Section 4.5 Linear approximation.

Question: How are derivatives used as approximation tools?

Objectives:

1. Interpret tangent line as an approximation to $f(x)$ near a.
2. Use linear approximation to approximate values of $f(x)$ near a.
3. Use concavity to determine if approx. is an overestimate or underestimate.

Idea:

For values near a, the tangent line is a good approx. to $f(x)$.

Equation of tangent line:

$$y - f(a) = f'(a)(x-a)$$

$$y = f(a) + f'(a)(x-a)$$

Linear approx. of $f(x)$ at a:

$$L(x) = f(a) + f'(a)(x-a)$$
Theorem: For values of x near a, \(f(x) \approx L(x) \).

That is, \(f(x) \approx f(a) + f'(a)(x-a) \).

Example: Let \(f(x) = \sqrt{x} \). Find the linear approx. of \(f(x) \) at \(a = 4 \).

\[
\begin{align*}
f(x) &= x^{\frac{1}{2}} \\
f'(x) &= \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}
\end{align*}
\]

Point:
\(f(a) = \sqrt{4} = 2 \)
\((4, 2) \)

Slope:
\[
m = f'(a) = \frac{1}{2\sqrt{4}} = \frac{1}{2 \cdot 2} = \frac{1}{4}
\]

Linear approx:
\(L(x) = 2 + \frac{1}{4}(x - 4) \)

\(L(x) = \frac{1}{4}x + 2 \)
Ex: Estimate $\sqrt{4.1}$ using the linearization.

$$\sqrt{4.1} \approx L(4.1) = \frac{1}{4}(4.1) + 1 = 1.025 + 1 = 2.025$$

Actual value $\sqrt{4.1} = 2.24845$

The error

$$|\sqrt{4.1} - L(4.1)| = 0.00154327$$

Percentage error

$$\left| \frac{\sqrt{4.1} - L(4.1)}{\sqrt{4.1}} \right| \times 100 = 0.0762177\%$$

Ex: Estimate $\sqrt{2}$ using the linearization.

$$\sqrt{2} \approx \frac{1}{4}(2) + 1 = 1.5$$

Actual value $\sqrt{2} = 1.41235$

% error

$$\left| \frac{\sqrt{2} - L(2)}{\sqrt{2}} \right| \times 100 = 6.07\%$$
Find the linear approx. \[f(x) = \ln(x+3) \quad a = -2. \]

\[f'(x) = \frac{1}{x+3} \]

\[f'(a) = \frac{1}{-2+3} = \frac{1}{1} = 1 \]

Slope:

Point:
\[f(a) = \ln(-2+3) = \ln(1) = 0 \]

\[(-2, 0) \]

\[L(x) = 0 + 1(x+2) \]

\[L(x) = x+2 \]

\[a \text{ linear approx. at } a = -2. \]

Approximate \(\ln 2 \) with the linear approx.

\[f(x) \approx L(x) \]

\[\ln(2) = \ln(-1+3) = f(-1) \approx -1+2 = 1 \]
Ex: Let \(f(x) = e^{-x^{3/2}} \). Find the linear approximation of \(f(x) \) at \(a = 1 \).

\[
\begin{align*}
 f'(x) &= e^{-x^{3/2}} \cdot \left(-\frac{3x}{2} \right) \\
 f'(x) &= -x e^{-x^{3/2}}
\end{align*}
\]

Slope: \(m = f'(a) = \\
= -1 \cdot 1^{-3/2} = -e^{-1/2} \)

Point: \(f(a) = e^{-1/2} = e^{-1/2} = \frac{1}{\sqrt{e}} \)

\((1, \frac{1}{\sqrt{e}})\)

\[
\begin{align*}
 L(x) &= \frac{1}{\sqrt{e}} - \frac{1}{\sqrt{e}} (x - 1) \\
 L(x) &= \frac{1}{\sqrt{e}} - \frac{1}{\sqrt{e}} x + \frac{1}{\sqrt{e}} \\
 L(x) &= -\frac{1}{\sqrt{e}} x + \frac{2}{\sqrt{e}}
\end{align*}
\]

Linear approx. at \(a = 1 \).
Ex:
Use your approximation to estimate e^{-1}.

$$e^{-x^2} \approx L(x) = -\frac{1}{\sqrt{e}} x + \frac{2}{\sqrt{e}}$$

$$e^{-1} = e^{-\left(\frac{\sqrt{2}}{2}\right)^2} \approx L\left(\frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{\sqrt{e}} + \frac{2}{\sqrt{e}}$$

$$= \frac{2 - \sqrt{2}}{\sqrt{e}} \approx 0.3583$$

Actual value $e^{-1} = 0.3678795...$

Estimate

- $f''(a) > 0$ concave up
 - under-estimate

- $f''(a) < 0$ concave down
 - over-estimate