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Abstract

Recent research has shown that noise can be turned from a nuisance into
a useful seismic source. In seismology and other fields in science and engi-
neering, the estimation of the system response from noise measurements has
proven to be a powerful technique. To convey the essence of the method,
we first treat the simplest case of a homogeneous medium to show how
noise measurements can be used to estimate waves that propagate between
sensors. We provide an overview of physics research—dating back more
than 100 years—showing that random field fluctuations contain informa-
tion about the system response. This principle has found extensive use in
surface-wave seismology but can also be applied to the estimation of body
waves. Because noise provides continuous illumination of the subsurface, the
extracted response is ideally suited for time-lapse monitoring. We present
examples of time-lapse monitoring as applied to the softening of soil after
the 2011 Tohoku-oki earthquake, the detection of a precursor to a landslide,
and temporal changes in the lunar soil.
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1. INTRODUCTION

The retrieval of the seismological response of a system, such as Earth, from recorded noise is a
field that has experienced explosive growth over the past decade. Traditionally, seismologists use
point sources, such as earthquakes or controlled sources, to probe Earth’s interior. The response
to such sources that are localized in space and are temporally impulsive is termed the impulse
response, or Green’s function. We show in this review how the impulse response can be inferred
from noise measurements. The ability to use ambient noise as a seismic source has changed many
aspects of seismology. At the annual meeting of the American Geophysical Union, one can now
hear seismologists make statements such as “we carefully removed data that are contaminated by
earthquakes.” This is a sure sign that something new has happened in seismology.

The technique of extracting the impulse response from noise measurements is known by dif-
ferent names that include Green’s function extraction, Green’s function retrieval, and seismic
interferometry (all terms are used in this review). This field has been the topic of review articles
(Curtis et al. 2006, Larose et al. 2006a, Galetti & Curtis 2012), tutorials (Wapenaar et al. 2010a,b),
special issues of journals (Song 2010, Campillo et al. 2011), a collection of reprints (Wapenaar
et al. 2008a), and a textbook (Schuster 2009). In this review, we restrict ourselves to solid Earth
seismology, but important contributions to Green’s function extraction have been made in a va-
riety of other fields that include helioseismology (Duvall et al. 1993, Rickett & Claerbout 2000),
ultrasound (Weaver & Lobkis 2001, 2003a,b; Malcolm et al. 2004; Larose et al. 2006b; van Wijk
2006), infrasound (Haney 2009), ocean acoustics (Roux et al. 2004, 2011; Sabra et al. 2005c),
engineering (Sabra et al. 2008, Duroux et al. 2010), structural engineering (Snieder & Şafak 2006,
Snieder et al. 2006a, Kohler et al. 2007, Prieto et al. 2010), and medical diagnostics (Sabra et al.
2007, Gallot et al. 2011).

This overview contains the following elements. In Section 2, we show the essence of Green’s
function extraction for the simplest example of acoustic waves in a homogeneous medium. The
principle of extracting the system response from noise goes back more than a century, and we
present an overview of the developments in physics in Section 3. Section 4 features a historical
overview of developments in seismology. Retrieving body waves has proven to be much more
difficult than extracting surface waves, and we discuss this discrepancy in Section 5. A particularly
promising application of Green’s function retrieval is monitoring because one can get the Earth
response on a quasi-continuous basis (see Section 6), and we show examples of time-lapse mon-
itoring as applied to the softening of the soil by an earthquake, the detection of a precursor to a
landslide, and temporal changes in the lunar response.

2. SIMPLEST CASE: WAVE PROPAGATION
IN A HOMOGENEOUS MEDIUM

We first explain the principle of the extraction of the wave response from noise for the simplest
case of a homogenous medium in one, two, or three dimensions (Figure 1). In all cases we consider
receivers A and B that are separated over a distance R and carry out the analysis in the frequency
domain where the wave number at angular frequency ω is denoted by k.

We focus first on one dimension, as shown in Figure 1a. The receiver B is at x = 0, and
receiver A is at x = R. Random waves with spectrum SL are incident from the left, and waves with
spectrum SR are incident from the right. The total wave field is given by u(x) = SLe ikx + SRe−ikx .
The waves recorded at the two receivers are thus given by

uA = SLe ikR + SRe−ikR, uB = SL + SR. (1)
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SLe ikx SRe–ikxB A

a

R

S(φ)eikn̂ .r

B φ A

b

R

S(n̂ )eikn̂ .r

B θ A

c1D 2D 3D

R

Figure 1
Two receivers A and B separated over a distance R in (a) one dimension, (b) two dimensions, and (c) three
dimensions.

Correlation of these signals corresponds in the frequency domain to the product uAu∗
B , where the

asterisk denotes complex conjugation (see equation 15.52 of Snieder 2004a). The spectra of the
incident waves are random variables, and we denote the expectation value by angled brackets 〈· · ·〉.
When the noise incident from the left is uncorrelated with the noise incident from the right, and
has the same power spectrum, then

〈|SL|2〉 = 〈|SR|2〉 = 〈|S|2〉 and 〈SLS∗
R〉 = 〈S∗

LSR〉 = 0. (2)

Under these assumptions, the expectation value 〈uAu∗
B〉 of the cross correlation recorded at the

two stations reduces to

〈uAu∗
B〉 = 〈|S|2〉(e ikR + e−ikR). (3)

The Green’s function of a one-dimensional (1D) homogenous medium is given by G1D(R, ω) =
(−i/2k) exp(ikR) (Snieder 2004a). Using this in Equation (3) gives

〈uAu∗
B〉 = 2ik〈|S|2〉[G1D(R,ω) − G∗

1D(R, ω)]. (4)

This means that if one knows the power spectrum of the noise, one can obtain the difference G−G∗

of the Green’s function and its complex conjugate by the cross correlation of field fluctuations. The
amplitude spectrum of the noise needs to be known, but its phase spectrum does not. The difference
G(R,ω)−G∗(R, ω) corresponds in the time domain to G(R, t)−G(R, −t). The Green’s function
is causal; hence G(R, t) is nonzero only for positive time t > 0, and G(R,−t) is only nonzero for
t < 0. By parsing these two solutions, one can retrieve the full Green’s function.

