Topological Ramsey spaces, associated ultrafilters, and their applications to the Tukey theory of ultrafilters and Dedekind cuts of nonstandard arithmetic.

Timothy Onofre Trujillo
Sesquicentennial Conference on Infinitary Ramsey Theory

University of Denver

May 28, 2014
Motivations and Submissions

- [2] Blass, *Ultrafilter mappings and their Dedekind cuts*
Motivations and Submissions

- [2] Blass, *Ultrafilter mappings and their Dedekind cuts*
- [9] Laflamme, *Forcing with filters and complete combinatorics*

[9] Laflamme, *Forcing with filters and complete combinatorics*

Motivations and Submissions

- [2] Blass, *Ultrafilter mappings and their Dedekind cuts*
- [9] Laflamme, *Forcing with filters and complete combinatorics*
- [6] Dobrinen & Todorcevic, *Tukey types of ultrafilters*
Motivations and Submissions

- [2] Blass, *Ultrafilter mappings and their Dedekind cuts*
- [9] Laflamme, *Forcing with filters and complete combinatorics*
- [6] Dobrinen & Todorcevic, *Tukey types of ultrafilters*
- [1] Blass, *The Rudin-Keisler ordering of P-points*
Motivations and Submissions

- [2] Blass, *Ultrafilter mappings and their Dedekind cuts*
- [9] Laflamme, *Forcing with filters and complete combinatorics*
- [6] Dobrinen & Todorcevic, *Tukey types of ultrafilters*
- [1] Blass, *The Rudin-Keisler ordering of P-points*
Motivations and Submissions

- [2] Blass, *Ultrafilter mappings and their Dedekind cuts*
- [9] Laflamme, *Forcing with filters and complete combinatorics*
- [6] Dobrinen & Todorcevic, *Tukey types of ultrafilters*
- [1] Blass, *The Rudin-Keisler ordering of P-points*

Motivations and Submissions

- [2] Blass, *Ultrafilter mappings and their Dedekind cuts*
- [9] Laflamme, *Forcing with filters and complete combinatorics*
- [6] Dobrinen & Todorcevic, *Tukey types of ultrafilters*
- [1] Blass, *The Rudin-Keisler ordering of P-points*

- [12] T., *Ramsey for \mathcal{R}_1 ultrafilter mappings and their Dedekind cuts*
Motivations and Submissions

- [2] Blass, *Ultrafilter mappings and their Dedekind cuts*
- [9] Laflamme, *Forcing with filters and complete combinatorics*
- [6] Dobrinen & Todorcevic, *Tukey types of ultrafilters*
- [1] Blass, *The Rudin-Keisler ordering of P-points*

- [12] T., *Ramsey for \mathcal{R}_1 ultrafilter mappings and their Dedekind cuts*
- [5] Dobrinen, Mijares and T., *Topological Ramsey Spaces from Fraïssé Classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points*
§1.1 Higher dimensional Ramsey theory
Chapter 1

§1.1 Higher dimensional Ramsey theory

§1.2 Topological Ramsey theory
Chapter 1

§1.1 Higher dimensional Ramsey theory

§1.2 Topological Ramsey theory

§1.3 Canonical Ramsey theory
Chapter 1

§1.1 Higher dimensional Ramsey theory

§1.2 Topological Ramsey theory

§1.3 Canonical Ramsey theory

§1.4 Tukey theory of ultrafilters
Chapter 1

§1.1 Higher dimensional Ramsey theory

§1.2 Topological Ramsey theory

§1.3 Canonical Ramsey theory

Ch 2 Selective & Ramsey for \mathcal{R}

§1.4 Tukey theory of ultrafilters
Chapter 1

§1.1 Higher dimensional Ramsey theory

§1.2 Topological Ramsey theory

§1.3 Canonical Ramsey theory

Ch 2 Selective & Ramsey for \mathcal{R}

§1.4 Tukey theory of ultrafilters

Ch 3 Selective but not Ramsey
Chapter 1

§1.1 Higher dimensional Ramsey theory

§1.2 Topological Ramsey theory

§1.3 Canonical Ramsey theory

Ch 2 Selective & Ramsey for \mathcal{R}

§1.4 Tukey theory of ultrafilters

Ch 3 Selective but not Ramsey

Ch 4 Ramsey for \mathcal{R}_1 & their Dedekind cuts
Chapter 1

§1.1 Higher dimensional Ramsey theory

§1.2 Topological Ramsey theory

§1.3 Canonical Ramsey theory

Ch 2 Selective & Ramsey for \(\mathcal{R} \)

§1.4 Tukey theory of ultrafilters

Ch 3 Selective but not Ramsey

Ch 4 Ramsey for \(\mathcal{R}_1 \) & their Dedekind cuts

Ch 5 Canonical theory for \(\mathcal{H}^2 \)
Definition (Choquet, [4])

Let \mathcal{U} be a nonprincipal ultrafilter on ω.

Definition (Booth, [3])

Let \mathcal{U} be a nonprincipal ultrafilter on ω. We say that \mathcal{U} is selective, if for each decreasing sequence $A_0 \supseteq A_1 \supseteq \ldots$ of members of \mathcal{U} there exists $A = \{a_0, a_1, \ldots\} \in \mathcal{U}$ enumerated in increasing order such that for all $i < \omega$, $A \{a_0, a_1, \ldots, a_{i-1}\} \subseteq A_i$. (1)

Theorem (Kunen, [3])

\mathcal{U} is Ramsey iff \mathcal{U} is selective iff \mathcal{U} is minimal in the Rudin-Keisler ordering.
Definition (Choquet, [4])

Let \(\mathcal{U} \) be a nonprincipal ultrafilter on \(\omega \). We say that \(\mathcal{U} \) is **Ramsey**

Definition (Choquet, [4])

Let \mathcal{U} be a nonprincipal ultrafilter on ω. We say that \mathcal{U} is **Ramsey** if for each positive integer k and each partition of the k-element subsets of ω into finitely many parts,
Definition (Choquet, [4])

Let \(\mathcal{U} \) be a nonprincipal ultrafilter on \(\omega \). We say that \(\mathcal{U} \) is **Ramsey** if for each positive integer \(k \) and each partition of the \(k \)-element subsets of \(\omega \) into finitely many parts, there is a set \(X \in \mathcal{U} \) all of whose \(k \)-element subsets lie in one part of the partition.

Definition (Booth, [3])

Let \(\mathcal{U} \) be a nonprincipal ultrafilter on \(\omega \). We say that \(\mathcal{U} \) is **selective**, if for each decreasing sequence \(A_0 \supseteq A_1 \supseteq \ldots \) of members of \(\mathcal{U} \) there exists \(A = \{a_0, a_1, \ldots\} \in \mathcal{U} \) enumerated in increasing order such that for all \(i < \omega \), \(A \{a_0, a_1, \ldots, a_{i-1}\} \subseteq A_i \).

Theorem (Kunen, [3])

\(\mathcal{U} \) is Ramsey iff \(\mathcal{U} \) is selective iff \(\mathcal{U} \) is minimal in the Rudin-Keisler ordering.
Definition (Choquet, [4])

Let \mathcal{U} be a nonprincipal ultrafilter on ω. We say that \mathcal{U} is **Ramsey** if for each positive integer k and each partition of the k-element subsets of ω into finitely many parts, there is a set $X \in \mathcal{U}$ all of whose k-element subsets lie in one part of the partition.

Definition (Booth, [3])

Let \mathcal{U} be a nonprincipal ultrafilter on ω. We say that \mathcal{U} is **selective**, if for each decreasing sequence $A_0 \supseteq A_1 \supseteq \ldots$ of members of \mathcal{U}, there exists $A = \{a_0, a_1, \ldots\} \in \mathcal{U}$ enumerated in increasing order such that for all $i < \omega$, $A\{a_0, a_1, \ldots, a_{i-1}\} \subseteq A_i$.

Theorem (Kunen, [3])

\mathcal{U} is Ramsey iff \mathcal{U} is selective iff \mathcal{U} is minimal in the Rudin-Keisler ordering.
Definition (Choquet, [4])

Let \mathcal{U} be a nonprincipal ultrafilter on ω. We say that \mathcal{U} is **Ramsey** if for each positive integer k and each partition of the k-element subsets of ω into finitely many parts, there is a set $X \in \mathcal{U}$ all of whose k-element subsets lie in one part of the partition.

Definition (Booth, [3])

Let \mathcal{U} be a nonprincipal ultrafilter on ω. We say that \mathcal{U} is **selective**, if for each decreasing sequence $A_0 \supseteq A_1 \supseteq \ldots$ of members of \mathcal{U}
Definition (Choquet, [4])
Let \mathcal{U} be a nonprincipal ultrafilter on ω. We say that \mathcal{U} is **Ramsey** if for each positive integer k and each partition of the k-element subsets of ω into finitely many parts, there is a set $X \in \mathcal{U}$ all of whose k-element subsets lie in one part of the partition.

