
EE103 (Fall 2011-12)

9. QR factorization

• solving the normal equations

• QR factorization

• modified Gram-Schmidt algorithm

• Cholesky factorization versus QR factorization

9-1



Least-squares methods

minimize ‖Ax− b‖2

(A is m× n and left-invertible)

normal equations

ATAx = AT b

• method 1: solve the normal equations using the Cholesky factorization

• method 2: use the QR factorization

method 2 has better numerical properties; method 1 is faster

QR factorization 9-2



Method 1: Cholesky factorization

1. calculate C = ATA (C is symmetric: 1

2
n(n+ 1)(2m− 1) ≈ mn2 flops)

2. Cholesky factorization C = LLT ((1/3)n3 flops)

3. calculate d = AT b (2mn flops)

4. solve Lz = d by forward substitution (n2 flops)

5. solve LTx = z by back substitution (n2 flops)

cost for large m, n: mn2 + (1/3)n3 flops

QR factorization 9-3



Example

A =





3 −6
4 −8
0 1



 , b =





−1
7
2





1. ATA =

[

25 −50
−50 101

]

and AT b =

[

25
−48

]

2. Cholesky factorization: ATA =

[

5 0
−10 1

] [

5 −10
0 1

]

3. solve

[

5 0
−10 1

] [

z1
z2

]

=

[

25
−48

]

: solution is z1 = 5, z2 = 2

4. solve

[

5 −10
0 1

] [

x1

x2

]

=

[

5
2

]

: solution is x1 = 5, x2 = 2

QR factorization 9-4



QR factorization

if A is m× n and left-invertible then it can be factored as

A = QR

• R is n× n and upper triangular with rii > 0

• Q is m× n and orthogonal (QTQ = I)

can be computed in 2mn2 flops (more later)

QR factorization 9-5



Least-squares method 2: QR factorization

rewrite normal equations ATAx = AT b using QR factorization A = QR:

ATAx = AT b

RTQTQRx = RTQT b

RTRx = RTQT b (QTQ = I)

Rx = QT b (R nonsingular)

algorithm

1. QR factorization of A: A = QR (2mn2 flops)

2. form d = QT b (2mn flops)

3. solve Rx = d by back substitution (n2 flops)

cost for large m, n: 2mn2 flops

QR factorization 9-6



Example

A =





3 −6
4 −8
0 1



 , b =





−1
7
2





1. QR factorization: A = QR with

Q =





3/5 0
4/5 0

0 1



 , R =

[

5 −10
0 1

]

2. calculate d = QT b =

[

5
2

]

3. solve

[

5 −10
0 1

] [

x1

x2

]

=

[

5
2

]

: solution is x1 = 5, x2 = 2

QR factorization 9-7



Computing the QR factorization

partition A = QR as

[

a1 A2

]

=
[

q1 Q2

]

[

r11 R12

0 R22

]

• a1 and q1 are m-vectors; A2 and Q2 are m× (n− 1)

• r11 is a scalar, R12 is 1× (n− 1), R22 is upper triangular of order n− 1

• q1 and Q2 must satisfy

[

qT
1

QT

2

]

[

q1 Q2

]

=

[

qT
1
q1 qT

1
Q2

QT

2
q1 QT

2
Q2

]

=

[

1 0
0 I

]

,

i.e.,
qT
1
q1 = 1, QT

2
Q2 = I, qT

1
Q2 = 0

QR factorization 9-8



recursive algorithm (‘modified Gram-Schmidt algorithm’)

[

a1 A2

]

=
[

q1 Q2

]

[

r11 R12

0 R22

]

=
[

q1r11 q1R12 +Q2R22

]

1. determine q1 and r11:

r11 = ‖a1‖, q1 = (1/r11)a1

2. R12 follows from qT
1
A2 = qT

1
(q1R12 +Q2R22) = R12:

R12 = qT
1
A2

3. Q2 and R22 follow from

A2 − q1R12 = Q2R22,

i.e., the QR factorization of an m× (n− 1)-matrix

cost: 2mn2 flops (no proof)

QR factorization 9-9



proof that the algorithm works if A is left-invertible

• step 1: a1 6= 0 because A has a zero nullspace

• step 3: A2 − q1R12 is left-invertible

A2 − q1R12 = A2 − (1/r11)a1R12

hence if (A2 − q1R12)x = 0, then

[

a1 A2

]

[

−R12x/r11
x

]

= 0

but this implies x = 0 because A has a zero nullspace

• therefore the algorithm works for a left-invertible m× n-matrix if it
works for a left-invertible m× (n− 1)-matrix

