Learning Objective:
Interpret the informal definition of limit. Namely, \(\lim_{x \to a} f(x) = L \) if \(f(x) \) is arbitrarily close to \(L \) for all \(x \) sufficiently close to \(a \).

Example 1

\[
y = \frac{x^2 - 1}{x+1} \quad \text{Domain: all reals except } x = -1.
\]

If \(x \neq -1 \) then

\[
y = \frac{x^2 - 1}{x+1} = \frac{(x+1)(x-1)}{(x+1)} = x - 1
\]

\[
\lim_{x \to 1} \frac{x^2 - 1}{x+1} = 0
\]
Interpretation:

\[
\frac{x^2 - 1}{x + 1}
\]

can be as close as we want to 0 (arbitrarily close) by moving \(x \) as close as we need to 1 (sufficiently close).

Example 2

\[
f(x) = \frac{\sin(x)}{x}
\]

Domain is all reals except \(x = 0 \).

\[
f(x) \text{ gets closer and closer (arbitrarily close) to } 1 \text{ as } x \text{ gets closer and closer (sufficiently close) to } 0.
\]

Symbolically,

\[
\lim_{{x \to 0}} f(x) = 1
\]
Example 3

(The Heaviside function)

\[
h(x) = \begin{cases}
 0 & \text{if } x < 0 \\
 1 & \text{if } x \geq 0.
\end{cases}
\]

There is no \(L \) such that \(h(x) \) gets arbitrarily close to \(L \) for all \(x \) sufficiently close to \(0 \).

We say \(\lim_{x \to 0} h(x) \) does not exist.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(h(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>-0.1</td>
<td>0</td>
</tr>
<tr>
<td>-0.01</td>
<td>0</td>
</tr>
<tr>
<td>-0.001</td>
<td>0</td>
</tr>
<tr>
<td>-0.0001</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>(h(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>0.001</td>
<td>1</td>
</tr>
<tr>
<td>0.0001</td>
<td>1</td>
</tr>
</tbody>
</table>