Definition (Booth, [3])
Let \mathcal{U} be a nonprincipal ultrafilter on ω. We say that \mathcal{U} is **selective**, if for each decreasing sequence $A_0 \supseteq A_1 \supseteq \ldots$ of members of \mathcal{U} there exists $A = \{a_0, a_1, \ldots\} \in \mathcal{U}$ enumerated in increasing order.

Theorem (Kunen, [3])
\mathcal{U} is Ramsey iff \mathcal{U} is selective iff \mathcal{U} is minimal in the Rudin-Keisler ordering.
Definition (Choquet, [4])

Let \(\mathcal{U} \) be a nonprincipal ultrafilter on \(\omega \). We say that \(\mathcal{U} \) is **Ramsey** if for each positive integer \(k \) and each partition of the \(k \)-element subsets of \(\omega \) into finitely many parts, there is a set \(X \in \mathcal{U} \) all of whose \(k \)-element subsets lie in one part of the partition.

Definition (Booth, [3])

Let \(\mathcal{U} \) be a nonprincipal ultrafilter on \(\omega \). We say that \(\mathcal{U} \) is **selective**, if for each decreasing sequence \(A_0 \supseteq A_1 \supseteq \ldots \) of members of \(\mathcal{U} \) there exists \(A = \{a_0, a_1, \ldots \} \in \mathcal{U} \) enumerated in increasing order such that for all \(i < \omega \),

\[
A \setminus \{a_0, a_1, \ldots, a_{i-1}\} \subseteq A_i.
\] (1)

Theorem (Kunen, [3])

\(\mathcal{U} \) is Ramsey iff \(\mathcal{U} \) is selective iff \(\mathcal{U} \) is minimal in the Rudin-Keisler ordering.
Definition (Choquet, [4])

Let \mathcal{U} be a nonprincipal ultrafilter on ω. We say that \mathcal{U} is **Ramsey** if for each positive integer k and each partition of the k-element subsets of ω into finitely many parts, there is a set $X \in \mathcal{U}$ all of whose k-element subsets lie in one part of the partition.

Definition (Booth, [3])

Let \mathcal{U} be a nonprincipal ultrafilter on ω. We say that \mathcal{U} is **selective**, if for each decreasing sequence $A_0 \supseteq A_1 \supseteq \ldots$ of members of \mathcal{U} there exists $A = \{a_0, a_1, \ldots\} \in \mathcal{U}$ enumerated in increasing order such that for all $i < \omega$,

\[A \setminus \{a_0, a_1, \ldots, a_{i-1}\} \subseteq A_i. \]

(1)

Theorem (Kunen, [3])

\mathcal{U} is Ramsey iff \mathcal{U} is selective iff \mathcal{U} is minimal in the Rudin-Keisler ordering.
Definition

For $s, t \in \omega^{<\omega}$,

$s \sqsubseteq t$ if and only if for each $i < |s|$, $s_i = t_i$.

A tree on ω is a subset of $\omega^{<\omega}$ such that $\text{cl}(T) = T$.

$\pi_0 : \omega^{<\omega} \to \omega_1$

$\pi_0(s) = \langle s_0 \rangle$ if $s \neq \langle \rangle$

$\pi_0(s) = \langle \rangle$ otherwise.
Chapter 2

Definition

- For \(s, t \in \omega^{<\omega} \),

\[
s \sqsubseteq t \text{ if and only if for each } i < |s|, s_i = t_i.
\]

- For each \(X \subseteq \omega^\omega \),

\[
cl(X) = \{ s \in \omega^{<\omega} : (\exists t \in X) s \sqsubseteq t \}
\]
Chapter 2

Definition

- For $s, t \in \omega^{<\omega}$,

 $s \sqsubseteq t$ if and only if for each $i < |s|$, $s_i = t_i$.

- For each $X \subseteq \omega^\omega$,

 $cl(X) = \{ s \in \omega^{<\omega} : (\exists t \in X) s \sqsubseteq t \}$

- A tree on ω is a subset of $\omega^{<\omega}$ such that $cl(T) = T$.
Chapter 2

Definition

- For $s, t \in \omega^{<\omega}$,

 $$s \sqsubseteq t \text{ if and only if for each } i < |s|, s_i = t_i.$$

- For each $X \subseteq \omega^\omega$,

 $$cl(X) = \{s \in \omega^{<\omega} : (\exists t \in X)s \sqsubseteq t\}$$

- A **tree on** ω is a subset of $\omega^{<\omega}$ such that $cl(T) = T$.

- $\pi_0 : \omega^{<\omega} \to \omega^1$

 $$\pi_0(s) = \begin{cases}
 \langle s_0 \rangle & \text{if } s \neq \langle \rangle \\
 \langle \rangle & \text{otherwise.}
 \end{cases}$$
Definition (T., [13])

Let T be a tree on ω such that

- $|\{s \in [T] : \pi_0(s) = \langle 0 \rangle \}| = 1$
Definition (T., [13])

Let T be a tree on ω such that

- $|\{s \in [T] : \pi_0(s) = \langle 0 \rangle\}| = 1$
- For all $s, t \in [T]$, $|s| = |t|$
Definition (T., [13])

Let T be a tree on ω such that

- $|\{s \in [T] : \pi_0(s) = \langle 0 \rangle\}| = 1$
- for all $s, t \in [T]$, $|s| = |t|$
- $\pi''[T] = \{\langle n \rangle \in \omega : n < \omega\}$.
Definition (T., [13])

Let T be a tree on ω such that
- $|\{s \in [T] : \pi_0(s) = \langle 0 \rangle\}| = 1$
- for all $s, t \in [T]$, $|s| = |t|$
- $\pi''[T] = \{\langle n \rangle \in \omega : n < \omega\}$.

Let $\mathcal{R}(T)$ denote the set of all subtrees of T isomorphic to T.
Remark
If $S \in \mathbb{R}(T_0)$ then there exists a strictly increasing sequence $(k_i)_{i < \omega}$ such that $\pi''_0[S] = \{\langle k_i \rangle : i < \omega \}$.

Figure: Graph of T_0
Remark

If $S \in \mathcal{R}(T_0)$ then there exists a strictly increasing sequence $(k_i)_{i<\omega}$ such that $\pi''_0[S] = \{\langle k_i \rangle : i < \omega \}$.
Remark
If $S \in \mathbb{R}(T_1)$ then there exists a strictly increasing sequence $(k_i)_i < \omega$ such that $\pi''_0[S] = \{\langle k_i \rangle : i < \omega\}$.

Figure: Graph of T_1
Remark

If $S \in \mathcal{R}(T_1)$ then there exists a strictly increasing sequence $(k_i)_{i<\omega}$ such that $\pi_0''[S] = \{\langle k_i \rangle : i < \omega \}$.

Figure: Graph of T_1
Remark
If $S \in \mathbb{R}(T_{1}^{\ast})$ then there exists a strictly increasing sequence $(k_i)_{i < \omega}$ such that $\pi''_0[S] = \{\langle k_i \rangle : i < \omega \}$.

Figure: Graph of the tree T_{1}^{\ast}
Remark

If $S \in \mathcal{R}(T^*_1)$ then there exists a strictly increasing sequence $(k_i)_{i<\omega}$ such that $\pi''[S] = \{\langle k_i \rangle : i < \omega \}$.

Figure: Graph of the tree T^*_1
Figure: Graph of T_2

Remark: If $S \in \mathbb{R}((T_2))$ then there exists a strictly increasing sequence $(k_i)_i < \omega$ such that $\pi''_0[S] = \{\langle k_i \rangle : i < \omega \}$.
Remark

If \(S \in \mathcal{R}(T_2) \) then there exists a strictly increasing sequence \((k_i)_{i<\omega}\) such that \(\pi''_0[S] = \{\langle k_i \rangle : i < \omega\} \).
Remark: If \(S \in \mathbb{R}(T_1 \otimes T_1) \) then there exists a strictly increasing sequence \((k_i)_{i < \omega} \) such that \(\pi'_{0} [S] = \{\langle k_i, k_i \rangle : i < \omega\} \).

\[\begin{align*}
(0, 0) & \rightarrow (1, 1) \\
(1, 1) & \rightarrow (2, 2) \rightarrow (3, 3) \rightarrow (4, 4) \\
(2, 2) & \rightarrow (3, 3) \rightarrow (4, 4) \\
(3, 3) & \rightarrow (4, 4) \\
(4, 4) & \rightarrow (10, 14) \rightarrow (11, 14) \rightarrow (12, 14) \rightarrow (13, 14) \rightarrow (14, 14)
\end{align*}\]

Figure: Graph of the tree \(T_1 \otimes T_1 \)
Remark

If $S \in \mathcal{R}(T_1 \otimes T_1)$ then there exists a strictly increasing sequence $(k_i)_{i<\omega}$ such that $\pi_0''[S] = \{ \langle (k_i, k_i) \rangle : i < \omega \}$.

