = (AHA)−1AH .

(b) Assume that A = QR where Q ∈ Cp×q has orthonormal columns (with
respect to the standard inner product on Cp) and R ∈ Cq×q. Show that R is
nonsingular and A+ = R−1QH .
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Chapter 8

Application: Principal Component
Analysis

In the previous chapter, we were introduced to the Singular Value Decomposition
(SVD) within Theorem 7.20. This fundamental result (and the comments following
its proof) demonstrates that any real matrix can be decomposed into the linear
combination of outer products of eigenvectors of its Gram matrices (i.e. ATA and
AAT ), where the singular values of the given matrix are exactly the coefficients in
this linear combination. Said another way, any matrix A can be written as

A =
k∑
j=1

σjuj ⊗ vj (8.1)

or equivalently
A = σ1u1v

T
1 + σ2u2v

T
2 + ...+ σkukv

T
k

where σj is the jth of k singular values of A, and the uj and vj vectors are
corresponding eigenvectors of AAT and ATA, respectively. Note that
‖uj ⊗ vj‖2 = 1 for every j = 1, ..., k. Additionally, the singular values are placed
into decreasing order, and hence the importance of the information within A is
arranged in the same manner. Often, we can compress the storage of a matrix
A ∈ Rp×q with minimal loss of information by truncating this decomposed sum
(8.1). Such a technique is sometimes referred to as Principal Components Analysis
(PCA) and has been around since the turn of the nineteenth century (invented by
Karl Pearson in 1901 [30]).

PCA arises in countless disciplines, including but not limited to statistics [6],
electrical engineering and control theory [25], genetics [20], neuroscience [19], facial
recognition [28], and mechanical and systems engineering [4], among others. In
these fields, the method is often used to compress data or images, process signals,
conduct remote sensing activities, or perform statistical analyses. Principal
Components Analysis is so widely utilized, in fact, that it has been given a variety
of monikers within these different fields, including the Proper Orthogonal
Decomposition (POD), discrete Karhunen-Loéve transform (KLT), Hotelling
transform, Empirical Orthogonal Function (EOF) Analysis, empirical
eigenfunction decomposition, empirical component analysis, Eckart-Young theorem
(truncated SVD), and methods of “factor analysis”. For reasons that we will see
later, it is often also mistaken for the SVD because the two are so inherently tied.
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Figure 8.1: Plot of Height/Weight datapoints.

Additional information and applications concerning PCA can be found in the
review article [18].

Of course, PCA can also be thought of not as a transformation of the given matrix
A, but in terms of the Gram (or covariance) matrix C = AAT (alternatively, the
matrix ATA could be used). In this case, the fact that C ∈ Rp×p is necessarily
symmetric can be exploited, and in view of Corollary 7.4, the symmetry property
is equivalent to C being orthogonally diagonalizable. This is an extremely powerful
result and precisely guarantees, for such C, the existence of λj ∈ R and
orthonormal column vectors vj ∈ Rp for every j = 1, ..., p such that

C =
p∑
j=1

λjvjv
T
j = λ1v1v

T
1 + · · ·+ λnvpv

T
p (8.2)

arising from the orthogonal diagonalization. Because the vj vectors are
orthonormal, each associated matrix vjvTj is orthogonal, and thus C can be
decomposed into a sum wherein each term is an eigenvalue multiplied by a rank
one matrix generated by a unit vector. Hence, the eigenvalues alone determine the
magnitude of each term in the sum, while the eigenvectors determine the
directions. These eigenvectors are called principal components or principal
directions and we will expand upon this further in the next section. We begin the
discussion of the specifics of PCA with an introductory example and later return
to the interpretation of this method that involves the SVD.

8.1 Introductory Height & Weight Problem
Consider a study in which we want to determine whether or not the heights and
weights of a group of individuals are correlated. That is, we want to know whether
the known value of a person’s height seems to dictate whether they tend to be
heavier or lighter, and thus influences their weight. Assume we are given data for
30 specific people, displayed within Table 8.1. For this example, our data set
originates from a commonly available study [22], though we could just as easily
collect it from our class.

