Section 4.6 Mean Value Theorem

Objectives:
1. Interpret the mean value theorem geometrically.
2. Apply the mean value theorem to solve applied problems.

Section 4.2
Rolle's Theorem

Suppose \(f(x) \) is continuous on \([a, b]\) and differentiable on \((a, b)\). If \(f(a) = f(b) \) then there exists a number \(c \) such that \(f'(c) = 0 \).

\[f'(c) = 0 \]

[Note: possibly many different \(c \) values, but at least one!]

(Why?) If \(f(x) \) is constant then the theorem is trivially true. Any \(c \) will work!

\[f'(c) = 0 \] for all \(c \) between \(a \) and \(b \).
So we can assume $f(x)$ is not constant. Since $f(x)$ is cont. on $[a,b]$ it has an absolute min and absolute max.

Since $f(a)=f(b)$ one extreme point does not occur at the endpoints.

That is there is an absolute max or absolute min at some point $a \leq c \leq b$.

Fermat's Thm $\Rightarrow f'(c)=0.$

(Section 4.2)

Example

Verify the hypotheses and conclusion of Rolle's theorem for

$$f(x) = x^3 - x^2 - 6x + 2$$

on $[0,3]$

1. $f(x)$ is cont. on $[0,3]$.
2. $f(x)$ is diff. on $(0,3)$.
3. $f(0)=0^3-0^2-6\cdot0+2=2$
 $f(3)=3^3-3^2-6\cdot3+2=2$
Conclusion

\[f'(x) = 3x^2 - 2x - 6 \]

\[0 = 3x^2 - 2x - 6 \]

\[x = \frac{2 \pm \sqrt{(-2)^2 - 4(3)(-6)}}{2(3)} \]

\[x = \frac{2 \pm \sqrt{4 + 72}}{6} \]

\[x = \frac{2 \pm \sqrt{76}}{6} \]

\[c = \frac{2 + \sqrt{76}}{6} \approx 1.79 \]

between 0 & 2

\[f'(c) = 0 \]

The Mean Value Theorem

Assume that \(f(x) \) is continuous on \([a, b] \) and differentiable on \((a, b) \). Then there exists at least one \(c \) between \(a \) & \(b \) such that

\[f'(c) = \frac{f(b) - f(a)}{b - a} \]
There is a point c between a & b such that the average rate of change between a & b is equal to the instantaneous rate of change at c.

Example: Let $f(x) = x + \frac{1}{x}$ on $[1, 3]$. Find the c guaranteed by the M.V.T.

Assumptions of M.V.T.

1. $f(x)$ cont. on $[1, 3]$
2. $f'(x) = 1 + (x^{-2}) = 0 \iff x^2 = 1$ R. diff. on $[1, 3]$

Conclusion:

$$\frac{f(3) - f(1)}{3 - 1} = \frac{(3 + \frac{1}{3}) - (1 + \frac{1}{1})}{2} = \frac{\frac{4}{3}}{2} = \frac{2}{3}$$
\[f'(x) = \frac{2}{3} \]

\[1 - \frac{1}{x^2} = \frac{2}{3} \]

\[1 - \frac{2}{3} = \frac{1}{x^2} \]

\[\frac{1}{3} = \frac{1}{x^2} \]

\[x^2 = 3 \]

\[x = \pm \sqrt{3} \]

\[\Rightarrow c = \sqrt{3} \text{ is between } 1 \text{ and } 3. \]

\[f'(\sqrt{3}) = 1 - \frac{1}{(\sqrt{3})^2} = 1 - \frac{1}{3} = \frac{2}{3} \sqrt{3} \]

Graphical Examples

\[f'(c) = \frac{f(b) - f(a)}{b - a} \]
(II) \[f(a) = f(b)\]

\[f'(c) = 0 = \frac{f(b) - f(a)}{b - a}\]

(Rolle's Thm? special case)

(III) \[\Delta\]

M.V.T. does not apply. f(x) is not diff on (a, b).

\[f(b) - f(a) = 0\]

Proof of MVT: (Idea use Rolle's thm.)

\[y - y_i = m(x - x_i)\]

\[y - f(a) = m(x - a)\]

\[l(x) = f(a) + m(x - a)\]

Let \[g(x) = f(x) - l(x)\]

then

1. \(g(x)\) is cont. on \([a, b]\)
2. diff on \((a, b)\).
\[g(a) = f(a) - l(a) \]
\[= f(a) - (f(a) + \frac{f(b) - f(a)}{b-a} (a-a)) \]
\[= f(a) - (f(a) + 0) \]
\[= 0 \checkmark \]

\[g(b) = f(b) - l(b) \]
\[= f(b) - (f(a) + \frac{f(b) - f(a)}{b-a} (b-a)) \]
\[= f(b) - (f(a) + f(b) - f(a)) \]
\[= f(b) - f(b) = 0 \]

\[g(a) = g(b) = 0. \]

By Rolle's thm.,
\[g'(c) = 0 \text{ for some } c \text{ between } a \& b. \]

\[g'(x) = f'(x) - l'(x) \]
\[g'(x) = f'(x) + m \]

\[g'(c) = f'(c) - m \]
\[0 = f'(c) - m \]
\[m = f'(c). \]
Applications of MVT:

Suppose \(I \) is an interval.

1. If \(f'(x) = 0 \) for all \(x \) in \(I \) then \(f(x) \) is constant on \(I \).

2. If \(f'(x) > 0 \) for all \(x \) in \(I \) then \(f(x) \) is increasing on \(I \).

3. If \(f'(x) < 0 \) for all \(x \) in \(I \) then \(f(x) \) is decreasing on \(I \).

Proof of (2):

Suppose \(f'(x) > 0 \) for all \(x \) in \(I \). Let \(a, b \) be in \(I \) such that \(a < b \). Then there is a \(c \) between \(a \) and \(b \) such that

\[
 f'(c) = \frac{f(b) - f(a)}{b - a}
\]

positive \(b/c \) in the interval \(I \).

Thus, \(f(b) - f(a) > 0 \). That is, \(f(b) > f(a) \).

So if \(a < b \) then \(f(a) < f(b) \). \(\Box \)