Figure: Graph of the tree $T_1 \otimes T_1$
Definition (T., [13])

For each \(S \in \mathcal{R}(T) \) there is a strictly increasing sequence \((k_i)_{i<\omega}\) such that \(\pi''_0[S] = \{\langle(k_0, \ldots, k_i)\rangle : i < \omega\} \).
Definition (T., [13])

For each $S \in \mathcal{R}(T)$ there is a strictly increasing sequence $(k_i)_{i<\omega}$ such that $\pi_0''[S] = \{\langle(k_i, \ldots, k_i)\rangle : i < \omega\}$. For each $i < \omega$, let:

- $S(i) = cl(\{s \in [S] : \pi_0(s) = \langle(k_i, \ldots, k_i)\rangle\})$
Definition (T., [13])

For each $S \in \mathcal{R}(T)$ there is a strictly increasing sequence $(k_i)_{i<\omega}$ such that $\pi''_0[S] = \{\langle(k_i, \ldots, k_i)\rangle : i < \omega\}$. For each $i < \omega$, let

- $S(i) = cl(\{s \in [S] : \pi_0(s) = \langle(k_i, \ldots, k_i)\rangle\})$
- $r_i(S) = \bigcup_{j<i} S(j)$
Definition (T., [13])

For each \(S \in \mathcal{R}(T) \) there is a strictly increasing sequence \((k_i)_{i<\omega}\) such that \(\pi_0''[S] = \{\langle (k_i, \ldots, k_i) \rangle : i < \omega \} \). For each \(i < \omega \), let

- \(S(i) = cl(\{s \in [S] : \pi_0(s) = \langle (k_i, \ldots, k_i) \rangle \}) \)
- \(r_i(S) = \bigcup_{j<i} S(j) \)
- \(r : \omega \times \mathcal{R}(T) \to \{r_i(S) : i < \omega \& S \in \mathcal{R}(T)\} \)

For each \(S, S' \in \mathcal{R}(T) \), \(S \leq S' \) if and only if \(S \) is subtree of \(S' \).

Definition (Mijares, [10])

The almost-reduction relation is defined as follows: for \(S, S' \in \mathcal{R}(T) \), \(S \leq^* S' \) if and only if there exists \(i < \omega \) such that \(S \setminus r_i(S) \subseteq S' \).

For each $S \in \mathcal{R}(T)$ there is a strictly increasing sequence $(k_i)_{i < \omega}$ such that $\pi''_0[S] = \{\langle (k_i, \ldots, k_i) \rangle : i < \omega \}$. For each $i < \omega$, let

- $S(i) = \text{cl}(\{s \in [S] : \pi_0(s) = \langle (k_i, \ldots, k_i) \rangle \})$
- $r_i(S) = \bigcup_{j < i} S(j)$
- $r : \omega \times \mathcal{R}(T) \rightarrow \{r_i(S) : i < \omega \land S \in \mathcal{R}(T)\}$

Definition

For $S, S' \in \mathcal{R}(T)$, $S \leq S'$ if and only if S is subtree of S'.

Definition (Mijares, [10])

The almost-reduction relation is defined as follows: for $S, S' \in \mathcal{R}(T)$, $S \leq S'^* if and only if there exists $i < \omega$ such that $S \setminus r_i(S) \subseteq S'$.
Definition (T., [13])

For each $S \in \mathcal{R}(T)$ there is a strictly increasing sequence $(k_i)_{i<\omega}$ such that $\pi''_0[S] = \{\langle(k_i, \ldots, k_i)\rangle : i < \omega\}$. For each $i < \omega$, let

- $S(i) = \text{cl}(\{s \in [S] : \pi_0(s) = \langle(k_i, \ldots, k_i)\rangle\})$
- $r_i(S) = \bigcup_{j < i} S(j)$
- $r : \omega \times \mathcal{R}(T) \rightarrow \{r_i(S) : i < \omega \& S \in \mathcal{R}(T)\}$

Definition

For $S, S' \in \mathcal{R}(T)$, $S \leq S'$ if and only if S is subtree of S'.

Definition (Mijares, [10])

The **almost-reduction relation** is defined as follows: for $S, S' \in \mathcal{R}(T)$, $S \leq^* S'$ if and only if there exists $i < \omega$ such that $S \setminus r_i(S) \subseteq S'$.

Theorem (Dobrinen and Todorcevic, [7] & [8])

For each positive integer n, $(\mathcal{R}(T_n), \leq, r)$ forms a topological Ramsey space.
Theorem (Dobrinen and Todorcevic, [7] & [8])

For each positive integer \(n \), \((\mathcal{R}(T_n), \leq, r) \) forms a topological Ramsey space.

Theorem (T., [11])

For each positive integer \(n \), \((\mathcal{R}(T_n^*), \leq, r) \) forms a topological Ramsey space.
Theorem (Dobrinen and Todorcevic, [7] & [8])

For each positive integer \(n \), \((\mathcal{R}(T_n), \leq, r) \) forms a topological Ramsey space.

Theorem (T., [11])

For each positive integer \(n \), \((\mathcal{R}(T_n^*), \leq, r) \) forms a topological Ramsey space.

Theorem (Dobrinen, [11])

\((\mathcal{R}(T_1 \otimes T_1), \leq, r) \) forms a topological Ramsey space.
Theorem (Dobrinen and Todorcevic, [7] & [8])

For each positive integer \(n \), \((\mathcal{R}(T_n), \leq, r) \) forms a topological Ramsey space.

Theorem (T., [11])

For each positive integer \(n \), \((\mathcal{R}(T_n^*), \leq, r) \) forms a topological Ramsey space.

Theorem (Dobrinen, [11])

\((\mathcal{R}(T_1 \otimes T_1), \leq, r) \) forms a topological Ramsey space.

Notation

\[\mathcal{R}_n := \mathcal{R}(T_n), \mathcal{R}_n^* := \mathcal{R}(T_n^*), \mathcal{H}^2 := \mathcal{R}(T_1 \otimes T_1) \]
Definition (Mijares, [10])

Let k be a positive integer and T be a tree on ω^k. Suppose that $(\mathcal{R}(T), \leq, r)$ forms a topological Ramsey space. Let \mathcal{U} be an ultrafilter on $[T]$.

We say that \mathcal{U} is generated by $G \subseteq \mathcal{R}(T)$, if

$\{[S] : S \in G\}$ is cofinal in (\mathcal{U}, \supseteq).

An ultrafilter \mathcal{U} generated by $G \subseteq \mathcal{R}(T)$ is selective for $\mathcal{R}(T)$ if and only if for each decreasing sequence $S_0 \geq S_1 \geq S_2 \geq \ldots$ of elements of G, there exists another $S \in G$ such that for all $i < \omega$, $S \setminus r_i(S) \subseteq S_i$.

An ultrafilter \mathcal{U} generated by $G \subseteq \mathcal{R}(T)$ is Ramsey for $\mathcal{R}(T)$ if and only if for each $i < \omega$ and each partition of $\mathcal{R}(T)$ into two parts there exists $S \in G$ such that $(S \setminus r_i(T))$ lies in one part of the partition.
Definition (Mijares, [10])

Let k be a positive integer and T be a tree on ω^k. Suppose that $(\mathcal{R}(T), \leq, r)$ forms a topological Ramsey space. Let \mathcal{U} be an ultrafilter on $[T]$.

- We say that \mathcal{U} is generated by $G \subseteq \mathcal{R}(T)$, if $\{[S] : S \in G\}$ is cofinal in (\mathcal{U}, \supseteq).
Definition (Mijares, [10])

Let k be a positive integer and T be a tree on ω^k. Suppose that $(\mathcal{R}(T), \leq, r)$ forms a topological Ramsey space. Let \mathcal{U} be an ultrafilter on $[T]$.

- We say that \mathcal{U} is generated by $\mathcal{G} \subseteq \mathcal{R}(T)$, if $\{[S] : S \in \mathcal{G}\}$ is cofinal in (\mathcal{U}, \supseteq).

- An ultrafilter \mathcal{U} generated by $\mathcal{G} \subseteq \mathcal{R}(T)$ is selective for $\mathcal{R}(T)$ if and only if for each decreasing sequence $S_0 \geq S_1 \geq S_2 \geq \ldots$ of elements of \mathcal{G}, there exists another $S \in \mathcal{G}$ such that for all $i < \omega$, $S \setminus r_i(S) \subseteq S_i$.