We next consider the case of a homogeneous medium in two dimensions (Figure 1b). The
receivers are at locations rB = (0, 0) and rA = (R, 0), respectively. A superposition of plane waves
e ikn̂·r with random spectrum S(ϕ) propagating in the direction n̂ = (cos ϕ, sin ϕ) strikes the two
receivers. The total wave field recorded at the receivers is given by

uA =
∫ 2π

0
S(ϕ)e ikR cos ϕdϕ, uB =

∫ 2π

0
S(ϕ′)dϕ′. (5)

When the plane waves coming in from different directions are uncorrelated and each has a power
spectrum independent of the angle of incidence, 〈S(ϕ)S∗(ϕ′)〉 = |S|2δ(ϕ − ϕ′), and the average
cross correlation is given by

〈uAu∗
B〉 = |S|2ϕ

∫ 2π

0
e ikR cos ϕdϕ. (6)

We show in Appendix A that this integral is equal to

〈uAu∗
B〉 = 4iπ|S|2[G2D(R, ω) − G∗

2D(R, ω)], (7)

where G2D(R, ω) is the Green’s function in a homogeneous 2D medium. This expression has the
same form as Equation (3) for one dimension. A time-domain version of this derivation has been
given by Roux et al. (2005b). For completeness, we show in Appendix A that for a homogeneous
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a b
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35˚

40˚

45˚

50˚N
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Figure 2
Noise recorded at a master station (light blue star) is cross-correlated with noise measured at all other
USArray stations (small white triangles) for a lapse time of (a) 100 s and (b) 200 s. This results in surface waves
that emanate from the master station. Adapted from Lin et al. (2009).

medium in three dimensions, the equation

〈uAu∗
B〉 = 8iπ|S|2[G3D(R, ω) − G∗

3D(R, ω)] (8)

holds true, with G3D(R,ω) = − exp(ikR)/(4πR).
We first illustrate with a data example that the Green’s function in 2D indeed follows from

cross correlation of recorded noise. Figure 2 shows the cross correlation of noise recorded at
USArray stations for two different lag times. The noise at a master station is cross-correlated with
noise recorded at all other stations after the result is interpolated on a regular grid. The noise that
was used is excited by waves in the ocean (Webb 1998); this noise is most pronounced for periods
between 5 and 10 s. The spherical wavefront that emanates from the master station propagates
with the velocity of the fundamental-mode Rayleigh wave. The master station acts as if a source
is present. Because there is no physical source at the master station, this station acts as a virtual
source (Bakulin & Calvert 2006).

There is no magic in Green’s function extraction from noise in the sense that one can use
data processing of recorded noise to retrieve a wave that propagates between receivers only if
there is a physical wave that propagates between receivers. An ideal point source would give a
spherical wavefront with constant amplitude [see Equation (7)], but the wavefronts in Figure 2
show variations in amplitude. These variations are due to variations in the strength of the incoming
oceanic noise as a function of azimuth. Studies using arrays have shown that oceanic noise is
generated mostly by storms in the oceans (Schulte-Pelkum et al. 2004, Gerstoft et al. 2006, Stehly
et al. 2006). Because of the localized nature of storms, the oceanic noise is, in practice, not isotropic.
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tAB

tSB
tSA

S

S'

B A

Figure 3
The stations A and B in two dimensions and the stationary phase regions for sources (shaded gray areas).

Fortunately, the fact that the noise is not isotropic is not necessarily a problem. We illustrate this
with Figure 3. Consider first the noise source S. The travel time of a wave propagating between
the receivers is denoted by tAB, whereas the travel times of waves from source S to receivers A
and B are denoted by tSA and tSB, respectively. Cross correlation corresponds to taking the time
difference of the signals that are analyzed; hence the noise generated by source S gives, after cross
correlation, a wave arriving at time tSA − tSB . In general, tSA − tSB �= tAB , so the contribution of
source S does not correspond to a wave propagating between the receivers. As a consequence,
the contribution of source S should vanish upon integration over all sources. So how is a wave
arriving at time tAB generated? Consider the noise source S′ on the left. This source launches a
wave that first propagates to receiver B and then continues to receiver A. The cross correlation of
this wave recorded at the two receivers gives a wave arriving at the correct time: tAB = tS′ A − tS′ B .
There is a mathematical reason why, in the end, the noise source S′ gives the correct contribution
to the retrieval, whereas the noise source S does not contribute. Consider first source S′. When
we change the location of this source a little bit, the travel time difference of the waves traveling
to both receivers does not change. This means that source S′ is at a stationary phase position.
In contrast, when the location of S is moved, the travel time difference tSA − tSB varies to first
order in the location of the source position. The source S thus is not at a stationary phase position.
When oscillatory functions are integrated, the dominant contribution comes from stationary phase
positions (Bleistein & Handelsman 1975, Bleistein 1984, Snieder 2004a). This means that upon
integration over all sources, the dominant contribution comes from the coherency zone (Larose
2006) or the end-fire lobes (Roux et al. 2004) (see Figure 3). Sources in this zone launch waves in
the right direction to propagate between the receivers and lead to the extraction of GAB (Snieder
2004b). For inhomogeneous media, using the equations of kinematic and dynamic ray tracing, it
has been shown that the sources that lie in stationary phase regions dominate in the extraction
of the Green’s function (Snieder et al. 2006b). In general, the stationary phase regions launch
waves along the same rays that propagate to the two receivers (see appendix A of Wapenaar et al.
2010a). For each reflected wave, a stationary phase region gives the dominant contribution to the
extraction of the reflected wave by cross correlation (Snieder et al. 2006b).

