
Solving Least Squares Problems via the QR factorization−1−.

The Problem. Suppose we are given data

(ti, bi), i = 1, · · · , m (1)

and basis functions
φj , j = 1, · · · , n (2)

and we wish to find coefficients
xj , j = 1, · · · , n (3)

such that the approximating function

p(t) =

n
∑

j=1

xiφj(t) (4)

minimizes the sum of squares:

F (x1, x2, · · · , xn) =

m
∑

k=1

(

bk − p(bk)
)2

=

m
∑

k=1



bk −

n
∑

j=1

xjφj(tk)





2

= min . (5)

Purpose. This problem arises frequently in applications. The purpose of this note is to
explain the most powerful and widely used technique for solving (5). It ends with a pointer to
software that presents the most sophisticated implementation of the mathematical ideas described
here.

Matrix Formulation. First observe that if we define

A = [φj(ti)] i=1,···,m

j=1,···,n

∈ IRm×n, x = [xj ]j=1,···,n ∈ IRn and b = [bi]i=1,···,m ∈ IRm (6)

then (5) is equivalent to

Find x ∈ IRn such that F (x) = ‖Ax − b‖2 = min . (7)

We assume that
m ≥ n and rankA = n. (8)

The Normal Equations. Differentiating with respect to the xi in (7) or (5) shows that
the solution x satisfies the normal equations

AT Ax = AT b. (9)

The coefficient matrix AT A is symmetric and positive definite. However, solving (9) directly is
poorly behaved with respect to round-off effects since the condition number of AT A is the square
of that of A. In this note we consider a superior approach. The word normal refers to the fact that
the difference b − Ax in (9) is perpendicular (normal) to the column space of A.
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Problem (5) is called a discrete linear least squares problem. “Discrete” because there are finitely
many data, “least because we minimize “squares”, and “linear” because we solve a linear system.

Example. Suppose

n = 2, φ1(t) = t, and φ2(t) = 1. (10)

Thus we approximate our data by a linear function

p(t) = x1t + x2 (11)

and whose graph is a straight line. This special case is also known as linear regression. The normal
equations become













m
∑

k=1

t2k

m
∑

k=1

tk

m
∑

k=1

tk

m
∑

k=1

1

















x1

x2



 =













m
∑

k=1

bktk

m
∑

k=1

bk













(12)

In this example, the world “linear” refers to the approximating linear function.

The QR approach. Suppose we write

A = QR (13)

where

Q = (

n m − n

m Q1 Q2 ) (14)

is orthogonal and

R =

(

n

n R1

m − n 0

)

(15)

with R1 being upper triangular. An orthogonal matrix Q is one that satisfies

Q−1 = QT . (16)

Obviously, if Q is orthogonal, so is QT . An orthogonal matrix is never singular (why), its condition
number (w.r.t. ‖ · ‖2) is 1, and it is not always symmetric. A significant property of an orthogonal
matrix is that multiplying with it does not alter the (Euclidean) norm of a vector:

‖Qx‖2

2
= (Qx)T (Qx) = xT QT Qx = xT x = ‖x‖2

2
. (17)

Thus the first n columns of Q form an orthonormal basis of the column space of A. We obtain

‖Ax − b‖2

2
= ‖QT (Ax − b)‖2

2

= ‖QT Ax − QT b‖2

2

=

∥

∥

∥

∥

(

R1x

0

)

−

(

QT
1
b

QT
2
b

)∥

∥

∥

∥

2

2

=
∥

∥R1x − QT
1
b
∥

∥

2

2
+
∥

∥QT
2
b
∥

∥

2

2
.

(18)

Of the two terms on the right we have no control over the second, and we can render the first one
zero by solving (the square triangular n × n linear system)

R1x = QT
1
b. (19)
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Note that we do not use AT A with it’s squared condition number, and of course we don’t have to
calculate Q2.

Computation of the QR factorization. Actual Computation of the QR factoriza-
tion is based on

Householder Reflections. Given a vector

u ∈ IRm : ‖u‖2 = 1 (20)

the corresponding Householder reflection (or Householder matrix) H is defined by

H = I − 2uuT with uT u = 1. (21)

The following properties of H are easily verified:
1. It is symmetric, i.e., HT = H .
2. It is orthogonal, i.e., H−1 = HT .
3. It projects vectors through the (hyper-)plane orthogonal to u. Specifically:

Hu = u − 2uuTu = u − 2u = −u (22)

and
uT v = 0 =⇒ Hv = v − 2uuT v = v. (23)

Thus u gets transformed into its negative and a vector v in the plane is preserved.