• obviously it works for a matrix with one nonzero column; hence by
induction it works for all left-invertible matrices

QR factorization 9-10



Example

A =









9 0 26
12 0 −7
0 4 4
0 −3 −3









we want to factor A as

A =
[

a1 a2 a3
]

=
[

q1 q2 q3
]





r11 r12 r13
0 r22 r23
0 0 r33





=
[

q1r11 q1r12 + q2r22 q1r13 + q2r23 + q3r33
]

with
qT
1
q1 = 1, qT

2
q2 = 1, qT

3
q3 = 1

qT
1
q2 = 0, qT

1
q3 = 0, qT

2
q3 = 0

and r11 > 0, r22 > 0, r33 > 0

QR factorization 9-11



• determine first column of Q, first row of R

– a1 = q1r11 with ‖q1‖ = 1

r11 = ‖a1‖ = 15, q1 = (1/r11)a1 =









3/5
4/5
0
0









– inner product of q1 with a2 and a3:

qT
1
a2 = qT

1
(q1r12 + q2r22) = r12

qT
1
a3 = qT

1
(q1r13 + q2r23 + q3r33) = r13

therefore, r12 = qT
1
a2 = 0, r13 = qT

1
a3 = 10

A =









9 0 26
12 0 −7
0 4 4
0 −3 −3









=









3/5 q12 q13
4/5 q22 q23
0 q32 q33
0 q42 q43













15 0 10
0 r22 r23
0 0 r33





QR factorization 9-12



• determine 2nd column of Q, 2nd row or R









0 26
0 −7
4 4

−3 −3









−









3/5
4/5
0
0









[

0 10
]

=
[

q2 q3
]

[

r22 r23
0 r33

]

i.e., the QR factorization of









0 20
0 −15
4 4

−3 −3









=
[

q2r22 q2r23 + q3r33
]

– first column is q2r22 where ‖q2‖ = 1, hence

r22 = 5, q2 =









0
0

4/5
−3/5









QR factorization 9-13



– inner product of q2 with 2nd column gives r23

qT
2









20
−15

4
−3









= qT
2
(q2r23 + q3r33) = r23

therefore, r23 = 5

QR factorization so far:

A =









9 0 26
12 0 −7
0 4 4
0 −3 −3









=









3/5 0 q13
4/5 0 q23
0 4/5 q33
0 −3/5 q43













15 0 10
0 5 5
0 0 r33





QR factorization 9-14



• determine 3rd column of Q, 3rd row of R









26
−7
4

−3









−









3/5 0
4/5 0
0 4/5
0 −3/5









[

10
5

]

= q3r33









20
−15

0
0









= q3r33

with ‖q3‖ = 1, hence

r33 = 25, q3 =









4/5
−3/5
0
0









QR factorization 9-15



in summary,

A =









9 0 26
12 0 −7
0 4 4
0 −3 −3









=









3/5 0 4/5
4/5 0 −3/5
0 4/5 0
0 −3/5 0













15 0 10
0 5 5
0 0 25





= QR

QR factorization 9-16



Cholesky factorization versus QR factorization

example: minimize ‖Ax− b‖2 with

A =





1 −1
0 10−5

0 0



 , b =





0
10−5

1





solution

normal equations ATAx = AT b:

[

1 −1
−1 1 + 10−10

] [

x1

x2

]

=

[

0
10−10

]

solution: x1 = 1, x2 = 1

let us compare both methods, rounding intermediate results to 8
significant decimal digits

QR factorization 9-17



method 1 (Cholesky factorization)

ATA and AT b rounded to 8 digits:

ATA =

[

1 −1
−1 1

]

, AT b =

[

0
10−10

]

no solution (singular matrix)

method 2 (QR factorization): factor A = QR and solve Rx = QT b

Q =





1 0
0 1
0 0



 , R =

[

1 −1
0 10−5

]

, QT b =

[

0
10−5

]

rounding does not change any values

solution of Rx = QT b is x1 = 1, x2 = 1

conclusion: numerical stability of QR factorization method is better

QR factorization 9-18



Summary

cost for dense A

• method 1 (Cholesky factorization): mn2 + (1/3)n3 flops

• method 2 (QR factorization): 2mn2 flops

• method 1 is always faster (twice as fast if m ≫ n)

cost for large sparse A

• method 1: we can form ATA fast, and use a sparse Cholesky
factorization (cost ≪ mn2 + (1/3)n3)

• method 2: exploiting sparsity in QR factorization is more difficult

numerical stability: method 2 is more accurate

in practice: method 2 is preferred; method 1 is often used when A is very
large and sparse

QR factorization 9-19