Definition (Mijares, [10])

Let \(k \) be a positive integer and \(T \) be a tree on \(\omega^k \). Suppose that \((\mathcal{R}(T), \leq, r)\) forms a topological Ramsey space. Let \(\mathcal{U} \) be an ultrafilter on \([T]\).

- We say that \(\mathcal{U} \) is **generated by** \(\mathcal{G} \subseteq \mathcal{R}(T) \), if \(\{[S] : S \in \mathcal{G}\} \) is cofinal in \((\mathcal{U}, \supseteq)\).

- An ultrafilter \(\mathcal{U} \) generated by \(\mathcal{G} \subseteq \mathcal{R}(T) \) is **selective for** \(\mathcal{R}(T) \) if and only if for each decreasing sequence \(S_0 \geq S_1 \geq S_2 \geq \ldots \) of elements of \(\mathcal{G} \), there exists another \(S \in \mathcal{G} \) such that for all \(i < \omega \), \(S \setminus r_i(S) \subseteq S_i \).

- An ultrafilter \(\mathcal{U} \) generated by \(\mathcal{G} \subseteq \mathcal{R}(T) \) is **Ramsey for** \(\mathcal{R}(T) \) if and only if for each \(i < \omega \) and each partition of \((r_{r_i(T)}) \) into two parts there exists \(S \in \mathcal{G} \) such that \((r_i^S(T)) \) lies in one part of the partition.
Chapter 3

Theorem (Mijares, [10])

Ramsey for $\mathcal{R}(T) \Rightarrow$ selective for $\mathcal{R}(T)$.

Question (Dobrinen, [13])

For any given topological Ramsey space \mathcal{R}, are the notions of selective for \mathcal{R} and Ramsey for \mathcal{R} equivalent?

Theorem (T., [13])

$(\mathcal{R} \star 1, \leq \ast)$ is σ-closed and there exists a map $\Gamma : \mathcal{R} \star 1 \to \mathcal{R} 1$ such that if G is a generic filter for $(\mathcal{R} \star 1, \leq \ast)$ over some ground model V, then $\Gamma^\prime G$ generates an ultrafilter on $\left[T 1 \right]$ that is selective for $\mathcal{R} 1$ but not Ramsey for $\mathcal{R} 1$ in $V[G]$.

Chapter 3

Theorem (Mijares, [10])

Ramsey for $\mathcal{R}(T) \Rightarrow$ selective for $\mathcal{R}(T)$.

Question (Dobrinen, [13])

For any given topological Ramsey space \mathcal{R}, are the notions of selective for \mathcal{R} and Ramsey for \mathcal{R} equivalent?
Chapter 3

Theorem (Mijares, [10])

\[\text{Ramsey for } \mathcal{R}(T) \Rightarrow \text{selective for } \mathcal{R}(T). \]

Question (Dobrinen, [13])

For any given topological Ramsey space \(\mathcal{R} \), are the notions of selective for \(\mathcal{R} \) and Ramsey for \(\mathcal{R} \) equivalent?

Theorem (T., [13])

\((\mathcal{R}_1^*, \leq^*) \) is \(\sigma \)-closed and there exists a map \(\Gamma : \mathcal{R}_1^* \rightarrow \mathcal{R}_1 \) such that if \(\mathcal{G} \) is a generic filter for \((\mathcal{R}_1^*, \leq^*) \) over some ground model \(V \), then \(\Gamma'' \mathcal{G} \) generates an ultrafilter on \([T_1] \) that is selective for \(\mathcal{R}_1 \) but not Ramsey for \(\mathcal{R}_1 \) in \(V[\mathcal{G}] \).
\[S \in \mathbb{R}^\ast \quad \Gamma(S) \in \mathbb{R}_1 \]

Figure: Graph of \(S \in \mathcal{R}_1^\ast \) and \(\Gamma(S) \in \mathcal{R}_1 \).
Theorem (T., [13])

Let \(n \) be a positive integer. \((\mathcal{R}_n^*, \leq^*)\) is \(\sigma\)-closed and there exists a map \(\Gamma_n : \mathcal{R}_n^* \to \mathcal{R}_n \) such that if \(\mathcal{G} \) is a generic filter for \((\mathcal{R}_n^*, \leq^*)\) over some ground model \(V \), then \(\Gamma_n'' \mathcal{G} \) generates an ultrafilter on \([T_n]\) that is selective for \(\mathcal{R}_n \) but not Ramsey for \(\mathcal{R}_n \) in \(V[\mathcal{G}] \).
Theorem (T., [13])

Let n be a positive integer. $(\mathcal{R}_n^*, \leq^*)$ is σ-closed and there exists a map $\Gamma_n : \mathcal{R}_n^* \to \mathcal{R}_n$ such that if G is a generic filter for $(\mathcal{R}_n^*, \leq^*)$ over some ground model V, then $\Gamma_n''G$ generates an ultrafilter on $[T_n]$ that is selective for \mathcal{R}_n but not Ramsey for \mathcal{R}_n in $V[G]$.

Theorem (T., [13])

Suppose that $\langle S_i : i \leq n \rangle$ is a finite sequence of trees where each S_i is one of the trees T_j for some $j < \omega$. $(\bigotimes_{i=0}^{n} \mathcal{R}(S_i^*), \leq^*)$ is σ-closed and there exists a map $\Gamma : \bigotimes_{i=0}^{n} \mathcal{R}(S_i^*) \to \bigotimes_{i=0}^{n} \mathcal{R}(S_i)$ such that if G is a generic filter for $(\bigotimes_{i=0}^{n} \mathcal{R}(S_i^*), \leq^*)$ over some ground model V, then $\Gamma''G$ generates an ultrafilter on $[\bigotimes_{i=0}^{n} S_i]$ that is selective for $\bigotimes_{i=0}^{n} \mathcal{R}(S_i)$ but not Ramsey for $\bigotimes_{i=0}^{n} \mathcal{R}(S_i)$ in $V[G]$.
Definition

If \mathcal{U} is an ultrafilter on the base set X and \mathcal{V} is an ultrafilter on the base set Y, then we say that \mathcal{V} is Rudin-Keisler reducible to \mathcal{U} and write $\mathcal{V} \leq_{RK} \mathcal{U}$ if there exists a function $f : X \to Y$ such that $\mathcal{V} = f(\mathcal{U})$, where $f(\mathcal{U}) = \langle \{ f''Z : Z \in \mathcal{U} \} \rangle$. (2)

A Rudin-Keisler mapping from \mathcal{U} to \mathcal{V} is a function $f : X \to Y$ such that $\mathcal{V} = f(\mathcal{U})$. (4)
Definition

If \mathcal{U} is an ultrafilter on the base set X and \mathcal{V} is an ultrafilter on the base set Y, then we say that \mathcal{V} is **Rudin-Keisler reducible to** \mathcal{U} and write $\mathcal{V} \leq_{RK} \mathcal{U}$.
Definition

If \mathcal{U} is an ultrafilter on the base set X and \mathcal{V} is an ultrafilter on the base set Y, then we say that \mathcal{V} is **Rudin-Keisler reducible to** \mathcal{U} and write $\mathcal{V} \leq_{RK} \mathcal{U}$ if there exists a function $f : X \to Y$ such that $\mathcal{V} = f(\mathcal{U})$, where

$$f(\mathcal{U}) = \langle \{f'' Z : Z \in \mathcal{U}\} \rangle.$$

(2)
Chapter 4

Definition
If \mathcal{U} is an ultrafilter on the base set X and \mathcal{V} is an ultrafilter on the base set Y, then we say that \mathcal{V} is **Rudin-Keisler reducible to** \mathcal{U} and write $\mathcal{V} \leq_{RK} \mathcal{U}$ if there exists a function $f : X \to Y$ such that $\mathcal{V} = f(\mathcal{U})$, where

$$f(\mathcal{U}) = \langle \{ f''Z : Z \in \mathcal{U} \} \rangle.$$ \hfill (2)

A **Rudin-Keisler mapping from** \mathcal{U} **to** \mathcal{V} is a function $f : X \to Y$ such that $\mathcal{V} = f(\mathcal{U})$.
Definition (Blass, [2])

- Associated to each Rudin-Keisler mapping from \mathcal{U} on X to \mathcal{V} on Y is a Dedekind cut in the ultrapower ω^Y/\mathcal{V}.
Definition (Blass, [2])

- Associated to each Rudin-Keisler mapping from \mathcal{U} on X to \mathcal{V} on Y is a Dedekind cut in the ultrapower $\mathcal{U}^Y / \mathcal{V}$.
- Let \mathcal{U} be an ultrafilter on the base set X and $p : X \to Y$.