3. THE BROADER PICTURE: HISTORY OF THE FLUCTUATION
RESPONSE THEOREM

The principle of extracting the response of a system from noise dates back more than a century to
the seminal paper of Einstein (1906) on Brownian motion. Consider first Figure 4a, which shows
a heavy particle, such as a smoke particle, that is suspended in air. The particle is bombarded by air
molecules, and as a result, the smoke particle moves in a random way. Its motion is described by a
diffusion constant D that characterizes the Brownian motion. The motion of the particle depends,
of course, on the kinetic energy of the air molecules, and the diffusion constant is proportional to
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F

a b

Figure 4
(a) When gas molecules (red dots) bombard a heavy smoke particle (blue circle), the particle executes a
Brownian motion characterized by a diffusion constant D. (b) When the same smoke particle is kicked by a
force F, it slows down because of the viscosity γ of the air.

the thermal energy kBT of the air, where kB is Boltzmann’s constant. Figure 4b shows the same
smoke particle suspended in air, but now the particle is kicked by a force F. As a result, the particle
moves but is slowed down by the viscosity γ of the air. Einstein (1906) established the relation
between the diffusion constant D and the viscosity γ. The diffusion constant characterizes the
response of the smoke particle to a random forcing, whereas the viscosity characterizes the response
of the particle to an external force. Implicitly, the viscosity determines the Green’s function of the
motion of the smoke particle; hence the work of Einstein established the connection between the
response of a system to a random excitation and its Green’s function.

Johnson (1928) carried out measurements of the voltage fluctuations of resistors and found
that the voltage fluctuations of a resistor satisfy

〈V 2/R〉 ∼ kBT , (9)

where V denotes voltage; R, electrical resistance; kB, Boltzmann’s constant; and T, absolute tem-
perature. Nyquist (1928) explained this proportionality from the principle of thermal equilibrium.
Thermal fluctuations cause voltage fluctuations that result in a current I = V/R. The associated
power dissipation in the resistor is given by P = VI = V 2/R. Equation (9) thus captures the
balance between the power dissipated in the resistor and the thermal energy. In statistical me-
chanics, the thermal energy is what leads to field fluctuations. After World War II, general proofs
showed that the response of a quantum mechanical system to an impulsive excitation—the Green’s
function—is proportional to the cross correlation of field fluctuations caused by thermal noise
(Callen & Welton 1951, Greene & Callen 1951). This principle was later formalized by Kubo
(1966) as the fluctuation dissipation theorem. Tatarskii (1987) recognized that the distinction
between a system and its noise is artificial and considered the fluctuation dissipation theorem by
dividing the whole physical system into the system of interest (e.g., the smoke particle) and the rest
of the world. Rytov et al. (1989) give a comprehensive treatment of fluctuations of electromagnetic
fields and their relation to the electromagnetic response of a system.

There exists a general connection between the fluctuations in a system in thermal equilibrium
and that system’s response (Le Bellac et al. 2004). Suppose one has a thermodynamic system
characterized with variables Ai, which are associated with conjugate variables λi that act as control
parameters. As shown in Appendix B, the expectation values of Ai satisfy

∂〈Ai 〉
∂λ j

= 〈(Ai − 〈Ai 〉)(Aj − 〈Aj 〉)〉. (10)

The left-hand side of Equation (10) gives the change in the expectation value 〈Ai 〉 as the control
parameter λj is varied. This derivative denotes the response of the system to a perturbation. The
right-hand side gives the covariance of the variables Ai and Aj. This quantity characterizes the
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fluctuations of the system. Equation (10) thus relates the response of the system to the fluctuations
of the system; for this reason, the expression is the mathematical formulation of the fluctuation
response theorem (Le Bellac et al. 2004). The retrieval of the system response thus follows from
general thermodynamic principles. The value of the thermal excitation is, however, tiny compared
with the energy of macroscopic motion in Earth. At a temperature of 300 K, the thermal energy is
kBT = 4 × 10−21 J, which is, for example, negligible compared with the energy of dropping a 1-g
weight from a 1-m height (mgh = 10−2 J). This implies that one needs macroscopic, nonthermal
sources to explain the retrieval of the Earth response from recorded noise.

The retrieval of the Green’s function of a general system from cross correlation of field
fluctuations has been shown using derivations that do not rely on thermodynamic arguments
(Wapenaar et al. 2006, Snieder et al. 2007, Gouédard et al. 2008, Weaver 2008). Green’s function
extraction from field fluctuations can be applied to diffusion problems (Snieder 2006), and the
principle holds even for potential field problems (Slob et al. 2010, Snieder et al. 2010). In the latter
application, the Green’s function is static but can still be retrieved from the correlation of field
fluctuations caused by time-dependent sources. For electric problems, theory requires that such
sources are electric dipoles. This requirement is fortunate because fluctuations in a system do not
create charges (monopoles); rather, a charge separation creates an electric dipole. Random electric
bursts have been observed to be caused by fluid flow through rock samples (Haas & Revil 2009).

4. HISTORY IN SEISMOLOGY

Many of the discoveries in seismology were made by Keiiti Aki and Jon Claerbout, who were
often several decades ahead of their time. Aki (1957) proposed to use ambient noise to extract
surface waves propagating in the near surface. Instead of using cross correlation, he used the cross
coherence of signals uA and uB that is defined as

HAB (ω) =
〈

uA(ω)u∗
B (ω)

|uA(ω)||uB (ω)|
〉
. (11)

Because Aki employed normalization with the amplitude spectrum, this measure corrects for
fluctuations in amplitude. When waves are incident with equal power from all directions, the
cross coherence gives the surface wave’s Green’s function. This equation follows the same steps
as those taken in the derivation of Equation (7).