Since the question of interest is whether the two measured variables, height and
weight, seem to change together, the relevant quantity to consider is the covariance
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Person 1 2 3 4 5 6
Height 67.78 73.52 71.40 70.22 69.79 70.70
Weight 132.99 176.49 173.03 162.34 164.30 143.30
Person 7 8 9 10 11 12
Height 71.80 72.01 69.90 68.78 68.49 69.62
Weight 161.49 166.46 142.37 150.67 147.45 144.14
Person 13 14 15 16 17 18
Height 70.30 69.12 70.28 73.09 68.46 70.65
Weight 155.61 142.46 146.09 175.00 149.50 162.97
Person 19 20 21 22 23 24
Height 73.23 69.13 69.83 70.88 65.48 70.42
Weight 177.90 144.04 161.28 163.54 126.90 149.50
Person 25 26 27 28 29 30
Height 69.63 69.21 72.84 69.49 68.53 67.44
Weight 161.85 149.72 172.42 151.55 138.33 133.89

Table 8.1: Heights (in.) and Weights (lbs.) for 30 young adults [22].

of the two characteristics within the data set. This can be formed in the following
way. First, the data is stored in a 2× 30 matrix A. Then, the entries are used to
compute the mean in each row, which will be used to center or “mean-subtract”
the data. This latter step is essential, as many of the results concerning PCA are
only valid upon centering the data at the origin. Computing the means of our
measurements (Table 8.1), we find

µ =
[

70.06
154.25

]
.

Using aij, the entries of the data matrix A, the associated 2× 2 covariance matrix
S is constructed with entries

sik = 1
30− 1

30∑
j=1

(aij − µi)(akj − µk)

so that
S =

[
3.26 21.72

21.72 188.96

]
.

Notice that this matrix is necessarily symmetric, so using the Spectral Theorem it
can be orthogonally diagonalized. Upon computing the eigenvalues and
eigenvectors of S, we find

λ1 = 191.46 and λ2 = 0.76,

and
v1 =

[
0.11
0.99

]
v2 =

[
−0.99

0.11

]
.

Here, v1 and v2 are the principal components of the covariance matrix S generated
by the data matrix A, as previously described. Obviously, these vectors form an
orthogonal set. Thus, we see from (8.2) that

S = λ1v1v
T
1 + λ2v2v

T
2
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Figure 8.2: Height/Weight data projected onto the principal components (left - v1; right - v2).
By the Spectral Theorem, the data represented in Fig. 8.1 is exactly the sum of the projections
onto these two components.

and because the difference in eigenvalues is so large (i.e. λ1 � λ2), it appears that
the first term is responsible for most of the information encapsulated within S.
Regardless, we can re-express the given data in the new orthonormal basis
generated by v1 and v2 by computing the coordinates P TA where

P =
[

0.11 −0.99
0.99 0.11

]

is the orthogonal matrix whose columns are v1 and v2. In fact, we could left
multiply the data matrix by each component separately, namely vT1 A and vT2 A, to
project the data onto each principal direction (Fig. 8.2). Hence, the data can be
separated into projections along v1 and v2, respectively. We see from looking at the
scales in Figure 8.2 that the heights and weights along v2 are significantly less than
those along v1, which tells us that the majority of the information contained within
A lies along v1. Computing the slope of the line in the direction of v1 and choosing
a point through which it passes, we can represent the equation of the line by

y − 154.25 = 9(x− 70.06),

where x represents the height of a given individual and y is their corresponding
weight. Hence, we see that height and weight appear to be strongly correlated, and
PCA has determined the direction with optimal correlation (generated by our
sample) between the variables.

The principal component analysis for this example took a small set of data and
identified a new orthonormal basis in which to re-express it. In two dimensions the
data are effectively rotated to lie along the line of best fit (Fig. 8.3), with the
second principal direction merely representing the associated unit orthogonal
complement of the first. This mirrors one general aim of PCA: to obtain a new
orthonormal basis that organizes the data optimally, in the sense that the variance
contained within the vectors is maximized along successive principal component(s).

8.2 Summary of PCA
In short, PCA can be performed to compute an optimal, ordered orthonormal
basis of a given set of vectors, or data set, in the following steps.
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Figure 8.3: Biplot of Height/Weight data with 2 principal components. The blue Height and
Weight vectors are displayed as linear combinations of the principal components. Note that these
principal components effectively rotate the height and weight data in the plane.

1. Gather n samples of m-dimensional data, i.e. vectors d1, ..., dn ∈ Rm stored
in the m× n matrix A with columns d1, ..., dn, so that aij represents the ith
entry of the jth sample vector, and compute the mean vector (in Rm)

µ = 1
n

n∑
k=1

dk,

2. Build the corresponding mean-centered data matrix B with columns given by
dj − µ so that the entries are

bij = xij − µi

for every i = 1, ...,m and j = 1, ..., n.