Definition (Blass, [2])

- Associated to each Rudin-Keisler mapping from \mathcal{U} on X to \mathcal{V} on Y is a Dedekind cut in the ultrapower ω^Y/\mathcal{V}.
- Let \mathcal{U} be an ultrafilter on the base set X and $p : X \to Y$.
- For any $A \subseteq X$, we define the **cardinality function of A relative to p** by
 \[C_A(y) = |A \cap p^{-1}\{y\}| \quad \text{for} \quad y \in Y. \] (3)
Definition (Blass, [2])

- Associated to each Rudin-Keisler mapping from \mathcal{U} on X to \mathcal{V} on Y is a Dedekind cut in the ultrapower ω^Y/\mathcal{V}.
- Let \mathcal{U} be an ultrafilter on the base set X and $p : X \to Y$.
- For any $A \subseteq X$, we define the **cardinality function of A relative to p** by

$$
C_A(y) = |A \cap p^{-1}\{y\}| \quad \text{for } y \in Y. \quad (3)
$$

Definition (Blass, [2])

- Associated to each Rudin-Keisler mapping from \mathcal{U} on X to \mathcal{V} on Y is a Dedekind cut in the ultrapower ω^Y/\mathcal{V}.
- Let \mathcal{U} be an ultrafilter on the base set X and $p : X \to Y$.
- For any $A \subseteq X$, we define the cardinality function of A relative to p by

\[C_A(y) = |A \cap p^{-1}\{y\}| \quad \text{for} \; y \in Y. \] (3)

- The set of all equivalence classes of cardinality functions of sets in \mathcal{U}, and all larger elements of $\omega^Y/p(\mathcal{U})$, constitute the upper part L of a cut (S, L) of $\omega^Y/p(\mathcal{U})$, which we call the cut associated to p and \mathcal{U}.
Lemma (T., [12])

Assume the Continuum Hypothesis. If \mathcal{V} is selective then there exists a Ramsey for \mathcal{R}_1 ultrafilter \mathcal{U} such that the cut associated to \mathcal{U} and π is the standard cut in $\omega^\omega / \mathcal{V}$.
Lemma (T., [12])

Assume the Continuum Hypothesis. If \mathcal{V} is selective then there exists a Ramsey for \mathcal{R}_1 ultrafilter \mathcal{U} such that the cut associated to \mathcal{U} and π is the standard cut in $\omega^\omega / \mathcal{V}$.

Lemma (T., [12])

Let \mathcal{U} be a Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$ and p be a map from $[T_1]$ to ω. The cut associated to p and \mathcal{U} is the standard cut in $\omega^\omega / p(\mathcal{U})$.
Lemma (T., [12])

Assume the Continuum Hypothesis. If \mathcal{V} is selective then there exists a Ramsey for \mathcal{R}_1 ultrafilter \mathcal{U} such that the cut associated to \mathcal{U} and π is the standard cut in $\omega^\omega/\mathcal{V}$.

Lemma (T., [12])

Let \mathcal{U} be a Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$ and p be a map from $[T_1]$ to ω. The cut associated to p and \mathcal{U} is the standard cut in $\omega^\omega/p(\mathcal{U})$.

Theorem (T., [12])

Assume the Continuum Hypothesis. (S, L) is the cut associated to some map of some Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$ to \mathcal{V} if and only if \mathcal{V} is selective and (S, L) is the standard cut in $\omega^\omega/\mathcal{V}$.
Definition

Let \mathcal{U} be a nonprincipal ultrafilter on ω.

\mathcal{U} is a **p-point** if for each $f : \omega \rightarrow \omega$ there exists $X \in \mathcal{U}$ such that $f \upharpoonright X$ is constant or $f \upharpoonright X$ is finite-to-one.

\mathcal{U} is **weakly-Ramsey** if for each $F : [\omega]^2 \rightarrow 3$ there exists $X \in \mathcal{U}$ such that F omits a value on $[X]^2$.

Corollary (T., [12])

Assume the Continuum Hypothesis. There is a weakly-Ramsey ultrafilter on $[T_1]$ that is not Ramsey for \mathcal{R}_1.
Suppose that \mathcal{U} and \mathcal{V} are ultrafilters on the base sets X and Y respectively.

- A function f from \mathcal{U} to \mathcal{V} is **cofinal** if every cofinal subset of (\mathcal{U}, \supseteq) is mapped by f to a cofinal subset of (\mathcal{V}, \supseteq).(In other words, f maps filter bases of \mathcal{U} to filter bases of \mathcal{V}.)
Definition (Tukey, [14])

Suppose that \mathcal{U} and \mathcal{V} are ultrafilters on the base sets X and Y respectively.

- A function f from \mathcal{U} to \mathcal{V} is **cofinal** if every cofinal subset of (\mathcal{U}, \supseteq) is mapped by f to a cofinal subset of (\mathcal{V}, \supseteq).(In other words, f maps filter bases of \mathcal{U} to filter bases of \mathcal{V}.)
- We say that \mathcal{V} is **Tukey reducible to \mathcal{U}** and write $\mathcal{V} \leq_T \mathcal{U}$ if there exists a cofinal map $f : \mathcal{U} \to \mathcal{V}$.

The relation \equiv_T is an equivalence relation and \leq_T is a partial order on its equivalence classes. The equivalence classes are also called **Tukey types**.
Definition (Tukey, [14])

Suppose that \mathcal{U} and \mathcal{V} are ultrafilters on the base sets X and Y respectively.

- A function f from \mathcal{U} to \mathcal{V} is **cofinal** if every cofinal subset of (\mathcal{U}, \supseteq) is mapped by f to a cofinal subset of (\mathcal{V}, \supseteq). (In other words, f maps filter bases of \mathcal{U} to filter bases of \mathcal{V}.)
- We say that \mathcal{V} is **Tukey reducible to** \mathcal{U} and write $\mathcal{V} \leq_T \mathcal{U}$ if there exists a cofinal map $f : \mathcal{U} \to \mathcal{V}$.
- If $\mathcal{U} \leq_T \mathcal{V}$ and $\mathcal{V} \leq_T \mathcal{U}$ then we write $\mathcal{V} \equiv_T \mathcal{U}$ and say that \mathcal{U} and \mathcal{V} are **Tukey equivalent**.
Definition (Tukey, [14])

Suppose that \mathcal{U} and \mathcal{V} are ultrafilters on the base sets X and Y respectively.

- A function f from \mathcal{U} to \mathcal{V} is **cofinal** if every cofinal subset of (\mathcal{U}, \supseteq) is mapped by f to a cofinal subset of (\mathcal{V}, \supseteq).(In other words, f maps filter bases of \mathcal{U} to filter bases of \mathcal{V}.)

- We say that \mathcal{V} is **Tukey reducible to** \mathcal{U} and write $\mathcal{V} \leq_T \mathcal{U}$ if there exists a cofinal map $f : \mathcal{U} \to \mathcal{V}$.

- If $\mathcal{U} \leq_T \mathcal{V}$ and $\mathcal{V} \leq_T \mathcal{U}$ then we write $\mathcal{V} \equiv_T \mathcal{U}$ and say that \mathcal{U} and \mathcal{V} are **Tukey equivalent**.

- The relation \equiv_T is an equivalence relation and \leq_T is a partial order on its equivalence classes.
Definition (Tukey, [14])

Suppose that \mathcal{U} and \mathcal{V} are ultrafilters on the base sets X and Y respectively.

- A function f from \mathcal{U} to \mathcal{V} is **cofinal** if every cofinal subset of (\mathcal{U}, \supseteq) is mapped by f to a cofinal subset of (\mathcal{V}, \supseteq). (In other words, f maps filter bases of \mathcal{U} to filter bases of \mathcal{V}.)

- We say that \mathcal{V} is **Tukey reducible to** \mathcal{U} and write $\mathcal{V} \leq_T \mathcal{U}$ if there exists a cofinal map $f : \mathcal{U} \to \mathcal{V}$.

- If $\mathcal{U} \leq_T \mathcal{V}$ and $\mathcal{V} \leq_T \mathcal{U}$ then we write $\mathcal{V} \equiv_T \mathcal{U}$ and say that \mathcal{U} and \mathcal{V} are **Tukey equivalent**.

- The relation \equiv_T is an equivalence relation and \leq_T is a partial order on its equivalence classes.

- The equivalence classes are also called **Tukey types**.
Theorem (T., [12])

Suppose \mathcal{U} is a Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$. If (S, L) is the cut associated to some map from some p-point ultrafilter in the Tukey type of \mathcal{U} to some ultrafilter \mathcal{V}, then \mathcal{V} is a p-point ultrafilter and (S, L) is the standard cut.
Theorem (T., [12])

Suppose \mathcal{U} is a Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$. If (S, L) is the cut associated to some map from some p-point ultrafilter in the Tukey type of \mathcal{U} to some ultrafilter \mathcal{V}, then \mathcal{V} is a p-point ultrafilter and (S, L) is the standard cut.

