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Abstract. In many practical inverse problems, one aims to retrieve a model that has infinitely
many degrees of freedom from a finite amount of data. It follows from a simple variable count
that this cannot be done in a unique way. Therefore, inversion entails more than estimating
a model: any inversion is not complete without a description of the class of models that is
consistent with the data; this is called the appraisal problem. Nonlinearity makes the appraisal
problem particularly difficult. The first reason for this is that nonlinear error propagation is a
difficult problem. The second reason is that for some nonlinear problems the model parameters
affect the way in which the model is being interrogated by the data. Two examples are given
of this, and it is shown how the nonlinearity may make the problem more ill-posed. Finally,
three attempts are shown to carry out the model appraisal for nonlinear inverse problems that
are based on an analytical approach, a numerical approach and a common sense approach.

1. Introduction

An important aspect of the physical sciences is to make inferences about physical parameters
from data. In general, the laws of physics provide a way for computing the values of the
data for a given model. This is called the ‘forward problem’, see figure 1. In the inverse
problem, one aims to reconstruct the model from a set of measurements, see figure 1. In the
ideal case there is an exact theory that prescribes how the data should be treated in order
to reproduce the model. For some selected examples such a theory exists assuming that
the required infinite and noise-free data sets would be available. A quantum mechanical
potential in one spatial dimension can be reconstructed when the reflection coefficient is
known for all energies (Marchenko 1955, Burridge 1980). This technique can be generalized
for the reconstruction of a quantum mechanical potential in three dimensions (Newton 1989),
but in this case a redundant data set is required for reasons that are not well understood. The
mass-density in a one-dimensional string can be constructed from the measurements of all
eigenfrequencies of that string (Borg 1946), but due to the symmetry of this problem only
the even part of the mass-density can be determined. If the seismic velocity in the Earth
depends only on depth, the velocity can be constructed exactly from the measurement of
the arrival time of seismic waves using an Abel transform (Herglotz 1907). Mathematically
this problem is identical to the construction of a spherically symmetric quantum mechanical
potential in three dimensions (Kelleret al 1956). However, the construction method of
Herglotz (1907) only gives a unique result when the velocity increases monotonically with
depth (Gerver and Markushevitch 1966). This situation is similar in quantum mechanics
where a radially symmetric smooth potential can only be constructed uniquely when the
potential does not have local minima (Sabatier 1973).
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Figure 1. The conventional division of a problem into a forward and an inverse problem.

Despite the mathematical elegance of the exact nonlinear inversion schemes, they are
of limited applicability. There are a number of reasons for this. First, the exact inversion
techniques are usually only applicable for idealistic situations that may not hold in practice.
For example, the Herglotz–Wiechert inversion presupposes that the velocity in the Earth
depends only on depth and that the velocity increases monotonically with depth. Seismic
tomography has shown that both requirements are not met in the Earth’s mantle (Noletet al
1994). Second, the exact inversion techniques are often very unstable. The presence of this
instability in the solution of the Marchenko equation has been shown explicitly by Dorren
et al (1994). However, the third reason is the most fundamental. In many inverse problems
the model that one aims to determine is a continuous function of the space variables.
This means that the model has infinitely many degrees of freedom. However, in a realistic
experiment the amount of data that can be used for the determination of the model is usually
finite. A simple count of variables shows that the data cannot have sufficient information to
determine the model uniquely. In the context of linear inverse problems this point has been
raised by Backus and Gilbert (1967, 1968) and by Parker (1994). However, this issue is
also of relevance for nonlinear inverse problems. In practice one often replaces the model
with infinitely many degrees of freedom by a model that is characterized by a finite number
of parameters. It is shown by Trampert and Snieder (1996) that this may lead to a bias in
the model estimate when the true model does not completely lie in the subspace spanned
by the finite-dimensional models used in the inversion.

2. Inversion = estimation+ appraisal

The fact that in realistic experiments one has a finite amount of data to reconstruct a model
with infinitely many degrees of freedom necessarily means that the inverse problem is not
unique in the sense that there are many models that explain the data equally well. The
model obtained from the inversion of the data is therefore not necessarily equal to the true
model that one seeks. This implies that the view of inverse problems shown in figure 1 is
too simplistic. For realistic problems, inversion really consists of two steps. Let the true
model be denoted bym and the data byd. From the datad one reconstructs an estimated
modelm̂, this is called theestimation problem, see figure 2. Apart from estimating a model
m̂ that is consistent with the data, one also needs to investigate what the relation is between
the estimated model̂m and the true modelm. This is called theappraisal problem. In the
appraisal problem one determines what properties of the true model are constrained by the
estimated model. For example, one might find that for the seismic velocity in the Earth only
the spatial fluctuations with a wavelength larger than a certain threshold are constrained by
the data. The upshot of this discussion is thatinversion= estimation+ appraisal.