Claerbout (1968) studied the relation between the reflection response and transmission re-
sponse of a 1D layered acoustic medium. The transmission coefficient of a wave propagating
vertically upward through such a stack of layers is denoted by T, and the reflection coefficient of
a wave that propagates downward is denoted by R (see Figure 5). Claerbout (1968) showed that

RT

a b

Figure 5
(a) Definition of the transmission coefficient T and reflection coefficient R. The reflection coefficient
accounts for the total reflection response of the stack of layers. (b) Extracting the body waves that propagate
between buried receivers (blue triangles) that are excited by sources at the surface.
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Figure 6
(a) Geometry of waves propagating up and down a borehole. (b) Deconvolution of waves recorded in the
borehole with those recorded at the surface for an earthquake in the Rhine Graben recorded at a distance of
43 km (Trampert et al. 1993).

these coefficients are, in the frequency domain, related by

1 + R(ω) + R∗(ω) = T (ω)T ∗(ω). (12)

This equation is exact and contains all internal multiples in the stack of layers. Consider waves
with complex spectrum S(ω) that are incident on the stack of layers from below. The transmitted
wave recorded at the surface is then given by u(ω) = T (ω)S(ω). Inserting this in Equation (12)
gives

1 + R(ω) + R∗(ω) = 1
|S(ω)|2 〈u(ω)u∗(ω)〉. (13)

This expression relates the reflected waves to the average cross correlation of transmitted waves.
The power spectrum of the incident waves needs to be known, but the phase spectrum does not.
This was the earliest example of retrieving the reflection response from the cross correlation of
waves with an unknown phase spectrum. Scherbaum (1987) extended the analysis of Claerbout
(1968) to SH waves with nonzero angles of incidence.

Trampert et al. (1993) deconvolved earthquake recordings taken in a borehole with measure-
ments at the surface. Instead of using cross correlation or cross coherence, they used the following
measure:

DAB (ω) =
〈

uA(ω)
uB (ω)

〉
. (14)

They showed that this equation gives the wave that travels from the borehole sensor to the
surface sensor, along with the wave reflected by the free surface that propagates from the surface
to the borehole sensor (Figure 6a). They applied this measure to the ground motion due to an
earthquake in the Rhine Graben, and the resulting deconvolved waveforms are shown in Figure 6b.
The wave associated with the negative times is the wave that propagates from the borehole sensor
to the surface sensor, and the wave associated with the positive times is the reflected wave that
propagates downward to the borehole sensor. The travel times are identical, as they should be, but
the amplitudes are different. This difference is due to attenuation losses, and the amplitude ratio of
these waves can be used to estimate the quality factor Q. Because the two waves are recorded at the
same seismometer, this estimation is not contaminated by uncertainties in instrument calibration
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or instrument coupling. This technique was later applied to measurements taken with arrays in
boreholes (Mehta et al. 2007b,c) and to the vibrations of buildings (Snieder & Şafak 2006, Snieder
et al. 2006a, Kohler et al. 2007, Prieto et al. 2010).

The work of Lobkis & Weaver (2001) gave the field of estimating the system response from
noise measurements much visibility in seismology. They provided a beautiful derivation show-
ing that cross correlation of recorded noise leads to the Green’s function. Their derivation was
based on normal-mode theory, a language that is natural for seismologists. Lobkis & Weaver
(2001) also presented ultrasound measurements taken on an irregularly shaped aluminum block
that beautifully confirmed their theory. In subsequent papers, they showed additional laboratory
measurements that confirmed the ability to extract the Green’s function from field fluctuations
(Weaver & Lobkis 2001, 2003a,b). They also extended their earlier derivation based on normal
modes of closed systems to open systems, in which uncorrelated noise is incident from all directions
(Weaver & Lobkis 2005).

Campillo & Paul (2003) applied the concept of Green’s function retrieval to coda waves of
earthquakes at the western margin in Central America, recorded at stations in Mexico. They
showed that by this procedure, one can extract the surface waves that propagated between the
two stations. They showed experimentally that they could retrieve all components of the Green’s
tensor for surface waves by cross-correlating the coda waves recorded at different components at
the two stations; this was later explained theoretically (Snieder 2004b).

Several subsequent studies confirmed that the fundamental-mode surface waves could be ex-
tracted successfully (Shapiro & Campillo 2004, Paul et al. 2005, Sabra et al. 2005a). The surface-
wave noise appeared to be strongest for periods between 5 and 10 s, which is the frequency band
of microseismic noise generated in the oceans (Webb 1998). In addition, it was shown that surface
waves could be extracted for periods as large as several tens of seconds (Shapiro & Campillo 2004)
and that surface waves for the Earth’s hum could even be extracted for a period of approximately
200 s (Nishida et al. 2009). One of the spectacular successes of seismic interferometry was that
the surface waves could be extracted so robustly. With the advent of dense arrays, such as the
USArray, seismic interferometry could be used to extract the surface waves that propagate be-
tween each pair of sensors. It was applied first to stations in Southern California (Sabra et al.
2005b, Shapiro et al. 2005) and provided unprecedented illumination for surface-wave tomogra-
phy. Surface waves at periods of microseismic noise (5–10 s) sample the upper 30 km; hence these
noise studies revolutionized tomography of Earth’s crust as evidenced by an explosive growth in
the number of crustal studies based on surface waves extracted from noise (e.g., Yao et al. 2006,
Lin et al. 2008, Yang & Ritzwoller 2008, Ekström et al. 2009, Li et al. 2009, Moschetti et al.
2010). A comprehensive overview of this field is given by Ritzwoller et al. (2011). Surface waves
extracted from noise have also been used at lower frequencies to determine global Earth structure
(Nishida et al. 2009) and at higher frequencies to image the shear-wave velocity in the near surface
(Halliday et al. 2008, Bussat & Kugler 2011, de Ridder & Dellinger 2011). The dominance of
surface waves in the response estimated from noise cross correlations has been used to suppress
surface waves in exploration seismology (Halliday et al. 2007, Xue et al. 2009).

