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By analyzing correlation-type reciprocity theorems for wavefields in perturbed media, it is shown

that the correlation-type reciprocity theorem for the scattered field is the progenitor of the general-

ized optical theorem. This reciprocity theorem, in contrast to the generalized optical theorem,

allows for inhomogeneous background properties and does not make use of a far-field condition.

This theorem specializes to the generalized optical theorem when considering a finite-size scatterer

embedded in a homogeneous background medium and when utilizing the far-field condition. More-

over, it is shown that the reciprocity theorem for the scattered field is responsible for the cancella-

tion of non-physical (spurious) arrivals in seismic interferometry, and as such provides the

mathematical description of such arrivals. Even though here only acoustic waves are treated, the

presented treatment is not limited to such wavefields and can be generalized to general wavefields.

Therefore, this work provides the framework for deriving equivalents of the generalized optical

theorem for general wavefields. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

The retrieval of the Green function from the cross-corre-

lations between observed wavefields at different receivers is

in seismology commonly referred to as seismic interferome-

try. Due to its many potential applications in both passive

and active seismology, this field of study has recently

received a lot of attention and both review and tutorial

articles as well as a book have been recently published on

the subject.1–4

Recently, it was observed that there is a close connec-

tion between seismic interferometry and the generalized op-

tical theorem.5 This observation in essence provides an

alternative way to derive the generalized optical theorem

and the subsequent analysis is based on a stationary-phase

analysis and a far-field condition. This inspired Halliday and

Curtis6 to derive a generalized optical theorem for surface

waves using a similar derivation. Furthermore, Snieder

et al.7 draw connections between Green function extraction

from field fluctuations, energy principles, imaging with

backscattered waves, and the generalized optical theorem,

while Wapenaar et al.8 further elucidate the connection

between seismic interferometry, the generalized optical theo-

rem, and the scattering matrix of a point scatterer by empha-

sizing the role of the non-linearity of the scattering matrix of

a point scatterer.

With the exception of Wapenaar et al.,8 the aforemen-

tioned studies are all based on a stationary-phase analysis

and a far-field condition. Here, we start with the general

framework of reciprocity theorems for wavefields in per-

turbed media.9,10 By analyzing the connection of these theo-

rems to the work of Snieder et al.5 and the field of seismic

interferometry, we then recognize the reciprocity theorem

for the scattered field as the progenitor of the generalized op-

tical theorem and show that indeed this reciprocity theorem

reduces to the generalized optical theorem when subjected to

a far-field condition. The main difference in our approach

versus the approach taken by Wapenaar et al.8 is that here

we use reciprocity theorems for wavefields in perturbed

media, while Wapenaar et al.8 use such theorems for unper-

turbed media. The advantage of our approach is that the reci-

procity theorem for the scattered field, assuming the receiver

locations of both wavefields in the reciprocity theorem are

the same, leads immediately to the recently presented vol-

ume integral representation of the scattering cross-section.11

Similarly the reciprocity theorem for the total wavefield

leads directly to the volume integral representation of the

absorption cross-section.11 Hence the presented treatment

connects the generalization of the optical theorem using vol-

ume integral representations of the extinction and absorption

cross-section11,12 with the general framework of reciprocity

theorems for perturbed media and the scattered field.

The organization of this paper is as follows: First, we

review the correlation-type reciprocity theorem for acoustic

wavefields in non-flowing attenuative perturbed media and

show its connection to seismic interferometry. Second, we
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derive the correlation-type reciprocity theorem for the scat-

tered field and show that it is responsible for the absence of

spurious arrivals in seismic interferometry and provides the

mathematical description of these arrivals in terms of volume

integrals. Third, using the far-field condition, we show that this

reciprocity theorem reduces to the generalized optical theorem

and that as such this reciprocity theorem is the progenitor of

the generalized optical theorem. We proceed with some energy

considerations that allow us to connect our work to previously

published volume integral representations for the scattered and

absorbed power in electromagnetics. We conclude with a short

discussion on the generalization of the presented approach to

general linear systems and the possibility of deriving a unified

generalized optical theorem for general linear systems.

