Homework 2 solutions

1. Vacant lattice sites in a metal crystal:

 Ratio :
 \[
 \left(\frac{n_v}{n_0} \right) = C e^{-\frac{E_v}{kT}}
 \]

 \(n_v/n_0\) : fraction of vacant aluminum lattice sites

 C: pre-exponential constant (from book) = 11.2

 \(E_v\): energy needed to create a vacancy = 0.76 eV

 k: Bolzman’s constant = 86.2(10)^{-6} eV/K

 T: Temperature

 T=550\degree C

 \[
 \left(\frac{n_v}{n_0} \right) = 11.2 e^{-\frac{0.76}{(86.2(10)^{-6})(823)}}
 \]

 \[
 \left(\frac{n_v}{n_0} \right) = 2.50(10)^{-4}
 \]

 T=23\degree C

 \[
 \left(\frac{n_v}{n_0} \right) = 11.2 e^{-\frac{0.76}{(86.2(10)^{-6})(298)}}
 \]

 \[
 \left(\frac{n_v}{n_0} \right) = 1.59(10)^{-12}
 \]

 The difference in the fractions is due to the increase in temperature…

 As the temperature increases towards the melting temperature, the fraction of
 vacancies increases significantly.
2.

\[c_x = \left[1 - \text{erf}\left(\frac{x}{2\sqrt{Dt}}\right)\right] \cdot (c_s - c_0) + c_0 \]

\[D = D_0 e^{\frac{Q}{RT}} \]

\[D_{C,1000°C} = 220(10)^{-6} e^{\frac{123(10)^3}{8.314(1273)}} \]

\[D_{C,1000°C} = 2.17(10)^{-9} \frac{m^2}{s} \]

\[c_s: \text{Determine} \quad x= 0 \text{ to } 1 \text{ mm} \]

\[c_s = 0 \text{ (vacuum)} \quad t = 1 \text{ hour} = 3600 \text{ s} \]

\[c_0 = 0.3 \text{ wt% C} \]

Carbon Concentration Profile with in 1mm of the Carbon Free Surface

\[y = -0.0035x^2 + 0.0624x - 0.0002 \]

\[R^2 = 0.9998 \]
3.

a.) Self-diffusivity of Fe in α-iron at 900°C [Fe diffusing in its own lattice, BCC (α-iron), as an “substitutional” element.]

\[
D = D_0 e^{\frac{Q}{RT}} \quad D = 22(10)^{-6} e^{\frac{268(10)^3}{8.314*1173}}
\]

\[
D = 2.56(10)^{-17} \text{ m}^2/\text{s}
\]

b.) Self-diffusivity of Fe in γ-iron at 1000°C [Fe diffusing in its own lattice, FCC (γ-iron), as an “substitutional” element.]

\[
D = D_0 e^{\frac{Q}{RT}} \quad D = 200(10)^{-6} e^{\frac{240(10)^3}{8.314*1273}}
\]

\[
D = 2.84(10)^{-14} \text{ m}^2/\text{s}
\]

c.) Carbon diffusion in α-iron at 900°C

\[
D = D_0 e^{\frac{Q}{RT}} \quad D = 20(10)^{-6} e^{\frac{142(10)^3}{8.314*1173}}
\]

\[
D = 9.49(10)^{-12} \text{ m}^2/\text{s}
\]

d.) Carbon diffusion in γ-iron at 1000°C

\[
D = D_0 e^{\frac{Q}{RT}} \quad D = 220(10)^{-6} e^{\frac{122(10)^3}{8.314*1273}}
\]

\[
D = 2.17(10)^{-9} \text{ m}^2/\text{s}
\]
e.) Interstitial diffusion (c,d) is a quicker motion than substitutional diffusion (a,b) because the activation energy levels are lower. In substitutional diffusion, the formation of a vacancy is required, whereas in interstitial diffusion, it is not.

 2. The same crystal structure.
 3. Less than 0.4 difference in electronegativity.
 4. The same valence.

Al-Mg system: violates rules 2 and 4

Al is FCC and +3 valence
Mg is HCP and +2 valence
(Approximately 11% difference in radii and 0.3 difference in electronegativity)

Area of interest is the Mg side (the δ phase)
Al-Cu system: violates rules 3 and 4

Al has 1.5 electronegativity and +3 valence

Cu has 1.9 electronegativity and +2 valence

(Approximately 13% difference in radii and both are FCC)

Area of interest is the Cu side (the α phase)
5. \(F = C - P + 2 \)

a.) \(C = 1 \)

\[P = 3 (\alpha, \beta, \text{gas}) \text{ or } (\gamma, \text{liq, gas}) \]

\[F = 1 - 3 + 2 = 0 \]

At the triple points, there are 0 degrees of freedom. The triple points are set, i.e. there can be no variation in temperature or pressure.

b.) \(C = 1 \)

\[P = 2 (\text{gas, liq}) \]

\[F = 1 - 2 + 2 = 1 \]

Along the liquid-gas condensation line, there is 1 degree of freedom. Only one variable, \(P \) or \(T \), can be varied, but not both. If \(P \) is varied, then \(T \) is fixed and vice versa.
6. 500g of 30% Pb and 70% Sn cooled from 300°C

 a. 190°C
 Composition of each phase: Liquid ~ 69 w% Sn / 31 w% Pb
 Proeutectic Beta ~ 98 w% Sn / 2 w% Pb

 Grams of Proeutectic Beta: \[
 \left(\frac{70 - 69}{98 - 69} \right) \cdot 500 = 17.3 \text{ g of Proeutectic Beta.}
 \]

 Grams of Liquid: \[
 \left(\frac{98 - 70}{98 - 69} \right) \cdot 500 = 482.7 \text{ g of Liquid.}
 \]

 b. Just above 183°C
 Composition of each phase: Liquid ~ 61.9 w% Sn / 38.1 w% Pb
 Proeutectic Beta ~ 97.5 w% Sn / 2.5 w% Pb

 Grams of Proeutectic Beta: \[
 \left(\frac{70 - 61.9}{97.5 - 61.9} \right) \cdot 500 = 113.8 \text{ g of Proeutectic Beta.}
 \]

 Grams of Liquid: \[
 \left(\frac{97.5 - 70}{97.5 - 61.9} \right) \cdot 500 = 382.2 \text{ g of Liquid.}
 \]

 c. Just below 183°C
 Composition of each phase: Alpha ~ 19 w% Sn / 81 w% Pb
 Beta ~ 97.5 w% Sn / 2.5 w% Pb

 Grams of Alpha: \[
 \left(\frac{97.5 - 70}{97.5 - 19} \right) \cdot 500 = 175.2 \text{ g of Alpha.}
 \]

 Grams of Beta: \[
 \left(\frac{70 - 19}{97.5 - 19} \right) \cdot 500 = 324.8 \text{ g of Beta.}
 \]

 d. At Room Temperature (Assume 25°C)
 Composition of each phase: Alpha ~ 1 w% Sn / 99 w% Pb
 Tin ~ 100 w% Sn

 Grams of Alpha: \[
 \left(\frac{100 - 70}{100 - 1} \right) \cdot 500 = 151.5 \text{ g of Alpha.}
 \]

 Grams of Beta: \[
 \left(\frac{70 - 1}{100 - 1} \right) \cdot 500 = 348.5 \text{ g of Beta.}
 \]
Pb-Sn phase diagram