In general there are two reasons why the estimated model differs from the true model.
The first reason is the non-uniqueness of the inverse problem that causes several (usually
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Figure 2. The division of a problem into a forward problem, an estimation problem and an
appraisal problem that is appropriate for finite data sets.

infinitely many) models to fit the data. The second reason is that real data are always
contaminated with errors and the estimated model is therefore affected by measurement
errors as well. Therefore model appraisal has two aspects, non-uniqueness and error
propagation. Forlinear inverse problems, methods exist to handle both aspects. The
effect of non-uniqueness is accounted for in the theory of Backus and Gilbert (1968). For
a linear problem, theith datumdi is related to the modelm(x) through a linear relation:

di =
∫
Gi(x)m(x) dx. (2.1)

Although the notation used here is one-dimensional, the arguments presented here are
applicable in any number of dimensions. For a linear inverse problem, the estimated model
m̂(x) at locationx follows by making linear combinations of the data:

m̂(x) =
∑
i

ai(x)di . (2.2)

Backus and Gilbert (1968) provide a way to compute the coefficientsai(x). However, it
should be noted thatany linear estimator, including the conventional least-squares solution,
can be written in the form (2.2) so that what follows holds forany linear estimator. Inserting
equation (2.1) in (2.2) one can relate the estimated model to the true model:

m̂(x) =
∫
R(x; x ′)m(x ′) dx ′ (2.3)

with

R(x; x ′) =
∑
i

ai(x)Gi(x
′). (2.4)

The functionR(x; x ′) is called theresolution kernel. In the ideal case, the estimated model
m̂(x) and the true modelm(x) are equal. This is the case when the resolution kernel is a
delta function:R(x; x ′) = δ(x − x ′). However, it follows from expression (2.4) that the
resolution kernel can be viewed as the linear superposition of a finite amount of data kernels
Gi(x

′). Since a delta function cannot be written as a superposition of a finite amount of
functions, this implies that the resolution kernel must have a finite width. In other words, the
estimated model is a blurred version of the true model. Note that this holds for any linear
inversion scheme, because any linear estimation procedure can be written in the form (2.2).
A beautiful example of the use of resolution kernels is given by Tanimoto and Anderson
(1985) who use resolution kernels to assess to what extent seismic surface waves constrain
the seismic anisotropy in the Earth.
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One should note that the theory given in equations (2.1)–(2.4) is actually quite subtle.
It follows from expression (2.3) that̂m(x) cannot strictly be an estimate of the local value
of the model. Backus and Gilbert (1967, 1968) carefully explain thatm̂(x) should be
interpreted as an estimate of a model functional, which at best can be considered to be a
smoothed version of the true model. Only for such a functional can the error be finite,
because an infinite model perturbation over an infinitesimal volume usually does not affect
the data. The issues of resolution model error are therefore intricately linked together.

The second aspect of model appraisal, error propagation, lies in the realm of statistics.
For linear inverse problems and for Gaussian data errors, the error propagation is relatively
simple (e.g. Parker 1994). Bayesian techniques have gained a strong popularity in inverse
problems. In this approach one prescribes the statistics of the data, and the statistics of the
model before the measurements are taken (thea priori model statistics). Bayes’ theorem
then provides a way to estimate the statistics of the model when the information in the data
has been used (e.g. Franklin 1970, Tarantola 1987). However, it is argued by Scales and
Snieder (1997) that the prescription of thea priori model statistics is far from trivial and
that Bayesian inversion is frequently abused in practical inversions. In addition, the theory
for Bayesian inversion is only developed to the point where it can be applied for models that
are characterized by a finite number of parameters. The formulation of Bayesian inversion
for models with infinitely many degrees of freedom would require Wiener integration, which
is not easily implemented for practical problems.

Despite these reservations, Bayesian inversion is an extremely valuable tool in inverse
problems. One could, in fact, go one step further than indicated in figure 2 and view the
inverse problem as a problem of statistical inference that aims at obtaining the completea
posteriori probability density function of the model as its final product. The problem with
this approach is that it is not trivial to interpret this function; the interface with the human
interpreter forms a major problem that needs to be solved. This is aggravated by the fact that
many users of the models obtained from inversions of data prefer a single model they can
work with (possibly supplemented with error estimates) rather than a more subtle answer
in the form of a probability density function in a large-dimensional or infinite-dimensional
model space.