II. RECIPROCITY THEOREM OF THE
CORRELATION-TYPE FOR ACOUSTIC
WAVEFIELDS IN PERTURBED MEDIA

A reciprocity theorem describes the relation between two

physical fields in a common domain. Here we treat acoustic

waves in non-flowing lossy media but emphasize that a simi-

lar treatment applies to the general case of wave and diffusive

fields in lossy media.13,14 We only summarize the main points

of the derivation of the correlation-type reciprocity theorem

for acoustic wavefields, as there are many existing references

that contain more detailed treatments.15,16 Throughout the re-

mainder, we shall always mean a reciprocity theorem of the

correlation-type when we omit the particular type of reciproc-

ity theorem. Moreover, we adopt the following Fourier trans-

form convention throughout this work

f ðx;xÞ ¼
ð1
�1

f̂ ðx; tÞe�ixtdt; f̂ ðx; tÞ ¼ 1

2p

ð1
�1

f ðx;xÞeixtdx:

(1)

Since the whole analysis in this work is done in the Fourier

domain and thus to avoid almost all quantities to have to be

denoted with a ˆ, we have abandoned the conventional nota-

tion of using a ˆ to denote the Fourier transformed quantity,

and instead have reversed the notation such that the absence

of ˆ denotes the Fourier transformed quantity.

For acoustic media the particle velocity v and the acous-

tic pressure p obey, in the space-frequency domain, the equa-

tion of motion

ixqvþrp ¼ 0; (2)

and the stress–strain relationship

ixjpþr � v ¼ q; (3)

where x is the angular frequency, j is the compressibility, q
is the density, and q is the distribution of volume injection-

rate density sources. Both equations are formulated in the

frequency domain. Attenuation losses are included when j is

complex-valued. To simplify notation, we have here omitted

the explicit dependence of q, p, and v on the spatial variable

x and angular frequency x.

To find the correlation-type reciprocity theorem, we

consider the interaction quantity

IA;1;B;2 :¼ p�A;1vB;2 þ v�A;1pB;2; (4)

where the subscripts A and B denote different states of the

wavefield and/or the medium, 1 and 2 denote different

source locations x1 and x2, and the asterisk indicates com-

plex conjugation. To obtain the reciprocity theorem, we take

the divergence of IA;1;B;2, apply the product rule, integrate

over a volume V, use Gauss’ theorem, and use Eqs. (2) and

(3) to eliminate the terms rpA;B and r � vA;B, respectively.

Doing this, we find (see also Refs. 15 or 9)

LðpA;1;pB;2Þ¼
ð

x2V
p�A;1qB;2þpB;2q�A;1� ixv�A;1 �vB;2 qB�qAð Þ
n

�ixp�A;1pB;2 jB�jAð Þ
o

dx

þ2x
ð

x2V
p�A;1pB;2ImjAdx; (5)

where we have defined the operator

LðpA;1; pB;2Þ : ¼ 1

ix

ð
x2@V

n̂ � 1

qA

pB;2rp�A;1

�

� 1

qB

p�A;1rpB;2

�
dx; (6)

to denote the surface integral.

We are free to choose the states A and B. Thus we can

choose state B to be a perturbed state of A and define

qB :¼ qA þ Dq, jB :¼ jA þ Dj, and thus also pB :¼ pA þ Dp
and vB :¼ vA þ Dv. In relation to the scattering of waves, state

A then gives the background wavefield pA while state B is the

total wavefield, i.e., the sum of the scattered and background

wavefield. To make this explicit, we change notation and sub-

stitute ðp; v; q; j; qÞB ! ðp; v; q; j; qÞt and ðp; v; q; j; qÞA
! ðp; v; q; j; qÞ0, where the subscript t is the short form for