3. Use B to compute the symmetric, m×m covariance matrix

S = 1
n− 1BB

T .

4. Find the eigenvalues λ1, ..., λm of S (arranged in decreasing order including
multiplicity) and an orthonormal set of corresponding eigenvectors v1, ..., vm.
These create a new basis for Rm in which the data can be expressed.

5. Finally, the data is represented in terms of the new basis vectors v1, ..., vm
using the coordinates y1 = vT1 A, ..., ym = vTmA. This can also be represented
as the matrix Y = P TA where P is the matrix with columns v1, ..., vm.
Should we wish to convert the data back to the original basis, we merely
utilize the orthogonality of P and compute PY = PP TY = A to find the
original data matrix A.

In the final section, we will extend our introductory example while presenting an
additional application in which PCA appears prominently and can be easily
visualized, namely image compression.
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8.3 PCA for Image Compression and the SVD

Another important application of PCA is Image Compression. Because images are
stored as large matrices with real entries, one can reduce their storage
requirements by retaining only the essential portions of the image [11]. Of course,
information (in this case, fine-grained detail of the image) is naturally lost in this
process, but it is done in an optimal manner, so as to preserve the most essential
characteristics of the original image. In this section we detail a specific example for
the use of PCA to compress an image. Since the effects of keeping a lower
dimensional projection of the image will be visually clear, this particular example
is a great in-class activity.

Throughout the example we will work with a built-in test image - Albrecht Dürer’s
Melancholia displayed in Fig. 8.4a. MATLAB considers images like this as objects
consisting of two portions - a matrix of pixels and a colormap. Our image is stored
in a 648× 509 pixel matrix, and thus contains 648× 509 = 329, 832 total pixels.
The colormap is a 648× 3 matrix, which we will ignore for the current study. Each
element of the pixel matrix contains a real number representing the intensity of
grey scale for the corresponding pixel. MATLAB displays all of the pixels
simultaneously with the correct intensity, and the greyscale image that we see is
produced. The 648× 509 matrix containing the pixel information is our data
matrix, A, which unlike the previous section will not require centering.

To compress the image, we wish to construct a reduced representation of A,
namely some matrix Ã that requires us to store fewer values. Of course, PCA
provides us with a way to determine and capture the most important information
in A and then store this in the reduced matrix Ã using the first few principal
components. In this way, the original image stored by A will be compressed by
using the lower-rank approximation Ã.

In the previous section, we developed a method for PCA which uses the given data
matrix to determine a new orthonormal basis that captures maximal variance.
Since the associated eigenvalues are listed in decreasing order, we might also be
able to truncate the sum in (8.2) to reduce the amount of stored data. For
instance, in the height/weight example, the first principal component contained
the overwhelming majority of the information embedded within the data. Hence,
we might only keep this vector v1 and discard v2 since the data can be mostly
explained just by knowing the former characteristic, rather than every height and
weight. In this case, each data point would then be represented by its projection
onto the first principal component. Upon performing this step, we might also
interpret the results: are a small number of the eigenvalues λj much less (perhaps
by an order of magnitude) than the others? If so, this indicates that a reduction in
the dimension of the data is possible without losing too much information, while if
this does not occur then the dimension of the data may not be easily reduced in
such a way.

Of course, it can also be tedious to even compute the covariance matrix and its
eigenvalues in the first place. As previously mentioned, the Dürer image is
represented by a 648× 509 matrix. If we denote this by A, then it will require some
work to both generate the matrix ATA ∈ R509×509 and compute its eigenvalues.
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Figure 8.4: (a) Albrecht Dürer’s Melancholia displayed as a 648×509 pixelated image, taken from
Matlab’s built-in “Durer” file. (b) The first 35 eigenvalues of the covariance matrix S generated
from A in the image compression example and arranged in decreasing order.

From the previous chapter, however, we know that these eigenvalues are merely
the squares of the singular values of A. So, if accurate and efficient computational
methods exist to compute the SVD (and they do), then it would likely be easier to
obtain the singular values without even constructing a covariance matrix.
Additionally, the left and right singular vectors of A are really just eigenvectors of
AAT and ATA, respectively, which means that these can also be obtained without
forming these larger matrices. Hence, using the SVD to generate this information
will likely be easier and faster than the method described in the previous section.