Recent studies have used cross coherence, as originally proposed by Aki (1957), to estimate
attenuation (Prieto et al. 2009, Lawrence & Prieto 2011). For nonattenuating media, it suffices to
have noise sources on a closed surface surrounding the receivers, but for attenuating media, noise
must be present throughout the medium with a strength proportional to the local attenuation
(Roux et al. 2005b, Snieder 2007). Tsai (2011) gives a detailed overview of the sources used for
Green’s function extraction in the presence or absence of attenuation.

Earthquake signals are usually much stronger than recorded noise, which is why earthquakes
used to be the seismic source employed to probe deep Earth structure. Suppressing the large
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a b

B A BS A

Figure 7
(a) For surface waves, noise sources (solid red stars) can be located anywhere on the receiver line. (b) For body
waves, only the source S (solid red star), and not the other noise sources (hollow red stars), gives the body wave
that propagates between the receivers.

contributions of earthquake signals to the cross correlation is important because these signals
violate the requirement that noise sources are distributed around the receivers. An effective way of
suppressing such large amplitude signals is one-bit filtering (Larose et al. 2004), whereby the signal
is replaced with +1 if the amplitude is positive and with −1 if the amplitude is negative. Perhaps
surprisingly, this drastic filtering produces dispersive surface waves with a waveform similar to
that of surface waves excited by earthquakes (Shapiro & Campillo 2004). Bensen et al. (2007) give
a comprehensive overview and comparison of methods to suppress bursts of energy.

In addition to extracting surface waves from recorded noise, extracting refracted waves is also
possible (Mikesell et al. 2009, Mikesell & van Wijk 2011). Interferometric techniques have also
been used to increase the signal-to-noise ratio of refracted waves (Mallison et al. 2011, Bharadwaj
et al. 2012) and to retrieve waves diffracted at the core-mantle boundary in order to measure deep
mantle structure (Ruigrok et al. 2012).

5. INCREASING ILLUMINATION WITH BODY WAVES

Extracting body waves from noise measurements has proven to be much more difficult. Low-
frequency P waves (Roux et al. 2005a) and Moho-reflected body waves have been extracted from
cross correlation of noise (Zhan et al. 2010, Poli et al. 2012). Noise generated by Hurricane Katrina
has led to extraction of P waves (Gerstoft et al. 2006), and several studies have shown that oceanic
noise generates P waves (Gerstoft et al. 2008, Zhang et al. 2009). Cross correlation of noise in
exploration seismology has led to reflected P waves (Draganov et al. 2007, 2009) and S waves
(Nakata et al. 2011). In all of these studies, the extracted body waves were of much lower quality
than the surface waves extracted from noise. For this reason, the extraction of body waves from
noise has not taken the prominent place in seismology that surface-wave interferometry has taken.

Figure 7 illustrates why it is more difficult to extract body waves from noise than it is to retrieve
surface waves. Figure 7a is relevant for the retrieval of surface waves. Any source on the receiver
line launches waves that propagate first to receiver B and then to receiver A. The cross correlation
of these waves gives the surface wave that propagates between these receivers, regardless of the
exact location of the noise source on the receiver line. The situation for the retrieval of body waves
is different. Figure 7b shows a diving body wave that propagates from B to A. Receiver B does not
radiate a body wave, of course, so this body wave can propagate between the receivers in only one
way: A noise source S, located at just the right distance, launches body waves that, upon reflection
by the free surface, propagate as the diving wave from B to A. The other noise sources do not
launch such waves because they are not at the correct location to launch body waves that propagate
from A to B; hence they do not contribute to the extraction of the body wave. The requirements
for the presence of noise sources for the retrieval of body waves are thus more stringent than
for the retrieval of surface waves. Halliday & Curtis (2008) show that for the retrieval of higher-
mode surface waves, one needs a more extensive distribution of noise sources than is needed for
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Figure 8
Image of the Cascadia subduction zone created from reflected waves that were retrieved from teleseismic
body waves (Bostock et al. 2002).

the fundamental mode. Theory has shown that the convergence of the correlations toward the
Green’s function (or impulse response) is slower in 3D (bulk waves) than in 2D (Larose et al.
2008). Because noise is not generated everywhere along Earth’s surface, extracting body waves
has proven more difficult than retrieving surface waves (Forghani & Snieder 2010).

There are two ways out of this conundrum. The first way to retrieve body waves that propagate
between sensors is to use downhole sensors (Figure 5b). Using downhole sensors with either con-
trolled surface sources (Bakulin & Calvert 2006, Bakulin et al. 2007) or random noise (Miyazawa
et al. 2008) has led to what is known as the virtual source method in exploration seismology.
This method removes the imprint of a complicated overburden and allows for illumination of the
subsurface that could not be obtained otherwise. The virtual source method has been used, for
example, to illuminate the flanks of salt domes from sensors in a vertical borehole (Xiao et al.
2006, Hornby & Yu 2007) and to eliminate waves reflected at Earth’s surface (Mehta et al. 2007a).
Gerry Schuster, in particular, has pioneered interferometric methods to increase illumination of
the subsurface (Schuster et al. 2004; Schuster 2005, 2009).