The key point of this discussion is that the theory of model appraisal is only well
developed up to the point that it can easily be used in practical inverse problems for
linear inverse problems. The concept of resolution kernels to address the non-uniqueness
of inverse problems is not easily generalized to general nonlinear inverse problems. The
effect of error propagation and the use of Bayesian inversion is for most practical purposes
restricted to linear (or linearized) inverse problems where Gaussian errors in the data lead
to Gaussian errors in the model parameters. This does not imply that Bayesian inversion
cannot be applied to nonlinear inverse problems, but these applications strongly rely on
numerical techniques to sample model space. This leads to the paradox that part of the
inverse problem community has invested a large amount of energy in developing exact
theoretical inversion methods that cannot be applied to real data, and the another part of the
community solves realistic problems, but that the theory for model appraisal for nonlinear
inverse problems is poorly developed.

So how are inverse problems solved in practice? The estimation problem is usually
solved by fitting the model to the data. Let theith datumdi be related to the modelm
through the relation

di = Gi(m) (2.5)

whereGi(m) is a nonlinear functional that maps the model on the datumdi . The data fitting
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can be achieved by minimizing the difference between the real datadi and the estimated
dataGi(m̂) as a function of the estimated modelm̂. In the simplest approach one minimizes
the unweighted least-squares misfit

S(m̂) =
∑
i

(di −Gi(m̂))
2 (2.6)

as a function of the estimated modelm̂. However, the resulting solution may be very
unstable and it may not be very physical. In general one adds additional terms to
expression (2.6) to make the solution well behaved. These terms can be used to impose
ideas about the character of the solution that one seeks. For example, in Occam’s inversion
(Constableet al 1987) one seeks the smoothest solution that is consistent with the data by
adding a term to (2.6) that penalizes the squared gradient of the model. Another important
regularization technique is Bayesian inference which provides an elegant way to include
statistical information of the data and the model in a misfit criterion (e.g. Tarantola 1987).
The misfit function (2.6) possibly supplemented with regularization terms is usually referred
to as the penalty function.

Finding the minimum of the penalty function is an art in itself. In general one either uses
a descent method where one iteratively updates an estimate of the model that minimizes the
penalty function by moving ‘downhill’ in one way or another, or one employs techniques
that sample model space in many different locations as a way of minimization. Descent
methods can relatively easily be implemented for large-scale inverse problems. The main
drawback of this approach is that for nonlinear inverse problems the penalty function may
have several minima. A descent method may lead to a model estimate that corresponds to a
local estimate of the penalty function rather than the global minimum. It is for this reason
that techniques that sample model space in a more global fashion have gained popularity
(e.g. Sambridge 1998) despite their computational inefficiency.

For the model appraisal, one usually employs a local linearization of the relation between
data and model to account for the error propagation in the estimated model (e.g. Tarantola
1987, Parker 1984). However, this is an oversimplification of the true error propagation, and
the bias in the model estimate due to nonlinear error propagation (Jackson and Matsu’ura
1985, Dorren and Snieder 1997) is not accounted for in this approach.

An alternative to estimating models by data fitting is to use perturbation theory for the
inverse problem where the nonlinearity is seen as a weak perturbation. This approach was
originally used by Prosser (1968) for the determination of a quantum mechanical potential
from scattering data. The technique has been generalized by Snieder (1990a, b) for general
inverse problems where the data can be written as a perturbation series of the model.
Generalizing expression (2.1) for linear problems this means that it is assumed that the data
can be written as

di =
∫
G
(1)
i (x)m(x) dx +

∫ ∫
G
(2)
i (x1, x2)m(x1)m(x2) dx1 dx2+ · · · . (2.7)

In general, the model estimate is a nonlinear function of the data and can analogously to
equation (2.2) be written as a Taylor series of the data that includes nonlinear terms:

m̂(x) =
∑
i

a
(1)
i (x)di +

∑
i,j

a
(2)
ij (x)didj + · · · . (2.8)

When infinitely many data are available and one knows that the model can be recovered
exactly from the data, the coefficientsa(i) of expression (2.8) can be found by inserting (2.7)
in (2.8) and by requiring that̂m(x) = m(x), see Prosser (1968) or Snieder (1990a, b) for
details. However, in general the data set is finite, and it is not realistic to require that



392 R Snieder

the estimated model̂m(x) equals the true model. This case has been handled by Snieder
(1991) in a nonlinear extension of Backus–Gilbert theory and will be discussed further in
section 4.1.

It should noted that the series (2.7) is often difficult to obtain. A notable exception is
the iterated form of a linear integral equation that can always be written in the form (2.7).
An important example of this is the Neumann series in scattering theory that follows by
iterating the integral equation of the scattering problem (e.g. Rodberg and Thaler 1967).
The forward problem of multiple scattering of waves can thus always be written in the form
of the series (2.7).