Corollary (T., [12])

Assume the Continuum Hypothesis holds and \mathcal{U} is a Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$. There exists a weakly Ramsey ultrafilter \mathcal{V} such that $\mathcal{V} \not\leq_T \mathcal{U}$.
Theorem (T., [12])

Suppose \mathcal{U} is a Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$. If (S, L) is the cut associated to some map from some p-point ultrafilter in the Tukey type of \mathcal{U} to some ultrafilter \mathcal{V}, then \mathcal{V} is a p-point ultrafilter and (S, L) is the standard cut.

Corollary (T., [12])

Assume the Continuum Hypothesis holds and \mathcal{U} is a Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$. There exists a weakly Ramsey ultrafilter \mathcal{V} such that $\mathcal{V} \not\leq_T \mathcal{U}$.

Corollary (T., [12])

Assume the Continuum Hypothesis holds and \mathcal{U} is a Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$. There exists a p-point ultrafilter \mathcal{W} which is not weakly Ramsey such that $\mathcal{W} >_T \mathcal{U}$.
Definition (T., [11])

Let \(\tilde{S}(n) \) denote the tree
\[
\{\langle \rangle, \langle 0 \rangle, \langle 0, (i, j) \rangle : (i, j) \in (n + 1) \times (n + 1)\}.
\]
Definition (T., [11])

- Let $\tilde{S}(n)$ denote the tree
 \[\{ \langle \rangle, \langle 0 \rangle, \langle 0, (i, j) \rangle : (i, j) \in (n + 1) \times (n + 1) \}. \]
- Let $T_{\langle \rangle} = \{ \langle \rangle \}$
Definition (T., [11])

- Let $\tilde{S}(n)$ denote the tree
 \[
 \{\langle \rangle, \langle 0 \rangle, \langle 0, (i, j) \rangle : (i, j) \in (n + 1) \times (n + 1)\}.
 \]
- Let $T_{\langle \rangle} = \{\langle \rangle\}$
- Let $T_{\langle 0 \rangle} = \{\langle \rangle, \langle 0 \rangle\}$.

Chapter 5

Definition (T., [11])

- Let \(\tilde{S}(n) \) denote the tree
 \[
 \{ \langle \rangle, \langle 0 \rangle, \langle 0, (i, j) \rangle : (i, j) \in (n + 1) \times (n + 1) \}.
 \]

- Let \(T_{\langle \rangle} = \{ \langle \rangle \} \)

- Let \(T_{\langle 0 \rangle} = \{ \langle \rangle, \langle 0 \rangle \} \).

- For \(I, J \subseteq n + 1 \) with either \(I \) or \(J \) nonempty, let \(T(I, J) = \)
 \[
 \begin{cases}
 \{ \langle \rangle, \langle 0 \rangle, \langle 0, (i, \cdot) \rangle : i \in I \} & \text{if } I \neq \emptyset \text{ and } J = \emptyset, \\
 \{ \langle \rangle, \langle 0 \rangle, \langle 0, (\cdot, j) \rangle : j \in J \} & \text{if } I = \emptyset \text{ and } J \neq \emptyset, \\
 \{ \langle \rangle, \langle 0 \rangle, \langle 0, (i, j) \rangle : (i, j) \in I \times J \} & \text{if } I \neq \emptyset \text{ and } J \neq \emptyset.
 \end{cases}
 \]
Definition (T., [11])

Let $\tilde{S}(n)$ denote the tree
\[
\{ \langle \rangle, \langle 0 \rangle, \langle 0, (i, j) \rangle : (i, j) \in (n + 1) \times (n + 1) \}\.
\]

Let $T_{\langle \rangle} = \{ \langle \rangle \}$

Let $T_{\langle 0 \rangle} = \{ \langle \rangle, \langle 0 \rangle \}$.

For $I, J \subseteq n + 1$ with either I or J nonempty, let $T(I, J) =$
\[
\begin{cases}
\{ \langle \rangle, \langle 0 \rangle, \langle 0, (i, \cdot) \rangle : i \in I \} & \text{if } I \neq \emptyset \text{ & } J = \emptyset, \\
\{ \langle \rangle, \langle 0 \rangle, \langle 0, (\cdot, j) \rangle : j \in J \} & \text{if } I = \emptyset \text{ & } J \neq \emptyset, \\
\{ \langle \rangle, \langle 0 \rangle, \langle 0, (i, j) \rangle : (i, j) \in I \times J \} & \text{if } I \neq \emptyset \text{ & } J \neq \emptyset.
\end{cases}
\]

Let $T(n)$ denote the collection of trees of the form $T_{\langle \rangle}, T_{\langle 0 \rangle}$ and $T(I, J)$ with $I, J \subseteq n + 1$ and either I or J nonempty.
Definition (T., [11])

Let $T \in T(n)$ and $X \in \mathcal{H}^2$.
Definition (T., [11])

Let $T \in \mathcal{T}(n)$ and $X \in \mathcal{H}^2$.

Suppose that $X(n) = \{ \langle \rangle, \langle m \rangle, \langle m, (l, k) \rangle : (l, k) \in L \times K \}$.
Definition (T., [11])

- Let $T \in T(n)$ and $X \in \mathcal{H}^2$.
- Suppose that $X(n) = \{\langle \rangle, \langle m \rangle, \langle m, (l, k) \rangle : (l, k) \in L \times K \}$.
- With $L = \{l_0, \ldots, l_n\}$ and $K = \{k_0, \ldots, k_n\}$.
Definition (T., [11])

- Let $T \in \mathcal{T}(n)$ and $X \in \mathcal{H}^2$.
- Suppose that $X(n) = \{\langle \rangle, \langle m \rangle, \langle m, (l, k) \rangle : (l, k) \in L \times K\}$.
- With $L = \{l_0, \ldots, l_n\}$ and $K = \{k_0, \ldots, k_n\}$.
- The T-projection of $X(n)$ denoted by $\pi_T(X(n))$ is given by

\[
\begin{cases}
\{\langle \rangle\} & \text{if } T = T_{\langle \rangle}, \\
\{\langle \rangle, \langle m \rangle\} & \text{if } T = T_{\langle 0 \rangle}, \\
\{\langle \rangle, \langle m \rangle, \langle m, k_j \rangle : j \in J\} & \text{if } T = T(\emptyset, J), \\
\{\langle \rangle, \langle m \rangle, \langle m, l_i \rangle : i \in I\} & \text{if } T = T(I, \emptyset), \\
\{\langle \rangle, \langle m \rangle, \langle m, (l_i, k_j) \rangle : (i, j) \in I \times J\} & \text{otherwise}.
\end{cases}
\]
Figure: Graphs of various projections of an element of $\mathcal{H}^2(2)$
Definition (T., [11])

Each $T \in \mathcal{T}(n)$ induces an equivalence relation E_T, on $\mathcal{H}^2(n)$ by

$$X(n)E_T Y(n) \iff \pi_T(X(n)) = \pi_T(Y(n)).$$
Definition (T., [11])

- Each $T \in \mathcal{T}(n)$ induces an equivalence relation E_T, on $\mathcal{H}^2(n)$ by
 \[X(n)E_T Y(n) \iff \pi_T(X(n)) = \pi_T(Y(n)). \]
- Let $\mathcal{E}(n)$ denote the collection of equivalence relations E_T, for $T \in \mathcal{T}(n)$.

Theorem (Erdős-Rado Theorem for \mathcal{H}^2; T., [11])

For each $A \in \mathcal{H}^2(n)$ and equivalence relation E on $\mathcal{H}^2(n)$ $|A|$, there exists $B \leq A$ and $E_T \in \mathcal{E}(n)$ such that $E_T \upharpoonright (\mathcal{H}^2(n)|B) = E \upharpoonright (\mathcal{H}^2(n)|B)$.
Definition (T., [11])

- Each $T \in \mathcal{T}(n)$ induces an equivalence relation E_T, on $\mathcal{H}^2(n)$ by
 \[X(n)E_T Y(n) \iff \pi_T(X(n)) = \pi_T(Y(n)). \]
- Let $\mathcal{E}(n)$ denote the collection of equivalence relations E_T, for $T \in \mathcal{T}(n)$.