In this vein, let’s return to (8.1) and suppose that instead of computing all of the
σj singular values and uj and vj vectors in the sum, we merely choose the first ` of
each of these with `� k. Using these singular values and principal components,
we could then construct a truncated representation of A, denoted by Ã, but only
including the most dominant ` terms in the sum. Stated another way, if
A = UΣV T is the SVD of A with U ∈ Rp×k, Σ ∈ Rk×k, and V ∈ Rq×k, then we
have constructed Ũ ∈ Rp×`, Σ̃ ∈ R`×`, and Ṽ ∈ Rq×` such that

Ã = ŨΣ̃Ṽ T .

Here, the retained uj and vj vectors form the ` columns of Ũ and Ṽ , respectively,
while the σj values form the diagonal of Σ̃. In this way, we keep only the first `
columns of the original U and V orthogonal matrices, as well as, the first `
columns and rows of the original Σ with `� k. Notice that Ã is still a 648× 509
matrix so that the dimensions of the original image have not been changed.
However, to reconstruct Ã we need only know the ` columns of U and V and `
singular values, whereas reconstructing A requires k of these. In terms of actual
storage Ã requires knowledge of `(1 + p+ q) numbers and A requires knowledge of
k(1 + p+ q) numbers. Hence, the amount of information needed to capture Ã is
drastically reduced, and the larger p and q are or the larger the difference between
` and k, the more compressed the approximation becomes.

With a method for determining an efficient approximation, the next question
should likely address how accurate or precise this truncation will be. In fact, an
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(a) ` = 3, σ2 = 88.89% (b) ` = 30, σ2 = 99.61%

(c) ` = 60, σ2 = 99.78% (d) ` = 90, σ2 = 99.92%

Figure 8.5: The Dürer image with varying numbers of principal components.

error estimate is obtained from the SVD as well - namely, the amount of
information retained is given by the spectral ratio of the associated covariance
matrix, defined by

σ2 :=
∑`
j=1 λj∑k
j=1 λj

Furthermore, this quantity can be better represented in terms of the singular
values of A by

σ2 =
∑`
j=1 σ

2
j∑k

j=1 σ
2
j

. (8.3)

Thus, in our height/weight example, we can keep only the first component of each
data point (a 1× 30 matrix) rather than the full data set (2× 30 matrix) and still
retain 99% of the information contained within because

σ2 = 191.46
191.46 + 0.76 > 0.99.

In situations where the dimensions of the data are large, but the components are
highly correlated, it is beneficial to reduce the dimension of the data matrix using
PCA. This has three effects: it (1) orthogonalizes the basis vectors (so that they
are uncorrelated), (2) orders the resulting orthogonal components so that those
with the largest variance appear first, and (3) eliminates dimensions that
contribute the least to the variation in the original data set.

To perform this method on the Dürer image, we use the SVD to compute the
singular values of A and use these to form the distribution of eigenvalues of the
covariance matrix S = ATA. As displayed in Fig. 8.4b doing so shows us the
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formation of a large spectral gap, i.e. a large difference between consecutive
eigenvalues. Therefore, if we write the SVD of A as in (8.1), namely

A =
k∑
j=1

σjuj ⊗ vj

and then create the reduced approximation

Ã =
∑̀
j=1

σjuj ⊗ vj

by truncating this sum at a particular index ` with `� k, the resulting linear
combination of principal components in Ã will still contain a large amount of the
total information embedded within the original image A. This occurs because the
terms we have eliminated in the representation of A will be scaled by the
coefficients σ`+1, ..., σk which are significantly smaller than the σj terms that we’ve
kept within the truncated representation of Ã. The MATLAB code to compute the
spectral ratio and display differing reduced-rank image approximations to A is
given below.

In Fig. 8.5, we’ve represented Ã for four different choices of ` (i.e., the number of
principal components used), and the associated spectral ratio, σ2, retained by
those reduced descriptions is also listed. Notice that the detail of the image
improves as ` is increased, and that a fairly suitable representation can be
obtained with around 90 components rather than the full 648 vector description.
Thus, PCA has served the useful purpose of reducing the dimension of the original
data set while preserving its most essential features.
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1 clear; clc;
2 load durer
3 size(A)
4

5 totNumEntries = size(A,1)*size(A,2)
6

7 fig1=figure('Color',[1 1 1]);
8 image(A), colormap(map), axis off, axis equal;
9

10 %A = double(A(:, :, 2));
11 A = double(A);
12

13 %
14 [U,S,V] = svd(A);
15 sing = diag(S);
16 fig2=figure;
17 plot(log10(sing)),...
18 ylabel('log$_{10}(\sigma_j)$', 'interpreter', 'latex', ...