The reader may wonder why the issue of existence has not been invoked in the
discussion. The existence problem is concerned with the question of whether there is at
least one model that is consistent with the data. For linear inverse problems one can be sure
that such a model exists (e.g. Parker 1994), but for nonlinear inverse problems one cannot
be sure that a model exists that is consistent with a given data set. However, the existence
issue is mostly a mathematical problem. It is crucial to make the distinction between an
artificial data set or a data set that is physically generated by taking real mesurements. As
an example of an artificial data set one can think of an imaginary reflection time seriesr(t)

that is an arbitrary function of time. For a nonlinear inverse problem, such a data set does
not necessarily correspond to a model, and hence the existence issue is extremely relevant.
However, when the data are obtained from real measurements the existence problem is
not relevant because one knows that in that case the presence of the true model (that is
responsible for the recorded data) guarantees that there is at least one model that is consistent
with the data. This means that for this kind of data set the existence issue is not relevant.
However, the situation is slightly more complex because in real measurements the data are
always contaminated with errors. In general, there is no strict proof that there is a model
that corresponds to the error-contaminated data. However, in the case of noise-contaminated
data one will, in general, not aim at fitting the data perfectly and one can be sure that within
the data errors there is a model that fits the data within the data error (namely the true
model). When this is the case, the primary concern is not the existence issue but the
problem of error propagation.

3. Nonlinearity and ill-posedness

Suppose for the moment that one aims at estimating a model and that the estimated model
is constructed by minimizing the data misfit such as (2.6) or some more complex misfit
function. If the forward problem is linear, and if anL2-norm such as (2.6) is used
for the calculation of the misfit, the misfit function has a parabolic dependence on the
model parameters, and therefore the misfit function has a single minimum, this situation
is depicted in figure 3(a). Any type of descent method will lead to this unique minimum.
When the forward problem is nonlinear, the misfit function can have multiple minima, see
figure 3(b). A practical optimization problem where multiple minima are a severe problem
is the determination of static corrections in exploration seismics (e.g. Rothman 1985). The
problem with the local minima is that search methods for the global minimum may mis-
identify a local minimum as the global minimum; in that case the estimated model is not
the model that gives the best data fit. In sections 3.1 and 3.2 two examples show that this
is an oversimplified view of the complications introduced by the nonlinearity of inverse
problems. (However, this does not change the fact that local minima are a formidable
problem in large-scale nonlinear inverse problems.)
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Figure 3. (a) The least-squares misfit function for a linear problem. (b) The conventional view
of the misfit function for a nonlinear inverse problem.

3.1. Example 1, nonlinearity and the inverse problem for the Schr¨odinger equation

The inverse problem of the estimation of a quantum mechanical potential in one dimension
from the measurement of the reflection coefficient of waves reflected by the potential is
a very interesting tool for studying nonlinear inversion because the inverse problem has a
stunningly simple solution (Marchenko 1955, Burridge 1980). This inverse problem is of
direct relevance in the Earth sciences; both the inverse problem of geomagnetic induction
(Weidelt 1972) as well as the seismic reflection problem (Burridge 1980, Newton 1981) can
be reformulated as the problem treated in this section. For the Schrödinger equation the
wavefieldψ satisfies the following differential equation:

ψxx + (k2− V (x))ψ = 0. (3.1)

Let the reflection coefficient after a Fourier transform to the time domain be denoted by
R(t). The potentialV (x) at a fixed locationx follows from the reflection coefficient by
solving the Marchenko equation:

K(x, t)+ R(x + t)+
∫ x

−t
K(x, τ )R(τ + t) dτ = 0 (3.2)

for K(x, t) and carrying out a differentiation

V (x) = −2
dK(x, x)

dx
. (3.3)

In figure 4(a) the results of a numerical solution of the Marchenko equation are
shown. The potential is shown by a full curve. For this potential the reflection coefficient
is computed and the potential is reconstructed by numerically solving the Marchenko
equation (3.2) and carrying out the differentiation (3.3), details of the calculation can be
found in Dorrenet al (1994). The reconstructed potential of figure 4(a) is, on the scale
of the figure, indistinguishable from the true potential. In figure 4(b) the same synthetic
experiment is shown, the only difference is that the potential has been multiplied by a factor
of 2.5. If the problem was linear, the reflection coefficients would be 2.5 times as strong
as for the potential in the top panel and the reconstructed potential would also be 2.5 times
as strong. This would lead to a near-perfect reconstruction of the potential. However, the
reconstructed potential is given by the broken curve. It can be seen that the left part of
the potential (the side from which the waves are incident) is reconstructed quite well, but
that the part of the potential on the right is very poorly reconstructed. According to the



394 R Snieder

Figure 4. (a) The original potential (full curve) and the potential constructed by solving the
Marchenko equation (broken curve). The two curves are indistinguishable on the scale of this
figure. (b) The original potential (full curve) and the potential constructed by solving the
Marchenko equation (broken curve) for a potential that is 2.5 times as strong as the potential
in (a).

reasoning above, the potential would have been reconstructed quite well if the problem had
been linear. This implies that the instability in the reconstructed potential is due to the
nonlinearity of the problem.