“total.” If we choose the source terms q in Eq. (5) to be

d-functions, then the pressure fields become the Green

functions. Doing this, and using the sifting property of the

d-function, while introducing the new notation, we find

that Eq. (5) reduces to

LðG0;1;Gt;2Þ¼G�0ðx1;x2ÞþGtðx2;x1Þ

þ2x
ð

x2V
G�0ðx1;xÞGtðx2;xÞImj0ðxÞdx

þ 1

ix

ð
x2V
rG�0ðx1;xÞ �rGtðx2;xÞ

DqðxÞ
q0ðxÞqtðxÞ

�

þx2G�0ðx1;xÞGtðx2;xÞDjðxÞdx

�
; (7)

where we defined the notation G0;1 :¼ G0ðx; x1Þ and

Gt;2 :¼ Gtðx; x2Þ and used source-receiver reciprocity on the

right-hand side. This expression is the reciprocity theorem

that describes the relationship between the Green function in

the background medium and the total Green function.
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We note that if we reorder the terms in Eq. (7), we find

Gtðx2;x1Þ ¼� G�0ðx1;x2Þþ2x
ð

x2V
G�0ðx1;xÞGtðx2;xÞ

�

� Imj0ðxÞdxþ 1

ix

�ð
x2V
rG�0ðx1;xÞ �rGtðx2;xÞ

� DqðxÞ
q0ðxÞqtðxÞ

þx2G�0ðx1;xÞGtðx2;xÞDjðxÞdx

��

þLðG0;1;Gt;2Þ: (8)

This equation is similar to the Lippmann–Schwinger equa-

tion17 except that it is expressed in terms of the time-

advanced Green function in the background medium instead

of the usual time-retarded one [see also Eq. 38 of Douma9].

III. SEISMIC INTERFEROMETRY

The connection between seismic interferometry and reci-

procity theorems was recently established by Wapenaar.18

From the reciprocity theorem in Eq. (7), it is straightforward to

find the fundamental equation underlying seismic interferome-

try. Replacing G0 with Gt and thus calculating LðGt;1;Gt;2Þ,
while realizing that in this case the relevant medium parame-

ters are qt and jt and there are no medium contrasts, gives

LðGt;1;Gt;2Þ ¼ G�t ðx1; x2Þ þ Gtðx2; x1Þ

þ 2x
ð

x2V
G�t ðx1; xÞGtðx2; xÞImjtðxÞdx:

(9)

This is the fundamental equation underlying seismic interfer-

ometry in the presence of attenuation.19 In case the medium is

non-attenuative (Im jt ¼ 0), the volume integral on the right-

hand side vanishes. In that case Eq. (9) becomes the familiar

equation describing seismic interferometry [e.g., Eq. (18) in

Wapenaar and Fokkema16]. Of course, the equivalent expression

can be obtained by replacing Gt with G0 in Eq. (7), which gives

LðG0;1;G0;2Þ ¼ G�0ðx1; x2Þ þ G0ðx2; x1Þ

þ 2x
ð

x2V
G�0ðx1; xÞG0ðx2; xÞImj0ðxÞdx:

(10)

The only difference between Eqs. (9) and (10) is that Eq. (9)

describes seismic interferometry in the perturbed medium,

whereas Eq. (10) does so for the background medium.

IV. RECIPROCITY THEOREM FOR THE SCATTERED
FIELD

The total wavefield is the sum of the background wave-

field and the scattered wavefield. In terms of Green func-

tions, we thus have

Gtðx0; x00Þ ¼ G0ðx0; x00Þ þ Gsðx0; x00Þ; (11)

where Gs denotes the Green function for the scattered field.

Using this expression for the total Green function in Eq. (6),

we find

LðGt;1;Gt;2Þ ¼ LðG0;1;G0;2Þ þ LðG0;1;Gs;2Þ
þ LðGs;1;G0;2Þ þ LðGs;1;Gs;2Þ; (12)

provided we assume there are no density contrasts on the

boundary @V. To obtain the reciprocity theorem for the scat-

tered field, we want to find an analogous equation as Eqs. (9)

and (10) but then for the term LðGs;1;Gs;2Þ. To do this, we

proceed by analyzing the terms in the right-hand side of Eq.

(12) and comparing them to the right-hand side of Eq. (9).

Consider the first three terms on the right-hand side of Eq.