The second way to retrieve body waves is to use sources that launch waves upward toward
sensors at the surface (Figure 5a). The body waves reflected by the free surface can then be
used to probe Earth’s interior. This principle has been applied using teleseismic body waves as a
source for waves reflected in the crust (Bostock & Sacchi 1997, Bostock 1999, Bostock et al. 2002,
Kumar & Bostock 2006). Although the method of Bostock and coworkers is based on the concept
of Claerbout (1968) to convert transmission data into reflection data, they used multichannel
deconvolution rather than cross correlation in their implementation. Figure 8 shows an image of
the Cascadia subduction zone obtained from this principle. The subducting slab and the base of
the crust are clearly visible.

Body waves have also been successfully extracted through the use of earthquakes that illuminate
a borehole sensor and the surface sensor from below; an early example of this principle from
Trampert et al. (1993) is shown in Figure 6. This principle has been applied to the detection
of time-lapse changes in the near surface by Sawazaki et al. (2009). Nakata & Snieder (2011)
applied deconvolution of earthquake signals recorded in borehole sensors and surface sensors
at KiK-net stations, giving S waves that propagate between sensors. Figure 9 shows the highly
stable S waves extracted from different earthquakes at a station in Fukushima, Japan. During the
Tohoku-oki earthquake on March 11, 2011, the S wave was strongly delayed; this delay indicates
that the shaking softened the soil. In the two months after the Tohoku-oki event, the extracted
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Figure 9
The waveforms recorded for different earthquakes at the surface at KiK-net station FKSH18 (Fukushima).
The waveforms deconvolved with the waves recorded in a borehole 100 m deep before the Tohoku-oki
event on March 11, 2011 ( gray traces), on the day of the event (red traces), and after the event (blue traces).
The deconvolved waves for the Tohoku-oki event are shown in purple. Circles indicate the maximum of
each trace; the times of these maxima are used to estimate velocity variations.

shear waves still have a residual delay, which corresponds to a reduction of the shear modulus. In
the next section, we further investigate the possibility of using repetitive noise-based correlation
imaging to track temporal changes of the subsurface.

6. TIME-LAPSE MONITORING OF THE NEAR SURFACE

The continuous presence of noise makes it possible to extract the Earth response on a quasi-
continuous basis. In practice, the reason that the Earth response cannot be retrieved continuously
is that one needs to time-average the cross correlation over a certain period of time (Larose
et al. 2008), from a few hours (Miyazawa et al. 2008) to several months (Shapiro & Campillo
2004). This time-averaging makes it possible to detect time-lapse changes on the scale of at least
the averaging period. An interesting point is that the noise sources do not need to be perfectly
distributed in order for the medium changes to be monitored (Hadziioannou et al. 2009). In other
words, noise-based time-lapse monitoring requires less restrictive conditions than those required
by noise-based imaging.
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Early examples of time-lapse studies were based on the autocorrelation of recorded noise. The
autocorrelation gives the waves that propagate from a sensor into the medium and then propagate
back to that sensor. Whether these reflected waves are body waves or surface waves is not clear;
hence which part of the subsurface is sampled by these waves is not obvious. Sens-Schönfelder &
Wegler (2006) used this technique to detect time-lapse changes at a volcano, Mount Merapi in
Indonesia, and discovered that the time-lapse changes they found correlate well with precipitation.
This result is an indication that the waves extracted by autocorrelation of noise recorded at the
surface propagate through the near surface. Signals extracted from ambient noise or complicated
earthquake recordings have been used in several studies to show that the subsurface velocity was
reduced after earthquakes in Japan (Wegler & Sens-Schönfelder 2007, Ohmi et al. 2008, Yamada
et al. 2010, Nakata & Snieder 2012), as well as after earthquakes at Parkfield (Brenguier et al.
2008a) and Sumatra (Xu & Song 2009). Cross correlation of noise has also been used to monitor
changes in Mount St. Helens (Sabra et al. 2006). The prospect of detecting precursors to natural
disasters is of particular interest (Brenguier et al. 2008b), and the Earth response extracted with
interferometric techniques from noise or earthquakes has shown that the shear-wave velocity in
the near surface displays a seasonal cycle (Meier et al. 2010, Nakata & Snieder 2012).

6.1. Monitoring of a Landslide

Characterizing landslides, along with predicting their failure, is of critical importance for society.
In most cases, failure is associated with hydrogeological features. Unfortunately, the converse does
not hold: An increase in moisture and/or water-table level does not necessarily trigger slope failure.
Because seismic waves are sensitive to the mechanical properties of the material they traverse, they
are useful for monitoring the evolution of the rigidity (and rheology) of the slope. Ambient noise
correlation is promising, as it is quasi-continuous and does not rely on a reproducible controlled
source.

Mainsant et al. (2012) studied a clay-rich landslide located in the Swiss Alps, next to the ski
resort Les Diablerets and along the road leading to the highly frequented Le Pillon pass. The
purpose of the seismic noise correlation experiment was to monitor the failure of this slope, which
occurred between August 18 and August 20, 2010, following significant cumulative rainfall in
July. The geometry of the experiment is depicted in Figure 10. The landslide is of moderate
size; it is 100 m in height, has a length of 300 m, and has 20–40 m of lateral extension. It was
equipped with two seismic sensors located on each side, on stable ground. Both sensors were
connected to the same recording system for continuous data logging. Researchers studied records
in the 4–25-Hz frequency range, which corresponds to Rayleigh wave penetration depths ranging
from a few meters to a few tens of meters, thus probing the active shallow layers of the landslide.
From direct observations during the field experiments, two main sources of ambient noise were
identified in this frequency band: the wind in the trees and the traffic along the road at the foot
of the landslide. Although the noise from both sources may be variable in time, the important
feature for monitoring is that their locations are stable (Hadziioannou et al. 2009).