The physical reason for this instability can be relatively easily understood. It follows
from the Schr̈odinger equation (3.1) that the effective wavenumber is given by

√
k2− V (x).

When k2 < V (x) the wavenumber is complex which reflects the fact that the waves are
evanescent when the potential energy is larger than the total energy. In that case the
wavefield decays exponentially within the potential. For a fixed energyk2 the wavefield is
more evanescent for the potential in figure 4(b) than for the potential in figure 4(a), simply
because the potential energy is 2.5 times as high. This implies that the wavefield penetrates
deeper in the potential in figure 4(a) than in the potential in figure 4(b). Obviously, the
potential in a certain region is not constrained by the recorded wavefield if the wavefield
does not sample the potential in that region. In that case, the numerical details of the
algorithm, including the numerical round-off error determine the reconstructed potential in
that region. The essential point is that the values of the model parameters affect the way in
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Figure 5. (a) Tomographic experiment where the velocity is homogeneous and the rays are
straight. (b) Tomographic experiment where the rays curve around a low-velocity body. (c)
Tomographic experiment where a high-velocity anomaly causes a shadow zone at the middle
receiver.

which the wavefield interrogates the model.
Physically, the instability in the reconstructed potential in figure 4(b) can thus be

understood. However, what does this imply for the inverse problem? What happens
physically if the potential on the left side is high, is that the wavefield is prevented from
sampling the potential on the right part. This means that for some values of the model
parameters (that describe how high the potential is on the left), other model parameters
(that describe the potential on the right) are unconstrained by the data. In terms of a misfit
function this implies that the misfit does not depend on the model parameters that describe
the right side of the potential (when the left side of the potential is high). In other words,
the misfit function does not have a minimum, but has a broad plateau. Note that as an
additional complexity this only occurs for certain values of other model parameters (that
describe how high the potential is on the left).

3.2. Example 2, nonlinearity and seismic tomography

A second example of the ill-posedness introduced by the nonlinearity in inverse problems is
seismic tomography. Consider a cross-borehole tomographic experiment where rays travel
from a source in a well to a string of receivers in another well. The case where the velocity
is homogeneous is shown in figure 5(a). In that case the rays are straight lines that travel
from the source on the left to receiversR1 throughR5 on the right. If the velocity is not
homogeneous, the rays are curved. This implies that just as in the example of section 3.1
the values of the model parameters determine the way in which the rays interrogate the
model.

Suppose that a low-velocity anomaly is present, see figure 5(b). Since the rays of first
arrivals are curves of minimal travel time, the rays curve around the slow velocity anomaly.
If the velocity anomaly is sufficiently slow, all the rays may completely curve around the
slow velocity. In that situation the anomaly would not be sampled by any rays and the veloc-
ity within the anomaly cannot be determined because it is not sampled by any rays. At best
one could derive an upper bound for the velocity within the anomaly. Just as in the previous
section, the model parameters affect the way in which the probe (in this case the rays) sam-
ples the model. In terms of the misfit function this implies that for a certain range of model
parameters, the misfit function does not depend on the model parameters at all. In other
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words: the misfit function is completely flat over an extended range of parameter values.
Let us now consider the opposite situation where a high-velocity anomaly is present, see

figure 5(c). Rays will be defocused by a high-velocity body and a shadow zone is formed
behind the anomaly. This may mean that there is no ray that will hit the receiverR3, see the
question mark in figure 5(c). This means that for some values of the model parameters it is
impossible to compute the data because the travel time cannot be determined when there is
no ray that hits the receiver. This means that for some values of the model parameters it is
impossible to compute the corresponding data values given the theory that one uses. In this
sense one can say that some values of the model parameters are ‘forbidden’. It should be
noted that this is not a complexity created in some exotic thought experiment; the problem
of the ‘missing rays’ is a real problem in nonlinear travel time tomography (e.g. Sambridge
1990).

The critical reader might remark at this point that the fact that for certain values of the
velocity model there are no rays hitting the receiver is due to the fact that ray theory is an
approximation to the true theory (wave theory), and that wave theory predicts that some
energy will diffract into the shadow zones. Although this is correct, one should also note
that the wavefield in the shadow zones is very weak (this is why they are called shadow
zones) and that in practice this diffracted wavefield is usually not detectable.