(12). The first term is given by Eq. (10). The second term can be

obtained by subtracting Eq. (10) from Eq. (7). Doing this we find

LðG0;1;Gs;2Þ ¼ Gsðx2; x1Þ þ 2x
ð

x2V
G�0ðx1;xÞGsðx2;xÞ

� Imj0ðxÞdxþ 1

ix

ð
x2V
rG�0ðx1;xÞ

�
� rGtðx2;xÞ

� DqðxÞ
q0ðxÞqtðxÞ

þx2G�0ðx1;xÞGtðx2;xÞ

�DjðxÞdx

�
: (13)

Observing from the definition of L in Eq. (6) that we can get the

term LðGs;1;G0;2Þ from LðG0;1;Gs;2Þ simply by interchanging

the subscripts 1 and 2 and taking the complex conjugate, we find

LðGs;1;G0;2Þ ¼ G�s ðx1; x2Þ þ 2x
ð

x2V
G0ðx2; xÞG�s ðx1; xÞ

� Imj0ðxÞdx� 1

ix

ð
x2V
rG0ðx2; xÞ

�
� rG�t ðx1; xÞ

� DqðxÞ
q0ðxÞqtðxÞ

þ x2G0ðx2; xÞG�t ðx1; xÞ

�Dj�ðxÞdx

�
: (14)

Adding Eqs. (10), (13), and (14), we then find after some

algebraic massaging

LðG0;1;G0;2Þ þ LðG0;1;Gs;2Þ þ LðGs;1;G0;2Þ
¼ LðGt;1;Gt;2Þ � LðGs;1;Gs;2Þ

¼
�

G�t ðx1; x2Þ þ Gtðx2; x1Þ

þ 2x
ð

x2V
G�t ðx1; xÞGtðx2; xÞImjtðxÞdx

�

� ix
ð

x2V
G�0ðx1; xÞGtðx2; xÞ
�

�G0ðx2; xÞG�t ðx1; xÞ
	
ReDjðxÞdx

� 1

ix

ð
x2V
rG�0ðx1; xÞ � rGtðx2; xÞ
�

�rG0ðx2; xÞ � rG�t ðx1; xÞ
	 DqðxÞ
q0ðxÞqtðxÞ

dx

� 2x
ð

x2V
G�s ðx1; xÞGsðx2; xÞImj0ðxÞdx

� x
ð

x2V
2G�t ðx1; xÞGtðx2; xÞ
�

�G�0ðx1; xÞGtðx2; xÞ � G0ðx2; xÞG�t ðx1; xÞ
	

� ImDjðxÞdx: (15)
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Comparing the right-hand side of Eq. (15) with Eq. (9), we

see that the first term in between curly braces on the right-

hand side. of Eq. (15) equals LðGt;1;Gt;2Þ. It thus follows

that the remaining volume integrals equal �LðGs;1;Gs;2Þ.
Therefore we have

LðGs;1;Gs;2Þ ¼ ix
ð

x2V
G�0ðx1; xÞGtðx2; xÞ
�

� G0ðx2; xÞG�t ðx1; xÞ
	
ReDjðxÞdx

þ 1

ix

ð
x2V
rG�0ðx1; xÞ � rGtðx2; xÞ
�

� rG0ðx2; xÞ � rG�t ðx1; xÞ
	 DqðxÞ
q0ðxÞqtðxÞ

dx

þ 2x
ð

x2V
G�s ðx1; xÞGsðx2; xÞImj0ðxÞdx

þ x
ð

x2V
2G�t ðx1; xÞGtðx2; xÞ
�

� G�0ðx1; xÞGtðx2; xÞ � G0ðx2; xÞG�t ðx1; xÞ
	

� ImDjðxÞdx: (16)

This is the reciprocity theorem for the scattered field.