Theorem (Erdős-Rado Theorem for \mathcal{H}^2; T., [11])

For each $A \in \mathcal{H}^2$ and equivalence relation E on $\mathcal{H}^2(n)|A$, there exists $B \leq A$ and $E_T \in \mathcal{E}(n)$ such that

\[E_T \upharpoonright (\mathcal{H}^2(n)|B) = E \upharpoonright (\mathcal{H}^2(n)|B). \]
Definition

A subset \mathcal{F} of $\mathcal{A}\mathcal{H}^2$ is a **front on** \mathcal{H}^2 if for each $X \in \mathcal{H}^2$ there exists $a \in \mathcal{F}$ and $i < \omega$ such that $a = r_i(X)$ and $b \not\sqsubseteq c$ for all $b \neq c \in \mathcal{F}$.
Definition

A subset F of AH^2 is a **front on** H^2 if for each $X \in H^2$ there exists $a \in F$ and $i < \omega$ such that $a = r_i(X)$ and $b \not\subseteq c$ for all $b \neq c \in F$.

Definition

Let F be a front on H^2 and let φ be a function on F.

- φ is **inner** if for each $a \in F$ there exists a family of trees $\{T_i : i < |a|\}$ such that for each $i < \omega$ $T(i) \in T(i)$ and

 $$\varphi(a) = \bigcup_{i < |a|} \pi_{T_i}(a(i)).$$

- φ is **Nash-Williams** if $\varphi(a) \not\subseteq \varphi(b)$, for all $a \neq b \in F$.

Definition (T., [11])

Let \mathcal{F} be a front and R be an equivalence relation on \mathcal{F}. We say R is canonical if and only if there is an inner Nash-Williams function ϕ on \mathcal{F} such that

1. For all $a, b \in \mathcal{F}$, aRb if and only if $\phi(a) = \phi(b)$; and
2. ϕ is maximal among all inner Nash-Williams functions satisfying (1). That is, for any other inner Nash-Williams function ϕ' on \mathcal{F} satisfying (1), there is a $Y \leq X$ such that $\phi'(a) \subseteq \phi(a)$, for all $a \in \mathcal{F}|Y$.

Theorem (T., [11])

Suppose $A \in H_2$, \mathcal{F} is a front and R is an equivalence relation on \mathcal{F}. Then there is a $B \leq A$ such that R is canonical on $\mathcal{F}|B$.
Definition (T., [11])

Let \mathcal{F} be a front and R be an equivalence relation on \mathcal{F}. We say that R is **canonical** if and only if there is an inner Nash-Williams function φ on \mathcal{F} such that

1. for all $a, b \in \mathcal{F}$, $a R b$ if and only if $\varphi(a) = \varphi(b)$; and
2. φ is maximal among all inner Nash-Williams functions satisfying (1). That is, for any other inner Nash-Williams function φ' on \mathcal{F} satisfying (1), there is a $Y \leq X$ such that $\varphi'(a) \subseteq \varphi(a)$, for all $a \in \mathcal{F}|Y$.
Definition (T., [11])

Let \mathcal{F} be a front and R be an equivalence relation on \mathcal{F}. We say that R is **canonical** if and only if there is an inner Nash-Williams function φ on \mathcal{F} such that

1. for all $a, b \in \mathcal{F}$, aRb if and only if $\varphi(a) = \varphi(b)$; and
2. φ is maximal among all inner Nash-Williams functions satisfying (1). That is, for any other inner Nash-Williams function φ' on \mathcal{F} satisfying (1), there is a $Y \leq X$ such that $\varphi'(a) \subseteq \varphi(a)$, for all $a \in \mathcal{F}|_Y$.

Theorem (T., [11])

Suppose $A \in H_2$, \mathcal{F} is a front and R is an equivalence relation on \mathcal{F}. Then there is a $B \leq A$ such that R is canonical on $\mathcal{F}|_B$.
Definition (T., [11])

Let \mathcal{F} be a front and R be an equivalence relation on \mathcal{F}. We say that R is **canonical** if and only if there is an inner Nash-Williams function φ on \mathcal{F} such that

(1) for all $a, b \in \mathcal{F}$, aRb if and only if $\varphi(a) = \varphi(b)$; and
Definition (T., [11])

Let \mathcal{F} be a front and R be an equivalence relation on \mathcal{F}. We say that R is **canonical** if and only if there is an inner Nash-Williams function φ on \mathcal{F} such that

1. for all $a, b \in \mathcal{F}$, aRb if and only if $\varphi(a) = \varphi(b)$; and
2. φ is maximal among all inner Nash-Williams functions satisfying (1). That is, for any other inner Nash-Williams function φ' on \mathcal{F} satisfying (1), there is a $Y \leq X$ such that $\varphi'(a) \subseteq \varphi(a)$, for all $a \in \mathcal{F}|Y$.

Theorem (T., [11])

Suppose $A \in H_2$, \mathcal{F} is a front and R is an equivalence relation on \mathcal{F}. Then there is a $B \leq A$ such that R is canonical on $\mathcal{F}|B$.
Definition (T., [11])

Let \mathcal{F} be a front and R be an equivalence relation on \mathcal{F}. We say that R is **canonical** if and only if there is an inner Nash-Williams function φ on \mathcal{F} such that

1. for all $a, b \in \mathcal{F}$, $a R b$ if and only if $\varphi(a) = \varphi(b)$; and
2. φ is maximal among all inner Nash-Williams functions satisfying (1). That is, for any other inner Nash-Williams function φ' on \mathcal{F} satisfying (1), there is a $Y \leq X$ such that $\varphi'(a) \subseteq \varphi(a)$, for all $a \in \mathcal{F}|Y$.

Theorem (T., [11])

Suppose $A \in \mathcal{H}^2$, \mathcal{F} is a front and R is an equivalence relation on \mathcal{F}. Then there is a $B \leq A$ such that R is canonical on $\mathcal{F}|B$.
Proposition (T., [11])

Assume that \mathcal{U} is a Ramsey for \mathcal{H}^2 ultrafilter on $[T_1 \otimes T_1]$ and generated by $\mathcal{C} \subseteq \mathcal{H}^2$. Suppose \mathcal{C} has basic Tukey reductions and \mathcal{V} is a nonprincipal ultrafilter on ω with $\mathcal{U} \geq_T \mathcal{V}$. Then there is a front \mathcal{F} on \mathcal{C} and a function $f : \mathcal{F} \rightarrow \omega$ such that $\mathcal{V} = f(\langle \mathcal{C} | \mathcal{F} \rangle)$.

Proposition (T., [11])

Assume that \(\mathcal{U} \) is a Ramsey for \(\mathcal{H}^2 \) ultrafilter on \([T_1 \otimes T_1]\) and generated by \(\mathcal{C} \subseteq \mathcal{H}^2 \). Suppose \(\mathcal{C} \) has basic Tukey reductions and \(\mathcal{V} \) is a nonprincipal ultrafilter on \(\omega \) with \(\mathcal{U} \geq_T \mathcal{V} \). Then there is a front \(\mathcal{F} \) on \(\mathcal{C} \) and a function \(f : \mathcal{F} \to \omega \) such that \(\mathcal{V} = f(\langle \mathcal{C} \upharpoonright \mathcal{F} \rangle) \).

Lemma (T., [11])

If \(\mathcal{C} \subseteq \mathcal{H}^2 \) generates a selective for \(\mathcal{H}^2 \) ultrafilter on \([T_1 \otimes T_1]\) then \(\mathcal{C} \) has basic Tukey reductions.
Proposition (T., [11])

Assume that \mathcal{U} is a Ramsey for \mathcal{H}^2 ultrafilter on $[T_1 \otimes T_1]$ and generated by $\mathcal{C} \subseteq \mathcal{H}^2$. Suppose \mathcal{C} has basic Tukey reductions and \mathcal{V} is a nonprincipal ultrafilter on ω with $\mathcal{U} \geq_T \mathcal{V}$. Then there is a front \mathcal{F} on \mathcal{C} and a function $f : \mathcal{F} \rightarrow \omega$ such that $\mathcal{V} = f(\langle \mathcal{C} \upharpoonright \mathcal{F} \rangle)$.

Lemma (T., [11])

If $\mathcal{C} \subseteq \mathcal{H}^2$ generates a selective for \mathcal{H}^2 ultrafilter on $[T_1 \otimes T_1]$ then \mathcal{C} has basic Tukey reductions.