'FontSize',14),...
19 xlabel('$j$','interpreter','latex', 'FontSize',14)
20

21 maxSing = sing(1)
22 minSing = sing(end)
23 sumSing = cumsum(sing);
24

25 % Find number of singluar values to retain "90%" of image
26 trunc = min(find(sumSing > 0.9*sumSing(end)))
27

28 k=246;
29 totvar = sum(sing);
30 percentkept = sum(sing(1:k))/totvar;
31 entriesStored = k*(size(A,1)+size(A,2)+1);
32 compressRatio = entriesStored/totNumEntries;
33

34 B = U(:,1:k)*S(1:k,1:k)*V(:,1:k)';
35 R = double(A)-double(B);
36 relL2Error = norm(R,2)/norm(A,2);
37

38 fig3=figure('Color',[1 1 1]);
39 B = uint8(B);
40 image(B), colormap(map), axis off, axis equal
41 title({['Singular values used = ', num2str(100*percentkept), ...

'%'], ...
42 ['Compression Ratio = ', num2str(100*compressRatio), '%'], ...
43 ['Relative L2 Error = ', num2str(100*relL2Error), '%']});
44

45 R = uint8(R);
46 fig4=figure('Color',[1 1 1]);
47 image(R), colormap(map), axis off, axis equal
48 title(['Difference, k= ', num2str(k)]);



Chapter 9

Appendix

In the appendix, we state some informative definitions and celebrated results from
Real & Complex Analysis. Throughout, we let n ∈ N and take K = R or K = C as
in the main text.

Definition 9.1. Let A ⊂ R be given.

1. We define (if it exists) the supremum of A, written

sup{x : x ∈ A} or sup
x∈A

x,

to be an upper bound of A such that for any upper bound u ∈ R, we have

sup{x : x ∈ A} ≤ u.

Said another way, the supremum is the least of all upper bounds of the set A.

2. Given a set A ⊂ R, we define (if it exists) the infimum of A, written

inf{x : x ∈ A} or inf
x∈A

x,

to be a lower bound of A such that for any lower bound ` ∈ R, we have

inf{x : x ∈ A} ≥ `.

Said another way, the infimum is the greatest of all lower bounds of the set A.

The following definitions provide some properties from Measure Theory.

Definition 9.2. Let a set A and function f : A→ R be given.

1. We define the essential supremum of f on A by

ess sup
x∈A

f(x) = inf {C ∈ R : f(x) ≤ C for a.e. x ∈ A} .

2. We define the essential infimum of f on A by

ess inf
x∈A

f(x) = sup {C ∈ R : f(x) ≥ C for a.e. x ∈ A} .

181
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Definition 9.3. A set A ⊆ Kn is bounded if there exists C > 0 such that
n∑
j=1
|xj|2 ≤ C

for every vector x ∈ A.

Theorem 9.1 (Bolzano-Weierstrass). Every bounded sequence {vk}∞k=1 ⊂ Kn has
a convergent subsequence.

Definition 9.4. A set A ⊆ Kn is closed if the limit of every convergent sequence
{vk}∞k=1 ⊂ A with vn → v in V satisfies v ∈ A. Said another way, A is closed if it
contains the limits of all of its convergent sequences.

Definition 9.5. A set A ⊆ Kn is compact if every bounded sequence of A has a
convergent subsequence (i.e., possesses the Bolzano-Weierstrass property).

Theorem 9.2 (Heine-Borel). Let A ⊂ Kn be given. Then, A is compact if and
only if A is closed and bounded.

Theorem 9.3 (Extreme Value Theorem). Let A be a nonempty, compact subset
of Kn. If f : A→ R is continuous, then f is bounded both above and below and
attains its supremum and infimum on A. Namely, there exists amin, amax ∈ A such
that

sup
x∈A

f(x) = amax and inf
x∈A

f(x) = amin.

Theorem 9.4 (Completeness of Kn). Every Cauchy sequence {vk}∞k=1 ⊂ Kn

converges to a limit v ∈ Kn. That is, the normed space Kn is complete.
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