Recently, Snieder et al.5 described a, at first, puzzling

experiment related to Green function extraction (or seismic

interferometry). Consider the situation sketched in Fig. 1

where a scattering object is embedded in a homogeneous

medium and where the wavefields of all the sources on the

surrounding surface @V are recorded at receivers at x1 and

x2. According to Eq. (10) (assuming there is no attenuation

and under a radiating boundary condition such that we can

replace rG0 ¼ �ik0G0) cross-correlating the total wave-

fields due to each source on the closed surface and integrat-

ing the result over this surface should provide the sum of the

time-advanced and time-retarded Green function. It is

known20 that not all sources on this closed surface contribute

equally to the Green function. The dominant contributions

come from sources that have associated wavepaths that are

common (or stationary) between both receivers. However,

the cross-correlation of the scattered waves will produce a

contribution at the travel time equal to the difference

between the travel time (t1) from the scatterer to receiver

location 1 and the travel time (t2) from the scatterer to re-

ceiver location 2. Note that this contribution is the same for

all sources and thus stationary, but clearly non-physical.

Since Eq. (10) is exact, there should be no such non-physical

contributions. The answer to this at first puzzling thought

experiment lies hidden in Eqs. (15) and (16).

We observed already that the first term in between curly

braces on the right-hand side of Eq. (15) equals LðGt;1;Gt;2Þ
[see Eq. (9)]. Knowing that Eq. (9) is exact and thus contains

all the physics of the problem, it must follow that the remaining

four volume integrals on the right-hand side of Eq. (15) are

related to non-physical arrivals. These volume integrals thus

account for the non-physical (or spurious) arrivals described by

Snieder et al.5 Since we have just shown that these four volume

integrals equal �LðGs;1;Gs;2Þ, it follows that the correlation-

type reciprocity theorem for the scattered field is responsible

for making sure there are no spurious arrivals in seismic inter-

ferometry. Snieder et al.5 show by using a stationary-phase and

far-field condition that the generalized optical theorem is re-

sponsible for the cancellation of the spurious arrivals. There-

fore, it must follow that Eq. (16) specializes to the generalized

optical theorem if we subject it to a far-field condition.

V. GENERALIZED OPTICAL THEOREM

The generalized optical theorem is a statement of energy

conservation in the absence of attenuation. Therefore, for the

purpose of deriving the generalized optical theorem from the

reciprocity theorem for the scattered field, we assume that

any imaginary parts of j0 and Dj in the reciprocity theorem

for the scattered field [Eq. (16)] are zero. Thus, throughout

this section it is understood that Dj is real.

Consider a finite (non-absorbing) scattering volume

Vs � V embedded in a homogeneous non-attenuating

FIG. 1. Wavepaths from the scattered waves traveling from the source loca-

tion to the scatterer at the origin and then to the receiver locations x1 or x2.

Correlating these scattered waves produces a non-physical arrival at the

travel time t1–t2 that is stationary for all sources on the closed surface @V.

FIG. 2. Geometry of a finite-size scatterer centered at the origin embedded

in a homogeneous background medium. The source is located at x1 while

the receiver is located at x 2 @V. In the far-field we have jxj � jx0j and

jx1j � jx0j.
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background medium and centered at the origin (Fig. 2). The

integral solution to the scattered field Gs is in this case given

by (assuming radiating boundary conditions)

Gs;1 ¼ Gsðx; x1Þ

¼ �x2

ð
x02Vs

G0ðx; x0ÞDjðx0ÞGtðx0; x1Þdx0

þ
ð

x02Vs

r0G0ðx; x0Þ � r0Gtðx0; x1Þ
Dqðx0Þ
q0qtðx0Þ

dx0; (17)

where r0 means taking the gradient with respect to the x0

variable, and where the background density q0 does not

depend on x due to the assumed homogeneous background

medium. Equation (17) provides the same expression for the

scattered field as in the familiar Lippmann–Schwinger equa-

tion, and thus incorporates all the non-linear scattering inside

the scatterer. To derive the optical theorem, we must first

define the scattering amplitude f for the scatterer. It is cus-

tomary to define this scattering amplitude using a far-field

condition. In that way the finite scatterer can mathematically

be treated as a point scatterer by simply multiplying the

background wavefield with the scattering amplitude at the

central location of the scatterer.