3.3. The landscape of the misfit function

In the examples in the previous sections the value of the model parameters have affected
the way in which the probe (either the wavefield in example 1 or the rays in example 2)
interrogates the model. This has led to the effect that for some range of model parameters
the data are insensitive to some model parameters. This implies that the view that the
main complexity of nonlinearity in inverse problems is the occurrence of multiple minima
is oversimplistic. The examples of this section show that the misfit function may also have
plateaus, i.e. there may be regions where the misfit is independent of the model parameters.
This situation is sketched in figure 6. Note that when the data do not depend on a model
parameter (in a certain range), the inverse problem is necessarily ill-posed. The nonlinearity
may, therefore, actually render inverse problems ill-posed. In addition to this ill-posedness,
the second example has also shown that some range of model parameters may actually be
inconsistent with the data. This means that there are ‘forbidden regions’ of model space due
to the nonlinearity of the problem. These two complexities introduced by the nonlinearity

Figure 6. A misfit function that shows the complexity that may occur for a truly nonlinear
inverse problem.
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of the problem are indicated in figure 6. Together with the occurrence of multiple minima
these complexities make model estimations for a truly nonlinear problem a challenging task.
Further details on the complexity of the misfit function for nonlinear inverse problems are
given by Sambridge (1998) in this issue. Deng (1997) gives examples of misfit functions that
have pathologically many minima and provides a quantitative measure for the complexity
of a misfit function.

4. Model appraisal for nonlinear inverse problems

In the previous section the effect of nonlinearity on model estimation has been discussed.
In this section an attempt is made to describe the effect of nonlinearity on the appraisal
problem where one wants to describe how the estimated model is related to the true model
(see figure 2). However, it should be stressed that there is presently no general theory to
deal with the appraisal problem for a truly nonlinear inverse problem with infinitely many
degrees of freedom. In practice, one often linearizes the problem around the estimated
model and then uses linear theory to make inferences about the resolution and reliability
of the estimated model. The lack of a general theory for the appraisal problem should
be seen as a challenge for theorists! In this section three attempts are described to carry
out model assessment for a nonlinear inverse problem. These attempts follow the lines of
formal theory (section 4.1), a numerical approach (section 4.2) and a pragmatic approach
(section 4.3).

4.1. Nonlinear Backus–Gilbert theory

The beauty of Backus–Gilbert theory is that it leads for linear problems to a resolution kernel
that describes how the estimated model and the true model are related, see expression (2.3).
In the ideal case the resolution kernel is a delta function. Backus and Gilbert (1967, 1968)
have shown that the criterion that the resolution kernel should resemble a delta function
as much as possible can be used to determine the coefficientsai(x) in equation (2.2) that
prescribe how datumdi affects the estimated model at locationx. This theory has been
generalized by Snieder (1991) for the special case in which the forward problem can be
written as a perturbation series as shown in equation (2.7). In a number of applications
such a perturbation series arises naturally. Important examples are the Neumann series in
scattering theory (e.g. Rodberg and Thaler 1967) where the scattering data are written as a
sum of integrals that contain successively higher powers of the potential, or ray perturbation
theory (e.g. Snieder and Sambridge 1993, Snieder and Aldridge 1995) where the travel time
of rays is written as a sum of integrals with increasing powers of the slowness perturbation.

The key to nonlinear Backus–Gilbert theory is to insert the expansion of the forward
problem (2.7) in the estimator (2.8). The result can then be written as

m̂(x) =
∫
R(1)(x; x1)m(x1) dx1+

∫ ∫
R(2)(x; x1, x2)m(x1)m(x2) dx1 dx2+ · · · . (4.1)

This expression generalizes the linear resolution kernel of equation (2.3) to nonlinear inverse
problems. The kernelR(1)(x; x1) describes to what extent the estimated model is a blurred
version of the true model. The higher order kernels such asR(2)(x; x1, x2) can be interpreted
as nonlinear resolution kernels that describe to what extent there is a spurious nonlinear
mapping from the estimated model onto the true model in the inversion process.

In the ideal case, the estimated model is equal to the true model:m̂(x) = m(x). This
is the case when the linear resolution kernelR(1)(x; x1) is a delta functionδ(x − x1) and
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when the nonlinear resolution kernels are equal to zero:R(n)(x; x1, . . . , xn) = 0 for n > 2.
However, as in equation (2.4) the linear resolution kernelR(1)(x; x1) can be written as a
sum of a finite amount of data kernelsG(1)(x1). Since a delta function cannot be obtained
by summing a finite amount of smooth functions, the linear resolution kernel can never truly
be a delta function. This reflects the fact that with a finite amount of data the estimated
model will be a blurred version of the true model. Snieder (1991) treats the inverse problem
of the determination of the mass-density of a vibrating string from the eigenfrequencies of
the string. He shows that if only a finite amount of eigenfrequencies are available, the
nonlinear resolution kernels cannot be zero. This implies that the finiteness of the data set
leads to a spurious nonlinear mapping from the true model to the estimated model. This can
be related to the symmetries of the problem and to mode coupling ‘off the energy shell’.
The finite width of the linear resolution kernel and the fact that the nonlinear resolution
kernels are nonzero imply not only that the estimated model is a blurred version of the true
model, but also that the estimated model is biased. The reader is referred to Snieder (1991)
for details. In that work it is also described how the coefficientsa(i) in the estimator (2.8)
can be determined.