Theorem (T., [11])

If $\mathcal{C} \subseteq \mathcal{H}^2$ generates a Ramsey for \mathcal{H}^2 ultrafilter on $[T_1 \otimes T_1]$ then for any front \mathcal{F} on \mathcal{R} and any equivalence relation R on \mathcal{F}, there exists a $\mathcal{C} \in \mathcal{C}$ such that R is canonical on $\mathcal{F}|\mathcal{C}$.
Definition (T., [11])

- Suppose that $C \subseteq H^2$ generates a Ramsey for H^2 ultrafilter on $[T_1 \otimes T_1]$.
Definition (T., [11])

- Suppose that $C \subseteq \mathcal{H}^2$ generates a Ramsey for \mathcal{H}^2 ultrafilter on $[T_1 \otimes T_1]$.
- For each $n < \omega$, let D_{n+1} denote the ultrafilter on $\mathcal{H}^2(n)$ generated by $C \upharpoonright \mathcal{H}^2(n)$.
Definition (T., [11])

- Suppose that $\mathcal{C} \subseteq \mathcal{H}^2$ generates a Ramsey for \mathcal{H}^2 ultrafilter on $[T_1 \otimes T_1]$.
- For each $n < \omega$, let D_{n+1} denote the ultrafilter on $\mathcal{H}^2(n)$ generated by $\mathcal{C} \upharpoonright \mathcal{H}^2(n)$.
- Additionally, let

$$D_0 = \pi_{T_{\langle 0 \rangle}}(D_1) \& D_{\langle \rangle} = \pi_{T_{\langle \rangle}}(D_1).$$

(4)
Definition (T., [11])

- Suppose that $\mathcal{C} \subseteq \mathcal{H}^2$ generates a Ramsey for \mathcal{H}^2 ultrafilter on $[T_1 \otimes T_1]$.
- For each $n < \omega$, let D_{n+1} denote the ultrafilter on $\mathcal{H}^2(n)$ generated by $\mathcal{C} \upharpoonright \mathcal{H}^2(n)$.
- Additionally, let

$$D_0 = \pi_{T^{[0]}}(D_1) \& D_{\langle \rangle} = \pi_{T^{\langle \rangle}}(D_1).$$

(4)

- For each $n < \omega$ and each $T(I, J) \in T(n)$, let

$$D_{I,J} = \pi_{T(I,J)}(D_{n+1}).$$

(5)
Suppose that \mathcal{U} is a Ramsey for \mathcal{H}^2 ultrafilter on $[T_1 \otimes T_1]$ generated $\mathcal{C} \subseteq \mathcal{H}^2$. If \mathcal{V} is a nonprincipal ultrafilter and $\mathcal{U} \geq_T \mathcal{V}$, then \mathcal{V} is isomorphic to an ultrafilter of \mathcal{W}-trees, where $\hat{S} \setminus S$ is a well-founded tree, $\mathcal{W} = (\mathcal{W}_s : s \in \hat{S} \setminus S)$, and each \mathcal{W}_s is isomorphic to \mathcal{D}_0 or $\mathcal{D}_{i,j}$ for some $(i, j) \in \omega \times \omega$ with $(i, j) \neq (0, 0)$.
Theorem (T., [11])

Suppose that \mathcal{U} is a Ramsey for \mathcal{H}^2 ultrafilter on $[T_1 \otimes T_1]$ generated $\mathcal{C} \subseteq \mathcal{H}^2$. If \mathcal{V} is a nonprincipal ultrafilter and $\mathcal{U} \geq_T \mathcal{V}$, then \mathcal{V} is isomorphic to an ultrafilter of $\vec{\mathcal{W}}$-trees, where $\hat{S} \setminus S$ is a well-founded tree, $\vec{\mathcal{W}} = (\mathcal{W}_s : s \in \hat{S} \setminus S)$, and each \mathcal{W}_s is isomorphic to \mathcal{D}_0 or $\mathcal{D}_{i,j}$ for some $(i, j) \in \omega \times \omega$ with $(i, j) \neq (0, 0)$.

Theorem (T., [11])

Suppose that \mathcal{U} is a Ramsey for \mathcal{H}^2 ultrafilter on $[T_1 \otimes T_1]$ generated $\mathcal{C} \subseteq \mathcal{H}^2$. If \mathcal{V} is an ultrafilter on ω and \mathcal{V} is Tukey reducible to \mathcal{U} then one of the following holds,

1. $\mathcal{V} \equiv_T \mathcal{D}_{\langle \rangle}$,
2. $\mathcal{V} \equiv_T \mathcal{D}_0$,
3. $\mathcal{V} \equiv_T \mathcal{D}_{0,1}$,
4. $\mathcal{V} \equiv_T \mathcal{D}_{1,0}$ or
5. $\mathcal{V} \equiv_T \mathcal{D}_{1,1}$.
Theorem (T., [11])

It is consistent with ZFC that the four-element Boolean algebra appears as an initial Tukey structure.

Figure: Rudin-Keisler structure of the p-point ultrafilters within the Tukey types of nonprincipal ultrafilters Tukey reducible to \mathcal{D}_1
Further Questions and Problems

- Is the Ellentuck space the only topological Ramsey space where Ramsey and selective are equivalent?
Further Questions and Problems

- Is the Ellentuck space the only topological Ramsey space where Ramsey and selective are equivalent?
- Are the notions of selective for \mathcal{H}^ω and Ramsey for \mathcal{H}^ω equivalent?
- Can the product \otimes from Chapter 3 be extended to arbitrary topological Ramsey spaces?
- Under CH, is the standard cut the only Dedekind cut that can arise from a selective for \mathcal{R}_1 ultrafilter?
- Under CH, characterize the Dedekind cuts that can arise from Ramsey/selective for \mathcal{R}_n ultrafilters, for $n < \omega$.
- Under CH, characterize the Dedekind cuts that can arise from p-points in the Tukey type of a Ramsey for \mathcal{R}_1 ultrafilter.
- (Dobrinen) What are the possible initial Tukey structures for ultrafilters on a countable base set?
Further Questions and Problems

- Is the Ellentuck space the only topological Ramsey space where Ramsey and selective are equivalent?
- Are the notions of selective for \mathcal{H}^ω and Ramsey for \mathcal{H}^ω equivalent?
- Can the product \otimes from Chapter 3 be extended to arbitrary topological Ramsey spaces?
Is the Ellentuck space the only topological Ramsey space where Ramsey and selective are equivalent?

Are the notions of selective for \mathcal{H}^ω and Ramsey for \mathcal{H}^ω equivalent?

Can the product \otimes from Chapter 3 be extended to arbitrary topological Ramsey spaces?

Under CH, is the standard cut the only Dedekind cut that can arise from a selective for \mathcal{R}_1 ultrafilter?
Further Questions and Problems

- Is the Ellentuck space the only topological Ramsey space where Ramsey and selective are equivalent?
- Are the notions of selective for \mathcal{H}^ω and Ramsey for \mathcal{H}^ω equivalent?
- Can the product \otimes from Chapter 3 be extended to arbitrary topological Ramsey spaces?
- Under CH, is the standard cut the only Dedekind cut that can arise from a selective for \mathcal{R}_1 ultrafilter?
- Under CH, characterize the Dedekind cuts that can arise from Ramsey/selective for \mathcal{R}_n ultrafilters, for $n < \omega$.
Further Questions and Problems

- Is the Ellentuck space the only topological Ramsey space where Ramsey and selective are equivalent?
- Are the notions of selective for \mathcal{H}^ω and Ramsey for \mathcal{H}^ω equivalent?
- Can the product \otimes from Chapter 3 be extended to arbitrary topological Ramsey spaces?
- Under CH, is the standard cut the only Dedekind cut that can arise from a selective for \mathcal{R}_1 ultrafilter?
- Under CH, characterize the Dedekind cuts that can arise from Ramsey/selective for \mathcal{R}_n ultrafilters, for $n < \omega$.
- Under CH, characterize the Dedekind cuts that can arise from p-points in the Tukey type of a Ramsey for \mathcal{R}_1 ultrafilter.

(Dobrinen) What are the possible initial Tukey structures for ultrafilters on a countable base set?
Further Questions and Problems

- Is the Ellentuck space the only topological Ramsey space where Ramsey and selective are equivalent?
- Are the notions of selective for \mathcal{H}^ω and Ramsey for \mathcal{H}^ω equivalent?
- Can the product \otimes from Chapter 3 be extended to arbitrary topological Ramsey spaces?
- Under CH, is the standard cut the only Dedekind cut that can arise from a selective for \mathcal{R}_1 ultrafilter?
- Under CH, characterize the Dedekind cuts that can arise from Ramsey/selective for \mathcal{R}_n ultrafilters, for $n < \omega$.
- Under CH, characterize the Dedekind cuts that can arise from p-points in the Tukey type of a Ramsey for \mathcal{R}_1 ultrafilter.
- (Dobrinen) What are the possible initial Tukey structures for ultrafilters on a countable base set?
The Rudin-Keisler ordering of p-points.

Ultrafilter mappings and their Dedekind cuts.

Ultrafilters on a countable set.

Deux classes remarquables d’ultrafiltres sur n.

Forcing with filters and complete combinatorics.

A notion of selective ultrafilter corresponding to topological ramsey spaces.

Dissertation.
2014.

Ramsey for R_1 ultrafilter mappings and their Dedekind cuts.
submitted.

Selective but not Ramsey.
submitted.