In the far-field (i.e., if jxj � jx0j), the Green function G0

is given by21

G0ðx; x0Þ �
q0

4p
e�ik0jxj

jxj eik0x0 �x̂; (18)

where k0 is the magnitude of the wave-vector in the back-

ground medium, and x̂ denotes a unit vector in the direction

of x. Note that here the sign of the exponent is chosen to be

consistent with the choice of Fourier transformation in Eq.

(1). Using this, we can write the scattered wavefield Gs,1 due

to a (finite) scatterer centered around the origin as

Gs;1 ¼ Gsðx; x1Þ �
q0

4p
e�ik0jxj

jxj f ðx̂;�x̂1Þ
e�ik0jx1j

jx1j
; (19)

with f ðx̂;�x̂1Þ denoting the scattering amplitude due to an

incident wave in the �x̂1 direction that is scattered in the x̂
direction. To find an expression for f, we use Eq. (19) in Eq.

(17). Recognizing that in the far-field jx1j � jx0j, we can

also use Eq. (18) to get the far-field expression for G0ðx0; x1Þ
in Gtðx0; x1Þ ¼ G0ðx0; x1Þ þ Gsðx0; x1Þ. Note that, however,

we cannot use Eq. (19) for Gsðx0; x1Þ since x0 is inside the

scattering volume and can thus not be considered large.

Doing this, we find that the scattering amplitude f can be

written as

f ðx̂1;�x̂2Þ :¼� q0

4p
x2

ð
x02Vs

eik0x0 �x̂1Djðx0Þ
�

�feik0x0 �x̂2 þ 4p
q0

jx2jeik0jx2jGsðx0;x2Þgdx0

�
ð

x02Vs

r0eik0x0 �x1 �r0 eik0x0�x̂2

n

þ 4p
q0

jx2jeik0jx2jGs x0;x2Þð
o Dqðx0Þ

q0qtðx0Þ
dx0
�
: (20)

Note that this definition of f incorporates all the non-linear

scattering inside the scatterer, since the right-hand side of Eq.

(20) includes the scattered field Gs. Therefore, even though at

first sight it appears that Eq. (20) contains only monopole

and dipole terms, the higher-order multi-pole terms are

included through the presence of the scattered field Gs on the

right-hand side. Hence, no Born approximation is used here.

By construction it follows from using reciprocity relation

Gsðx1; x2Þ ¼ Gsðx2; x1Þ together with Eq. (19), that f satisfies

the necessary symmetry relation f ðx̂1;�x̂2Þ ¼ f ðx̂2;�x̂1Þ.
We aim to show that using the far-field condition and

the above definition of the scattering amplitude, the reciproc-

ity theorem for the scattered field in Eq. (16) specializes to

the generalized optical theorem. Ignoring attenuation (i.e.,

Imj0 ¼ ImDj ¼ 0) this reciprocity theorem [Eq. (16)] can

be written as

ixLðGs;1;Gs;2Þ ¼ � x2

ð
x2Vs

G�0ðx1; xÞGtðx2; xÞ
�

�G0ðx2; xÞG�t ðx1; xÞ
	
DjðxÞdx

þ
ð

x2Vs

rG�0ðx1; xÞ � rGtðx2; xÞ
�

� rG0ðx2; xÞ � rG�t ðx1; xÞ
	 DqðxÞ
q0qtðxÞ

dx;

(21)

with

ixLðGs;1;Gs;2Þ ¼
1

q0

ð
x2@V

n̂ � Gsðx; x2ÞrG�s ðx; x1Þ
�

�G�s ðx; x1ÞrGsðx; x2Þ
	
dx; (22)

where we multiplied on both sides by ix and used that there

are no density contrasts on @V. The background is homoge-

neous and the density q0 therefore does not depend on

x. Using Eq. (19) in Eq. (22) and approximating

n̂ � rðf ðx̂;� x̂1Þe�ik0jxj=jxjÞ � �ik0f ðx̂;�x̂1Þe�ik0jxj=jxj (con-

sistent with the far-field condition), it follows that

left-hand side of Eq: ð21Þ ¼2ik0q0

ð4pÞ2
e�ik0ðjx2j�jx1jÞ

jx1jjx2j

�
þ

4p
f �ðx̂;�x̂1Þf ðx̂;�x̂2ÞdX;

(23)

where we used that dx=jxj2 ¼ dX. Using Eq. (18) in Eq. (21)

to get the far-field expressions for G0 and Gt = G0þGs, to-

gether with the definition of the scattering amplitude f in Eq.

