1 Introduction

Some examples which illustrate how difference equations arise and the diversity of the areas in which difference equations apply.

1.1 Plane Division

Consider a plane that has lying in it k nonparallel lines. Into how many separate regions will the plane be divided if not more than 2 lines intersect in the same point?

Let N_k be the number of regions. Then the $(k + 1)^{th}$ line will be cut by the k previous lines in k points and, consequently, divides each of the $k + 1$ prior existing regions into 2. We then have,

$$N_{k+1} = N_k + (k + 1)$$

Then we see for $k = 0$, $N_0 = 1$ (since the plane is undivided. Similarly, for $k = 1$, $N_1 = 2$, since a single line divides the plane into 2 regions.

1.2 Savings Certificate

The value of a savings certificate initially worth $1000 accumulates interest paid each month at 1% per month. Then the following sequence represents the value of the certificate month by month.

$$A = (1000, 1010, 1020.10, 1030.30, \ldots)$$

For a sequence such as this, we define the nth first difference as

$$\Delta a_n = a_{n+1} - a_n$$

Specifically for our savings certificate we have

$$\Delta a_0 = a_1 - a_0 = 10$$
$$\Delta a_1 = a_2 - a_1 = 10.10$$
$$\Delta a_2 = a_3 - a_2 = 10.20$$
$$\vdots$$

We see that the first difference is simply the interest paid during that month. Thus,

$$\Delta a_n = a_{n+1} - a_n = 0.01a_n \Rightarrow a_{n+1} = a_n + 0.01a_n = 1.01a_n$$

Our dynamical system model is given by

$$a_{n+1} = 1.01a_n, \quad n = 0, 1, 2, 3, \ldots$$
$$a_0 = 1000$$
2 Difference Equations

2.1 Linear Difference Equations \(a_{n+1} = ra_n \)

A Difference Equation is a process of generating an infinite sequence of numbers by giving a rule for calculating each number.

2.1.1 Fibonacci Sequence

\[
y_n = y_{n-1} + y_{n-2}, \quad y_0 = 0, y_1 = 1
\]

Then, the Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, 13, . . .

A difference equation is of first order if the value \(y_n \) depends only on \(y_{n-1} \), \(n \) and constants.

2.1.2

\[
y_n = 3y_{n-1} - n^2 + 2, \quad y_0 = 0.1
\]

is a first order difference equation. The Fibonacci sequence is a second order difference equation.

A difference equation is said to be autonomous if its calculation does not use \(n \). For example, the Fibonacci equation is autonomous but the last example is not. Note that this is a property of the equation and not a property of the actual sequence.

Consider,

\[
y_n = n \text{ versus } y_n = y_{n-1} + 1, \quad y_0 = 0
\]

are both the same sequence yet the second is autonomous while the first is not.

A difference equation of order \(k + 1 \) is said to be linear if it is of the form,

\[
y_n = f_n(n)y_{n-1} + f_{n-1}(n)y_{n-2} + \cdots + f_{n-k}y_{n-k}
\]

where the \(k + 1 \) functions are any functions of \(n \). It is said to be affine if it has the form,

\[
y_n = f_n(n)y_{n-1} + f_{n-1}(n)y_{n-2} + \cdots + f_{n-k}(n)y_{n-k} + g(n)
\]

Thus, an autonomous first order affine difference equation must look like

\[
y_n = ay_n + b
\]

for some constants \(a \) and \(b \).

Consider the first order linear autonomous equation,

\[
a_n = ra_{n-1}
\]

Applying this equation recursively results in the following

\[
a_{n+1} = ra_n = r(ra_{n-1}) = r[r(ra_{n-2})] = \cdots = r^{n+1}a_0
\]

Then this difference equation has the solution

\[
a_n = r^n a_0
\]

Thus, the solution for a simple linear difference equation involves an expression of the form \(r^n \) where \(n \) is the generation number.

Note: To check, we see that for \(a_n = r^n a_0 \) then \(a_{n-1} = r^{n-1}a_0 \) and

\[
\frac{a_n}{a_{n-1}} = r \Rightarrow a_n = ra_{n-1}
\]
2.2 Affine Linear Difference Equations $a_{n+1} = ra_n + b$

A number a is called an equilibrium value or fixed point of the dynamical system if $a_k = a$ for all $k = 1, 2, 3, \ldots$ when $a_0 = a$. That is, $a_k = a$ is a constant solution to the dynamical system.

Then, for $a_{n+1} = ra_n + b$ we see that the equilibrium value is

$$a = \frac{b}{1 - r}$$

If $r = 1$ and $b = 0$, every number is an equilibrium value. If $r = 1$ and $b \neq 0$, no equilibrium value exists.

The solution of this dynamical system for $r \neq 1$ is

$$a_k = r^k c + \frac{b}{1 - r}$$

for constant c dependent upon the initial condition.

2.2.1 Annuities

An annuity is a savings account that pays interests on the amount present and allows the investor to withdraw a fixed amount each month until the account is depleted.

Consider an annuity with 1% monthly interest rate and a monthly withdrawal of $1000. This gives the dynamical system

$$a_{n+1} = 1.01a_n - 1000$$

Investigate the long-term behavior given the initial investments of

- $a_0 = 90,000$
- $a_0 = 100,000$
- $a_0 = 110,000$