The 24-h cross correlations were calculated and averaged each day. Correlations were sub-
sequently filtered in a narrow 10–14-Hz frequency band before the relative velocity change
was analyzed. In the case of a homogeneous relative velocity change δv/v, all the waveforms
constituting the correlograms are extended in time by a factor of −δv/v. The relative velocity
change between subsequent days was measured with the stretching technique (Sens-Schönfelder &
Wegler 2006, Hadziioannou et al. 2009).

Variation of velocity versus time is displayed in Figure 11, along with the daily precipitation.
From the beginning of April to the middle of July 2010, the apparent Rayleigh wave velocity was
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Figure 10
Locations of seismometers (red triangles) and landslide area (brown) associated with a clay-rich landslide in
the Swiss Alps, near the ski resort Les Diablerets.

relatively stable: Observed velocity fluctuations are smaller than 1%. From mid-May to mid-July,
rainfall increased the water content of the soil. On July 24, after a short rainfall event, the apparent
Rayleigh wave velocity underwent a gradual decrease of 2% over 20 days. On August 15, after a
series of intense precipitation events and related increases in the water table, the apparent velocity
dropped by 7% in only four days. While losing its rigidity, the creeping material reached its stability
limit and the slope failed, with a composite earth slide–earthflow event. This catastrophic event
occurred between August 18 and 20 (Figure 11). Ambient noise measurements and processing
made it possible to observe a significant drop (7%) in Rayleigh wave velocity a few days before
the event, after an initial gentler decrease (2%). The observed significant drop in seismic velocity
prior to slope failure suggests that time-dependent variation in this parameter can be a valuable
precursor to landslide failure.

6.2. Extracting the Lunar Response

The ambient noise on Earth is controlled primarily by the oceanic activity below 1 Hz and by
the weather and the human activity above 1 Hz. Imagine now a seismic experiment in which all
those sources would be deactivated. What would the noise correlations resemble? Would they
still provide information on the subsoil? Of course, such an experiment is not possible on Earth,
but it can be carried out on the Moon. During the Apollo era, seismic devices were operated
continuously during a significant amount of time to test the noise-based imaging and monitoring
techniques. The set of data collected by the Apollo 17 mission is of particular interest.

The Apollo 17 Lunar Seismic Profiling Experiment (LSPE) was deployed on December 14,
1972, at a distance of approximately 180 m west-northwest of the lunar module. Four geophones,
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Figure 11
(a) Relative velocity change and (b) precipitation as a function of time for the Swiss Alps landslide. The
landslide occurred in the time interval marked with the brown bar. Vertical red arrows indicate times of
strong rainfall.

deployed in a triangular array (Figure 12a), recorded the vertical ground velocity in the 3–30-Hz
frequency range during the landing mission in 1972 and then again continuously from August
1976 to April 1977. The geophones were simultaneously connected to the central station, where
the seismic signals were digitized and telemetered to Earth. The cross correlations between all
pairs of geophones were computed in a procedure that gave the propagation of the direct Rayleigh
wave in the lunar regolith (Figure 12b). The dispersion properties of the Rayleigh wave made it
possible to determine the shear-wave velocity profile of the first 10 m of the superficial lunar re-
golith (Figure 12c). More details on the experiment and data processing are given by Larose et al.
(2005).

As the seismic noise was almost continuously excited, processing correlations on a 24-h ba-
sis was also possible. The comparison between each daily correlation and the correlation av-
eraged over the whole period of interest allowed us to measure the relative velocity variations
(Sens-Schönfelder & Larose 2008). These variations are related to the thermal heating of the
Sun. During the lunar day, the surface temperature increases by more than 250◦C. The heat then
slowly diffuses at depth, and the elastic moduli subsequently decrease, resulting in a decrease in
apparent Rayleigh wave velocity (Figure 13). Conversely, during the lunar night, the tempera-
ture decreases and the seismic velocity increases. Variations of energy inflow due to changes in
the Sun-Moon distance are reflected by the variations in the incident solar flux (Figure 13). This
experiment demonstrates that it is possible to evaluate the change of temperature in the lunar soil
from the correlation of ambient seismic noise. These experiments demonstrate not only that we
can reconstruct direct waves between passive sensors with ambient noise, but also that we can take
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Figure 12
(a) Configuration of the four geophones (G1–G4) spread in a triangular array at the Apollo 17 landing site.
(b) Example of positive ambient noise correlations between G3 and G4. The pulse around 1.5 s is the direct
Rayleigh wave between the geophones. (c) The shear-wave velocity [Vs(z)] profile of the subsoil under the
sensors inferred from the dispersion of Rayleigh waves.

advantage of reconstructed multiply scattered waves to monitor very weak changes in a complex
natural environment.