(20), we then also have

right-hand side of Eq:ð21Þ¼q0

4p
e�ik0ðjx2j�jx1jÞ

jx1jjx2j
� f ð�x̂1;�x̂2Þ½ �f �ð�x̂2;�x̂1Þ	:

(24)

Therefore it follows from Eqs. (23) and (24) that we must

have
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k0

4p

þ
4p

f �ðx̂;�x̂1Þf ðx̂;�x̂2ÞdX

¼ 1

2i
f ð�x̂1;�x̂2Þ½ �f �ð�x̂2;�x̂1Þ	: (25)

This is the generalized optical theorem.22–24 Hence, the cor-

relation-type reciprocity theorem for the scattered field

reduces to the generalized optical theorem when subjected to

the far-field condition. This reciprocity theorem can there-

fore be seen as the progenitor of the generalized optical

theorem.

VI. ENERGY CONSIDERATIONS

The interaction quantity IA;1;B;2 is the product of pres-

sure, i.e., the force per unit of surface, and velocity, i.e., dis-

tance per unit of time. Force times distance equals the work

done, and the work per unit time is equal to the power.

Therefore, provided the source locations x1 and x2 coincide,

the interaction quantity is the power flux. This flux is also

referred to as the acoustic intensity.25 In quantum mechanics

the equivalent vector is the probability current density,26

while in electromagnetics it is the Poynting vector.27

Consider now the situation where both source locations

x1 and x2 are outside of the volume V (see Fig. 3) and where

the scatterer and the background can both be absorbing. Inte-

grating the power flux over a surface gives the net power.

Therefore the surface integral LðGA;GBÞ is nothing more

than an estimate of the power; since this interpretation of the

surface integral makes sense only when both source loca-

tions x1 and x2 are the same, we drop the subscripts 1 and 2

from here onward. This means that LðGs;GsÞ equals the

power Pscat lost due to scattering. In the absence of sources

inside the volume V, the energy that is not scattered must be

absorbed. Therefore, the power associated with the total field

must equal negative the absorbed power. That is, we have

(ignoring normalization factors)

Pscat ¼ LðGs;GsÞ and Pabs ¼ �LðGt;GtÞ: (26)

The total extinguished power Pext equals the sum of the scat-

tered and absorbed power. Therefore we have

Pext ¼ Pext þ Pext ¼ LðGs;GsÞ � LðGt;GtÞ: (27)

In the absence of sources and attenuation in the background

medium, the net power for the background field must equal

zero; i.e., what comes into the volume V must also come out.

Therefore in this case we have

LðG0;G0Þ ¼ 0: (28)

Using Eq. (12) in Eq. (27) together with Eq. (28), we then

find the surface integral representation for the extinguished

power, given by

Pext ¼ � LðG0;GsÞ þ LðGs;G0Þf g: (29)

This implies that Eq. (12) merely states the conservation of

power (provided the source locations x1 and x2 are the same).

VII. VOLUME INTEGRAL REPRESENTATIONS
FOR THE SCATTERED, ABSORBED, AND
EXTINGUISHED POWER

The reciprocity theorems allow the surface integrals to

be rewritten in terms of volume integrals. Using the reciproc-

ity theorem for the scattered field in Eq. (16) (and remember-

ing that we assume the locations x1 and x2 to be equal, i.e.,

x1¼ x2¼ x), it immediately follows from Eq. (26) that

Pscat¼2x
ð

x02V
Im G0ðx0;xÞG�t ðx0;xÞ
� 	

ReDjðx0Þdx0

þ 2

x

ð
x02V

Im r0G�0ðx0;xÞ �r0Gtðx0;xÞ
� 	 Dqðx0Þ

q0ðx0Þqtðx0Þ
dx0;

(30)

where we assumed the scatterer and background to be non-

absorbing, such that Pscat is indeed the cross-section due to

scattering only. Note that all the non-linear scattering is

included by the presence of the total field Gt on the right-

hand side of Eq. (30) and that there is thus no underlying

Born approximation in this result. Similarly, we can also use

the reciprocity theorem for the total field in Eq. (9) to find a

volume integral representation for the absorbed power Pabs.