Although nonlinear Backus–Gilbert theory is a new tool for dealing with the assessment
problem for nonlinear inverse problems, one should realize that the theory can only be
applied to weakly nonlinear problems where a (very) few orders are sufficient for an accurate
description of both the forward and the inverse problem. In addition, the theory of Snieder
(1991) is so complex that a reformulation is needed to make the theory applicable to the
large-scale inverse problems that are being treated in practice.

It is important to realize that any regular (nonlinear) mapping from datadi to an
estimated model̂m(x) can be written in the form of expression (2.8). The details of the
employed algorithm then determine the coefficientsa

(n)
i1...in

. The resolution analysis shown in
equation (4.1) and the subsequent discussion therefore is applicable to the estimated model.
The conclusions concerning the linear and nonlinear resolution kernels can thus be used for
any regular mapping from the data to the estimated model.

4.2. Generation of populations of models that fit the data

Another approach to asses the reliability of estimated models is to generate not a single
model that fits the data within a certain tolerance but to obtain an ensemble of models that fit
the data within a certain tolerance (e.g. Lomax and Snieder 1995a). An alternative approach
is to compute the misfit for a very large class of models and to use the data fit, possibly
in combination with Bayesian statistics to make inferences about the range of models that
explain the data in a certain sense (e.g. Mosegaard and Tarantola 1995, Gouveia and Scales
1997, 1998, Mosegaard 1998). Obviously, this approach requires a numerical approach to
create such ensembles, but with present day computers significant progress has been made.

An important concept in the generation of ensembles of models is the randomness in
the search method that one employs. A descent method contains no element of randomness
whatsoever, whereas a Monte Carlo search where one randomly samples model space is
completely random. In between are algorithms which have both random components as well
as some mechanism to prefer models that fit the data well. Examples of such algorithms
are simulated annealing (Krikpatricket al 1983, Rothman 1985) or genetic algorithms
(Sambridge and Drijkoningen 1992, Sen and Stoffa 1992, Lomax and Snieder 1995b). A
promising technique is the adaptive search (Mosegaard and Tarantola 1995) where in the
process of carrying out a random search, information about the misfit function is built up
and where this misfit function is used to drive the random search in an intelligent way.
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Figure 7. The true velocity model (broken curve) and an ensemble of models generated by a
Monte Carlo search that fit the surface wave group-velocity data within a realistic tolerance (full
lines).

The main merit of the algorithms that determine an ensemble of models together with
information on how well each model explains the data is that this ensemble can be used
to make inferences about the model. These inferences may or may not be statistical. This
property of the algorithms that produce ensembles of models has not yet been fully exploited.

An example is shown from a study of Doumaet al (1996). In their study synthetic
group-velocity data of the fundamental mode Rayleigh wave that propagates along the
Earth’s surface were computed for periods between 10 and 300 s. The true velocity model
is shown as the broken curve in figure 7 as a function of depth. A Monte Carlo search was
used to find models of the S-velocity that were consistent with the data within a realistic
measurement error. The resulting population of models is shown in figure 7. In this study,
the S-velocity was deliberately overparametized. As a result, the resulting models are highly
oscillatory and contain strong trade-offs. The aim of the study of Doumaet al (1996) was
to extract the robust features of the velocity model from the ensemble of models shown in
figure 7. This was achieved by computing ‘empirical orthogonal functions’ (EOFs) from
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Figure 8. The empirical orthogonal function that corresponds to the pattern of smallest variability
(left panel) and two examples of EOFs that correspond to patterns of large variability (middle
and right panels) for the ensemble of models of figure 7.

this ensemble. These functions give patterns with different degrees of variability within an
ensemble. Three representative EOFs extracted from the ensemble are shown in figure 8.
The left panel shows the EOF with the smallest variability within the ensemble. The
penetration depth of this function is about the same as the penetration depth of the surface
waves that are used. In fact, the EOF in the left panel bears a striking resemblance to the
Frechet derivative of the group velocity with respect to the shear velocity. Two EOFs that
correspond to patterns with a larger degree of variability are shown in the middle and right
panels of figure 8. It can be seen that these EOFs either are very oscillatory (right panel),
or they carry much energy at great depth where the surface waves do not penetrate (middle
panel). The EOFs that describe patterns of large variability within the population (middle
and right panel) correspond to model perturbations that are poorly constrained by the data;
these are the trade-offs of the inversion. The EOFs that correspond to patterns of small
variability (left panel) account for the well-constrained aspects of the model.