7. CONCLUSION

The field of seismic interferometry (also known as Green’s function extraction or Green’s function
retrieval, as discussed) is still rapidly progressing, and this review cannot do justice to all the de-
velopments taking place. Multiple schemes for extracting the Earth response are being exploited.
In this review, we have mentioned the use of correlation, deconvolution (Vasconcelos & Snieder
2008a,b), and cross coherence. In addition to these methods, two other approaches have been
proposed. In multidimensional deconvolution (Wapenaar et al. 2008b, 2011b; van der Neut et al.
2011) one decomposes a recorded elastic or electromagnetic wave field into upgoing and downgo-
ing fields and solves for the reflectivity by solving a linear system of equations. Slob & Wapenaar
(2007) proposed convolution interferometry, a technique that is appropriate when the receivers
are on opposite sides of a surface that contains the noise sources. The merits and drawbacks of
different approaches are discussed by Snieder et al. (2009). Nakata et al. (2011) compare the
statistical properties of cross correlation, deconvolution, and cross coherence. In general, a
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Figure 13
Relative velocity variations (δv/v) versus time, obtained on the Moon from August 1976 to May 1977. Gray points indicate
experimental measurements. The red line indicates the average of δv/v over all available pairs of sensors. The blue line is linearly
proportional to the Sun-Earth distance. Note the negative sign of the δv/v on the vertical axis.

straightforward cross correlation or deconvolution does not optimally focus energy onto the
receiver that acts as a virtual source. When noise is recorded on an array, the formalism of multidi-
mensional deconvolution can be used to optimize the focusing of the noise on the receiver that acts
as a virtual source (van der Neut & Bakulin 2009; Wapenaar & van der Neut 2010; Wapenaar et al.
2011a,b).

Seismic interferometry has been used for numerous unexpected applications. Recorded
ambient oceanic noise has been used for the localization of stations and calibration of their
clocks (Sabra et al. 2005c), and to correct for the time drift of seismic stations (Stehly et al.
2007). We have shown examples of receivers that can act as virtual sources, but one can also
turn seismic sources into virtual receivers (Curtis et al. 2009). Retrieving the waves propagating
between sources from measurements of the energy flux is also possible (Snieder et al. 2012).
Furthermore, seismic noise has been used to locate earthquakes (Barmin et al. 2011). Correlation
of coda waves that are themselves obtained from cross correlation can be used to compensate for
deficiencies in illumination by ambient noise (Stehly et al. 2008, Froment et al. 2011). A method
relying on fiducial stations has been developed to estimate the waves that propagate between
seismic sensors that were not deployed at the same time (Ma & Beroza 2012), and as shown by
Curtis et al. (2012), seismic interferometry can even be used to reconstruct data that were never
recorded!
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APPENDIX A: DERIVATION OF EQUATIONS (7) AND (8)

Using the integral representation theorem of the Bessel function [expression 11.30c of Arfken &
Weber (2001)] yields the equation 2πJ0(ξ ) = ∫ 2π

0 exp(iξ cos ϕ)dϕ, with J0 the Bessel function
of order zero. The Bessel function can be decomposed into the Hankel function of the first and
second kind using J0(kR) = (1/2)[H (1)

0 (kR) + H (2)
0 (kR)] = (1/2)[H (1)

0 (kR) + H (1)∗
0 (kR)], where

expressions 11.85 and 11.86 of Arfken & Weber (2001) have been used. These results reduce
Equation (6) to

〈uAu∗
B〉 = π|S|2[H (1)

0 (kR) + H (1)∗
0 (kR)]. (15)

The Green’s function for wave propagation in a 2D homogeneous medium is given by G2D(R) =
(−i/4)H (1)

0 (kR) [expression 19.43 of Snieder (2004a)]. Inserting this in Equation (15) gives
Equation (7).

The derivation is actually simpler in 3D; the geometry of this problem is shown in Figure 1c.
Following steps resembling those leading to Equation (6) gives, for this case,

〈uAu∗
B〉 = |S|2ϕ

∫ π

0

∫ 2π

0
e ikR cos θdϕ sin θdθ, (16)

where θ is the angle between the direction of plane-wave propagation and the line between the
receivers (now the z-axis). Instead of the integration over the unit circle in Equation (6), we now
integrate over the unit sphere that describes the directions of the incoming waves. The integration
over ϕ gives a multiplication with 2π, and the integration over θ is given by

∫ π

0 e ikR cos θ sin θdθ =∫ 1
−1 e ikRudu = (e ikR − e−ikR)/(ikR). Inserting these results into Equation (16) gives Equation (8).

APPENDIX B: DERIVATION OF EQUATION (10), THE
FLUCTUATION RESPONSE THEOREM

The expectation value of a parameter f(Ai) is given by (Le Bellac et al. 2004)

〈 f (Ai )〉 = Tr
(

f (Ai ) exp
(∑

k λk Ak
))

Tr
(
exp

(∑
k λk Ak

)) , (17)

where Tr denotes the trace, defined as a sum over all degrees of freedom. With this definition,
the expectation value of Ai is given by

〈Ai 〉 = Tr
(
Ai exp

(∑
k λk Ak

))
Tr

(
exp

(∑
k λk Ak

)) =
Tr

( ∂

∂λi
exp

(∑
k λk Ak

))
Tr

(
exp

(∑
k λk Ak

)) = 1
Z

∂ Z
∂λi

, (18)

where the partition function Z is defined by

Z = Tr

(
exp

(∑
k

λk Ak

))
. (19)

Differentiating Equation (18) with respect to λj gives

∂〈Ai 〉
∂λ j

= 1
Z

∂2 Z
∂λi∂λ j

− 1
Z2

∂ Z
∂λi

∂ Z
∂λ j

. (20)

It follows from Equation (18) that the last term is equal to 〈Ai 〉〈Aj 〉. The first term on the right-
hand side follows from the identities

∂2 Z
∂λi∂λ j

= ∂2

∂λi∂λ j
Tr

(
exp

∑
k

λk Ak

)
= Tr

(
Ai Aj exp

∑
k

λk Ak

)
= 〈Ai Aj 〉Z, (21)
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where Equations (17) and (19) are used in the last identity. Using these results reduces Equation
(20) to

∂〈Ai 〉
∂λ j

= 〈Ai Aj 〉 − 〈Ai 〉〈Aj 〉. (22)

With the identity 〈Ai Aj 〉 − 〈Ai 〉〈Aj 〉 = 〈(Ai − 〈Ai 〉)(Aj − 〈Aj 〉)〉, this gives Equation (10).
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