Note that the first two terms in the right-hand side of Eq. (9)

are due to the fact that we chose the source terms q in Eq.

(5) to be d-functions with support inside the volume V.

Therefore, in the absence of sources inside V those first two

terms vanish. Using Eq. (26), it then thus follows that

Pabs ¼ 2x
ð

x02V
jGtðx0; xÞj2ImDjðx0Þdx0; (31)

where we assumed the background medium to be non-

attenuative [i.e., Imjt ¼ Imðj0 þ DjÞ ¼ ImDj], such that

we get the absorption cross-section of the scatterer only. The

volume integral representation for the extinguished power

follows simply by taking the sum of the volume integral rep-

resentations for Pscat and Pabs in Eqs. (30) and (31), respec-

tively. Equations (30) and (31) are the acoustic equivalents

of the equations obtained by Carney et al.11 for scalar elec-

tromagnetic waves [their Eqs. (7) and (13), respectively] that

were later extended to vector electromagnetic waves by

FIG. 3. Geometry for the derivation of the volume integral representations

of the scattered and absorbed cross-sections. The sources x1 and x2 are both

assumed to be outside of the volume V.
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Lytle et al.12 They assume a contrast in the susceptibility

whereas in our treatment the contrast is in the compressibil-

ity and density.

VIII. GENERALIZATION TO GENERAL LINEAR
SYSTEMS

We identified the reciprocity theorem for the scattered

field as the progenitor of the generalized optical theorem. In

this work, we have treated acoustic waves in attenuative

non-flowing media with contrasts in both compressibility

and density. However, in light of the recent work of Wape-

naar et al.13 and Wapenaar,14 who presented a unified theory

for Green function extraction for general wave and diffusive

fields in lossy media based on reciprocity theorems, it fol-

lows that one can derive a much more general form of the

reciprocity theorem for the scattered field that relates to gen-

eral linear systems. That in turn means that, based on the

treatment presented here, one should be able to write down

the generalized optical theorem in a unified form that cap-

tures general wavefields. In light of this and the connection

we showed with the volume integral representations of Pscat

and Pabs given by Carney et al.,11 Lytle et al.12 recently

extended the treatment of Carney et al.11 to the case of vec-

tor electromagnetic wavefields.

IX. CONCLUSIONS

Using reciprocity theorems for acoustic wavefields in

perturbed media, we have shown that the correlation-type

reciprocity theorem for the scattered field is the progenitor

of the generalized optical theorem. In contrast to the general-

ized optical theorem, this reciprocity theorem allows for in-

homogeneous background properties, attenuation, and does

not depend on a far-field condition. By considering the spe-

cial case of a finite-size scatterer embedded in a homogene-

ous non-absorbing background medium, we have shown that

this theorem specializes to the generalized optical theorem

when using the far-field condition. This leads to a (volume)

integral representation of the non-linear scattering ampli-

tude. Moreover, by analyzing seismic interferometry in the

context of reciprocity theorems in perturbed media, we have

shown that the correlation-type reciprocity theorem for the

scattered field is responsible for the cancellation of the non-

physical (or spurious) arrivals in seismic interferometry. As

such, this reciprocity theorem provides the mathematical

description of the spurious arrivals.

In light of the recent work on unified Green function re-

trieval for general linear systems, a reciprocity theorem for

the scattered field can be derived for general linear systems.

Since, here, we identified the correlation-type reciprocity

theorem of the scattered field as the progenitor of the gener-

alized optical theorem, a similar treatment as the one pro-

vided here should allow for the derivation of a unified

optical theorem for general wavefields.
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