The EOFs can be used to re-parametrize the model space in an intelligent way that
reflects how well model perturbations are constrained by the data. Alternatively, the EOFs
could be used to carry out a statistical analysis of the ensemble of models that explains the
data. However, as noted by Doumaet al (1996) the EOF techniques are only useful for
inverse problems that are weakly nonlinear.

4.3. Using different inversion methods

In the previous sections, a theoretical and a numerical method for model appraisal were
presented. Apart from these more formal approaches, ‘common sense’ is a powerful tool
for carrying out model assessment. An important way to assess the reliability of a model
is to determine the model in different ways. In the ideal case, different data sets are used
by different research groups who use different theories to estimate the same properties.
The agreement or disagreement between these models can be used as an indicator of the
reliability of these models. It is admittedly difficult to quantify the sense of reliability that
is thus obtained, but in the absence of an adequate theory to carry out model assessment
for nonlinear inverse problems (recall that we do not have such a theory) this may be the
best approach.

An example of this approach is shown in figure 9. Nonlinear waveform inversion using
the partitioned waveform inversion of Nolet (1990) has been used by van der Hilst and
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Kennett (1998) to determine a three-dimensional model of the S-velocity under Australia.
A cross section of the model at a depth of 140 km is shown by the colours in figure 9. In
such an inversion, averages of the Earth’s structure along long paths are used to determine
the local variations in the S-velocity. Effects such as errors in the source mechanisms of
the employed earthquakes, seismic anisotropy that is not accounted for in the inversion,
variations in the path coverage and the path direction over the domain of inversion can
lead to artifacts in the inversion. As a way of verifying the reliability of the solution,
Passieret al (1997) determined the local S-velocity using the waveform inversion method
described by Passier and Snieder (1995). In this method, a consistency requirement of the
waveforms recorded in two nearby stations is used to estimate the horizontally averaged
velocity between the stations as a function of depth. Just as the technique used by van der
Hilst and Kennett (1998) this technique may lead to models with artefacts, but in general
these artefacts will be different, see Passieret al (1997) for a discussion.

The interstation S-velocity models are shown in the panels in figure 9. In these panels
the depth range is from the surface down to 250 km, whereas the S-velocity ranges from
−5% to+5%. The symbol in each panel (circle, triangle, etc) corresponds to the employed
stations that are marked on the map with the same symbol. The depth profile shown in
each panel shows the S-velocity between the corresponding stations. By comparing the
interstation velocity models shown in the panels with the velocity model shown in colour
one can see that the locally determined S-velocity agrees well with the S-velocity obtained
from the three-dimensional tomographic inversions. Consider, for example, the S-velocity
between the stations in the northeast marked with full dots that is shown in the panel by
the full dot. At a depth of about 140 km the interstation shear velocity is about−2.5%.
This agrees well with the S-velocity obtained from three-dimensional tomography that is
indicated with the colours. A comparison like this is very useful for assessing the reliability
of models in a qualitative way. In this sense, a healthy competition between different
research groups is an important ingredient in the appraisal of models.

5. Conclusion

The main point of this overview is that for realistic data sets, the inverse problem really
consists of two problems: the estimation problem and the appraisal problem. For linear
inverse problems powerful techniques exist both for the estimation problem as well as for
the appraisal problem. For nonlinear inverse problems, techniques exist for many problems
to estimate the model, but the tools for model appraisal are poorly developed. In fact, there
is presently no proper theory that one can use for the assessment of infinite-dimensional
models that are obtained from nonlinear inversion.

The inverse problems community is split into two parts. The theorists are mostly
concerned with exact techniques to solve inverse problems. Valuable work is carried out in
that field which has led to unexpected applications (such as the inverse scattering transform
that is widely used for the solution of nonlinear evolution equations). However, these exact
techniques often require data sets that are not realistic (infinitely many input data without
noise), or they are in practice so unstable that they cannot easily be used for practical
purposes. The other part of the inverse problems community makes progress in a more
pragmatic way, constructing models from limited data sets while trying, at the same time,
to understand the reliability of the models that are obtained. Unfortunately the different
groups do not interact strongly. Such an interaction is very desirable. Nonlinear inversion
using limited and noise-contaminated data is a problem of formidable proportions both from
a theoretical as well as from a practical point of view. This area of research is of great
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importance for those who actually carry out inversions, and it forms a major challenge for
theorists. Fundamental progress in this field can only be expected when the two groups in
the inverse problems community interact with each other.
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