Zeroing a column. The key ingredients in computing the QR factorization are House-
holder reflections H that take a vector a (which basically will be a column of A) and take it to a
vector Ha that is zero below the first entry. Let e denote the vector that is 1 in the first entry, and
zero everywhere else. We write u as

u =
v

‖v‖2

.
(24)

Thus we first find a vector v that has the right direction, and then we normalize it. Since multipli-
cation with an orthogonal matrix does not alter the norm of a vector we have to have

Ha = (I − 2uuT )a = a − (2uT a)
v

‖v‖2

= ±‖a‖2e. (25)

So clearly, v must be a linear combination of a and e. So we let

v = a + αe (26)

where α is as yet unknown. (Thus we have reduced the problem from finding an unknown
vector to the problem of finding an unknown scalar.) Letting a1 denote the first entry of A,
observe that

vT v = aT a + 2αa1 + α2 (27)

and

Ha = a −
2(a + αe)T a

aT a + 2αa1 + α2
(a + αe) =

(

1 −
2(a + αe)T a

aT a + 2αa1 + α2

)

a −
2αvT a

vT v
e. (28)

Since Ha is a multiple of e the coefficient of a must vanish, i.e.,

2aT a + 2αa1 = aT a + 2αa1 + α2. (29)
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This gives
‖a‖2

2
= α2, (30)

i.e.,

α = ±‖a‖2 . (31)

Thus

u =
a ± ‖a‖2e
∥

∥a ± ‖a‖2e
∥

∥

2

. (32)

Since the purpose of doing these calculations in such detail is to illustrate common techniques
it is worthwhile to check directly that this choice works.

We obtain

∥

∥a ± ‖a‖2e
∥

∥

2

2
= (a ± ‖a‖2e)

T (a ± ‖a‖2e) = aT a ± 2‖a‖2a1 + ‖a‖2

2
= 2

(

aT a ± ‖a‖2a1

)

. (33)

Thus

Ha =

(

I − 2
(a ± ‖a‖2e)(a ± ‖a‖2e)

T

∥

∥a ± ‖a‖2e
∥

∥

2

2

)

a

= a −
2(a ± ‖a‖2e)

T a
∥

∥a ± ‖a‖2e
∥

∥

2

2

(a ± ‖a‖2e)

= a −
2(aT a ± ‖a‖2e

T a)
∥

∥a ± ‖a‖2e
∥

∥

2

2

(a ± ‖a‖2e)

= a −
2(aT a ± ‖a‖2a1)
∥

∥a ± ‖a‖2e
∥

∥

2

2

(a ± ‖a‖2e)

= a − (a ± ‖a‖2e)

= ∓‖a‖2e.

(34)

So how do we pick the sign of α? The usual choice is

α = sign (a1) ‖a‖2.

This makes the first entry of u as large as possible (in absolute value) and tends to counteract the
risk of dividing by a small number when normalizing v. So our final choice is

u =
a + sign(a1)‖a‖2e
∥

∥a + sign(a1)‖a‖2e
∥

∥

2

.

(35)

It is also worth checking that the coefficient of e in (28) has absolute value equal to ‖a‖2, as it
must since multiplication with an orthogonal matrix does not alter the 2-norm of a vector. Using
(27) and (31) we have

2αvT a

vT v
=

2α(aT a + αa1)

aT a + 2αa1 + α2
=

2α(aT a + αa1)

2aT a + 2αa1

= α = ±‖a‖. (36)

Putting it together. Let H1 be the Householder reflection that zeros the first column of
A below the diagonal. Thus

H1A =

[

x x

0 Â

]

(37)
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where Â is an m− 1×n− 1 matrix (and x is a generic notation for non-zero entries). Let Ĥ2 be the

m − 1 × m − 1 Householder reflection that similarly reduces the first of column of Â to zero below
the diagonal. Then let

H2 =

[

1 0T

0 Ĥ2

]

(38)

Clearly

H2H1A =





x x x

0 x x

0 0 A3



 . (39)

Continuing in this fashion we construct Householder reflections H1, H2, · · ·, Hn such that

HnHn−1 · · ·H2H1A = R. (40)

The matrix QT
1

contains the first n rows of the product HnHn−1 · · ·H2H1. As a practical matter, of
course we do not store the (full m × m) matrices Hi, but rather only the vectors that define them.

Multiplying with Householder Reflections. Note that

(I − 2uuT )A = A − 2u(uT A). (41)

Multiplication of A with a Householder reflection changes A by a matrix of rank 1. This can
be implemented in O(n2) operations. If the multiplication is implemented as an ordinary matrix
multiplication O(n3) operations are required, which would be grossly wasteful.

The Gram-Schmidt Process.
A better known method for computing the QR factorization is the Gram-Schmidt process. It

is not as stable numerically as the Householder approach, as discussed in Golub and van Loan.
However, it applies in more general inner product spaces and is worth knowing.

So consider again the factorization A = QR, where Q is orthogonal and R is triangular. It’s
clear that the first column of A is a multiple of the first column of Q. In general, the first k columns
of A are linear combinations of the first k columns of Q, and vice versa. Thus the first k columns of
Q span the same space as the first k columns of A. So we can think of computing Q as the first n
steps in the following problem:

Given a sequence of linearly independent vectors

a1, a2, a3, . . . (42)

construct an orthonormal sequence of vectors

q1, q2, q3, . . . (43)

such that

qT
i qj =

{

1 if i = j

0 else
and span {q1, q2, . . . qk} = span {a1, a2, . . . ak} , k = 1, 2, 3, . . .

This problem can be solved as follows:
1. Let

q1 =
a1

‖a1‖
(44)

2. For k = 1, 2, . . .

a. Define vk = ak −
∑k−1

j=1
qT
j akqj

b. Let qk = vk

‖vk‖
.

It’s clear by induction that this sequence has the desired properties since, for i < k,

vT
k qi = aT

k qi −

k−1
∑

j=1

aT
j akqT

i qj = aT
k qi − aT

k qi = 0. (45)
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